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ABSTRACT

Supporting real-time and mobile data ser-
vices, fog computing has been considered as
a promising technology to overcome long and
unpredicted delay in cloud computing. However,
as resources in FNs are owned by independent
users or infrastructure providers, the ADSSs can-
not connect and access data services from the
FNs directly, but can only request data service
from the DSOs in the cloud. Accordingly, in fog
computing, the DSOs are required to communi-
cate with FNs and allocate resources from the
FNs to the ADSSs. The DSOs provide virtualized
data services to the ADSSs, and the FNs, moti-
vated by the DSOs, provide data services in the
physical network. Nevertheless, with fog com-
puting added as the intermediate layer between
the cloud and users, there are challenges such
as the resource allocation in the virtualized net-
work between the DSOs and ADSSs, the asym-
metric information problem between DSOs and
ADSSs, and the resource matching from the FNs
to the ADSSs in the physical network. In this arti-
cle, we propose a three-layer hierarchical game
framework to solve the challenges in fog com-
puting networks. In the proposed framework, we
apply the Stackelberg sub-game for the interac-
tion between DSOs and ADSSs, moral hazard
modeling for the interaction between DSOs and
FNs, and the student project allocation matching
sub-game for the interaction between FNs and
ADSSs. The purpose is to obtain stable and opti-
mal utilities for each DSO, FN, and ADSS in a
distributed fashion.

INTRODUCTION

Ever since the digital revolution half a century ago,
the scale of digital data has grown exponentially.
Nowadays, with the high demand of data storage
and computing requests, various data services
and applications have been proposed to facilitate
businesses and our daily lives. However, the tra-
ditional rigid deployment of data centers by data
service operators (DSOs) is unable to fulfill the
requirements of various data services and appli-
cations. To improve the flexibility and efficiency
of resource allocation, the concept of cloud com-
puting is advocated, where all the resources can
be organized as a sharing pool, and authorized
data service subscribers (ADSSs) can access the
resource pool on demand.

Nevertheless, for some emerging data services
and applications, such as vehicle-to-vehicle com-
munication, augmented reality, and smart grid,
not only the volume of resources, but the ser-
vice delay and delay jitter determine the quality
of service (QoS) [1]. Moreover, most resources
in cloud are physically located far from ADSSs,
failing to support the requirements of mobility
and real-time interactions during the data services.
Accordingly, in order to improve QoS for ADSSs,
it is necessary to pull the computing resources
closer to ADSSs [2].

In 2014, the idea of fog computing was first
proposed by Cisco [3]. Fog computing, similar
to cloudlet edge computing proposed by other
companies, is composed of geo-distributed fog
nodes (FNs), which can be any fixed or mobile
collaborative devices with built-in data storage,
computing, and communication devices. Benefit-
ing from small scale, low cost, and mobility, the
FNs located around ADSSs are able to offload
data traffic from the cloud, reduce the communi-
cation cost in the networks, and provide real-time,
location-aware data services [4].

For the system architecture shown in Fig. 1,
there are multiple DSOs serving multiple ADSSs
at the same time. In order to improve QoS of the
ADSSs, fog computing is introduced in addition
to cloud computing. However, as the resourc-
es in FNs are owned by independent users or
infrastructure providers (InPs), the ADSSs can-
not connect to and access data services from
the FNs directly. Currently, the ADSSs can only
request data service from the data service oper-
ators (DSOs) in the cloud, such as Amazon S3,
Google Cloud, and IBM Cloud. Therefore, the
DSOs are required to communicate with the
FNs and allocate resources from the FNs to the
ADSSs. Accordingly, in fog computing, the DSOs
provide virtualized data services to the ADSSs,
and the FNs, after the communication with the
DSOs, provide data services in the physical net-
work [5].

With the introduction of fog computing, the
resource allocation problem becomes complicat-
ed and challenging since there are multiple dis-
tributed and autonomous entities in the network.
In order to solve the problem, various optimiza-
tion methods have been adopted in the literature.
In [6], the joint radio and computing resource
allocation in fog computing was studied by solv-
ing the formulated optimization problem in a dis-
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tributed fashion. Furthermore, being aware of the

ADSSs’ locations with fog computing, dynamic

adaptation of computing resources was proposed

by [71.

