1204

IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 5, OCTOBER 2017

Computing Resource Allocation in Three-Tier IoT
Fog Networks: A Joint Optimization Approach
Combining Stackelberg Game and Matching

Huaqing Zhang, Student Member, IEEE, Yong Xiao, Senior Member, IEEE, Shengrong Bu,
Dusit Niyato, Fellow, IEEE, F. Richard Yu, Senior Member, IEEE, and Zhu Han, Fellow, IEEE

Abstract—Fog computing is a promising architecture to
provide economical and low latency data services for future
Internet of Things (IoT)-based network systems. Fog comput-
ing relies on a set of low-power fog nodes (FNs) that are located
close to the end users to offload the services originally target-
ing at cloud data centers. In this paper, we consider a specific
fog computing network consisting of a set of data service oper-
ators (DSOs) each of which controls a set of FNs to provide the
required data service to a set of data service subscribers (DSSs).
How to allocate the limited computing resources of FNs to all
the DSSs to achieve an optimal and stable performance is an
important problem. Therefore, we propose a joint optimization
framework for all FNs, DSOs, and DSSs to achieve the opti-
mal resource allocation schemes in a distributed fashion. In the
framework, we first formulate a Stackelberg game to analyze
the pricing problem for the DSOs as well as the resource alloca-
tion problem for the DSSs. Under the scenarios that the DSOs
can know the expected amount of resource purchased by the
DSSs, a many-to-many matching game is applied to investigate
the pairing problem between DSOs and FNs. Finally, within the
same DSO, we apply another layer of many-to-many match-
ing between each of the paired FNs and serving DSSs to solve
the FN-DSS pairing problem. Simulation results show that our
proposed framework can significantly improve the performance
of the IoT-based network systems.

Index Terms—Fog computing, Internet of Things (IoT), match-
ing theory, Stackelberg game.

I. INTRODUCTION

ITH the rapid development of Internet of Things (IoT),
the number of connected devices has increased at a
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unprecedented speed [1]. It is known that analyzing the big
data generated by all kinds of IoT devices requires a large
amount of computing resources. In order to meet the demand
of the data computing services, a large number of large-scale
data centers has been deployed. In addition, cloud computing
has been proposed recently to provide flexible and efficient
services to the data service subscribers (DSSs). In cloud com-
puting, the data service operator (DSO) is able to organize
a shared pool of configurable computing resources (such as
servers, storage, networks, applications, and services), which
can be easily accessed by DSSs on demands.

Generally speaking, large-scale data centers or clouds are
typically built in remote areas far from the DSSs. This results
in high transmission cost, transmission congestions, and ser-
vice latency, which can be intolerable for the applications that
require real-time interaction or mobility. Accordingly, it is ben-
eficial and necessary to pull the cloud closer to the users. In
wireless radio access network, the concept of mobile edge
computing is developed by European Telecommunications
Standards Institute, aiming to bring computation power into
mobile radio access network. In mobile edge computing, the
network edge is able to run in an isolated environment from
the rest of the network and creates access to resources in the
local neighborhood [5]. Moreover, in 10T, fog computing, put
forward by Cisco, is proposed as a promising solution. In fog
computing, multiple low-power computing devices, commonly
referred to as the fog nodes (FNs), at the edge of the networks
are deployed to offload the data computing services from the
cloud. With the property of small-scale, low construction cost,
and mobility support, the FNs are generally deployed much
closer to the DSSs and therefore can provide low-latency, fast-
response, and location-awareness service [6]. With different
purpose and preferences, the DSSs at the network edge are
able to receive data services from the FNs in the neighborhood
or from remote data centers in remote areas.

In the fog computing network, the concept of network vir-
tualization is also applied. As the large number of FNs and
their computing resources are invisible for the DSSs, the
DSSs can only contact and purchase the data services from
the DSOs. Therefore, there is a virtualized network between
DSOs and DSSs. When receiving the service requests from all
DSSs, each DSO is able to collect the computing resources
from the FNs and provide virtual data services for the DSSs.
Based on the network requirements, each DSO is able to
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allocate different amount of computing resources from dif-
ferent FNs to different DSSs. Thus, the computing resource
can be efficiently and effectively utilized by the nearby DSSs.

Fog computing networks can consist of a large number of
FNs deployed by different DSOs at different locations to pro-
vide various data services and applications to the DSSs. When
DSSs can choose their DSOs as well as the corresponding FNs
to further enhance their quality-of-experience, how to allocate
the limited computing resources of all the FNs to the DSSs
is still an open problem. In this paper, we further extend our
previous work [7] and focus on the resource selection and
allocation problem between the FNs, DSOs, and DSSs. We
propose a joint optimization framework for all FNs, DSOs,
and DSSs in a distributed fashion. In the framework, we first
formulate a Stackelberg game to model the interaction between
DSOs and DSSs, where the DSOs set their service price first,
and the DSSs purchase the optimal number of computing
resource blocks (CRBs). Once the prices of DSOs and the pur-
chased resources of DSSs have been obtained, each DSS can
know how many CRBs are required and can then try to com-
pete for the CRBs owned by the nearby FNs. Thus, we propose
a many-to-many matching game to investigate the interaction
between DSOs and FNs, where each DSO has a set of CRBs
to offload, and each FN has many vacant CRBs to sell. After
all the DSOs decide their DSO-FN pairs, FNs will compete
with each other to allocate their CRBs to the DSSs of the
DSOs. We also adopt another layer of many-to-many match-
ing framework to solve the FN-DSS pairing problem within the
same DSO. Simulation results show that our proposed frame-
work can significantly improve the performance of the fog
computing networks.

