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Fig. 1. Our method allows users to optimize designs based on a set of performance metrics. Given a design space and a set of performance evaluation functions,
our method automatically extracts the Pareto set—those design points with optimal trade-offs. We represent Pareto points in design and performance space
with a set of corresponding manifolds (left). The Pareto-optimal solutions are then embedded to allow interactive exploration of performance trade-offs (right).
The mapping from manifolds in performance space back to design space allows designers to explore performance trade-offs interactively while visualizing the
corresponding geometry and gaining an understanding of a model’s underlying properties.

Typical design for manufacturing applications requires simultaneous op-
timization of conflicting performance objectives: Design variations that
improve one performance metric may decrease another performance metric.
In these scenarios, there is no unique optimal design but rather a set of de-
signs that are optimal for different trade-offs (called Pareto-optimal). In this
work, we propose a novel approach to discover the Pareto front, allowing de-
signers to navigate the landscape of compromises efficiently. Our approach
is based on a first-order approximation of the Pareto front, which allows
entire neighborhoods rather than individual points on the Pareto front to
be captured. In addition to allowing for efficient discovery of the Pareto
front and the corresponding mapping to the design space, this approach
allows us to represent the entire trade-off manifold as a small collection of
patches that comprise a high-quality and piecewise-smooth approximation.
We illustrate how this technique can be used for navigating performance
trade-offs in computer-aided design (CAD) models.
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1 INTRODUCTION

In typical manufacturing applications, design goals are measured by
how the finished products perform in the physical world. Design is
driven by objectives such as weight, stability, durability, compliance,
and other functionality-related metrics. Directly specifying designs
that optimize performance objectives is challenging since it requires
predicting physical behavior. For this reason, performance-driven
computational methods are critical and have been widely explored
in recent research on manufacturing-oriented design. These ap-
proaches guide users in efficiently exploring design spaces while
optimizing for a given performance objective, which can be mea-
sured using physical simulations.

A fundamental limitation of typical design optimization tech-
niques is that they require a single objective function for evaluating
performance. In most applications, however, multiple criteria are
used to evaluate the quality of a design. Structures must be stable
and lightweight. Vehicles must be aerodynamic, durable, and inex-
pensive to produce. In most cases, the performance objectives are
not only multiple but also conflicting: improving a design on one axis
often decreases its quality on another axis. In reality, designers and
engineers navigate a complex landscape of compromises, generating
objects that perhaps do not optimize any single quality measure but
rather are considered optimal under a given performance trade-off.

Since it is impossible to optimize more than one criterion at a
time, standard optimization approaches require expressing a set of
performance criteria in a combined objective function that balances
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incompatible features. The typical approach is to use weighted
combinations of different performance metrics. For example, in the
case where there are two performance metrics, an objective could be
expressed as a fi(x) + (1 — @) f2(x), where the f;’s are performance
functions defined on the design space and 0 < & < 1 is a proxy for
the trade-off between fi and f.

Unfortunately, such a proxy fails to capture the full space of
optimal design trade-offs, called the Pareto set. A design point is
Pareto-optimal if an adjustment to the design cannot simultaneously
improve all performance metrics; any improvement to one metric
necessarily worsens another. If F(x) = (fi(x), f2(x)) is a function
that maps the design space onto the performance space, then F maps
the Pareto set onto the Pareto front. While the main task of a designer
might be considered navigation of the Pareto front, its shape is
typically nonlinear and even disconnected. Linear changes in « do
not correspond to linear, or even continuous, changes on the Pareto
front (see Figure 4). For this reason, guessing a reasonable «, or
sampling over a, can be imprecise, unstable, or even intractable.
Furthermore, the introduction of new performance metrics renders
any previous choice of a obsolete.

Instead of using proxy objectives, we seek to discover, represent,
parameterize, and explore the Pareto front directly. In our approach,
the Pareto front discovery is done in a pre-computation step, and
the resulting representation is used to define an interactive tool that
allows users to navigate the complex trade-offs between multiple
performance metrics and instantaneously find corresponding de-
signs. The main challenge in creating this representation is that
finding all Pareto points requires on the one hand exploring the
diverse solutions that correspond to different trade-offs and on the
other hand converging to solutions in each particular direction to
find points that are optimal in the Pareto sense.

From a technical perspective, our algorithm is built upon a first-
order approximation of the Pareto front derived from duality theory
in multi-objective optimization. This approximation serves two roles.
First, it enables exploration of the Pareto front near a single point
once it has been discovered. Second, it efficiently captures a region
of the Pareto front, allowing us to approximate the entire front with
just a few continuum pieces instead of a dense set of sample points.
Each continuum piece also stores a mapping to the Pareto set in
the design space. The end result is a technique that discovers the
Pareto front and represents it as a union of relatively few manifold
pieces that can be stored and queried efficiently within an interactive
design tool that presents the designer with only the relevant (Pareto
optimal) set of designs. Our representation is well-suited for the
nonlinear and possibly disconnected nature of the Pareto front.

We evaluate our algorithm against the well-established ZDT
benchmark suite [Zitzler et al. 2000] for multi-objective optimiza-
tion, which covers a broad range of realistic geometric forms for
the Pareto front and Pareto set. We then demonstrate our software
tool in the context of interactive design based on real-world CAD
models.
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2 RELATED WORK

Performance-driven design. In many manufacturing applications,
design specifications are determined by how they affect the per-
formance of the resulting model. Design for functionality means
finding the optimal configuration for a set of performance objec-
tives. This requires solving inverse problems that are challenging
in large design spaces. Previous works address these challenges
with two main approaches: exploration with iterative feedback and
direct optimization. From furniture design [Umetani et al. 2012],
to model airplanes [Umetani et al. 2014] and robots [Megaro et al.
2015], exploration tools allow users to navigate a design space with
real-time feedback on performance. On the other hand, optimization
approaches directly determine a final configuration that achieves
desirable properties, such as structural stability [Prévost et al. 2013;
Whiting et al. 2012], frequency spectra [Bharaj et al. 2015], mo-
tion [Bécher et al. 2015; Du et al. 2016], or buoyancy [Musialski et al.
2015].