However, the fog computing architecture con-
sidered in prior work is based on a single DSO
scenario, which simplifies the system architecture
and lacks generality. Following the sequential
decision making behaviors for the DSOs, FNs,
and ADSSs, we propose a three-layer hierarchical
game framework with the following three sub-
games:

+ We first introduce the Stackelberg sub-game
for the interaction between the DSOs and
the ADSSs to solve the virtualized resource
allocation problem. The key problem is the
pricing mechanism.

+ Then, according to the amount of requested
virtualized resources, in order to motivate
the FNs to offer the optimal amount of vir-
tualized resources, the moral hazard model
in contract theory is utilized to model the
interaction between the DSOs and the FNs.
The key problem is the incentive mechanism
design between the DSOs and the FNs.

+ Based on the physical resources offered and
virtualized resources provided, the student
project allocation matching sub-game from
matching theory is adopted to achieve a
stable resource allocation solution. The key
problem is resource matching in a distribut-
ed way that is combinatorial in nature.

The rest of this work is organized as follows. In
the following section, we discuss the challenges
in fog computing. Based on the challenges, we
propose a hierarchical game framework to model
the three-layer architecture, where the interac-
tions between different parties, which are the FNs
and ADSSs, the DSOs and ADSSs, and the DSOs
and ADSSs are then analyzed. Finally, the article
is concluded.

RESOURCE ALLOCATION CHALLENGES IN

FoG COMPUTING

In cloud computing, only DSOs and ADSSs
exist in the network. Thus, the resource alloca-
tion problem between the DSOs and ADSSs is a
straight two-layer structure, where there is a mar-
ket for all DSOs to compete for ADSSs. In [8], the
authors introduced an in-depth game theoretic
study of the market and provided pricing strate-
gies for DSOs to achieve Nash equilibrium solu-
tions. However, when the intermediate fog layer
is introduced, the relation among DSOs, FNs,
and ADSSs becomes complicated. In this section,
based on the general system shown in Fig. 1, we
classify and discuss challenges of resource alloca-
tion in fog computing.

THE INTERACTIONS BETWEEN DSOS AND ADSSS

The interaction between DSOs and ADSSs in fog
computing is similar to the interaction in cloud
computing. When there is one DSO serving
ADSSs in the network, the DSO is able to adjust
its price to motivate all ADSSs to purchase its
virtualized resources. In fact, there is a trade-off
when the DSO sets the price. On one hand, if the
DSO sets a high price, the DSO is able to receive
high revenue from the unit amount of resource,
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Figure 1. System architecture.

while the ADSSs may choose to purchase less
resources considering the high unit price. On the
other hand, if the DSO sets low prices, although
a large amount of resources are purchased by
ADSSs, the revenue gained from the ADSSs may
decrease.

When there are multiple DSOs serving at the
same time, competition among DSOs exists in
the fog computing market. Thus, there is also a
trade-off when DSOs compete for the ADSSs. On
one hand, if one DSO increases its price, the rev-
enue from serving one single ADSS may increase,
while the ADSS may refuse its service and switch
to other DSOs with lower prices. On the other
hand, if one DSO reduces the price, more ADSSs
will be attracted, but the revenue received from
each ADSS decreases. Therefore, it is important
for each DSO to set an optimal service price to
achieve the highest total revenue.

THE INTERACTIONS BETWEEN DSOS AND FNs

As most of the FNs are deployed and maintained
by private users or independent InPs, the FNs will
not directly provide services to ADSSs to help
relieve the computation load at DSOs. Therefore,
the DSOs need to motivate the FNs to help serve
the ADSSs by paying a certain amount of mone-
tary rewards to the FNs. The DSO aims to maxi-
mize its revenue by purchasing the exact amount
of computing resources needed by the FNs. On
one hand, if not enough resources are purchased,
even though less payment is required, such insuffi-
cient resources will cause poor QoS to ADSSs and
result in poor revenue in the future. On the other
hand, if physical resources are over-supplied, even
though high QoS will attract more ADSSs, the
high payment will decrease the DSO's revenue.
Thus, it is challenging for the DSO to determine
an optimal amount of resources to purchase from
each FN. In order to maximize the revenue while
minimizing the payment, each DSO needs to
design an efficient incentive mechanism so that
the DSO’s objective revenue maximization can
be achieved, and the FNs still have the incentive
to participate in such an activity.

As most of the FNs
are deployed and
maintained by private
users or independent
InPs, the FNs will not
directly provide services
to ADSSs to help relieve
the computation load
at DSOs. Therefore, the
DSOs need to motivate
the FNs to help serve
the ADSSs by paying
a certain amount of
monetary rewards to
the FNs.
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Figure 2. Hierarchical game framework.

