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ABSTRACT

Supporting real-time and mobile data ser-
vices, fog computing has been considered as 
a promising technology to overcome long and 
unpredicted delay in cloud computing. However, 
as resources in FNs are owned by independent 
users or infrastructure providers, the ADSSs can-
not connect and access data services from the 
FNs directly, but can only request data service 
from the DSOs in the cloud. Accordingly, in fog 
computing, the DSOs are required to communi-
cate with FNs and allocate resources from the 
FNs to the ADSSs. The DSOs provide virtualized 
data services to the ADSSs, and the FNs, moti-
vated by the DSOs, provide data services in the 
physical network. Nevertheless, with fog com-
puting added as the intermediate layer between 
the cloud and users, there are challenges such 
as the resource allocation in the virtualized net-
work between the DSOs and ADSSs, the asym-
metric information problem between DSOs and 
ADSSs, and the resource matching from the FNs 
to the ADSSs in the physical network. In this arti-
cle, we propose a three-layer hierarchical game 
framework to solve the challenges in fog com-
puting networks. In the proposed framework, we 
apply the Stackelberg sub-game for the interac-
tion between DSOs and ADSSs, moral hazard 
modeling for the interaction between DSOs and 
FNs, and the student project allocation matching 
sub-game for the interaction between FNs and 
ADSSs. The purpose is to obtain stable and opti-
mal utilities for each DSO, FN, and ADSS in a 
distributed fashion.

INTRODUCTION

Ever since the digital revolution half a century ago, 
the scale of digital data has grown exponentially. 
Nowadays, with the high demand of data storage 
and computing requests, various data services 
and applications have been proposed to facilitate 
businesses and our daily lives. However, the tra-
ditional rigid deployment of data centers by data 
service operators (DSOs) is unable to fulfill the 
requirements of various data services and appli-
cations. To improve the flexibility and efficiency 
of resource allocation, the concept of cloud com-
puting is advocated, where all the resources can 
be organized as a sharing pool, and authorized 
data service subscribers (ADSSs) can access the 
resource pool on demand.

Nevertheless, for some emerging data services 
and applications, such as vehicle-to-vehicle com-
munication, augmented reality, and smart grid, 
not only the volume of resources, but the ser-
vice delay and delay jitter determine the quality 
of service (QoS) [1]. Moreover, most resources 
in cloud are physically located far from ADSSs, 
failing to support the requirements of mobility 
and real-time interactions during the data services. 
Accordingly, in order to improve QoS for ADSSs, 
it is necessary to pull the computing resources 
closer to ADSSs [2].

In 2014, the idea of fog computing was first 
proposed by Cisco [3]. Fog computing, similar 
to cloudlet edge computing proposed by other 
companies, is composed of geo-distributed fog 
nodes (FNs), which can be any fixed or mobile 
collaborative devices with built-in data storage, 
computing, and communication devices. Benefit-
ing from small scale, low cost, and mobility, the 
FNs located around ADSSs are able to offload 
data traffic from the cloud, reduce the communi-
cation cost in the networks, and provide real-time, 
location-aware data services [4].

For the system architecture shown in Fig. 1, 
there are multiple DSOs serving multiple ADSSs 
at the same time. In order to improve QoS of the 
ADSSs, fog computing is introduced in addition 
to cloud computing. However, as the resourc-
es in FNs are owned by independent users or 
infrastructure providers (InPs), the ADSSs can-
not connect to and access data services from 
the FNs directly. Currently, the ADSSs can only 
request data service from the data service oper-
ators (DSOs) in the cloud, such as Amazon S3, 
Google Cloud, and IBM Cloud. Therefore, the 
DSOs are required to communicate with the 
FNs and allocate resources from the FNs to the 
ADSSs. Accordingly, in fog computing, the DSOs 
provide virtualized data services to the ADSSs, 
and the FNs, after the communication with the 
DSOs, provide data services in the physical net-
work [5].

With the introduction of fog computing, the 
resource allocation problem becomes complicat-
ed and challenging since there are multiple dis-
tributed and autonomous entities in the network. 
In order to solve the problem, various optimiza-
tion methods have been adopted in the literature. 
In [6], the joint radio and computing resource 
allocation in fog computing was studied by solv-
ing the formulated optimization problem in a dis-
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tributed fashion. Furthermore, being aware of the 
ADSSs’ locations with fog computing, dynamic 
adaptation of computing resources was proposed 
by [7].