This paper is organized as follows. We describe the
system model in Section II and formulate the problems in
Section III. Based on the formulated problem, we analyze the
system with the proposed framework in Section IV, where
the interaction between DSOs and DSSs is considered in
Section IV-A, the interaction between FNs and DSOs is ana-
lyzed in Section IV-B, and the interaction between FNs and
DSSs is discussed in Section IV-C. Finally, we evaluate the
performance of this paper in Section V, show related works
in Section VI, and summarize this paper in Section VIL

II. SYSTEM MODEL

Consider a fog computing network where each DSS can
submit its data computing service to a set of neighboring
FNs deployed by a set of DSOs as illustrated in Fig. 1.
Accordingly, we consider a three-tier fog network, where the
DSOs locate in the middle layer, managing the FNs in the
upper layer and serving DSSs in the bottom layer. For clear
understanding, we list the notations of this paper in Table I.
Without loss of generality, we assume there are M DSOs,
labeled as W = {di,d>,...,dy} and N DSSs, denoted as
Y = {s1,52,...,5n5). Let A; be the workload arrival rate of
DSS s, Vs; € Y. We assume each DSS has a normalized pref-
erence list, denoted as Ljf over all DSOs. Moreover, K FNs,
labeled as Q2 = {f1, />, ...,fk}, locate in the area of consid-
eration. We define the unit amount of computing resources
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Fig. 1. System architecture.

TABLE I
LIST OF NOTATIONS
Symbol Definition
M Total number of DSOs
N Total number of DSSs
K Total number of FNs
)4 The set of DSOs
T The set of DSSs
Q The set of FNs
I Service rate of CRBs
Aj Workload arrival rate for the DSS s
T Price of unit virtualized CRB set by the DCO o;
L‘;- The preference list of DSSs over DSOs
t; Total cost due to the delay of DSS s;
h Cost due to network delay from the physical ser-
vice provider to DSS s

0 Cost due to queuing delay at the servers
a;j Total number of CRBs purchased by the DSS s;
Iy Distance between the FN f, and the DSS s;
W; Utility function of DSS s;
wé Utility function of DSO d;
Wg Utility function of FN f;,

Tij The boolean variable determining whether the DSO
d; serves DSS s; or not.

o, Bj,7v; | Weight factors in the utility function of DSS s;

tin The maximum tolerance of service delay for DSS
S

Chj T]ransmission cost for unit CRB from FN fj to
DSS s;

e; Increment of the energy cost in the massive data
center for DSO d;

T]IJ:«L Normalized preference from the FN fj, to the DSO
d .

Pk Rzent of unit CRB set by the FN fj

Tth Upper bound of total delay cost

q,{; Number of CRBs allocated from the FN fj to the
DSS Sj

qukd Number of CRBs allocated from the FN fj to the
DSO d;

L;.if Preference list of DSO d; on all FNs

Ljf Preference list of DSS s; on all FNs

L£S Preference list of FN £, on all DSSs

that can be distributed by each FN as the CRB [7], each of
which can provide computing service at the rate of w. The
physical data transmission network between FNs and DSSs
satisfies the SecondNet topology [8], where the network facil-
ities can provide the guaranteed quality-of-service (QoS) for
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the DSSs. Accordingly, in order to reduce the risk of poten-
tial network congestion and achieve real-time fast-response
interaction, each DSO tries to offload the data services sub-
mitted by the DSSs to the large-scale data centers to the local
FNs. However, as the DSSs cannot have the authorization to
access the CRBs directly, the DSSs are required to receive the
virtualized services from the DSOs, and with the management
of DSOs, the CRBs of the FNs can finally be allocated to
the DSSs. We assume that different DSOs offer data services
with different requirements. Based on the preference list L; ,
the DSS s;, Vs; € T is required to subscribe to at most one
DSO. The network architecture is illustrated in Fig. 1.

Assume the DSSs apply real-time interactive applications,
where QoS is measured by the service delay. In this paper,
for DSS s; and Vs; € T, we measure the cost of the service
delay as

ti=hj+o; (1)

which consists of the cost incurred by the queuing delay o; at
the servers as well as the cost incurred by the network delay 5;
from the sensors to the physical service provider and from the
physical service provider to DSS s;. We suppose the workload
of each DSS s; follows Poisson arrival process. According to
the M/G/1 queuing delay model, the mean response time for
unit transmitted data is [1/(u — (A;¢;))] [9], [11]. Thus, the
cost of queuing delay when serving DSS s; is

Aj

0= —1 2)

w—=4

qj

where ¢; is the number of CRBs purchased by DSS s;.
Moreover, as the network delay is related to the transmis-
sion distance, traffic condition in the network and many other
unpredicted factors, in practice, we suppose the network delay
can be evaluated from training data periodically sent from sen-
sors to the physical service provider and from the physical
service provider to the DSS. In this paper, we set the distance
between the farthest sensor to the physical service provider
plus the distance between the physical service provider (e.g.,
FN fi) to DSS s; to be [;;. For simplicity, we assume the
network resource from the physical service provider to DSS
sj is always sufficient, and the cost incurred by the network
delay h; generally follows a linear function of the distance
from the sensor to the physical service provider plus the dis-
tance from the physical service provider to the DSS s;, i.e.,
hj = 01y, where 0 is a scalar.