Optimization has the advantage of being automatic, while user
exploration can be time-consuming. Exploration tools, however,
are advantageous when multiple considerations are taken into ac-
count. In such scenarios, it is challenging, if not impossible, to
determine a single objective function for direct optimization; there-
fore, an exploration interface can more effectively guide users to
solutions with desired performance trade-offs. Our approach com-
bines the advantages of both techniques. We use offline optimiza-
tion to reduce the search space to solutions that achieve optimal
performance trade-offs. We then define an exploration interface
that allows users to search in this subset. This approach lets us
handle problems with multiple performance objectives while reduc-
ing the amount of user effort during exploration, since the search
spaces are smaller and all discovered solutions are Pareto-optimal.
While multi-objective optimization approaches that discover a set
of Pareto-optimal points have become increasingly common in en-
gineering practice [Agrawal and van de Panne 2013; Bandaru and
Deb 2015; Deb and Srinivasan 2006], in this work we propose a
novel technique that finds a sparse representation of the full front,
allowing for interactive exploration of design trade-offs.

Performance Space Exploration. Recent works on design explo-
ration propose pre-computing the performance metrics on a con-
strained design space to provide real-time performance feedback as
users explore variations in the design space [Schulz et al. 2017; Shug-
rina et al. 2015; Yau et al. 2006]. While these works enable efficient
exploration of models that can be parametrized with a small set of
parameters, their main limitation is that by sampling in the design
space they suffer the curse of dimensionality and cannot be used in
applications where design spaces are high-dimensional. In this work,
we argue that in designing for functionality, it is not necessary to
represent the full design space since only a subset of solutions will
correspond to optimal design trade-offs. By representing only this
subset, which lies in a much lower dimensional performance space,
our approach can not only scale to large design spaces but also
allows for a more meaningful exploration based on performance
trade-offs.



Our approach is also related to works on material design that use
pre-computation to find the gamut of achievable material proper-
ties [Bickel et al. 2010; Dong et al. 2010; Zhu et al. 2017]. In these
works, the design space is the set of materials that can be output by
a given device, and the performance metrics are the material prop-
erties that are evaluated. Our approach is the most similar to [Zhu
et al. 2017], which combines a probabilistic search and a continu-
ous optimization when pre-computing the material gamut. While
our method draws ideas from these approaches, the fundamental
difference is that instead of a gamut that defines all the possible ma-
terial combinations in a d-dimensional material property space, our
application requires defining a combination of (d — 1)-dimensional
manifolds that represents the optimal performance trade-offs.

Multi-Objective Optimization. The task of finding the set of opti-
mal design trade-offs amounts to solving a multi-objective optimiza-
tion problem, where the objectives are the performance metrics.
Numerous methods have been proposed for solving multi-objective
optimization problems. The Normal Boundary Intersection [Das and
Dennis 1998] and Normalized Normal Constraint [Messac et al. 2003]
methods aim to produce a well-distributed set of solutions, which
can accurately approximate the shape of the Pareto front but can
produce false positive solutions when the problem is non-smooth
and/or contains local minima. Evolutionary algorithms often are
applied to address this issue by iteratively modifying a population
of candidate solutions that undergoes reproduction and removal
similar to natural evolution; see [Zhang and Xing 2017] for a survey.

The main difference between these methods and our approach is
that instead of searching for a diverse set of discrete points, our pro-
posed method provides a compact representation covering contigu-
ous regions within the space of solutions. Our approach leverages
the fact that, while discovering individual points on the Pareto front
can be difficult, locally searching around known solutions is eas-
ier. Using our method we obtain a relatively small set of manifolds
whose union approximates the Pareto front. This representation pro-
vides an easily-navigable set of solutions in both design space and
objective space, which can be applied to visualization and analysis.

3 OVERVIEW

After walking through a concrete example, we lay out the algorithm
in detail.

3.1 Motivating Example

To motivate our choice of mathematical structures and computa-
tional approach, consider designing a wrench. As evidenced by the
size of a standard toolbox, many styles and shapes of wrenches are
potentially useful: Small, lightweight wrenches may be portable and
needed for tweaking small mechanical parts, while larger, heavy-
duty wrenches exert sufficient torque to turn structurally-critical
bolts.

We can measure the quality of a wrench on multiple performance
axes. We may prefer lighter wrenches for portability or powerful
wrenches for applying more torque. These performance objectives
are not harmonious, and hence the engineer designing the wrench
must navigate a space of trade-offs.
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A wrench design can be described by certain design parame-
ters, e.g. thickness, material density, and handle width; as a rule of
thumb, these are the parameters that are exposed in a parametric
CAD model. We restrict ourselves to manufacturable designs, whose
design parameters are compatible with our fabrication process. The
design parameters serve as coordinates for the design space of po-
tential wrenches. After choosing a specific design, we measure its
mechanical and physical properties and plot them on a set of per-
formance axes: torque, weight, and so on. This procedure yields a
map from design space to performance space.

Some wrench designs are not worth considering. Consider a
heavy, weak wrench A. Suppose that B is lighter and more powerful
A. We say that B dominates A. There is never a reason to manufac-
ture wrench A: the dominating wrench is preferable in terms of all
metrics. On the other hand, if wrench C is more powerful than B
but also heavier, we have a trade-off to navigate.

After eliminating dominated wrenches, what remains is the subset
of interesting wrenches known as the Pareto set; the image of the
Pareto set in performance space is a lower-dimensional set known
as the Pareto front. Designing a wrench is therefore a navigation
of the Pareto front, seeking the optimal trade-off for a particular
application.

Our goal is to develop a computational tool for this navigation
process. We provide a technique for efficiently approximating and
visualizing the Pareto front, represented as a collection of smooth
manifolds embedded in performance space. We then expose the
lower-dimensional space of interesting Pareto alternatives in an
efficiently-navigable fashion.

3.2 Outline

The input to our method is a parameterized object (e.g., a wrench)
and a map from the design parameters (e.g., thickness, density) to
the relevant performance metrics (e.g., weight, torque).