However, the fog computing architecture con-
sidered in prior work is based on a single DSO 
scenario, which simplifies the system architecture 
and lacks generality. Following the sequential 
decision making behaviors for the DSOs, FNs, 
and ADSSs, we propose a three-layer hierarchical 
game framework with the following three sub-
games:
• We first introduce the Stackelberg sub-game 

for the interaction between the DSOs and 
the ADSSs to solve the virtualized resource 
allocation problem. The key problem is the 
pricing mechanism.

• Then, according to the amount of requested 
virtualized resources, in order to motivate 
the FNs to offer the optimal amount of vir-
tualized resources, the moral hazard model 
in contract theory is utilized to model the 
interaction between the DSOs and the FNs. 
The key problem is the incentive mechanism 
design between the DSOs and the FNs.

• Based on the physical resources offered and 
virtualized resources provided, the student 
project allocation matching sub-game from 
matching theory is adopted to achieve a 
stable resource allocation solution. The key 
problem is resource matching in a distribut-
ed way that is combinatorial in nature.
The rest of this work is organized as follows. In 

the following section, we discuss the challenges 
in fog computing. Based on the challenges, we 
propose a hierarchical game framework to model 
the three-layer architecture, where the interac-
tions between different parties, which are the FNs 
and ADSSs, the DSOs and ADSSs, and the DSOs 
and ADSSs are then analyzed. Finally, the article 
is concluded.

RESOURCE ALLOCATION CHALLENGES IN 

FOG COMPUTING

In cloud computing, only DSOs and ADSSs 
exist in the network. Thus, the resource alloca-
tion problem between the DSOs and ADSSs is a 
straight two-layer structure, where there is a mar-
ket for all DSOs to compete for ADSSs. In [8], the 
authors introduced an in-depth game theoretic 
study of the market and provided pricing strate-
gies for DSOs to achieve Nash equilibrium solu-
tions. However, when the intermediate fog layer 
is introduced, the relation among DSOs, FNs, 
and ADSSs becomes complicated. In this section, 
based on the general system shown in Fig. 1, we 
classify and discuss challenges of resource alloca-
tion in fog computing.

THE INTERACTIONS BETWEEN DSOS AND ADSSS

The interaction between DSOs and ADSSs in fog 
computing is similar to the interaction in cloud 
computing. When there is one DSO serving 
ADSSs in the network, the DSO is able to adjust 
its price to motivate all ADSSs to purchase its  
virtualized resources. In fact, there is a trade-off 
when the DSO sets the price. On  one hand, if the 
DSO sets a high price, the DSO is able to receive 
high revenue from the unit amount of resource, 

while the ADSSs may choose to purchase less 
resources considering the high unit price. On the 
other hand, if the DSO sets low prices, although 
a large amount of resources are purchased by 
ADSSs, the revenue gained from the ADSSs may 
decrease.

When there are multiple DSOs serving at the 
same time, competition among DSOs exists in 
the fog computing market. Thus, there is also a 
trade-off when DSOs compete for the ADSSs. On 
one hand, if one DSO increases its price, the rev-
enue from serving one single ADSS may increase, 
while the ADSS may refuse its service and switch 
to other DSOs with lower prices. On the other 
hand, if one DSO reduces the price, more ADSSs 
will be attracted, but the revenue received from 
each ADSS decreases. Therefore, it is important 
for each DSO to set an optimal service price to 
achieve the highest total revenue.

THE INTERACTIONS BETWEEN DSOS AND FNS

As most of the FNs are deployed and maintained 
by private users or independent InPs, the FNs will 
not directly provide services to ADSSs to help 
relieve the computation load at DSOs. Therefore, 
the DSOs need to motivate the FNs to help serve 
the ADSSs by paying a certain amount of mone-
tary rewards to the FNs. The DSO aims to maxi-
mize its revenue by purchasing the exact amount 
of computing resources needed by the FNs. On 
one hand, if not enough resources are purchased, 
even though less payment is required, such insuffi-
cient resources will cause poor QoS to ADSSs and 
result in poor revenue in the future. On the other 
hand, if physical resources are over-supplied, even 
though high QoS will attract more ADSSs, the 
high payment will decrease the DSO’s revenue. 
Thus, it is challenging for the DSO to determine 
an optimal amount of resources to purchase from 
each FN. In order to maximize the revenue while 
minimizing the payment, each DSO needs to 
design an efficient incentive mechanism so that 
the DSO’s objective revenue maximization can 
be achieved, and the FNs still have the incentive 
to participate in such an activity.
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THE INTERACTIONS BETWEEN FNS AND ADSSS

