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Abstract—Fog computing is a promising architecture to
provide economical and low latency data services for future
Internet of Things (IoT)-based network systems. Fog comput-
ing relies on a set of low-power fog nodes (FNs) that are located
close to the end users to offload the services originally target-
ing at cloud data centers. In this paper, we consider a specific
fog computing network consisting of a set of data service oper-
ators (DSOs) each of which controls a set of FNs to provide the
required data service to a set of data service subscribers (DSSs).
How to allocate the limited computing resources of FNs to all
the DSSs to achieve an optimal and stable performance is an
important problem. Therefore, we propose a joint optimization
framework for all FNs, DSOs, and DSSs to achieve the opti-
mal resource allocation schemes in a distributed fashion. In the
framework, we first formulate a Stackelberg game to analyze
the pricing problem for the DSOs as well as the resource alloca-
tion problem for the DSSs. Under the scenarios that the DSOs
can know the expected amount of resource purchased by the
DSSs, a many-to-many matching game is applied to investigate
the pairing problem between DSOs and FNs. Finally, within the
same DSO, we apply another layer of many-to-many match-
ing between each of the paired FNs and serving DSSs to solve
the FN-DSS pairing problem. Simulation results show that our
proposed framework can significantly improve the performance
of the IoT-based network systems.

Index Terms—Fog computing, Internet of Things (IoT), match-
ing theory, Stackelberg game.

I. INTRODUCTION

W
ITH the rapid development of Internet of Things (IoT),

the number of connected devices has increased at a
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unprecedented speed [1]. It is known that analyzing the big

data generated by all kinds of IoT devices requires a large

amount of computing resources. In order to meet the demand

of the data computing services, a large number of large-scale

data centers has been deployed. In addition, cloud computing

has been proposed recently to provide flexible and efficient

services to the data service subscribers (DSSs). In cloud com-

puting, the data service operator (DSO) is able to organize

a shared pool of configurable computing resources (such as

servers, storage, networks, applications, and services), which

can be easily accessed by DSSs on demands.

Generally speaking, large-scale data centers or clouds are

typically built in remote areas far from the DSSs. This results

in high transmission cost, transmission congestions, and ser-

vice latency, which can be intolerable for the applications that

require real-time interaction or mobility. Accordingly, it is ben-

eficial and necessary to pull the cloud closer to the users. In

wireless radio access network, the concept of mobile edge

computing is developed by European Telecommunications

Standards Institute, aiming to bring computation power into

mobile radio access network. In mobile edge computing, the

network edge is able to run in an isolated environment from

the rest of the network and creates access to resources in the

local neighborhood [5]. Moreover, in IoT, fog computing, put

forward by Cisco, is proposed as a promising solution. In fog

computing, multiple low-power computing devices, commonly

referred to as the fog nodes (FNs), at the edge of the networks

are deployed to offload the data computing services from the

cloud. With the property of small-scale, low construction cost,

and mobility support, the FNs are generally deployed much

closer to the DSSs and therefore can provide low-latency, fast-

response, and location-awareness service [6]. With different

purpose and preferences, the DSSs at the network edge are

able to receive data services from the FNs in the neighborhood

or from remote data centers in remote areas.

In the fog computing network, the concept of network vir-

tualization is also applied. As the large number of FNs and

their computing resources are invisible for the DSSs, the

DSSs can only contact and purchase the data services from

the DSOs. Therefore, there is a virtualized network between

DSOs and DSSs. When receiving the service requests from all

DSSs, each DSO is able to collect the computing resources

from the FNs and provide virtual data services for the DSSs.

Based on the network requirements, each DSO is able to
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allocate different amount of computing resources from dif-

ferent FNs to different DSSs. Thus, the computing resource

can be efficiently and effectively utilized by the nearby DSSs.

Fog computing networks can consist of a large number of

FNs deployed by different DSOs at different locations to pro-

vide various data services and applications to the DSSs. When

DSSs can choose their DSOs as well as the corresponding FNs

to further enhance their quality-of-experience, how to allocate

the limited computing resources of all the FNs to the DSSs

is still an open problem. In this paper, we further extend our

previous work [7] and focus on the resource selection and

allocation problem between the FNs, DSOs, and DSSs. We

propose a joint optimization framework for all FNs, DSOs,

and DSSs in a distributed fashion. In the framework, we first

formulate a Stackelberg game to model the interaction between

DSOs and DSSs, where the DSOs set their service price first,

and the DSSs purchase the optimal number of computing

resource blocks (CRBs). Once the prices of DSOs and the pur-

chased resources of DSSs have been obtained, each DSS can

know how many CRBs are required and can then try to com-

pete for the CRBs owned by the nearby FNs. Thus, we propose

a many-to-many matching game to investigate the interaction

between DSOs and FNs, where each DSO has a set of CRBs

to offload, and each FN has many vacant CRBs to sell. After

all the DSOs decide their DSO-FN pairs, FNs will compete

with each other to allocate their CRBs to the DSSs of the

DSOs. We also adopt another layer of many-to-many match-

ing framework to solve the FN-DSS pairing problem within the

same DSO. Simulation results show that our proposed frame-

work can significantly improve the performance of the fog

computing networks.

This paper is organized as follows. We describe the

system model in Section II and formulate the problems in

Section III. Based on the formulated problem, we analyze the

system with the proposed framework in Section IV, where

the interaction between DSOs and DSSs is considered in

Section IV-A, the interaction between FNs and DSOs is ana-

lyzed in Section IV-B, and the interaction between FNs and

DSSs is discussed in Section IV-C. Finally, we evaluate the

performance of this paper in Section V, show related works

in Section VI, and summarize this paper in Section VII.