To represent the Pareto front succinctly, we derive a first-order
approximation in a local neighborhood of the front (§5). Inspired
by statistical techniques like principal component analysis (PCA)
and canonical component analysis (CCA), we observe that relatively
few of these linear subspaces are needed to capture local variability.
Informed by this observation, we employ the following steps:

e We propose a randomized algorithm for uncovering points on the
Pareto set (§6). Our algorithm is designed to encourage diversity
in the sampling procedure, helping capture the breadth of possible
designs.

e Once a point on the Pareto set is computed, we use our first-order
approximation derived in §5 to capture local variability in the
relationship between design and performance as a small manifold.

e Pareto-relevant points and their associated manifold approxima-
tions are stored in a performance buffer that efficiently tracks and
updates its estimate of the front (§6.1).

e Once sampling has converged, we are left with a performance
buffer full of manifold approximations of the Pareto front. We use
a graph cut technique to sparsify our approximation of the front.
The end result is a small collection of manifolds that comprises a
high-quality and piecewise-smooth approximation of the trade-off
manifold (§6.4).
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e The dimensionality of the Pareto front generally is lower than
the dimensionality of performance space. Hence, we propose a
technique for embedding and navigating just the Pareto front,
quickly revealing a diverse set of interesting designs (§6.5).

Beyond testing on engineering problems, we also test our algorithm

on a standard benchmark of optimization problems from the multi-

objective optimization literature (§7.1), verifying that we have not
only an effective engineering tool but also an efficient technique for
challenging multi-objective sampling problems.

4 MATHEMATICAL PRELIMINARIES

In this section, we introduce the mathematical toolbox that formal-
izes the idea of trade-offs in an engineering context. This quick sum-
mary establishes the notation we need in our paper; for a broader
discussion we refer the reader to [Deb and Deb 2014].

RP R4
I Fo
\F X)

—
Performance Space
Pareto Front

~
e A
I'd

Design Space
Pareto Set

Fig. 2. The Pareto set represents the points in design space with optimal
performance trade-offs that get mapped to the Pareto front in performance
space. Different colors indicate different manifolds in design and perfor-
mance space with a one-to-one mapping. Any ray from the origin (blue line)
can only intersect the Pareto front once.

4.1 Definitions
The set of exposed parameters for an engineering model is known

as the design space:

Definition 4.1 (Design space and constraint). The design space X
for a multi-objective problem is defined as a subset of RP of feasible
points:

X = {x=(x1,..
Here, each function g; represents a single constraint on x. We use
G(x) : RP — RX to denote the concatenation (g1 (x), . . ., g (x)).

LxP)eRP gix) <0Vje{1,...,K}}.

Intuitively, X is the set of all manufacturable objects. Constraints
gj might capture hard constraints identified by the engineer, such
as a limit on the total material available to manufacture an object.

Next, we need a notion of an objective function for optimization:

Definition 4.2 (Performance metric and space). A set of performance
metric functions f; : RP — R assign real-values to each design
vector x; we use F(x) : RP — R4 to denote the concatenation
(fi(x), ..., fa(x)). We choose the convention that small values of
fi(x) are desirable for metric f;. The performance space S is the
image of the design space X under the performance metrics:

S := F(X) c R%.
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The performance metric functions are often complex and com-
putationally intensive. Multi-objective problems typically involve
multiple performance metrics (d > 2), e.g. weight, torque, and other
measures; typically d < D.

Our algorithm reveals only those points in design and perfor-
mance space that are not out-performed on every axis by some
other design:

Definition 4.3 (Pareto optimality). A point x € X is Pareto optimal
if there does not exist any x” € X so that f;(x) > f;(x”) for all i and
fi(x) > fi(x) for at least one i. The set of all Pareto-optimal points
is the Pareto set ? C RP; the image F(P) C RY is the Pareto front.

4.2 KKT Conditions

Our algorithm pre-computes F() and represents it compactly to
allow for fast exploration and optimization. We represent F(P) as
a union of (d — 1)-dimensional manifolds. As we will show, for
(almost) any point x € P, there is a local neighborhood 8B(x) such
that F(P) N B(x) is a (d — 1)-dimensional manifold in R%; we store
F(%) as the union of a sparse set of simple manifold approximations.

Intuitively, this approximation is justified as follows. From the
definition of Pareto optimality, if a point x € X is Pareto optimal,
then there is no other point whose performance is not worse than
x in every metric and better than x in at least one metric. Hence,
we can draw a ray in performance space along which there can
be at most one Pareto optimal point, illustrated in Figure 2. This
effectively extracts just points on the boundary of the Pareto front,
a lower-dimensional set and justifies the following proposition:

PROPOSITION 4.4. For every nonnegative a € Rd, there exists at
most one t > 0 such that ta € P.

We parameterize this set using a “performance buffer,” defined in
§6.1.

This lower-dimensional observation is justified by the theory of
KKT conditions from multi-objective optimization. Following [Deb
and Deb 2014], we denote Pareto-optimal points as solution of the
primal problem notated

miny  {fi(x)}
s.t. xeX. @

Standard approaches to multi-objective optimization aim at find-
ing solutions to this primal problem. The main challenge is that the
space of solutions that are Pareto-optimal is large, disconnected, and
prone to local minima. Typical approaches use genetic algorithms
to find solutions that are diverse and optimal [Zhou et al. 2011].
On a high level, these methods try to reach the Pareto front by
searching in different directions and using randomization to avoid
local minima.

Inspired by primal-dual algorithms in optimization, the key in-
sight in our approach is that while discovering a single point on
the Pareto set is challenging, once a point has been found it can
be used to uncover a large Pareto region on its neighborhood. Our
approach is to consider a dual problem, defined by the so-called
KKT conditions:

ProrosiTioN 4.5 (KKT coNDITIONS [HILLERMEIER 2001]). As-
suming that f; and gy are continuously differentiable and that the



vectors {Vgy,(x*) | k’is an index of an active constraint} are linearly
independent, then for any solution x* to Equation 1 there exist dual
variables a € R4 and p € RX such that

x*eX

ai >0 Vie{l,...,d}

Pr =20 Vke{1,...,K}

Brox(x') =0 Vk € {1,....K} @

szzl ai =1

L, @V i) + B, PrVar(xT) = 0

It is worth noting that KKT conditions are necessary but not suffi-
cient, so we must a posteriori check that candidate points satisfying
these conditions are indeed Pareto-optimal. This check is extremely
efficient thanks to our performance buffer. The KKT conditions
verify that at least locally the Pareto front is (d — 1)-dimensional,
thanks to the constraint on the sum of a.