THE INTERACTIONS BETWEEN FNS AND ADSSs

When the ADSSs have determined the amount
of virtualized resources needed to purchase, and
the FNs have been motivated to supply physical
resources, the next step is to efficiently map the
physical resources offered by the FNs to the vir-
tualized resources required by the ADSSs. Since
the FNs compete with each other for serving
ADSSs, and the ADSSs compete with each other
for better services. The ultimate goal is to find an
optimal matching between the physical resourc-
es offered by the FNs and the virtualized resourc-
es requested by the ADSSs so that the network
can achieve maximum efficiency. Given the
large numbers of ADSSs and FNs, the optimal
mapping will be hard to solve, or even unsolv-
able using traditional centralized methods. It is
essential to find a sub-optimal stable mapping
by a distributed method so that the computation
complexity can be reduced, and none of the FNs
or ADSSs can deviate from its current mapping
to achieve a higher revenue.

THE HIERARCHICAL GAME FRAMEWORK

Considering the aforementioned challenges of
resource allocation in fog computing, each DSO,
FN, or ADSS can be regarded as a rational individ-
ual that aims to maximize its own revenue based
on the behaviors of all other DSOs, FNs, and
ADSSs. Therefore, game theory can be adopt-
ed as a suitable mathematical tool to analyze the
competition and coordination among all DSOs,
FNs, and ADSSs [9, 10].

In fog computing, all DSOs, FNs, and ADSSs
form a three-layer architecture and make deci-
sions sequentially. Thus, we model the network
as a hierarchical game as shown in Fig. 2, which
consists of three sub-games corresponding to the
interactions between DSOs and ADSSs, between
DSOs and FNs, and between FNs and ADSSs in a
sequential manner.

In the following, adopting the backward induc-
tion, we sequentially analyze the interactions
between different parties, which are the FNs and

ADSSs, the DSOs and FNs, and the DSOs and
ADSSs, so as to obtain optimal strategies for the
DSOs, FNs, and ADSSs with stable and optimal
payoffs.

STUDENT PROJECT
ALLOCATION MATCHING GAME ANALYSIS FOR THE
INTERACTIONS BETWEEN FNS AND ADSSS

In this step, we suppose the initial values of the
offered resource from each FN and requested
resources from each ADSS are given. We consid-
er the resource to be composed of both compu-
tation/storage resources and radio resources from
different FNs, which are combined as a resource
pair and mapped to requested ADSSs.

The mapping between the resource pairs from
FNs and ADSSs can be suitably modeled as a stu-
dent project allocation problem [11], which is a
many-to-many stable matching problem and can
be described as follows. In many departments of
universities, students are required to undertake
a series of projects from classes or research by
lecturers. The students have preferences among
the offered projects. Considering the purpose of
training students, for different projects, the lec-
turers may have preferences over (student, proj-
ect) pairs according to their suitability. In addition,
not only each lecturer but also each project has
restrictions on the maximum number of students
to accommodate, which are called their capaci-
ties. In order to find a stable matching between
the students and projects, the SPA-(S,P) algorithm
can be utilized.

In this article, we assume the DSOs, resource
pairs, and ADSSs act as lecturers, projects, and
students, respectively. The preference list of each
ADSS is built based on the total revenues gained
from the data transmission minus the penalty of
service latency as well as the payment to the DSO
for the services. On the other hand, the prefer-
ence list of the DSOs is the mandatory revenue
collected from the ADSS minus the cost of service
delay using a certain resource pair. If the ADSS
requires high QoS, the ADSSs are willing to offer
high payment for better resources. At the same
time, the DSOs give higher priorities to those
ADSSs that offer higher prices by allocating better
resources for them. Thus, each DSO establishes
its preference list as the ratio of price collected
from an ADSS over its service delay.

With the preference lists set up, the SPA-(S,P)
algorithm can be adopted to find a stable match-
ing between FNs and ADSSs [12]. In the algo-
rithm, ADSSs first propose to their currently most
preferred resource pair in their preference lists.
For each resource pair, if the requested proposal
from the ADSSs exceeds its capacity, the DSO will
find the worst combination of FNs and ADSSs in
its preference list and reject this ADSS. Receiving
the rejected notification, the ADSS will continue
to engage with the next favorite resource pair in
its preference list. The procedure terminates when
all ADSSs are either matched with a resource pair
or have proposed to every resource pair in their
preference lists. By the sequential proposing and
rejecting actions of ADSSs and DSOs, the conver-
gence of the algorithm is guaranteed, and a stable
matching result exists.