II. SYSTEM MODEL

Consider a fog computing network where each DSS can

submit its data computing service to a set of neighboring

FNs deployed by a set of DSOs as illustrated in Fig. 1.

Accordingly, we consider a three-tier fog network, where the

DSOs locate in the middle layer, managing the FNs in the

upper layer and serving DSSs in the bottom layer. For clear

understanding, we list the notations of this paper in Table I.

Without loss of generality, we assume there are M DSOs,

labeled as � = {d1, d2, . . . , dM} and N DSSs, denoted as

ϒ = {s1, s2, . . . , sN}. Let λj be the workload arrival rate of

DSS sj, ∀sj ∈ ϒ . We assume each DSS has a normalized pref-

erence list, denoted as Ls
j over all DSOs. Moreover, K FNs,

labeled as � = {f1, f2, . . . , fK}, locate in the area of consid-

eration. We define the unit amount of computing resources

Fig. 1. System architecture.

TABLE I
LIST OF NOTATIONS

that can be distributed by each FN as the CRB [7], each of

which can provide computing service at the rate of µ. The

physical data transmission network between FNs and DSSs

satisfies the SecondNet topology [8], where the network facil-

ities can provide the guaranteed quality-of-service (QoS) for
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the DSSs. Accordingly, in order to reduce the risk of poten-

tial network congestion and achieve real-time fast-response

interaction, each DSO tries to offload the data services sub-

mitted by the DSSs to the large-scale data centers to the local

FNs. However, as the DSSs cannot have the authorization to

access the CRBs directly, the DSSs are required to receive the

virtualized services from the DSOs, and with the management

of DSOs, the CRBs of the FNs can finally be allocated to

the DSSs. We assume that different DSOs offer data services

with different requirements. Based on the preference list Ls
j ,

the DSS sj, ∀sj ∈ ϒ is required to subscribe to at most one

DSO. The network architecture is illustrated in Fig. 1.

Assume the DSSs apply real-time interactive applications,

where QoS is measured by the service delay. In this paper,

for DSS sj and ∀sj ∈ ϒ , we measure the cost of the service

delay as

tj = hj + oj (1)

which consists of the cost incurred by the queuing delay oj at

the servers as well as the cost incurred by the network delay hj

from the sensors to the physical service provider and from the

physical service provider to DSS sj. We suppose the workload

of each DSS sj follows Poisson arrival process. According to

the M/G/1 queuing delay model, the mean response time for

unit transmitted data is [1/(µ − (λjqj))] [9], [11]. Thus, the

cost of queuing delay when serving DSS sj is

oj =
λj

µ −
λj

qj

(2)

where qj is the number of CRBs purchased by DSS sj.

Moreover, as the network delay is related to the transmis-

sion distance, traffic condition in the network and many other

unpredicted factors, in practice, we suppose the network delay

can be evaluated from training data periodically sent from sen-

sors to the physical service provider and from the physical

service provider to the DSS. In this paper, we set the distance

between the farthest sensor to the physical service provider

plus the distance between the physical service provider (e.g.,

FN fk) to DSS sj to be lkj. For simplicity, we assume the

network resource from the physical service provider to DSS

sj is always sufficient, and the cost incurred by the network

delay hj generally follows a linear function of the distance

from the sensor to the physical service provider plus the dis-

tance from the physical service provider to the DSS sj, i.e.,

hj = θ lkj, where θ is a scalar.

As the DSSs in the network pay DSOs for the service, fol-

lowing the structure of [7], the utility of DSS sj, ∀j ∈ ϒ ,

can be denoted as the revenue received from the workload

data minus both the cost of service delay and payment to the

DSOs, which can be expressed as follows:

Ws
j =

M∑

i=1

τij

(
αjλj − βjqjri − γjtj

)
(3)

where αj denotes the revenue that DSS sj can obtain for unit

received data rate. αjλj indicates the total revenue for receiving

the data with workload rate λj. ri is the price set by DSS di

for each unit of the virtualized CRB. Thus, when the DSS

sj purchases qj CRBs from the DSO di, the total payment

from the DSS sj to the DSO di can be expressed as qjri. βj

is the weight factor indicating the importance of payment in

the utility function of DSS sj. γj is weight factor indicating

the importance of data service delay in the utility function

of DSS sj. We set τij to be the Boolean variable determining

whether DSO di serves DSS sj or not. If τij = 1, DSS sj is

served by the DSO di. Otherwise, DSS sj prefers to be served

by the other DSO. The value of τij follows the preference list

Ls
j of DSS sj, and each DSS can at most choose one DSS,

i.e.,
∑M

i=1 τij = 1, ∀j ∈ ϒ . For each DSS, we assume there

is an upper bound tth for the service delay. When the service

delay is larger than the threshold, the DSS will regard it as

an unsuccessful connection. Corresponding, we set qth
j as the

lower bound of CRBs required for DSS sj to guarantee the

service delay within the acceptable thresholds.