5 FIRST-ORDER APPROXIMATION

We begin our technical discussion by motivating a first-order ap-
proximation of the Pareto front. This formula is a straightforward
corollary of the KKT conditions in Proposition 4.5; conceptually, it
characterizes the proper directions to walk in design and perfor-
mance space to maintain Pareto optimality after a single Pareto
point is found. This formula can be understood as a source of effi-
ciency for our algorithm relative to other sampling algorithms, since
entire neighborhoods rather than individual points on the Pareto
front are captured.
We state our condition as follows:

ProposITION 5.1 (KKT PERTURBATION). Suppose x(t) : (—¢,€) —
RP is in the Pareto set in a neighborhood of t = 0, that is, x(t) € P
forallt € (—¢,¢). Taking a and f to be the KKT dual variables corre-
sponding to x* := x(0), under the assumptions from Proposition 4.5
we have

Hx’(0) € Im(DF " (x*)) @ Im(DG ., (x*)). 3)
where
d K’
H:= Z aiHp, (x") + Z BrHgy (x").
i=1 k=1
Furthermore,

DGg (x*)x’(0) = 0. (4)

Here Hy, and Dy, represent the Hessian and Jacobian of a function u,
respectively; DGk~ indicates the part of the Jacobian DG correspond-
ing to the K’ < K active constraints. We prove this proposition in
Appendix A.

Generically, these define a (d — 1)-directional space of local ex-
ploration directions around x*. In particular, assuming H is invert-
ible, (3) shows that x’(0) is in a (d + K’ — 1)-dimensional space; the
—1 comes from the last line of (2), which effectively shows that the
row spaces of DF and DGk are linearly dependent. Equation (4)
reduces the dimensionality by K’, as needed.

6 PARETO FRONT DISCOVERY

We now define an iterative algorithm for exploring the Pareto front,
constructed from the above perturbation formula. Typical itera-
tive approaches seek a diverse, dense set of solutions (points) that
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together approximate the Pareto front. In contrast, our algorithm
represents the front piecewise-continuously as a set of manifolds.
Our algorithm is therefore less sensitive to the uniformity of discov-
ered points, so long as the manifolds expanded from these points
completely cover the Pareto front. Instead, the distribution of points
in our discovery algorithm will depend on the varying sizes and
locations of the generated manifolds in objective space.

6.1 Data Structure

Assuming that performance metrics are positive, any point in the
Pareto front will intersect a positive ray traced from the origin. From
Proposition 4.4, any such ray will intersect at most one point in the
Pareto front. Further, a Pareto point that intersects a given ray will
have minimal distance to the origin when compared to all other
points in performance space S that intersect this ray.

We therefore define the performance buffer as a (d—1)-dimensional
array discretized using (hyper)spherical coordinates (see Figure 3).
Inspired by the z-buffer used in rendering, a basic implementation
of the performance buffer stores at each cell the point with min-
imum distance to the origin that intersects its corresponding ray.
The performance buffer is updated at each iteration of the discovery
algorithm, as new regions of the performance space are found.

Rd

Performance Space

Fig. 3. The performance buffer: since a ray from the origin can only intersect
one point in the Pareto front, we use a buffer discretized by (hyper)spherical
coordinates for storage.

To reduce stochasticity of our final result, in practice we extend
the basic implementation by storing a list of candidate solutions at
each buffer cell B(j) , instead of storing only the single solution that
has minimal distance to the origin. These solutions are included
if their distance to the origin is within an allowed tolerance dp of
the minimal distance over all solutions in B(j). Maintaining this set
of solutions is useful for extracting a sparse approximation of the
Pareto front (§6.4), which may forego choosing the closest sample
to the origin at some buffer cells in favor of a simpler set of man-
ifolds covering the front. For performance, we bound the number
of stored solutions per cell, keeping only the top K (K = 50 for all
experiments).

6.2 Discovery Algorithm

6.2.1 Overview. We address diversity and convergence with an
iterative procedure to discover the Pareto front. The algorithm is
composed of three main steps (see Algorithm 3.2 and Figure 4). The
first step is a stochastic sampling scheme that selects samples x%,
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i =1,...,Ng in the design space X (§6.2.2). The second step is a
local optimization procedure that tries to push each sample x% to a
solution xf) on the Pareto set (§6.2.3). For each sample xé, a search
direction s(xé) € RY is selected to drive the local optimization
scheme. Diverse directions are used to find a set of solutions that
cover the different regions of the Pareto front. Finally, a first-order
approximation of the Pareto front is extracted around x!, (§6.3). The
perturbative formula in §5 is used to generate the D X (d — 1) matrix
M? that defines an affine subspace A’ in design space that goes
though x? .

Performance Space

Design Space

Fig. 4. A single iteration of the discovery algorithm: random samples x
are generated from the current data on the buffer (illustrated in gray) and
optimized for a search direction s(x%) (blue arrow). A first-order approxima-
tion around the result of this optimization, x., generates the corresponding
manifolds in both design and performance space (red lines) and the buffer
is updated based on this new data.

The resulting manifold F(A?) in performance space is then pro-
jected onto the buffer. If a point on F(x!) € F(A') is projected onto
the buffer cell B(j) and this point is considered a candidate according
to the tolerance g, then the buffer is updated. Each cell j on the
buffer stores a list of solutions, each of which contains the point
in design space, the corresponding map to performance space, and
the corresponding affine subspace {(x!, F(x'), A?)};. The algorithm
terminates if the buffer cells’ average distance to the origin is not
improved by dr after Nt iterations.

Algorithm 1 Pareto set discovery given performance metrics F and
design constraints that define X.