As the DSSs in the network pay DSOs for the service, fol-
lowing the structure of [7], the utility of DSS s;, Vj € T,
can be denoted as the revenue received from the workload
data minus both the cost of service delay and payment to the
DSOs, which can be expressed as follows:

M

Wf = Z TU(O‘J

i=1

lgjqul - Vjtj) 3)
where o; denotes the revenue that DSS s; can obtain for unit
received data rate. ojA; indicates the total revenue for receiving
the data with workload rate A;. r; is the price set by DSS d;
for each unit of the virtualized CRB. Thus, when the DSS
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sj purchases g; CRBs from the DSO d;, the total payment
from the DSS s; to the DSO d; can be expressed as gjr;. B;
is the weight factor indicating the importance of payment in
the utility function of DSS s;. y; is weight factor indicating
the importance of data service delay in the utility function
of DSS s;. We set 1;; to be the Boolean variable determining
whether DSO d; serves DSS s; or not. If 7;; = 1, DSS s; is
served by the DSO d;. Otherwise, DSS s; prefers to be served
by the other DSO. The value of t;; follows the preference list
L; of DSS sj, and each DSS can at most choose one DSS,

ie., Zi‘il 7j = 1, Vj € Y. For each DSS, we assume there
is an upper bound #y, for the service delay. When the service
delay is larger than the threshold, the DSS will regard it as
an unsuccessful connection. Corresponding, we set q]t-h as the
lower bound of CRBs required for DSS s; to guarantee the
service delay within the acceptable thresholds.

Based on the number of virtualized CRB purchased by serv-
ing DSSs, the utility of each DSO is the revenue received
from the DSSs minus the payment to the facilities that are
able to provide the physical CRBs. Here, each DSO prefers to
offload its services to the FNs nearby. However, if there are
not sufficient available CRBs from the FNs which can meet
the requirements of all DSSs. Some DSSs will be served by
the remote data centers, which are located far away from the
DSSs. We suppose the increment of the energy cost in the
remote data center is e;. Therefore, for the DSO d;, if q}'/k
CRBs are offloaded to the FN f, and g7 CRBs are still served
by the remote data centers, the utility function of DSO dj,
Vi € W, can be denoted as

N
Wi =" 1(rigy) Zpkq,k — eiq] €
j=1

where Zﬁv: 1 Tij(rig;) refers to the total revenue that DSO d;
receives from DSSs for its data services. As pi is the price
set by the FN f, which is determmed by the cost and current
traffic of FN f;, Zk 1 pkq i 7 denotes the total payment from
the DSO d; to all FNs. ¢;q? is the total cost for DSO d; to
serve DSSs by itself.

For FN f} in the network, the utility is the payment received
from the DSOs minus the transmission cost. We set cy; as the
transmission cost for each unit CRB, which has a linear rela-
tionship with the distance [;;. Moreover, we set ’7'151' as the
normalized preference to the DSO d;. Accordingly, consider-
ing the preference to different DSOs, the discounted utility
function for each DSO is

Z nkl

is the expected rewards received from

ckj qkj %)

M
where ) 7, nlj;.pkqg
DSOs, and Zf‘i | nlj;.cqu{; is the expected costs for serving
DSSs in fog computing.

IIT. PROBLEM FORMULATION

According to the modeled architecture of fog network, with
tradings between FNs and DSOs and between DSOs and
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DSSs, it is impossible to reach the maximum utilities for
all FNs, MDCOs, and DSSs simultaneously. Accordingly, we
consider a sequential decision making process. During the
process, the DSOs first predict the total number of CRBs pur-
chased from their servings DSSs and set their service prices to
their DSSs based on the prediction. Observing the behaviors of
the DSOs, each DSS determines the optimal number of CRBs
to purchase to achieve the maximum utility. Furthermore,
knowing the total amount of required CRBs, the DSOs try
to allocate CRBs to the FNs in the neighborhood. Finally, all
FNs selected by the same DSO competes for the DSSs.

We can write the optimization problem can be formulated
as follows:

max W (gjlr) VieTY
M
2z T =1
Ij = Ith
s.t. Tjjajh; < Tij(,BjLIjri + yjtf) ©)
q; =0

where r is the pricing profile of all DSOs observed by DSS s;.
Predicting the behaviors of the DSSs, each DSO is required

to set the service price to each serving DSS and compete with
other DSOs to choose FNs in the neighborhood. Thus, the
formulated problem of the DSO is

max  Wo(rilq*, p.r*)) VieWw

ri
N K d

st Zj:l Tij(rin) = Zk:lpkq,{;( + e,-qj-’ (7

ri>0

where q* denotes the optimal number of CRBs purchased by
all DSSs. p is the profile of rent for all FNs. r*; is the profile
of optimal service prices set by other DSOs.
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Moreover, each FN in the network would like to choose its
preferred DSOs and serve its DSSs with low distance. Thus,
competing with other FNs, it is required to determine the
number of CRBs allocated to DSOs and its serving DSSs,
respectively. The optimization problem is denoted as

rjr_[}a)}s Wf( lf,f qk] lfd}i, qfY,;, p- ) Vk € Q
ik »Ikj
Y gl <ql"
ot Zjv 1 QE = ‘Iith ®)
et f],k <q™ View
Zk 1‘11g = q;th VjieT

where q{dk is the optimal number of CRBs rent to DSO d;

for all other FNs, q . is the optimal number of CRBs allo-
cated to DSS s; for all other FNs. During the service, the total
CRBs distributed to all DSOs or all DSSs cannot exceed its
total available CRBs q{th for FN f;. Furthermore, the total
CRBs purchased from DSO d; or DSS s; should not exceed
its demand ¢?™ or ™", respectively.
In summary, following the relationships among all FNs,
DSOs, and DSSs, we focus on the following problems.