Based on the number of virtualized CRB purchased by serv-

ing DSSs, the utility of each DSO is the revenue received

from the DSSs minus the payment to the facilities that are

able to provide the physical CRBs. Here, each DSO prefers to

offload its services to the FNs nearby. However, if there are

not sufficient available CRBs from the FNs which can meet

the requirements of all DSSs. Some DSSs will be served by

the remote data centers, which are located far away from the

DSSs. We suppose the increment of the energy cost in the

remote data center is ei. Therefore, for the DSO di, if q
fd

ik

CRBs are offloaded to the FN fk, and qo
i CRBs are still served

by the remote data centers, the utility function of DSO di,

∀i ∈ �, can be denoted as

Wd
i =

N∑

j=1

τij

(
riqj

)
−

K∑

k=1

pkq
fd

ik − eiq
o
i (4)

where
∑N

j=1 τij(riqj) refers to the total revenue that DSO di

receives from DSSs for its data services. As pk is the price

set by the FN fk, which is determined by the cost and current

traffic of FN fk,
∑K

k=1 pkq
fd

ik denotes the total payment from

the DSO di to all FNs. eiq
o
i is the total cost for DSO di to

serve DSSs by itself.

For FN fk in the network, the utility is the payment received

from the DSOs minus the transmission cost. We set ckj as the

transmission cost for each unit CRB, which has a linear rela-

tionship with the distance lkj. Moreover, we set η
f

ki as the

normalized preference to the DSO di. Accordingly, consider-

ing the preference to different DSOs, the discounted utility

function for each DSO is

W
f

k =

K∑

k=1

η
f

ki

(
pk − ckj

)
q

fs

kj (5)

where
∑M

i=1 η
f

kipkq
fs

kj is the expected rewards received from

DSOs, and
∑M

i=1 η
f

kickjq
fs

kj is the expected costs for serving

DSSs in fog computing.

III. PROBLEM FORMULATION

According to the modeled architecture of fog network, with

tradings between FNs and DSOs and between DSOs and
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Fig. 2. Joint optimization framework.

DSSs, it is impossible to reach the maximum utilities for

all FNs, MDCOs, and DSSs simultaneously. Accordingly, we

consider a sequential decision making process. During the

process, the DSOs first predict the total number of CRBs pur-

chased from their servings DSSs and set their service prices to

their DSSs based on the prediction. Observing the behaviors of

the DSOs, each DSS determines the optimal number of CRBs

to purchase to achieve the maximum utility. Furthermore,

knowing the total amount of required CRBs, the DSOs try

to allocate CRBs to the FNs in the neighborhood. Finally, all

FNs selected by the same DSO competes for the DSSs.

We can write the optimization problem can be formulated

as follows:

max
qj

Ws
j (qj|r) ∀j ∈ ϒ

s.t.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑M
i=1 τij = 1

tj ≤ tth
τijαjλj ≤ τij

(
βjqjri + γjtj

)

qj ≥ 0

τij ∈ {0, 1} ∀i ∈ �

(6)

where r is the pricing profile of all DSOs observed by DSS sj.

Predicting the behaviors of the DSSs, each DSO is required

to set the service price to each serving DSS and compete with

other DSOs to choose FNs in the neighborhood. Thus, the

formulated problem of the DSO is

max
ri

Wd
i (ri|q

∗, p, r∗
−i) ∀i ∈ �

s.t.

{∑N
j=1 τij(riqj) ≥

∑K
k=1 pkq

fd

ik + eiq
o
i

ri ≥ 0
(7)

where q∗ denotes the optimal number of CRBs purchased by

all DSSs. p is the profile of rent for all FNs. r∗
−i is the profile

of optimal service prices set by other DSOs.

Moreover, each FN in the network would like to choose its

preferred DSOs and serve its DSSs with low distance. Thus,

competing with other FNs, it is required to determine the

number of CRBs allocated to DSOs and its serving DSSs,

respectively. The optimization problem is denoted as

max
q

fd

ik ,q
fs

kj

W
f

k

(
q

fd

ik , q
fs

kj

∣∣∣q∗, q
fd∗

i−k, q
fs∗

−kj, p−k

)
∀k ∈ �

s.t.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑M
i=1 q

fd

ik ≤ q
f th
k∑N

j=1 q
fs

kj ≤ q
f th
k∑K

k=1 q
fd

ik ≤ qdth
i ∀i ∈ �

∑K
k=1 q

fs

kj ≤ qsth
j ∀j ∈ ϒ

(8)

where q
fd

i−k is the optimal number of CRBs rent to DSO di

for all other FNs, q
fs∗

−kj is the optimal number of CRBs allo-

cated to DSS sj for all other FNs. During the service, the total

CRBs distributed to all DSOs or all DSSs cannot exceed its

total available CRBs q
f th
k for FN fk. Furthermore, the total

CRBs purchased from DSO di or DSS sj should not exceed

its demand qdth
i or qsth

j , respectively.

In summary, following the relationships among all FNs,

DSOs, and DSSs, we focus on the following problems.

1) Resource Purchasing Problem for the DSSs: In the

network, as the DSSs can only access to the DSOs in

a virtualized fashion, they are required to purchase the

optimal number of CRBs from the DSOs. Following the

system model, as different DSSs have different tolerance

of service delay, when the upper bound of service delay

is high, the DSSs are able to purchase a small number

of CRBs to achieve satisfying services. However, when

the upper bound of service delay is low, the DSSs have

to purchase a large number of CRBs to guarantee the

service delay is within the tolerated region. Moreover,

the service price set by the DSOs also affects the utility

of DSSs. When the price is in high value, even though

the large number of CRBs is able to improve the quality

of data services, the DSSs have to make a large payment

to the DSOs for their services. The revenue may not be

satisfying. Therefore, considering both the delay toler-

ance and setting prices of DSOs, the optimal number of

CRBs should be determined for high utilities.