1: procedure PARETOFRONTDISCOVERY(X, F)

2 B: performance buffer array

3 B(i) « 0,Vi

4 do

5: xg, . ,X?Is « stochasticSampling(B, F, X)

6 for each x. do

7 D(x%) « selectDirection(B, x)

8 x! « localOptimization(D(x}), F, X)

9: M* « firstOrderApproximation(x, F, X)
10: updateBuffer(B, F(M'))

11 if buffer not updated on past N; iterations then
12: break

13: while within computation budget

14: return B
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6.2.2  Stochastic Sampling. We use stochastic sampling to initial-
ize each iteration of the algorithm to avoid local minima. Since the
performance buffer stores the current approximation of the Pareto
front, we use these points as initial guesses. We uniformly sample
buffer cells at random. For each selected cell j, we take the point x/
with minimal distance to the origin and perturb it as follows:

where d,, is a uniform random unit vector that defines a stochastic
direction and 8, is a uniform random number in [0, 5p] used for
scaling. The exponential factor trades off between exploration and
exploitation—small scaling factors are typically preferred to explore
local neighborhoods, but occasional larger values are desired to
diversify the solutions. We clamp the result to ensure x, € X.In
the first iteration, points are sampled uniformly from X.

6.2.3 Local Optimization. Each of the sampled points xg is then
optimized for Pareto optimality. A scalarization scheme is used
to convert this multi-objective optimization problem into a single-
objective problem which can be solved for each point. Previous work
on multi-objective optimization proposes assorted scalarization
functions that diversify the solutions across the Pareto front [Das
and Dennis 1998]; diversification is essential to avoid having solu-
tions cluster in certain areas, failing to provide a good representation
for the shape.

We find that the following scalarization function is most effective
in our applications:

Xo = argmin IIF(x) = 2(xs)11? ®)

where z(x;) € R? is a reference point defined for each sample. This
quadratic expression is inspired by previous work [Zeleny 1973]
and allows for discovery of solutions on non-convex regions of the
Pareto front.

We use the performance buffer discretization to specify a unit-
length search direction s(x;) for pushing xs towards the Pareto
front (see Figure 5). This suggests choosing the reference point
z(xp) as:

Z(Xs) = Xs + s(x5)C(xs), (6)
where C(xs) = ds||xs|| is a scaling factor depending on the distance
to the origin. This scaling factor is important for diversity since
setting the reference point too far from the Pareto front will make
results cluster around specific solutions.

As shown in Figure 5, the buffer discretization defines a search
direction for each buffer cell j. For further diversity, instead of set-
ting s(xs) as the search direction for the buffer cell j where x; get
projected, we select the search direction assigned to a cell on the
neighborhood of cell j selected uniformly at random. The neigh-
borhood of a cell is defined by all the cells that are within distance

SN.

6.3 First-Order Approximation

For each point x, we use the result in Proposition 5.1 to find d — 1
directions for local exploration stored in a matrix M.

As discussed in §5, equations (3) and (4) generically definead — 1
dimensional space. In practice, however, one must consider two
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Fig. 5. Search directions for buffer cells for d = 2. For diversity, different
regions of the performance space get assigned different search directions.
We use the buffer discretization to define these directions as illustrated in
the figure.

special cases: (1) when Im(DF T (x*)) ® Im(DG, (x*)) is low rank
and (2) when H is low rank.

The first special case occurs when two performance objectives
agree. In this case, the Pareto front locally will be represented by
a manifold with dimensionality smaller than d — 1. Consider, for
example, a two-objective problem where the performance metrics
are the weight and material cost of a single-material model. Since
these objectives are not conflicting, the Pareto front is defined by a
single point where the volume is minimized. Typically this is not
the case for interesting problems in multiobjective optimization
where the challenge is due to conflicting objectives. Therefore, in
our implementation, we assume that this does not happen.

The second special case is more common, since it results from
having design variables that do not affect the performance. While
design variables that do not affect the performance at any configu-
ration can be easily discarded in a pre-processing step, it is common
to have design variables that have overall impact but locally are
ineffective. In such cases, equations (3) and (4) define a space with
dimensionality higher than d — 1. This means that locally the Pareto
set (design space) has higher dimensionality. Since the Pareto front
(performance space) can never have dimensionality greater than d—1
(see Proposition 4.4), however, this means that there are multiple
affine subspaces that locally map to the Pareto front. In our imple-
mentation, we deal with these cases by selecting d — 1 directions
uniformly at random.

6.3.1 Storage. Given M i which defines an affine subspace around
x!, we find an orthonormal frame and uniformly sample on a grid
defined by this frame in design space. We set the grid size to be large
enough to reach the boundaries of X and discard points that are
not in X. We then map all valid points to performance space using
F and project the results onto the buffer. For d = 2, this projection
is done by interpolating line segments, and for d = 3, we define a
triangle mesh and use barycentric coordinates for interpolation.

As previously discussed, the buffer stores all of the solutions that
are within a given tolerance. For each solution (x, F(x), A) mapped
to a cell j in the buffer we compare its distance to the origin with
the minimal distance stored in the solutions for cell j. If the result is
within §p, we append it to the solution list for that cell; otherwise
it is rejected. If the solution is closer to the origin than any other
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solution on the buffer, we traverse the list rejecting all candidate
solutions that are no longer within tolerance.

6.4 Sparse Approximation

After the Pareto front has been discovered, the final step is to select
for each cell on the buffer a single solution from the list of candidate
points. Our goal is to assign a unique value to each buffer cell to
minimize discontinuities in design space while maintaining opti-
mality within tolerance. In cases with many design variables, it is
possible to have more than one solution in design space that maps
to the same point in the Pareto front. We aim at selecting between
these solutions so that adjacent buffer cells map to solutions that
are close in design space. Further, we want a sparse set of first-order
approximations that accurately represents the Pareto front.

Since points that are represented by the same first-order approxi-
mation are close in design space, we can optimize for both of these
objectives by solving a labeling problem. Each label I corresponds
to a linear subspace A’ on the set of spaces found by the discovery
algorithm. Our goal is to choose a label for each buffer cell j so that:
(1) the label of a cells is similar to the label of its neighbors and (2)
the assigned label for a given cell is on the list of solutions B(j), with
priority given to solutions with smaller distance to the origin. This
can be expressed and solved as a graph-cut problem.