1) Resource Purchasing Problem for the DSSs: In the
network, as the DSSs can only access to the DSOs in
a virtualized fashion, they are required to purchase the
optimal number of CRBs from the DSOs. Following the
system model, as different DSSs have different tolerance
of service delay, when the upper bound of service delay
is high, the DSSs are able to purchase a small number
of CRBs to achieve satisfying services. However, when
the upper bound of service delay is low, the DSSs have
to purchase a large number of CRBs to guarantee the
service delay is within the tolerated region. Moreover,
the service price set by the DSOs also affects the utility
of DSSs. When the price is in high value, even though
the large number of CRBs is able to improve the quality
of data services, the DSSs have to make a large payment
to the DSOs for their services. The revenue may not be
satisfying. Therefore, considering both the delay toler-
ance and setting prices of DSOs, the optimal number of
CRBs should be determined for high utilities.

2) Pricing Problem for the DSOs: In the data service with
fog, the DSOs are required to provide virtualized CRBs
to the DSSs and try to rent the CRBs from the FNs to
serve DSSs in the physical network. Therefore, how to
do the pricing for the DSOs is a problem. Considering
the announced rent from all FNs, the DSOs need to set
a price which can bring profits for themselves. However,
if the price is set too high, the serving DSSs will not
purchase a large number of CRBs. Therefore, predicting
the reactions of CRBs and observing the rent of FNs,
the DSOs are required to determine its service price so
as to receive the maximum revenues.

3) DSO-FN Pairing Problem: As FNs may be private com-
puting devices, which are small-scale and unable to
communicate with DSSs directly, the FNs are accessible
to the DSOs only. In the multi-DSO scenario, as the FNs
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are accessible to all DSOs, it is a problem for all DSOs
in the network to pair FNs distributedly so as to serve
their DSSs with low latency. With different relations and
trading history, each FN has different preference on all
DSOs. Observing the rent of all FNs, each DSO also
has a preferences on each FN. Based on the preferences
of all DSOs’ and FNs’, it is required to reach a stable
DSO-FN pairing results, where any DSO or FN is able
switch its current pairing result for a higher utility.

4) FN-DSS Pairing Problem: After the pairing between
DSOs and FNs, each FN has allocated its CRBs to all
DSOs. However, within one DSO, it is still a problem
for the FNs to allocate their CRBs to all DSSs. As the
distance between each FN and each DSS is various,
with a longer transmission distance, the FNs have to
pay more on the transmission cost. Thus, based on the
transmission distance, each FN has a preference over all
DSSs. Moreover, each DSS also have preference over
FNs based on the rent. Therefore, following the prefer-
ence of all FNs’ and DSSs’, a stable FN-DSS pairing
result should be achieved.

According to the formulated problems, all FNs, DSOs, and
DSSs are rational and autonomous individuals, who observe
the behaviors of others and make decisions to improve their
own utilities. Therefore, in order to reach the optimal and
stable solutions for all FNs, DSOs, and DSSs, we model a
three-stage joint optimization framework, as shown in Fig. 2.
In the framework, we first model the Stackelberg games to
solve the pricing problem for the DSOs and resource purchas-
ing problem for the DSSs. When the DSOs know the expected
amount of resource purchased by the DSSs, a many-to-many
matching is proposed between the DSOs and the FNs to deal
with the DSO-FN pairing problem. Finally, within the same
DSO, we apply another many-to-many matching between its
paired FNs and serving the DSSs to solve the FN-DSS pairing
problem.

IV. SYSTEM ANALYSIS

In this section, we analyze the optimal strategies for FNs,
DSOs, and DSSs. Based on the analysis of the formulated
framework, in the following sections, we first investigate the
interactions between the DSOs and DSSs to determine how
many CRBs are required during the service. Given the opti-
mized behaviors of the DSOs and DSSs, we analyze the
interactions between the FNs and DSOs based on different
preferences. Finally, with the obtained results, we discuss the
interactions between the FNs and DSSs within the same DSO
for better services.

A. Interaction Between DSOs and DSSs

In the virtualized network, the DSOs provides CRBs for
the DSSs. Following the formulated problems for both DSOs
and DSSs, there is a Stackelberg game, where the DSOs act as
leaders and DSSs act as followers. In the game, when all DSSs
choose their serving DSOs with their preferences, the DSO
first sets the service price. Then, based on the price all DSSs
determine optimal number of CRBs to purchase. Accordingly,
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considering the optimization problem of DSSs, we have the
following lemma.