When the ADSSs have determined the amount 
of virtualized resources needed to purchase, and 
the FNs have been motivated to supply physical 
resources, the next step is to efficiently map the 
physical resources offered by the FNs to the vir-
tualized resources required by the ADSSs. Since 
the FNs compete with each other for serving 
ADSSs, and the ADSSs compete with each other 
for better services. The ultimate goal is to find an 
optimal matching between the physical resourc-
es offered by the FNs and the virtualized resourc-
es requested by the ADSSs so that the network 
can achieve maximum efficiency. Given the 
large numbers of ADSSs and FNs, the optimal 
mapping will be hard to solve, or even unsolv-
able using traditional centralized methods. It is 
essential to find a sub-optimal stable mapping 
by a distributed method so that the computation 
complexity can be reduced, and none of the FNs 
or ADSSs can deviate from its current mapping 
to achieve a higher revenue.

THE HIERARCHICAL GAME FRAMEWORK

Considering the aforementioned challenges of 
resource allocation in fog computing, each DSO, 
FN, or ADSS can be regarded as a rational individ-
ual that aims to maximize its own revenue based 
on the behaviors of all other DSOs, FNs, and 
ADSSs. Therefore, game theory can be adopt-
ed as a suitable mathematical tool to analyze the 
competition and coordination among all DSOs, 
FNs, and ADSSs [9, 10].

In fog computing, all DSOs, FNs, and ADSSs 
form a three-layer architecture and make deci-
sions sequentially. Thus, we model the network 
as a hierarchical game as shown in Fig. 2, which 
consists of three sub-games corresponding to the 
interactions between DSOs and ADSSs, between 
DSOs and FNs, and between FNs and ADSSs in a 
sequential manner.

In the following, adopting the backward induc-
tion, we sequentially analyze the interactions 
between different parties, which are the FNs and 

ADSSs, the DSOs and FNs, and the DSOs and 
ADSSs, so as to obtain optimal strategies for the 
DSOs, FNs, and ADSSs with stable and optimal 
payoffs.

STUDENT PROJECT 

ALLOCATION MATCHING GAME ANALYSIS FOR THE 

INTERACTIONS BETWEEN FNS AND ADSSS

In this step, we suppose the initial values of the 
offered resource from each FN and requested 
resources from each ADSS are given. We consid-
er the resource to be composed of both compu-
tation/storage resources and radio resources from 
different FNs, which are combined as a resource 
pair and mapped to requested ADSSs.

The mapping between the resource pairs from 
FNs and ADSSs can be suitably modeled as a stu-
dent project allocation problem [11], which is a 
many-to-many stable matching problem and can 
be described as follows. In many departments of 
universities, students are required to undertake 
a series of projects from classes or research by 
lecturers. The students have preferences among 
the offered projects. Considering the purpose of 
training students, for different projects, the lec-
turers may have preferences over (student, proj-
ect) pairs according to their suitability. In addition, 
not only each lecturer but also each project has 
restrictions on the maximum number of students 
to accommodate, which are called their capaci-
ties. In order to find a stable matching between 
the students and projects, the SPA-(S,P) algorithm 
can be utilized.

In this article, we assume the DSOs, resource 
pairs, and ADSSs act as lecturers, projects, and 
students, respectively. The preference list of each 
ADSS is built based on the total revenues gained 
from the data transmission minus the penalty of 
service latency as well as the payment to the DSO 
for the services. On the other hand, the prefer-
ence list of the DSOs is the mandatory revenue 
collected from the ADSS minus the cost of service 
delay using a certain resource pair. If the ADSS 
requires high QoS, the ADSSs are willing to offer 
high payment for better resources. At the same 
time, the DSOs give higher priorities to those 
ADSSs that offer higher prices by allocating better 
resources for them. Thus, each DSO establishes 
its preference list as the ratio of price collected 
from an ADSS over its service delay.

With the preference lists set up, the SPA-(S,P) 
algorithm can be adopted to find a stable match-
ing between FNs and ADSSs [12]. In the algo-
rithm, ADSSs first propose to their currently most 
preferred resource pair in their preference lists. 
For each resource pair, if the requested proposal 
from the ADSSs exceeds its capacity, the DSO will 
find the worst combination of FNs and ADSSs in 
its preference list and reject this ADSS. Receiving 
the rejected notification, the ADSS will continue 
to engage with the next favorite resource pair in 
its preference list. The procedure terminates when 
all ADSSs are either matched with a resource pair 
or have proposed to every resource pair in their 
preference lists. By the sequential proposing and 
rejecting actions of ADSSs and DSOs, the conver-
gence of the algorithm is guaranteed, and a stable 
matching result exists.