Compared to an approach that takes the best value in each buffer
cell, our graph-cut algorithm finds a sparse set of first-order approx-
imations, providing local continuity at the expense of additional
approximation error. We define the approximation error e4(J, i) as-
sociated to assigning label I’ to cell B(j) as the difference between
the distance to the origin of the candidate solution on A* and the
minimal distance to the origin of all solutions in B(j). The graph-cut
formulation aims at segmenting the buffer into large continuous
regions while minimizing this error. From the buffer construction,
the error is bounded by a user-defined tolerance, §p. In typical ap-
plications, engineering safety factors should be used to determine
this tolerance.

We use the technique described in [Boykov et al. 2001] and the pro-
vided implementation. The unary term Eg;(j, i) is set to e4(j, 1)/B
if A’ is on the list of candidate solutions for B(j) and Ciys otherwise.
The binary term Eg(j, k) is set to 1 for every point if j and k are
within a dg neighborhood from each other. In our experiments, we
set Cipr = 10 and dgrn = 2. A post-processing step is performed to
filter out outliers.

6.5 Visualization

The performance buffer provides a discretization of the points on the
Pareto front but may also contain points that are not Pareto-optimal.
The final step of the algorithm is to remove all buffer cells that fall
into this latter category. This can be done by simply checking for
dominance based on Definition 4.3.

For visualization, we embed the buffer in a (d — 1)-dimensional
space to allow for easy exploration (see Figure 1). For d = 2, the
embedding is a line, and for d = 3 the embedding is a triangle. In
both cases, the extreme points correspond to maximizing a given
performance metric. Since we handle minimization problems, each
metric is optimized at the opposite vertex for d = 2 or edge for d = 3.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 131. Publication date: August 2018.
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We define a color map for the embedding to highlight different affine
subspaces. We color the embedded shape assigned to each point
as a hue based on the corresponding affine subspace and a value
based on the distance between neighbors. This allows us to see the
transitions in the design space.

The pre-computed one-to-one mapping between piecewise linear
regions in design space and their corresponding manifolds in perfor-
mance space allows us to generate the geometry that corresponds
to each performance trade-off in real time, allowing for interactive
navigation of this embedded space.

7 RESULTS

We have implemented the algorithm above and run experiments
for d = 2 and d = 3 with design parameters varying from D = 3 to
D = 21 depending on the problem. For all of the experiments, we
rescale the problems so that both X € [0,1]P and F(X) € [0, 14
and use the same parameter settings for all experiments: g = 1072,
6 = 1074, ds = 0.3, 6p = 10, and 6N = 0.2|B|, where |B| is the
buffer size.

7.1  Experiments

We test the proposed algorithm against a set of well-established
benchmark problems for multi-objective optimization, each of which
covers a number of criteria for discovering the Pareto front.

My

Fig. 6. Nondominated solutions for various well-established benchmark
problems using our proposed approach. Top two rows: Solutions for the five
real-valued ZDT problems. Bottom row: Solutions for the first three DTLZ
problems with three objectives. Our approach was able to converge to the
ground truth Pareto front in all cases.

The ZDT test suite [Zitzler et al. 2000] is perhaps the most widely-
applied test suite for multi-objective optimization. This is due largely
to the fact that the five real-valued tests in the set cover a broad
range of geometric forms in both the Pareto front and Pareto set
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(concave, convex, disconnected). Additionally, these tests highlight
the difficulties of multimodality (presence of multiple local minima)
and, because they have well-defined optimal solutions, they are
easily verifiable. The DTLZ test suite [Deb et al. 2002] offers little
new in the way of geometric complexity, but it does provide the
option to optimize for more than two objectives. This is an espe-
cially rare attribute for well-established test suites and is a crucial
requirement for the scope of our project. In particular, the reference
point mapping and manifold generation become less intuitive for
higher dimensional problems. For this reason, we use the DTLZ
suite to validate and visualize the results of our method in three
dimensions.

Figure 6 shows the results of the points stored in the performance
buffer over the true front which is known for these test functions,
validating that our proposed method manages to converge to the
correct solution for these examples.

These test functions provide an empirical validation that our
method can avoid local minima, discovering the true front even
for multi-objective optimization problems that are designed to be
challenging. Compared to state of the art methods for Pareto front
discovery (according to a recent survey [Zhang and Xing 2017]),
our method generates a collection of manifolds, as opposed to point
samples on the front (see Figure 7 of [Zhang and Li 2007], which
contains an identical experiment to our Figure 6). The computation
time, measured by the number of function evaluations, is at least
comparable to the state of the art. For example, Zhang and Li report
~10000 function evaluations for ZDT1 with 15 parameters, while
our method uses only 6100 function evaluations. In addition, our
final representation is more compact—since all ZDT benchmark
examples can be represented by a single manifold—and is amenable
to parallelization.

Since the Pareto set for each of the ZDT and DTLZ functions lies
on a single affine subspace, our method recovers the entire front
after finding a single solution that is Pareto-optimal. Therefore, to
stress-test our approach and demonstrate that it can generically
approximate the Pareto front by piecewise linear regions in design
space, we test our method on a “Fourier benchmark”: functions
defined by linear combinations of sines. We define each performance
metric fj as

D K
£ =" > @ gsinkx; + B ), ()
i=1k=

k=1

where @; ., Bi k € [0,1] are selected uniformly at random. We ran
experiments for varying numbers of design and performance param-
eters. The results in Figure 7 illustrate the different affine subspaces
that are used to construct the Pareto fronts, denoted in different
colors.

Figure 8 compares our solution to a method that first discovers
Pareto-optimal points and then uses a piecewise-linear interpolation
in design space. Our approach, in addition to discovering points on
the front more efficiently, has the critical advantage of being faithful
to the topology of the front and its relationship to the preimage in
design space (the Pareto set). As shown in the figure, there is no
guarantee that interpolating the preimages of two solutions adjacent
in objective space (blue points) will produce another Pareto-optimal
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Fig. 7. Results for Pareto front discovery on Fourier benchmark. The figure
illustrates how the Pareto front can be covered by a set of individually
smooth regions which are mapped via F from affine subspaces in the de-
sign space. Each corresponding pair in design and performance space is
illustrated in a different color. In high-dimensional cases in design space,
dimensionality-reduction via principal component analysis is applied for
visualization purposes.

solution (red points). Our method for generating space approxima-
tions (Section 6.4) automatically detects these discontinuities in the
Pareto set.