Lemma 1: In the modeled Stackelberg game between DSO
d; and DSS s;, when the DSO announces its service price r;,
the optimal number of CRBs ¢; purchased by the DSS is
)\’.

q; = —jﬂ] +
Ky Tiy

)\‘4
- ©)
w

Proof: According to the utility function of DSS s; (3),
the second derivative of W} with respect to g; is

2221
f=-—l. (10)
0q; (1aj = %))

As (82st/qu2) < 0, st is a quasi-concave function with

respect to g;. Furthermore, the first derivative of W; with
respect to g; is

ow; < Aj )2 Bj
- = : — ==,
aql' /,Lbj —Aj lJ/j

We set the first derivative equal to zero and obtain the optimal
number of CRBs to purchase so as to achieve the maximum
utility, that is,

2
0wy

(an

12)

|
Therefore, considering the reactions of the DSSs, we adjust
the optimization problem for the DSO d;, Vi € W, as follows:

max Wé (ri|a*, p, r*;) Vie W

N Yo fBi o A [Bi K d
s.t. 2= tU(F/ %’7 + TA/?}N) z Zk=1PkCJ{k + eiq?
ri>0

(13)

where

N K
- A | Bi A | B .
Wi = Z L I R e el Zpkqij; —eiq;-
=1 Y Vi Y Vi k=1
]_ =
(14)

In the formulated problem (13), we take the first derivative
of VNVld with respective to r; and discover it is a monotonous
increasing function with respective to r;. Furthermore, as the
service delay cannot surpass #; for the DSSs. The CRB

purchased by DSSs has the following low bound:

g > )\.jt[h
]

> —. (15)
MEh — Aj

Thus, following the relation in (9), the maximum and optimal
price for the DSO d; to DSS s; is, Vie ¥, Vj € T:

e a2
= ﬁ(—‘”th J) . (16)
B\ %
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B. Interaction Between FNs and DSOs

According to the predicted number of CRBs ordered by the
DSSs, the DSOs try to offload the services from the massive
data centers to the DSSs nearby. Observing the service prices
set by all FNs, DSO d;, Vi € W, has a preference list Lf-lf =
[L;l{ ey L;l[é] on all FNs in the neighborhood. As the DSOs
prefer to choose the FNs with a low price, we set

LY = —p, VieV; VkeQ. (17)

Furthermore, each FN also has different preferences over

DSOs. Thus, we set the reference list of FN fi, Vk € €,
on all DSOs as Lf =[Li--- k] satisfying
fd . .
Ly = ’7kz Vie V; Vke Q. (18)

Considering the preference lists of FNs and DSOs, i.e.,
LZ{ and L{ZJ , respectively, we design a many-to-many match-
ing algorithm for the DSO-FN pairing problem. As shown in
Algorithm 1, after the preference lists are constructed, we set
a pointer for each FN in its preference list. Initially, we set the
pointer at the first DSO in the list. During the each round of
matching, each FN first propose to the DSO in the pointer of
the preference list. Based on behaviors of the FNs, each DSO
chooses its most preferred FNs in its preference list until the
required CRBs are all supplied by the FNs. If the FNs supply
more CRBs than the DSO requires, the DSO will reject the
CRBs from less favorite FNs. If the FNs supplies less CRBs
than the DSO requires, the DSO will choose massive data cen-
ters for the rest of the services. At the end of each round, if
all of the CRBs from the FN have been allocated to the DSOs,
the pointers of the FN will keep unchanged. Otherwise, the
pointers of the rejected FNs will move to the next DSO in
the preference list. In the next round, the FNs which still have
available CRBs will propose to the new DSOs according to
their pointers. Specifically, if the CRBs of FN are chosen by
the DSO in the last round, but discarded in the current round,
we suppose the pointer of the FN does not change its position,
considering the pointed DSO in the current round may need
more CRBs from the FN. The matching repeats in circulations
until all the pointers of the FNs have moved out their prefer-
ence list. According to the algorithm, we have the following
lemmas.

Lemma 2: For each FN in the matching algorithm, the
pointer of the FN in its preference list moves in one direc-
tion. In other words, when its pointer has moved to the next
DSOs in the preference list, whatever the matching results of
other FNs, the FN cannot achieve a higher utility by moving
the pointer back.

Proof: As shown in Algorithm 2, when the DSOs deter-
mines which FNs to choose, they choose the CRBs from the
most preferred amount. If some CRBs from FN f; is discarded
by DSO d;, the current accepted CRBs belong to the FNs
which is more preferred than FN f;. In the future rounds, when
there are new FNs proposing to DSO d;, if the DSO would
like to change its current accepted FNs, the DSO can only
choose the FNs that is even better than the FNs in the current
accepted list. Therefore, for FN f; which has been rejected
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Algorithm 1 Many-to-Many Matching Algorithm for DSO-FN
Pairing Problem

1: for FN f; do
2:  Construct the preference list L{d on all DSOs according
to (18);
3:  One pointer is set as the indicator pointing at the first
DSO in the preference list.
4: end for
5: for DSO d; do
: Construct the preference list L?f on all FNs according
to (17);
7: end for
8: We set flagy, Vk € Q, as the indicator to show if the CRBs
of FN f; were chosen by the DSO in the last round, but
discarded in the current round. Initially, flagy = 1;
9: while the pointers of all FNs have not scanned all the
DSOs in their preference list do
10:  FNs propose to DSOs with their service price;
11:  for FN f; who still have available FNs to purchase do

12: if flagy = 1 then

13: The pointer keep current position in the list;

14: else

15: The pointer moves to the next position in the list;

16: end if

17: The FN proposes to pointed DSO in its preference
list with its available FNs;

18: We set flagy = 0;

19:  end for
20:  DSOs determines which FNs to choose;
21: for DSO d; do

22: if The total available number of CRBs proposed by
the FNs exceed the requirements then

23: The DSO d; chooses the most preferred number of
CRBs from FNs, and rejects the rest;

24: For CRBs of the FN f; which is chosen by the

DSO in the last round, but rejected in the current
round, we set flagy = 1;