2) Pricing Problem for the DSOs: In the data service with

fog, the DSOs are required to provide virtualized CRBs

to the DSSs and try to rent the CRBs from the FNs to

serve DSSs in the physical network. Therefore, how to

do the pricing for the DSOs is a problem. Considering

the announced rent from all FNs, the DSOs need to set

a price which can bring profits for themselves. However,

if the price is set too high, the serving DSSs will not

purchase a large number of CRBs. Therefore, predicting

the reactions of CRBs and observing the rent of FNs,

the DSOs are required to determine its service price so

as to receive the maximum revenues.

3) DSO-FN Pairing Problem: As FNs may be private com-

puting devices, which are small-scale and unable to

communicate with DSSs directly, the FNs are accessible

to the DSOs only. In the multi-DSO scenario, as the FNs
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are accessible to all DSOs, it is a problem for all DSOs

in the network to pair FNs distributedly so as to serve

their DSSs with low latency. With different relations and

trading history, each FN has different preference on all

DSOs. Observing the rent of all FNs, each DSO also

has a preferences on each FN. Based on the preferences

of all DSOs’ and FNs’, it is required to reach a stable

DSO-FN pairing results, where any DSO or FN is able

switch its current pairing result for a higher utility.

4) FN-DSS Pairing Problem: After the pairing between

DSOs and FNs, each FN has allocated its CRBs to all

DSOs. However, within one DSO, it is still a problem

for the FNs to allocate their CRBs to all DSSs. As the

distance between each FN and each DSS is various,

with a longer transmission distance, the FNs have to

pay more on the transmission cost. Thus, based on the

transmission distance, each FN has a preference over all

DSSs. Moreover, each DSS also have preference over

FNs based on the rent. Therefore, following the prefer-

ence of all FNs’ and DSSs’, a stable FN-DSS pairing

result should be achieved.

According to the formulated problems, all FNs, DSOs, and

DSSs are rational and autonomous individuals, who observe

the behaviors of others and make decisions to improve their

own utilities. Therefore, in order to reach the optimal and

stable solutions for all FNs, DSOs, and DSSs, we model a

three-stage joint optimization framework, as shown in Fig. 2.

In the framework, we first model the Stackelberg games to

solve the pricing problem for the DSOs and resource purchas-

ing problem for the DSSs. When the DSOs know the expected

amount of resource purchased by the DSSs, a many-to-many

matching is proposed between the DSOs and the FNs to deal

with the DSO-FN pairing problem. Finally, within the same

DSO, we apply another many-to-many matching between its

paired FNs and serving the DSSs to solve the FN-DSS pairing

problem.

IV. SYSTEM ANALYSIS

In this section, we analyze the optimal strategies for FNs,

DSOs, and DSSs. Based on the analysis of the formulated

framework, in the following sections, we first investigate the

interactions between the DSOs and DSSs to determine how

many CRBs are required during the service. Given the opti-

mized behaviors of the DSOs and DSSs, we analyze the

interactions between the FNs and DSOs based on different

preferences. Finally, with the obtained results, we discuss the

interactions between the FNs and DSSs within the same DSO

for better services.

A. Interaction Between DSOs and DSSs

In the virtualized network, the DSOs provides CRBs for

the DSSs. Following the formulated problems for both DSOs

and DSSs, there is a Stackelberg game, where the DSOs act as

leaders and DSSs act as followers. In the game, when all DSSs

choose their serving DSOs with their preferences, the DSO

first sets the service price. Then, based on the price all DSSs

determine optimal number of CRBs to purchase. Accordingly,

considering the optimization problem of DSSs, we have the

following lemma.

Lemma 1: In the modeled Stackelberg game between DSO

di and DSS sj, when the DSO announces its service price ri,

the optimal number of CRBs qj purchased by the DSS is

q∗
j =

λj

µ

√
ri

βj

γj

+
λj

µ
. (9)

Proof: According to the utility function of DSS sj (3),

the second derivative of Ws
j with respect to qj is

∂2Ws
j

∂q2
j

= −
2λ2

j µ(
µqj − λj

)3
. (10)

As (∂2Ws
j /∂q2

j ) < 0, Ws
j is a quasi-concave function with

respect to qj. Furthermore, the first derivative of Ws
j with

respect to qj is

∂Ws
j

∂qj

=

(
λj

µbj − λj

)2

− ri

βj

γj

. (11)

We set the first derivative equal to zero and obtain the optimal

number of CRBs to purchase so as to achieve the maximum

utility, that is,

q∗
j =

λj

µ

√
ri

βj

γj

+
λj

µ
. (12)

Therefore, considering the reactions of the DSSs, we adjust

the optimization problem for the DSO di, ∀i ∈ �, as follows:

max
ri

W̃d
i

(
ri

∣∣q∗, p, r∗
−i

)
∀i ∈ �

s.t.

{∑N
j=1 τij

(
λj

µ

√
βj

γj
ri +

λj

µ

√
βj

γj
ri

)
≥

∑K
k=1 pkq

fd

ik + eiq
o
i

ri ≥ 0

(13)

where

W̃d
i =

N∑

j=1

τij

(
λj

µ

√
βj

γj

ri +
λj

µ

√
βj

γj

ri

)
−

K∑

k=1

pkq
fd

ik − eiq
o
i .