The buffer construction and graph-cut algorithm guarantee that
the results of this sparse approximation are optimal within a toler-
ance (dp) if each candidate point on B(j) that has minimal distance to
the origin is on the true Pareto front. This result, however, depends
not only on our ability to avoid local minima, which was empiri-
cally validated on the ZDT and DTLZ benchmarks, but also on the
first-order approximation. The quality of the first-order approxi-
mation depends on how well the Pareto set can be approximated
by a linear function. Since the Pareto sets of the ZDT and DTLZ
benchmarks are linear, we quantitatively evaluate the proposed
local linear approximation on the Fourier benchmark. The result
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Fig. 8. A direct piecewise-linear interpolation result of the example shown
on the first row of Figure 7. The optimal solution is chosen from the list of
points at each buffer cell (blue points) and a denser sampling is generated
by linearly interpolating the preimage of neighboring points in performance
space (red points). Since the Pareto front is comprised of distinct manifolds,
the linearly interpolated points have no guarantee of Pareto optimality. For
illustrative purposes, the interpolation is performed on a sparse set of the
discovered solutions.

is shown in Figure 9, which, illustrates how far away the optimal
candidate point x}’f on each buffer cell is from the actual Pareto front.

To measure this distance, we ran an additional local optimization
that tries to push each point x}’f the direction dg\] normal to the front
at F (x}‘f):

min HF(X) - (F(x;) + 5@1,)“ , ®)

where we set Sy = 8 = 1072, Figure 9 shows that the approxima-
tion error (distance in performance space) for the problem showed
in the the first row of Figure 7 is below 4.0 x 107* in the worst case
and below 10 for over 97% of points. This result shows that for
general functions defined by Fourier series, our method can robustly
approximate the front. This is done by iteratively adding more lo-
cal manifolds until the improvement on an average cell is bellow
87 = 107 (stopping parameter). For the example in Figure 9 each
buffer cell has, on average, 10.42 candidate points, which correspond
to first order approximations that are within error g = 1072 of
each other.

Finally, we show the behavior of our first-order approximation on
the bi-objective Kursawe problem [Kursawe 1991], which has a dis-
connected, asymmetric Pareto front. Figure 10 shows the expanded
curve using our algorithm (red) alongside a number of curves ex-
panded in random directions (gray). Our generated direction in
design space (black) approximates the shape of the true Pareto front
in objective space better than its randomized counterparts that are
not obtained using the perturbative formula.

7.2 Design Applications

We additionally run experiments on several CAD models, each with
a specified set of design and performance metrics. We use three
models from [Schulz et al. 2017] that are assessed using a combina-
tion of pre-computed physical simulations and geometric analysis.
We also experiment with higher-dimensional design spaces using a
twelve-parameter boat parametrized by cage-based deformation [Ju

ACM Transactions on Graphics, Vol. 37, No. 4, Article 131. Publication date: August 2018.
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Fig.9. Performance Space Assessment of the approximation error associated
with our first-order expansion method on the example shown on the first
row of Figure 7. Left: plot in performance space of the discovered Pareto
front (grey) and results of the same points after performing an additional
local optimization (maroon). Right: histogram showing the approximation
error for points on the discovered Pareto front.
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Fig. 10. First-order approximation for a point x on the Pareto front of the
bi-objective Kursawe problem [Kursawe 1991] (true front shown in black).
The first-order approximation defined by our method (red) is compared to
the mapping of affine spaces around x generated using directions chosen
uniformly at random (gray).

et al. 2005] and a twenty-one-parameter lamp designed in CAD.
Figures 1 and 11 show the resulting solutions for each of these ex-
periments in both design space and performance space, along with
the corresponding embedding and (selected) mesh samples. We also
implement a simple interface that provides an interactive visualiza-
tion of geometries corresponding to each point in the embedding
(see the supplemental video).

The top row of Figure 11 shows a wrench example with three
design parameters: handle length, head thickness, and fillet radius
(the rounding along the edges that connects the head to the handle).
The measured performance metrics are stress for a given torque
(maximum von Mises stress computed with FEA, implementation
from [Schulz et al. 2017]), mass, and force required to generate a
given torque. In this example, most of the front can be expressed
as a single affine space where the fillet radius and the length are
maximized. This result is due to the fact that these parameters
have a large impact on minimizing the stress and force for a given
torque, while the negative impact on the mass is largely negligible.
Only in a very small region of the Pareto front do solutions corre-
sponding to a small fillet radius appear. For these regions, the head
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and fillet radii are minimized and the optimal trade-offs between
mass and force/torque are achieved by varying the length of the
handle. While the design space for this model is low-dimensional
(only three variables), it highlights the strength of our method in
exposing relationships between design parameters and performance
metrics that are not evident without analysis. Furthermore, it allows
us to simplify the solution space by understanding that there are
only two affine regions in design space which yield Pareto-optimal
performance trade-offs.

The second row of Figure 11 shows a brake hub with three design
variables: the angle of the inner hole, spoke thickness, and the
thickness of the rim. The performance metrics for this model are
stress (calculated by simulating the impact of directional forces and
heat distribution), mass, and heat dissipation (approximated by the
thickness of the rim). Our method highlights a strong discontinuity
in design space represented by the black line that divides the green
patch. Figure 12 shows two models on opposite sides of this divide.
We observe that, while the performance parameters vary smoothly
across this gap, the spoke thickness almost doubles. This result
exposes a property of the measured stress which depends on both the
heat distribution and directional forces from the brake; the reason
why two very different designs can be so close in performance
space is that the spoke thickness affects the heat distribution and
the force-imposed object deformation in opposite ways. Our method
exposes these different design configurations which, in fact, yield
comparable performance results, providing engineers with a better
understanding of the model’s properties.