25: end if

26:  end for

27: end while

once from DSO d;, it is impossible for it to be accepted by
the same DSO in the future rounds. ]
Lemma 3: Following Algorithm 2, the DSO-FN pairing
problem will ultimately converge and achieve a stable match-
ing result.
Proof: As proved in the Lemma 2, the pointer of the
FNs can only move in one direction. Therefore, in the perspec-
tive of the FNs, when the pointer of each FN has moved to
the end of the preference list, the FN has distributed its avail-
able CRBs to the DSOs in an optimized way. In other words,
the FN is unable to change its pairing results unilaterally for
higher utilities. Furthermore, in the perspective of the DSOs,
when the pointers of all FNs have moved to the end of the
preference lists, each DSO has evaluated all proposals from the
available FNs. Therefore, it also cannot unilaterally change its
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Algorithm 2 Many-to-Many Matching Algorithm for FN-DSS
Pairing Problem
1: for DSS s; do
2:  Construct the preference list L;f on all DSOs according
to (19);
3:  One pointer is set as the indicator pointing at the first
FN in the preference list.
4: end for
5. for FN f; do

6:  Construct the preference list Lf on all FNs according
to (20);
7: end for

8: We set flagj, Vj € Y, as the indicator to show if the FNs
allocate CRBs to the DSS s; in the last round, but adjusted
in the current round. Initially, flag; = 1;

9: while the pointers of all DSSs have not scanned all the
FNs in their preference list do

10:  DSSs propose to FNs for their services;

11:  for DSS s; which has not been allocated required CRBs

do
12: if flag;i = 1 then
13: The pointer keep current position in the list;
14: else
15: The pointer moves to the next position in the list;
16: end if
17: The DSS proposes to pointed FN in its preference
list for its data services;
18: We set flag; = 0;

19:  end for
20:.  Each FN determines which DSSs to choose;
21:  for FN f; do

22: if The total available CRBs requested by the DSSs
exceed the available volume then
23: The FN f; allocate the CRBs to the most preferred
DSSs, and rejects the rest;
24: For CRBs allocated to the DSS s; in the last round,

but adjusted in the current round, we set flag; = 1;
25: end if
26:  end for
27: end while

pairing results, get accepted by the FNs and achieve a higher
utility for itself. Furthermore, according to [10], when every
agents preference list is substitutable, a pairwise stable match-
ing always exists. Based on the above, the DSO-FN pairing
will ultimately converge and achieve a stable matching result
in Algorithm 2. |

C. Interaction Between FNs and DSSs

When the CRBs from FNs have been rent to all DSOs,
within each DSO, how to allocate the CRBs to all DSSs still
remains a problem. According to the rent of all FNs, DSS s;,
Vj € T, has a preference list L]S.f = [L]S.{ , ...,L]S.J;(] on all FNs
in the neighborhood, satisfying

sf

L =-prk VjeTX; Vk € Q. (19)
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Furthermore, according to the utility function of the FN, the
distance between the FN and its serving DSS affect the rev-
enues the FN received. With a longer distance, the FN has to
pay more for the data transmission in the network. Therefore,
we set a preference list Llfs = [L;{, R LJS-{(] for FN fi, Vk € €,
over all DSSs, that is

L{j =y VkeQ VjeT. (20)

Considering the preference lists of DSSs and FNs, i.e., L,ijf

and L{; , respectively, we design a many-to-many matching
algorithm for the FN-DSS pairing problem within DSO d;,
Vi € W. As shown in Algorithm 2, after the preference lists are
constructed, we set a pointer for each DSS in its preference list.
Initially, we set the pointer at the first FN in the list. During
the each round of matching, each DSS first proposes to the
FN in the pointer of the preference list. Based on behaviors
of the DSSs, each FN chooses its most preferred DSSs in its
preference list until the maximum CRBs available in the DSO
d; are reached. If the DSSs request more CRBs than the FN
can supply, the FN will reject the less favorite DSSs. At the
end of each round, if the DSSs have been allocated all of its
requested CRBs from the FNs, the pointers of the DSS will
keep unchanged. Otherwise, the pointers of the rejected DSS
will move to the next FN in the preference list. In the next
round, the DSSs which require CRBs will propose to the new
FNs according to their pointers. Specifically, if some CRBs of
FN are allocated to the DSS in the last round, but changed
to other DSSs in the current round, we suppose the pointer
of the DSS in the next round does not change its position,
considering the pointed FN in the current round may be able
to supply more CRBs to the DSS. The matching repeats in
circulations until all the pointers of the DSSs have moved out
their preference list. Following Lemmas 2 and 3 in a similar
way, the FN-DSS pairing problem can ultimately achieve a
stable matching result.