In Fig. 3, we evaluate the performance of
transmission delay with the proposed SPA-(S,P)
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algorithm. When the number of ADSSs increases,
due to the limited amount of computing resource
blocks (CRBs), the ratio of ADSSs satisfying delay
requirement generally decreases. However, com-
pared to the random matching result, the algo-
rithm that matches SPA-(S,P) is able to maintain
the high ratio, where most of the ADSSs are able
to achieve low transmission delay and high utility.

MORAL HAZARD GAME ANALYSIS FOR THE
INTERACTIONS BETWEEN DSOS AND FNs

According to the possible matching results
between the physical resources provided by
FNs and the virtualized resource requested by
the ADSSs, given the total amount of virtualized
resource, each DSO is required to consider the
motivation strategy for each FN to provide the
optimal amount of physical resource and achieve
a high utility.

The motivation problem from DSOs to FNs
can be modeled as a moral hazard in contract
theory [13]. The problem arises when both parties
have incomplete information about each other.
For example, the employees’ actions are hidden
from the employers [14]. As the DSOs do not
know the resource usage information within dif-
ferent FNs, if one DSO offloads its data services
to FNs with limited available resource, the ADSSs
will suffer poor QoS and will switch to other
DSOs. Therefore, such an asymmetric information
situation between DSOs and FNs will severely
reduce the utility of both DSOs and ADSSs.

In order to avoid such a situation, consider-
ing the amount of physical resource provided
from one FN to one DSO and the payment from
the DSO to the FN, we propose a resource-pay-
ment bundle in the contract between DSOs and
FNs. In order to motivate the FNs to provide
larger amounts of physical resource, the DSO is
required to pay more to the FNs correspondingly.
Furthermore, according to different requirements
of its serving ADSSs and different transmission
delay between the FN and serving ADSSs, the
relations between the amount of provided phys-
ical resource and the payment for different DSO
and FN pairs may be different.

In [14], we evaluate the motivation strategy
from each DSO to FN with contract theory. In
order to motivate FNs to serve ADSSs, when one
FN agrees to provide resources for ADSSs, the
DSO will pay a fixed amount of money to the
FN. Furthermore, if the ADSS is able to provide
more resource to improve the QoS of the ADSSs
during the service, the DSO will offer an addition-
al bonus. Accordingly, the rent from each DSO
to FN can be defined as a combination of the
fixed payment plus bonus for providing ADSSs
with higher QoS. The utility of each FN is the total
rent paid by the DSOs minus the operation and
measurement costs. The utility of each DSO is
denoted as the revenues from ADSSs minus the
rent to FNs. Aiming to maximize the utility of each
DSO based on the selfish behaviors of FNs, we
obtain the optimal value of rent for each FN in a
contract.

In the simulation, we compare our proposed
payment plan with four other plans. In the sin-
gle bonus plan, we assume each FN can offer
at most one CRB to the DSO. In the stochastic
independent plan, we assume the measurement
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error from the DSOs to all FNs is zero. For the
technologically independent plan, we consider
the cost for adopting each CRB within each FN
is independent of each other. The independent
plan combines both stochastic independent and
technologically independent plans. As shown in
Fig. 4, when the cost coefficients of CRB with-
in FNs increase, as the DSO is required to pay
more to motivate FNs, the utility of the DSO
generally decreases for all plans. Moreover, with
the amount of asymmetric information between
DSOs and FNs increasing, the utility of DSO
decreases. Thus, the utility of the DSO in the inde-
pendent payment plan is the highest, followed by
the utilities in the stochastic independent plan,
technologically independent plan, and our pro-
posed plan. The single bonus plan has the lowest
utility due to the limited amount of offered CRBs
in each FN.
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STACKELBERG GAME ANALYSIS FOR THE INTERACTIONS
BETWEEN DSOs AND ADSSs

Predicting the payment for motivating the FNs
and the matching results between the provided
physical resources and the requested virtualized
resource, each DSO determines its optimal ser-
vice price charging to its serving ADSSs.