(14)

In the formulated problem (13), we take the first derivative

of W̃d
i with respective to ri and discover it is a monotonous

increasing function with respective to ri. Furthermore, as the

service delay cannot surpass tth for the DSSs. The CRB

purchased by DSSs has the following low bound:

qj ≥
λjtth

µtth − λj

. (15)

Thus, following the relation in (9), the maximum and optimal

price for the DSO di to DSS sj is, ∀i ∈ �, ∀j ∈ ϒ :

ri =
γj

βj

(
µtth − λj

λj

)2

. (16)
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B. Interaction Between FNs and DSOs

According to the predicted number of CRBs ordered by the

DSSs, the DSOs try to offload the services from the massive

data centers to the DSSs nearby. Observing the service prices

set by all FNs, DSO di, ∀i ∈ �, has a preference list L
df
i =

[L
df

i1 , . . . , L
df
iK] on all FNs in the neighborhood. As the DSOs

prefer to choose the FNs with a low price, we set

L
df

ik = −pk ∀i ∈ �; ∀k ∈ �. (17)

Furthermore, each FN also has different preferences over

DSOs. Thus, we set the preference list of FN fk, ∀k ∈ �,

on all DSOs as L
fd

k = [L
fd

1k, . . . , L
df

Mk], satisfying

L
fd

ik = η
f

ki ∀i ∈ �; ∀k ∈ �. (18)

Considering the preference lists of FNs and DSOs, i.e.,

L
df

ik and L
fd

ik , respectively, we design a many-to-many match-

ing algorithm for the DSO-FN pairing problem. As shown in

Algorithm 1, after the preference lists are constructed, we set

a pointer for each FN in its preference list. Initially, we set the

pointer at the first DSO in the list. During the each round of

matching, each FN first propose to the DSO in the pointer of

the preference list. Based on behaviors of the FNs, each DSO

chooses its most preferred FNs in its preference list until the

required CRBs are all supplied by the FNs. If the FNs supply

more CRBs than the DSO requires, the DSO will reject the

CRBs from less favorite FNs. If the FNs supplies less CRBs

than the DSO requires, the DSO will choose massive data cen-

ters for the rest of the services. At the end of each round, if

all of the CRBs from the FN have been allocated to the DSOs,

the pointers of the FN will keep unchanged. Otherwise, the

pointers of the rejected FNs will move to the next DSO in

the preference list. In the next round, the FNs which still have

available CRBs will propose to the new DSOs according to

their pointers. Specifically, if the CRBs of FN are chosen by

the DSO in the last round, but discarded in the current round,

we suppose the pointer of the FN does not change its position,

considering the pointed DSO in the current round may need

more CRBs from the FN. The matching repeats in circulations

until all the pointers of the FNs have moved out their prefer-

ence list. According to the algorithm, we have the following

lemmas.

Lemma 2: For each FN in the matching algorithm, the

pointer of the FN in its preference list moves in one direc-

tion. In other words, when its pointer has moved to the next

DSOs in the preference list, whatever the matching results of

other FNs, the FN cannot achieve a higher utility by moving

the pointer back.

Proof: As shown in Algorithm 2, when the DSOs deter-

mines which FNs to choose, they choose the CRBs from the

most preferred amount. If some CRBs from FN fk is discarded

by DSO di, the current accepted CRBs belong to the FNs

which is more preferred than FN fk. In the future rounds, when

there are new FNs proposing to DSO di, if the DSO would

like to change its current accepted FNs, the DSO can only

choose the FNs that is even better than the FNs in the current

accepted list. Therefore, for FN fk which has been rejected

Algorithm 1 Many-to-Many Matching Algorithm for DSO-FN

Pairing Problem

1: for FN fk do

2: Construct the preference list L
fd

k on all DSOs according

to (18);

3: One pointer is set as the indicator pointing at the first

DSO in the preference list.

4: end for

5: for DSO di do

6: Construct the preference list L
df
i on all FNs according

to (17);

7: end for

8: We set flagk, ∀k ∈ �, as the indicator to show if the CRBs

of FN fk were chosen by the DSO in the last round, but

discarded in the current round. Initially, flagk = 1;

9: while the pointers of all FNs have not scanned all the

DSOs in their preference list do

10: FNs propose to DSOs with their service price;

11: for FN fk who still have available FNs to purchase do

12: if flagk = 1 then

13: The pointer keep current position in the list;

14: else

15: The pointer moves to the next position in the list;

16: end if

17: The FN proposes to pointed DSO in its preference

list with its available FNs;

18: We set flagk = 0;

19: end for

20: DSOs determines which FNs to choose;

21: for DSO di do

22: if The total available number of CRBs proposed by

the FNs exceed the requirements then

23: The DSO di chooses the most preferred number of

CRBs from FNs, and rejects the rest;

24: For CRBs of the FN fk which is chosen by the

DSO in the last round, but rejected in the current

round, we set flagk = 1;

25: end if

26: end for

27: end while

once from DSO di, it is impossible for it to be accepted by

the same DSO in the future rounds.

Lemma 3: Following Algorithm 2, the DSO-FN pairing

problem will ultimately converge and achieve a stable match-

ing result.