Based on the above, the optimal strategy of each DSO, FN,
or DSS is a function with respect to the network information,
e.g., channel state information and queue state information.
When the network information changes dynamically, based on
the function of optimal strategy, each DSO, FN, or DSS is able
to adjust its strategy immediately to achieve optimal utility.
However, in practice, the sensing process for network infor-
mation may be performed periodically, while the time within
each period is very short and we can assume the network
information as constant. Accordingly, each DSO, FN, or DSS
is able to iteratively update its optimal strategy to achieve high
utility based on the observed network information within each
period.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we present simulation results to evaluate
our proposed framework with MATLAB. In the simulated IoT
scenario, without specific explanation, there are 120 DSSs,
4 DSOs, and 20 FNs allocated randomly in a circle district
with a diameter of 10 km. As we focus on the IoT scenarios,
where DSSs are closely located with its sensors, without loss
of generality for the methods in this paper, we suppose the
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Fig. 3. Utility of all FNs versus the number of DSSs.

sensors of each DSS are located at the same position with
the DSS. We follow the settings in [11] and set the service
rate of each CRB is 0.1 ms~!. For each DSS, the workload
arriving rate is a random number averaged 0.5 ms~'. The
data transmission speed is 50 km/ms. The delay tolerance of
all DSSs is set to 60 ms. Furthermore, for each FN, we set
its preference to each DSO as a random number satisfying the
uniform distribution between [0, 1]. Based on the usage of its
computing resources and its service cost, we set the announced
rent as a random number satisfying the uniform distribution
between (0, 10), and the amount of available CRB as a random
number satisfying uniform distribution between (0, 100). The
weight factors «, B, and y are set as 50, 0.01, and 0.001,
respectively.

As shown in Fig. 3, we evaluate the utility of all FNs when
the number of DSSs increases. When the number of FNs is
fixed, we discover with the number of DSSs increasing, the
utility of all FNs generally increases, and the increasing speed
first increases then gradually decreases to zero. The reason
is that when the number of DSSs increases, but the number
of FNs is fixed, the FNs will be able to serve more favor-
able DSSs with a low transmission distance. However, when
all of the available CRBs of FNs are allocated to the DSSs
nearby and the number of DSS keep increasing, the DSS will
be allocated with CRBs from the massive data centers. Thus,
the total utility of the FNs stop increasing. Nevertheless, when
we increase the number of FNs, we discover that with more
FNs, the utility can converge to a higher bound ultimately.
Furthermore, because of the competition between FNs, when
the number of DSS is small, with more FNs, the increasing
speed is smaller.

In Fig. 4, we consider the utility of all DSSs with the num-
ber of DSSs increasing. In the simulation, we compare the
performance of the DSSs in our proposed framework with the
performance of the DSSs which is served by the massive data
centers only. With the same amount of workload, we discover
that when the number of DSSs increases, the utility of DSS
generally increases, and the utility with FNs achieve a higher
value than the one without FNs. Furthermore, when the num-
ber of DSSs is fixed and the average workload for each DSS
increases, the DSSs are able to receive more revenues from
the services. Thus, the utility of DSSs increases.
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In Fig. 5, we analyze the relation between the utility of
FNs and average workload arrive rate for DSSs. As shown in
the figure, when the number of FNs is fixed and the average
value of workload A increases, the utility of FNs first increases
then gradually converge to a fixed value. The reason is that
when the workload of all DSSs increases, the FNs are able
to allocate more of its CRBs to the DSSs nearby. However,
when all the available CRBs of FNs are allocated to the DSSs,
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the utility of the FNs stops improving and converges to one
specific value. When the number of FNs increases, with the
same value of A, as the FNs are able to provide more CRBs
to the DSSs, the converged value is higher.

In Fig. 6, we observe the utility of all DSOs when the value
of w increases. As shown in the figure, when w increases,
each DSS is able to be served with a less number of CRBs.
Therefore, the DSO is able to set a higher price to the DSSs
and receive high revenues. Moreover, when the number of
DSSs increases, as the DSO is able to serve more DSSs at the
same time, the total utility of DSOs also increases.

In Fig. 7, we evaluate the relationship of utilities and the
tolerance service delay fy of DSSs. As shown in Fig. 7(a),
when the value of #y, increases, each DSS is able to be served
with less CRBs. Thus, the FNs will supply less CRBs in the
network, and the utility of the FNs generally decreases. In
Fig. 7(a), as the DSO is able set a high price for its services,
with the value of # increasing, the utility of DSO generally
increases. Moreover, in Fig. 7(c), even though the DSS is able
purchase less CRBs with high 7y, the price of CRBs set by
the DSOs also increases. Furthermore, as the DSS suffers a lot
with high delay, the utility of DSS generally decreases with
the value of #y, increasing.

VI. RELATED WORKS

In the literature, fog computing has been advocated to be
the promising future of the cloud. The concept of pulling
the cloud closer to the users has been widely considered in
previous work. Ahlgren et al. [12] put forward the concept of
mist computing, aiming to distribute the cloud and its benefits
deeply into the network. In [13], the deployment of edge cloud
was proposed. From the DSSs’ side, the edge cloud was able
to surrogate the requirements and simplify the management
of the network. From the servers’ side, the edge cloud can
exploit content and support service delivery in an efficient way.
Without deploying massive data centers with high cost and
latency, [14] on the other hand strengthened the importance of
small distributed data center designs. The authors took email
delivery as an example and showed the advantages of geo-
diversity characteristics of micro data centers. In [15], a novel
and distributed computing platform, called nano data centers
was proposed. The authors evaluated the energy consumption
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of nano data centers and showed a significant improvement
on energy efficiency, compared with the traditional data cen-
ters. Li et al. [16] proposed an intermediary framework, where
there exists an intermediary between multiple cloud providers
and users. The intermediary first rents the cloud service from
cloud providers and then provides streaming processing ser-
vice to users with low cost and delay. Li et al. [17] proposed a
deduplication-based energy efficiency storage system for VM
storage (EEVS) and implement it with existing cloud platform.
In the EEVS, an online-deduplication mechanism is designed
to decrease the redundant data without service interruptions,
and a deduplication selection algorithm is introduced to mini-
mize the storage energy consumption with limited computing
resources for deduplication. In [18], considering the existing
telecommunication and Internet service providers, the authors
showed that it was required and beneficial to leverage the exist-
ing infrastructure and provide value-added services with FNs.
Bonomi et al. [19] outlined the vision of fog computing and
overviewed the important features of fog computing. In [20],
the network optimization with fog computing was considered.
As the data centers were aware of the locations of DSSs with
fog computing, dynamic adaptation of computing resources to
the DSSs’ conditions was proposed. Firdhous et al. [21] com-
pared the cloud computing with the fog computing and showed
some significant characteristics of fog, which was required for
current data services. Stojmenovic and Wen [22] elaborated the
role of fog computing in six important scenarios and surveyed
the security issues with fog computing.