In Fig. 3, we evaluate the performance of 
transmission delay with the proposed SPA-(S,P) 

Figure 2. Hierarchical game framework.
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algorithm. When the number of ADSSs increases, 
due to the limited amount of computing resource 
blocks (CRBs), the ratio of ADSSs satisfying delay 
requirement generally decreases. However, com-
pared to the random matching result, the algo-
rithm that matches SPA-(S,P) is able to maintain 
the high ratio, where most of the ADSSs are able 
to achieve low transmission delay and high utility.

MORAL HAZARD GAME ANALYSIS FOR THE 

INTERACTIONS BETWEEN DSOS AND FNS

According to the possible matching results 
between the physical resources provided by 
FNs and the virtualized resource requested by 
the ADSSs, given the total amount of virtualized 
resource, each DSO is required to consider the 
motivation strategy for each FN to provide the 
optimal amount of physical resource and achieve 
a high utility.

The motivation problem from DSOs to FNs 
can be modeled as a moral hazard in contract 
theory [13]. The problem arises when both parties 
have incomplete information about each other. 
For example, the employees’ actions are hidden 
from the employers [14]. As the DSOs do not 
know the resource usage information within dif-
ferent FNs, if one DSO offloads its data services 
to FNs with limited available resource, the ADSSs 
will suffer poor QoS and will switch to other 
DSOs. Therefore, such an asymmetric information 
situation between DSOs and FNs will severely 
reduce the utility of both DSOs and ADSSs.

In order to avoid such a situation, consider-
ing the amount of physical resource provided 
from one FN to one DSO and the payment from 
the DSO to the FN, we propose a resource-pay-
ment bundle in the contract between DSOs and 
FNs. In order to motivate the FNs to provide 
larger amounts of physical resource, the DSO is 
required to pay more to the FNs correspondingly. 
Furthermore, according to different requirements 
of its serving ADSSs and different transmission 
delay between the FN and serving ADSSs, the 
relations between the amount of provided phys-
ical resource and the payment for different DSO 
and FN pairs may be different.

In [14], we evaluate the motivation strategy 
from each DSO to FN with contract theory. In 
order to motivate FNs to serve ADSSs, when one 
FN agrees to provide resources for ADSSs, the 
DSO will pay a fixed amount of money to the 
FN. Furthermore, if the ADSS is able to provide 
more resource to improve the QoS of the ADSSs 
during the service, the DSO will offer an addition-
al bonus. Accordingly, the rent from each DSO 
to FN can be defined as a combination of the 
fixed payment plus bonus for providing ADSSs 
with higher QoS. The utility of each FN is the total 
rent paid by the DSOs minus the operation and 
measurement costs. The utility of each DSO is 
denoted as the revenues from ADSSs minus the 
rent to FNs. Aiming to maximize the utility of each 
DSO based on the selfish behaviors of FNs, we 
obtain the optimal value of rent for each FN in a 
contract.

In the simulation, we compare our proposed 
payment plan with four other plans. In the sin-
gle bonus plan, we assume each FN can offer 
at most one CRB to the DSO. In the stochastic 
independent plan, we assume the measurement 

error from the DSOs to all FNs is zero. For the 
technologically independent plan, we consider 
the cost for adopting each CRB within each FN 
is independent of each other. The independent 
plan combines both stochastic independent and 
technologically independent plans. As shown in 
Fig. 4, when the cost coefficients of CRB with-
in FNs increase, as the DSO is required to pay 
more to motivate FNs, the utility of the DSO 
generally decreases for all plans. Moreover, with 
the amount of asymmetric information between 
DSOs and FNs increasing, the utility of DSO 
decreases. Thus, the utility of the DSO in the inde-
pendent payment plan is the highest, followed by 
the utilities in the stochastic independent plan, 
technologically independent plan, and our pro-
posed plan. The single bonus plan has the lowest 
utility due to the limited amount of offered CRBs 
in each FN.

Figure 3. The performance evaluation of SPA-(S,P).
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STACKELBERG GAME ANALYSIS FOR THE INTERACTIONS 

BETWEEN DSOS AND ADSSS

Predicting the payment for motivating the FNs 
and the matching results between the provided 
physical resources and the requested virtualized 
resource, each DSO determines its optimal ser-
vice price charging to its serving ADSSs.