Proof: As proved in the Lemma 2, the pointer of the

FNs can only move in one direction. Therefore, in the perspec-

tive of the FNs, when the pointer of each FN has moved to

the end of the preference list, the FN has distributed its avail-

able CRBs to the DSOs in an optimized way. In other words,

the FN is unable to change its pairing results unilaterally for

higher utilities. Furthermore, in the perspective of the DSOs,

when the pointers of all FNs have moved to the end of the

preference lists, each DSO has evaluated all proposals from the

available FNs. Therefore, it also cannot unilaterally change its
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Algorithm 2 Many-to-Many Matching Algorithm for FN-DSS

Pairing Problem

1: for DSS sj do

2: Construct the preference list L
sf
j on all DSOs according

to (19);

3: One pointer is set as the indicator pointing at the first

FN in the preference list.

4: end for

5: for FN fk do

6: Construct the preference list L
fs

k on all FNs according

to (20);

7: end for

8: We set flagj, ∀j ∈ ϒ , as the indicator to show if the FNs

allocate CRBs to the DSS sj in the last round, but adjusted

in the current round. Initially, flagj = 1;

9: while the pointers of all DSSs have not scanned all the

FNs in their preference list do

10: DSSs propose to FNs for their services;

11: for DSS sj which has not been allocated required CRBs

do

12: if flagj = 1 then

13: The pointer keep current position in the list;

14: else

15: The pointer moves to the next position in the list;

16: end if

17: The DSS proposes to pointed FN in its preference

list for its data services;

18: We set flagj = 0;

19: end for

20: Each FN determines which DSSs to choose;

21: for FN fk do

22: if The total available CRBs requested by the DSSs

exceed the available volume then

23: The FN fk allocate the CRBs to the most preferred

DSSs, and rejects the rest;

24: For CRBs allocated to the DSS sj in the last round,

but adjusted in the current round, we set flagj = 1;

25: end if

26: end for

27: end while

pairing results, get accepted by the FNs and achieve a higher

utility for itself. Furthermore, according to [10], when every

agents preference list is substitutable, a pairwise stable match-

ing always exists. Based on the above, the DSO-FN pairing

will ultimately converge and achieve a stable matching result

in Algorithm 2.

C. Interaction Between FNs and DSSs

When the CRBs from FNs have been rent to all DSOs,

within each DSO, how to allocate the CRBs to all DSSs still

remains a problem. According to the rent of all FNs, DSS sj,

∀j ∈ ϒ , has a preference list L
sf
j = [L

sf

j1, . . . , L
sf
jK] on all FNs

in the neighborhood, satisfying

L
sf

kj = −pk ∀j ∈ ϒ; ∀k ∈ �. (19)

Furthermore, according to the utility function of the FN, the

distance between the FN and its serving DSS affect the rev-

enues the FN received. With a longer distance, the FN has to

pay more for the data transmission in the network. Therefore,

we set a preference list L
fs
i = [L

sf

j1, . . . , L
sf
jK] for FN fk, ∀k ∈ �,

over all DSSs, that is

L
fs

kj = −lkj ∀k ∈ �; ∀j ∈ ϒ. (20)

Considering the preference lists of DSSs and FNs, i.e., L
sf

kj

and L
fs

kj , respectively, we design a many-to-many matching

algorithm for the FN-DSS pairing problem within DSO di,

∀i ∈ �. As shown in Algorithm 2, after the preference lists are

constructed, we set a pointer for each DSS in its preference list.

Initially, we set the pointer at the first FN in the list. During

the each round of matching, each DSS first proposes to the

FN in the pointer of the preference list. Based on behaviors

of the DSSs, each FN chooses its most preferred DSSs in its

preference list until the maximum CRBs available in the DSO

di are reached. If the DSSs request more CRBs than the FN

can supply, the FN will reject the less favorite DSSs. At the

end of each round, if the DSSs have been allocated all of its

requested CRBs from the FNs, the pointers of the DSS will

keep unchanged. Otherwise, the pointers of the rejected DSS

will move to the next FN in the preference list. In the next

round, the DSSs which require CRBs will propose to the new

FNs according to their pointers. Specifically, if some CRBs of

FN are allocated to the DSS in the last round, but changed

to other DSSs in the current round, we suppose the pointer

of the DSS in the next round does not change its position,

considering the pointed FN in the current round may be able

to supply more CRBs to the DSS. The matching repeats in

circulations until all the pointers of the DSSs have moved out

their preference list. Following Lemmas 2 and 3 in a similar

way, the FN-DSS pairing problem can ultimately achieve a

stable matching result.

Based on the above, the optimal strategy of each DSO, FN,

or DSS is a function with respect to the network information,

e.g., channel state information and queue state information.

When the network information changes dynamically, based on

the function of optimal strategy, each DSO, FN, or DSS is able

to adjust its strategy immediately to achieve optimal utility.

However, in practice, the sensing process for network infor-

mation may be performed periodically, while the time within

each period is very short and we can assume the network

information as constant. Accordingly, each DSO, FN, or DSS

is able to iteratively update its optimal strategy to achieve high

utility based on the observed network information within each

period.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we present simulation results to evaluate

our proposed framework with MATLAB. In the simulated IoT

scenario, without specific explanation, there are 120 DSSs,

4 DSOs, and 20 FNs allocated randomly in a circle district

with a diameter of 10 km. As we focus on the IoT scenarios,

where DSSs are closely located with its sensors, without loss

of generality for the methods in this paper, we suppose the
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Fig. 3. Utility of all FNs versus the number of DSSs.

sensors of each DSS are located at the same position with

the DSS. We follow the settings in [11] and set the service

rate of each CRB is 0.1 ms−1. For each DSS, the workload

arriving rate is a random number averaged 0.5 ms−1. The

data transmission speed is 50 km/ms. The delay tolerance of

all DSSs is set to 60 ms. Furthermore, for each FN, we set

its preference to each DSO as a random number satisfying the

uniform distribution between [0, 1]. Based on the usage of its

computing resources and its service cost, we set the announced

rent as a random number satisfying the uniform distribution

between (0, 10), and the amount of available CRB as a random

number satisfying uniform distribution between (0, 100). The

weight factors α, β, and γ are set as 50, 0.01, and 0.001,

respectively.