Moreover, fog computing has been widely considered to
be beneficial for the IoT. Chiang and Zhang [23] overviewed
the opportunities and challenges of fog, especially the appli-
cations of fog computing in IoT. Aazam et al. [24] devised
the method of media fog resource estimation, to provide
resource estimation based on the service give-up ratio and to
enhance QoS based on the previous QoE. Abedin et al. [25]
addressed the utility-based pairing problem between the
FNs and IoT devices with the Irving’s matching algo-
rithm. Giang et al. [26] proposed a distributed dataflow
programming model for IoT devices to optimize resource
allocation on computing infrastructures across the fog and
the cloud. Aazam and Huh [27] considered the issues of
resource prediction, customer type-based resource estimation
and reservation, advance reservation, and pricing in the fog
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computing for IoTs. Yannuzzi et al. [28] considered the
requirements of mobility, scalability, reliable control, and actu-
ation in some challenging scenarios of IoT to show the benefits
and significance of fog computing. Considering the advan-
tages of fog computing, Mei et al. [29] discussed and propose
a procedure to be implemented in smart phones for UV
measurement.

In order to solve the resource management problems in a
network system with a distributed fashion, game theory has
been shown as a powerful tool [30]. In the literature, most
of the cases, the network system is normally modeled as a
bipartite or a multitier graph. Based on this model, in [31],
a Stackelberg game theoretic model was shown for dynamic
bandwidth allocation between virtual networks. Wu et al. [32]
considered a Stackelberg game between data center and buses
in the smart city, where each buses collect data along its route
and compete with other buses for the reward forwarding to the
data center. In the game, following the proposed heuristic algo-
rithm, the Stackelberg equilibrium is shown to be achieved,
where the data center and each bus are able to reach maxi-
mum utility. Wang et al. [33] formulated a Stackelberg game
for power allocation of data centers in the cloud. In the game,
the power grid controller acts as the leader and sets prices of
the provided energy based on the current amount of renewable
energy and costs. Observing the prices, the cloud controller,
i.e., the follower, determines the optimal amount of energy to
purchase and do resource allocation for its data centers. With
backward induction, the near-optimal strategies of both play-
ers in the game can be achieved. Wang et al. [34] modeled
the interaction between the monopolistic data center opera-
tor and the customers as a Stackelberg game. In the game,
the pricing strategies of the monopolistic data center opera-
tor the corresponding behavior of data service customers is
detailedly analyzed in both homogeneous and heterogeneous
customer scenarios. Yang et al. [35] adopted the Stackelberg
game to solve the problem of minimizing energy consump-
tion in the data center networks. Zhang et al. [36] proposed
a multileader multifollower Stackelberg game to address and
cooperation problems among Wi-Fi, small cell, and macrocell
networks. Zhang et al. [37] combined the Stackelberg game
and the bargaining to design a resource allocation problem
in a multitier LTE unlicensed network. Furthermore, the auc-
tion mechanisms are also powerful tools to solve the problem.
In [38]-[40], the resource management problem could be
perfectly optimized, but it requires high communication and
computation overhead. Narayanam [41] adopted the generic
game theoretic framework to identify important edges in the
context of k-edge connectivity between certain pairs of nodes
in a general given network. In [42], the graphical game was
put forward to analyze the optimized behaviors of each node
in a general graph.

VII. CONCLUSION
In this paper, we proposed a joint optimization frame-
work in the multi-FN, multi-DSO, and multi-DSS scenario
for IoT fog computing. In the framework, we first modeled
the Stackelberg games to solve the pricing problem of the

1213

DSOs and resource purchasing problem of the DSSs. Then a
many-to-many matching was proposed between the DSOs and
the FNs to deal with the DSO-FN pairing problem. Finally,
we applied another many-to-many matching between its paired
FNs and serving DSSs to solve the FN-DSS pairing problem
within the same DSO. For each stage of the problem, all par-
ticipants were able to achieve the equilibrium or stable results,
where no one was able to change its behavior unilaterally for
a higher utility. Simulation results showed that all FNs, DSOs,
and DCOs were able to reach optimal utilities for themselves,
and high performance of the proposed framework could be
achieved compared with the data services without FNs. For
the future work, first the dynamic computing resource allo-
cation problem can be considered in the three-tier IoT fog
network with dynamic Stackelberg game, where each DSO
is able to predict its future demands and to rent the com-
puting resources of FNs in advance. Second, the analysis of
cooperative and competitive behaviors among FNs may pro-
vide grouping strategies for FNs to achieve higher revenues.
Correspondingly, the effective strategies are required for each
DSO to prevent the severe competition for some FNs with
other DSOs.
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