As in the virtualized data market, all DSOs 
first announce their prices for their virtualized ser-
vices. Based on the announced prices, each ADSS 
chooses its preferred DSO and determines the 
optimal amount of resources to purchase. The 
interaction between DSOs and ADSSs can be 
modeled as a Stackelberg game, where the DSOs 
act as the leaders, and the ADSSs act as the fol-
lowers. In the game, because of the first-mov-
er advantage, each DSO is able to predict the 
reactions of its serving ADSSs and determine 
its optimal price for the highest utility. Thus, the 
Stackelberg equilibrium exists between DSOs and 
ADSSs [5, 15].

Moreover, the competition also exists among 
DSOs. If one DSO sets its price too high, the 
ADSSs may switch to other DSOs for high utility. 
Therefore, there is also a non-cooperative game 
among all DSOs. In order to attract more ADSSs 
and maintain high utility for each DSO, following 
the proposals in [5], a sub-gradient algorithm can 
be adopted. In the algorithm, each DSO does 
not know the existence of other DSOs at the 
beginning and sets its initial service price at a high 
value. Then each DSO predicts the utility that it 
can achieve by adjusting its price with a small 
value ±D. If adjusting the price is able to improve 
the utility, the DSO will follow the adjustment in 
the next round. Otherwise, in the next round, the 
DSO keeps the current price unchanged. The 
game continues with reduced value of D until no 
DSO is able to adjust prices to achieve a higher 
utility.

According to the proposed hierarchical game 
framework, we evaluate the performances of 
ADSSs in fog computing, given the cost of moti-
vating the FNs and the matching results between 
FNs and ADSSs. As shown in Fig. 5 [15], with the 

number of ADSSs increasing, regardless of the 
computing data size for each ADSS, the total util-
ity of ADSSs generally increases. Furthermore, 
considering the fixed service price of the DSO 
and the same computing data size, because of 
the low transmission delay, the utility of the ADSS 
in fog computing can be better than the utility in 
cloud computing. However, in fog computing, 
the DSOs are able to set high prices in the virtual-
ized network to gain high revenues. With our pro-
posed algorithm, we guarantee that the utility of 
the ADSS in fog computing is always higher than 
that in cloud computing, and the improvement 
gap of the ADSSs’ utility from fog computing to 
cloud computing is small.

THE THREE-LAYER HIERARCHICAL GAME FOR 

FOG COMPUTING

From the interaction analyses between DSOs and 
FNs, between DSOs and ADSSs, and between FNs 
and ADSSs, a general data service with the pro-
posed three-layer hierarchical game can be sum-
marized as in Fig. 6. In the flowchart, the DSOs 
first play the Stackelberg game with all ADSSs, and 
the DSOs are required to make decisions based 
on the investigation of all the FNs’ and ADSSs’ 
information. If the DSOs cannot gain higher rev-
enues by adopting the FNs, the cloud computing 
will be adopted where FNs will not be included 
in the data services. If the fog computing is able 
to bring high profits (i.e., revenue minus costs) for 
the DSOs, the DSOs then consider whether or not 
renting the FNs from the third party is beneficial. If 
the DSO is able to achieve higher utility by renting 
the FNs from the third party, moral hazard can be 
applied to motivate the FNs. Otherwise, the DSOs 
will apply their own FNs for the data services. 
Finally, with the provided resources from the FNs 
and the requirements from the ADSSs, the student 
project allocation matching game is employed to 
achieve stable results.

Figure 5. The utility of all ADSSs vs. the number of ADSSs.
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CONCLUSIONS

In this article, we have proposed a three-layer 
hierarchical game framework for resource man-
agement in the multi-DSO, multi-FN, and multi-
ADSS scenario. In the proposed framework, we 
have first introduced a Stackelberg game between 
DSOs and ADSSs, where DSOs act as the lead-
ers, providing virtualized services to ADSSs, the 
followers. Second, based on the total amount of 
requested virtualized resources, a moral hazard 
model in contract theory is adopted between 
the DSOs and FNs to motivate the FNs to offer 
efficient physical resources. Third, based on the 
offered physical resources and provided virtual-
ized resources, a student project matching game 
has been proposed for resource allocation. Final-
ly, based on the hierarchical game framework, we 
have summarized our work and shown it in the 
flowchart in Fig. 6.
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With our proposed 

algorithm, we guarantee 

that the utility of the 

ADSS in fog computing 

is always higher than 

that in cloud computing, 

and the improvement 

gap of the ADSSs’ utility 

from fog computing to 

the cloud computing 

is small.