As shown in Fig. 3, we evaluate the utility of all FNs when

the number of DSSs increases. When the number of FNs is

fixed, we discover with the number of DSSs increasing, the

utility of all FNs generally increases, and the increasing speed

first increases then gradually decreases to zero. The reason

is that when the number of DSSs increases, but the number

of FNs is fixed, the FNs will be able to serve more favor-

able DSSs with a low transmission distance. However, when

all of the available CRBs of FNs are allocated to the DSSs

nearby and the number of DSS keep increasing, the DSS will

be allocated with CRBs from the massive data centers. Thus,

the total utility of the FNs stop increasing. Nevertheless, when

we increase the number of FNs, we discover that with more

FNs, the utility can converge to a higher bound ultimately.

Furthermore, because of the competition between FNs, when

the number of DSS is small, with more FNs, the increasing

speed is smaller.

In Fig. 4, we consider the utility of all DSSs with the num-

ber of DSSs increasing. In the simulation, we compare the

performance of the DSSs in our proposed framework with the

performance of the DSSs which is served by the massive data

centers only. With the same amount of workload, we discover

that when the number of DSSs increases, the utility of DSS

generally increases, and the utility with FNs achieve a higher

value than the one without FNs. Furthermore, when the num-

ber of DSSs is fixed and the average workload for each DSS

increases, the DSSs are able to receive more revenues from

the services. Thus, the utility of DSSs increases.

Fig. 4. Utility of all DSSs versus the number of DSSs.

Fig. 5. Utility of all FNs versus the average value of λ.

Fig. 6. Utility of all DCOs versus the value of µ.

In Fig. 5, we analyze the relation between the utility of

FNs and average workload arrive rate for DSSs. As shown in

the figure, when the number of FNs is fixed and the average

value of workload λ increases, the utility of FNs first increases

then gradually converge to a fixed value. The reason is that

when the workload of all DSSs increases, the FNs are able

to allocate more of its CRBs to the DSSs nearby. However,

when all the available CRBs of FNs are allocated to the DSSs,
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(a) (b) (c)

Fig. 7. Utilities versus tth. (a) Utility of all FNs versus tth. (b) Utility of all DSOs versus tth. (c) Utility of all DSSs versus tth.

the utility of the FNs stops improving and converges to one

specific value. When the number of FNs increases, with the

same value of λ, as the FNs are able to provide more CRBs

to the DSSs, the converged value is higher.

In Fig. 6, we observe the utility of all DSOs when the value

of µ increases. As shown in the figure, when µ increases,

each DSS is able to be served with a less number of CRBs.

Therefore, the DSO is able to set a higher price to the DSSs

and receive high revenues. Moreover, when the number of

DSSs increases, as the DSO is able to serve more DSSs at the

same time, the total utility of DSOs also increases.

In Fig. 7, we evaluate the relationship of utilities and the

tolerance service delay tth of DSSs. As shown in Fig. 7(a),

when the value of tth increases, each DSS is able to be served

with less CRBs. Thus, the FNs will supply less CRBs in the

network, and the utility of the FNs generally decreases. In

Fig. 7(a), as the DSO is able set a high price for its services,

with the value of tth increasing, the utility of DSO generally

increases. Moreover, in Fig. 7(c), even though the DSS is able

purchase less CRBs with high tth, the price of CRBs set by

the DSOs also increases. Furthermore, as the DSS suffers a lot

with high delay, the utility of DSS generally decreases with

the value of tth increasing.

VI. RELATED WORKS

In the literature, fog computing has been advocated to be

the promising future of the cloud. The concept of pulling

the cloud closer to the users has been widely considered in

previous work. Ahlgren et al. [12] put forward the concept of

mist computing, aiming to distribute the cloud and its benefits

deeply into the network. In [13], the deployment of edge cloud

was proposed. From the DSSs’ side, the edge cloud was able

to surrogate the requirements and simplify the management

of the network. From the servers’ side, the edge cloud can

exploit content and support service delivery in an efficient way.

Without deploying massive data centers with high cost and

latency, [14] on the other hand strengthened the importance of

small distributed data center designs. The authors took email

delivery as an example and showed the advantages of geo-

diversity characteristics of micro data centers. In [15], a novel

and distributed computing platform, called nano data centers

was proposed. The authors evaluated the energy consumption

of nano data centers and showed a significant improvement

on energy efficiency, compared with the traditional data cen-

ters. Li et al. [16] proposed an intermediary framework, where

there exists an intermediary between multiple cloud providers

and users. The intermediary first rents the cloud service from

cloud providers and then provides streaming processing ser-

vice to users with low cost and delay. Li et al. [17] proposed a

deduplication-based energy efficiency storage system for VM

storage (EEVS) and implement it with existing cloud platform.

In the EEVS, an online-deduplication mechanism is designed

to decrease the redundant data without service interruptions,

and a deduplication selection algorithm is introduced to mini-

mize the storage energy consumption with limited computing

resources for deduplication. In [18], considering the existing

telecommunication and Internet service providers, the authors

showed that it was required and beneficial to leverage the exist-

ing infrastructure and provide value-added services with FNs.