As in the virtualized data market, all DSOs
first announce their prices for their virtualized ser-
vices. Based on the announced prices, each ADSS
chooses its preferred DSO and determines the
optimal amount of resources to purchase. The
interaction between DSOs and ADSSs can be
modeled as a Stackelberg game, where the DSOs
act as the leaders, and the ADSSs act as the fol-
lowers. In the game, because of the first-mov-
er advantage, each DSO is able to predict the
reactions of its serving ADSSs and determine
its optimal price for the highest utility. Thus, the
Stackelberg equilibrium exists between DSOs and
ADSSs [5, 15].

Moreover, the competition also exists among
DSOs. If one DSO sets its price too high, the
ADSSs may switch to other DSOs for high utility.
Therefore, there is also a non-cooperative game
among all DSOs. In order to attract more ADSSs
and maintain high utility for each DSO, following
the proposals in [5], a sub-gradient algorithm can
be adopted. In the algorithm, each DSO does
not know the existence of other DSOs at the
beginning and sets its initial service price at a high
value. Then each DSO predicts the utility that it
can achieve by adjusting its price with a small
value *A. If adjusting the price is able to improve
the utility, the DSO will follow the adjustment in
the next round. Otherwise, in the next round, the
DSO keeps the current price unchanged. The
game continues with reduced value of A until no
DSO is able to adjust prices to achieve a higher
utility.

According to the proposed hierarchical game
framework, we evaluate the performances of
ADSSs in fog computing, given the cost of moti-
vating the FNs and the matching results between
FNs and ADSSs. As shown in Fig. 5 [15], with the

Stackelberg game between
DSOs and ADSSs

DSOs can gain high DSOs serve
revenues by adopting FNs ADSSs with cloud
computing

DSOs can gain high
revenues by adopting FNs from
the third party

No

\J
Moral hazard (contract theory) DSOs serve
between DSOs and FNs ADSSs with their
own FNs
/

Student project allocation
matching game between FNs |«
and ADSSs

Figure 6. The flowchart for the three-layer hierar-
chical game.

number of ADSSs increasing, regardless of the
computing data size for each ADSS, the total util-
ity of ADSSs generally increases. Furthermore,
considering the fixed service price of the DSO
and the same computing data size, because of
the low transmission delay, the utility of the ADSS
in fog computing can be better than the utility in
cloud computing. However, in fog computing,
the DSOs are able to set high prices in the virtual-
ized network to gain high revenues. With our pro-
posed algorithm, we guarantee that the utility of
the ADSS in fog computing is always higher than
that in cloud computing, and the improvement
gap of the ADSSs’ utility from fog computing to
cloud computing is small.

THE THREE-LAYER HIERARCHICAL GAME FOR
FoG COMPUTING

From the interaction analyses between DSOs and
FNs, between DSOs and ADSSs, and between FNs
and ADSSs, a general data service with the pro-
posed three-layer hierarchical game can be sum-
marized as in Fig. 6. In the flowchart, the DSOs
first play the Stackelberg game with all ADSSs, and
the DSOs are required to make decisions based
on the investigation of all the FNs” and ADSSs’
information. If the DSOs cannot gain higher rev-
enues by adopting the FNs, the cloud computing
will be adopted where FNs will not be included
in the data services. If the fog computing is able
to bring high profits (i.e., revenue minus costs) for
the DSOs, the DSOs then consider whether or not
renting the FNs from the third party is beneficial. If
the DSO is able to achieve higher utility by renting
the FNs from the third party, moral hazard can be
applied to motivate the FNs. Otherwise, the DSOs
will apply their own FNs for the data services.
Finally, with the provided resources from the FNs
and the requirements from the ADSSs, the student
project allocation matching game is employed to
achieve stable results.
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CONCLUSIONS

In this article, we have proposed a three-layer
hierarchical game framework for resource man-
agement in the multi-DSO, multi-FN, and multi-
ADSS scenario. In the proposed framework, we
have first introduced a Stackelberg game between
DSOs and ADSSs, where DSOs act as the lead-
ers, providing virtualized services to ADSSs, the
followers. Second, based on the total amount of
requested virtualized resources, a moral hazard
model in contract theory is adopted between
the DSOs and FNs to motivate the FNs to offer
efficient physical resources. Third, based on the
offered physical resources and provided virtual-
ized resources, a student project matching game
has been proposed for resource allocation. Final-
ly, based on the hierarchical game framework, we
have summarized our work and shown it in the
flowchart in Fig. 6.
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With our proposed

algorithm, we guarantee

that the utility of the

ADSS in fog computing

is always higher than

that in cloud computing,

and the improvement

gap of the ADSSs'" utility
from fog computing to

the cloud computing
is small.
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