Bonomi et al. [19] outlined the vision of fog computing and

overviewed the important features of fog computing. In [20],

the network optimization with fog computing was considered.

As the data centers were aware of the locations of DSSs with

fog computing, dynamic adaptation of computing resources to

the DSSs’ conditions was proposed. Firdhous et al. [21] com-

pared the cloud computing with the fog computing and showed

some significant characteristics of fog, which was required for

current data services. Stojmenovic and Wen [22] elaborated the

role of fog computing in six important scenarios and surveyed

the security issues with fog computing.

Moreover, fog computing has been widely considered to

be beneficial for the IoT. Chiang and Zhang [23] overviewed

the opportunities and challenges of fog, especially the appli-

cations of fog computing in IoT. Aazam et al. [24] devised

the method of media fog resource estimation, to provide

resource estimation based on the service give-up ratio and to

enhance QoS based on the previous QoE. Abedin et al. [25]

addressed the utility-based pairing problem between the

FNs and IoT devices with the Irving’s matching algo-

rithm. Giang et al. [26] proposed a distributed dataflow

programming model for IoT devices to optimize resource

allocation on computing infrastructures across the fog and

the cloud. Aazam and Huh [27] considered the issues of

resource prediction, customer type-based resource estimation

and reservation, advance reservation, and pricing in the fog



ZHANG et al.: COMPUTING RESOURCE ALLOCATION IN THREE-TIER IoT FOG NETWORKS 1213

computing for IoTs. Yannuzzi et al. [28] considered the

requirements of mobility, scalability, reliable control, and actu-

ation in some challenging scenarios of IoT to show the benefits

and significance of fog computing. Considering the advan-

tages of fog computing, Mei et al. [29] discussed and propose

a procedure to be implemented in smart phones for UV

measurement.

In order to solve the resource management problems in a

network system with a distributed fashion, game theory has

been shown as a powerful tool [30]. In the literature, most

of the cases, the network system is normally modeled as a

bipartite or a multitier graph. Based on this model, in [31],

a Stackelberg game theoretic model was shown for dynamic

bandwidth allocation between virtual networks. Wu et al. [32]

considered a Stackelberg game between data center and buses

in the smart city, where each buses collect data along its route

and compete with other buses for the reward forwarding to the

data center. In the game, following the proposed heuristic algo-

rithm, the Stackelberg equilibrium is shown to be achieved,

where the data center and each bus are able to reach maxi-

mum utility. Wang et al. [33] formulated a Stackelberg game

for power allocation of data centers in the cloud. In the game,

the power grid controller acts as the leader and sets prices of

the provided energy based on the current amount of renewable

energy and costs. Observing the prices, the cloud controller,

i.e., the follower, determines the optimal amount of energy to

purchase and do resource allocation for its data centers. With

backward induction, the near-optimal strategies of both play-

ers in the game can be achieved. Wang et al. [34] modeled

the interaction between the monopolistic data center opera-

tor and the customers as a Stackelberg game. In the game,

the pricing strategies of the monopolistic data center opera-

tor the corresponding behavior of data service customers is

detailedly analyzed in both homogeneous and heterogeneous

customer scenarios. Yang et al. [35] adopted the Stackelberg

game to solve the problem of minimizing energy consump-

tion in the data center networks. Zhang et al. [36] proposed

a multileader multifollower Stackelberg game to address and

cooperation problems among Wi-Fi, small cell, and macrocell

networks. Zhang et al. [37] combined the Stackelberg game

and the bargaining to design a resource allocation problem

in a multitier LTE unlicensed network. Furthermore, the auc-

tion mechanisms are also powerful tools to solve the problem.

In [38]–[40], the resource management problem could be

perfectly optimized, but it requires high communication and

computation overhead. Narayanam [41] adopted the generic

game theoretic framework to identify important edges in the

context of k-edge connectivity between certain pairs of nodes

in a general given network. In [42], the graphical game was

put forward to analyze the optimized behaviors of each node

in a general graph.

VII. CONCLUSION

In this paper, we proposed a joint optimization frame-

work in the multi-FN, multi-DSO, and multi-DSS scenario

for IoT fog computing. In the framework, we first modeled

the Stackelberg games to solve the pricing problem of the

DSOs and resource purchasing problem of the DSSs. Then a

many-to-many matching was proposed between the DSOs and

the FNs to deal with the DSO-FN pairing problem. Finally,

we applied another many-to-many matching between its paired

FNs and serving DSSs to solve the FN-DSS pairing problem

within the same DSO. For each stage of the problem, all par-

ticipants were able to achieve the equilibrium or stable results,

where no one was able to change its behavior unilaterally for

a higher utility. Simulation results showed that all FNs, DSOs,

and DCOs were able to reach optimal utilities for themselves,

and high performance of the proposed framework could be

achieved compared with the data services without FNs. For

the future work, first the dynamic computing resource allo-

cation problem can be considered in the three-tier IoT fog

network with dynamic Stackelberg game, where each DSO

is able to predict its future demands and to rent the com-

puting resources of FNs in advance. Second, the analysis of

cooperative and competitive behaviors among FNs may pro-

vide grouping strategies for FNs to achieve higher revenues.

Correspondingly, the effective strategies are required for each

DSO to prevent the severe competition for some FNs with

other DSOs.
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