The third row of Figure 11 illustrates a bike frame with four de-
sign variables that has been engineered to minimize mass, drag,
and stress. What is interesting about this result is that the embed-
ding is composed of a set of disconnected regions. This happens
because of the geometry of the envelope of F(X). Assuming that F
is continuous and X is connected, the projection of F(X) onto the
buffer is also always connected. As previously discussed, however,
not all points represented by the buffer are Pareto-optimal. For this
example in particular, after we remove the suboptimal point from
the buffer, we are left with a large empty region in the center of
the embedding. These discontinuities in performance space reveal
regions of trade-off where a small variation in design space will
only slightly worsen one metric but significantly improve another.
Such exposed properties can be very useful in aiding designers to
decide between certain success metrics and define trade-offs.

The fourth row of Figure 11 illustrates a toy boat parameterized
by a cage with twelve design variables and two performance metrics.
The performance metrics are buoyancy (approximated by volumetric
maximization) and drag from a frontal wind. This example shows
how our method can find a locally smooth approximation of the
Pareto front for high-dimensional design space. The resulting boats
all have maximal length but the shape of the projection onto a frontal
plane varies between solutions that represent different trade-offs
between mass and drag.

Finally, Figure 1 illustrates a lamp with 21 parameters that was
designed using a CAD package. Three parameters are used to define
the position and orientation of each of the lamp’s seven beams. The
performance metrics for this model are: stability (measured by the
distance of the projection of the center of mass to the center of the
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Fig. 11. Examples of CAD models processed using our proposed technique. From left to right: Pareto-optimal points in design space (illustrated with
multi-dimensional scaling via principal component analysis for models with more than three design parameters); Pareto-optimal points in performance space;
the resulting embedding and illustrations of geometric results for some sampled points. Across all figures, the different colors correspond to different regions

resulting from local expansion in design space.

base), mass, and average distance between the lamp beams and a
predetermined focal point that should be illuminated. As shown in
the figure, our method returns an approximation of the Pareto front
with many disconnected regions in the design space. This behavior
arises due to the presence of many points in the design space that
are mapped to the same regions on the Pareto front (i.e., there are
many points in the Pareto front which can be locally approximated
by manifolds of higher dimension than d — 1). An example of this is
shown in Figure 13. This example highlights the utility of creating

a sparse representation of the Pareto front with local manifolds.

Since multiple points map to the same point on the Pareto front,
a discrete approach would result in an approximation containing
many disparate points across the design space. This discontinuous
representation, however, provides little in the way of performance
trade-off insights. Our method, on the other hand, creates locally
smooth regions around areas of similar geometry. This configuration

in turn allows designers to directly observe which parameters have
a significant effect on local performance and which ones do not, a
particularly useful feature in higher-dimensional cases.

8 CONCLUSION

Real-world design problems can rarely be squeezed into one dimen-
sion. Instead, the process of engineering a physical object requires
navigating a complex and potentially even disconnected space of
candidate configurations. The algorithm and accompanying interac-
tive tool presented in this paper represent a significant effort toward
the larger goal of efficiently estimating and navigating the space
of relevant designs for a given problem. Our technique efficiently
reveals this space in a wide variety of scenarios, from benchmarks in
multi-objective optimization to parameterized CAD models paired
with expensive physical simulation tools. Its versatility indicates
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Performance Parameters:

Performance Parameters:
Stress: 0.194 Stress: 0193
Mass: 0.761 Mass: 0.816

Thickness: 0.113 Thickness : 0.123

Fig. 12. Example of two variations of the brake hub that have similar perfor-
mance metrics but very different design parameters. Our system can expose
these relationships providing intuition to designers about the structural
nature of the model. The metrics are shown under a normalization for easy
comparison—the Pareto front is rescaled to lie between zero and one.

Dy

front view front view
side view side view

Fig. 13. Example of two different lamps (front and side view) that have the
same performance across all metrics. Due to the large dimensionality of the
design space, these two configurations have the same stability, mass, and
distance to the focal point.

broad applicability across use cases in computational fabrication
and beyond.

While our algorithm as-is can be plugged into many existing en-
gineering pipelines, we also anticipate several avenues of research
that can extend the basic model proposed here. One important con-
sideration comes from the human-computer interaction. Now that
we can efficiently uncover and parameterize the Pareto front, what
is the best way to display it to an engineer who must digest the space
of candidate designs? Such a study can use our tool as a starting
point, adjusting e.g. the embedding of the performance buffer to
best reflect intuitive notions of proximity in performance space. On
the opposite side of the spectrum between human interaction and
automation, we also anticipate that our differentiable representation
of the Pareto front can be incorporated into “hyperparameter” se-
lection techniques that use a secondary function to choose between
different points on the Pareto front.

Our study also suggests several intriguing mathematical and al-
gorithmic challenges. While our benchmark study indicates that
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our algorithm yields a smooth and complete picture of the Pareto
front—at least in realistic scenarios where the front is representable
computationally—additional theoretical analysis could reveal con-
vergence rates and/or the likelihood that our strategy will reveal
the entire Pareto front. Of course, such theoretical analysis will
probably require stronger assumptions on the performance metrics
than are needed in practice, e.g. convexity or Lipschitz bounds, to
rule out pathological cases; the challenge will be to select a theo-
retical model that is reflective of the scenarios we observe in our
examples from CAD and engineering design. Further analysis could
also extend the first-order approximation to handle cases in which
the derivatives of the active constraints at a given point are them-
selves linearly dependent. Algorithmically, a clear next-step will
be to extend our methodology to the regime where parameters are
discrete or performance measures are not twice differentiable.

An additional challenge for the future spanning both technical
and human-oriented aspects is to cope with higher dimensionalities
for performance space. Currently our technique is designed for the
d = 2and d = 3 cases, for which the Pareto front is readily embedded
in a display tool. Considering larger values of d will require several
technical developments. For the sampling algorithm, the “curse of
dimensionality” implies that sampling may take more iterations to
converge; we anticipate that our manifold-based strategy will serve
as a key component reducing computational burden in this regime
by exploiting local structure to discover larger pieces of the front
at a time. After uncovering the higher-dimensional Pareto front,
we will also need to design a means of displaying the result in a
fashion similar to Figure 11. While MDS embedding of the Pareto
front may suffice, a more careful parameterization that preserves
relevant relationships between the performance metrics may be
desirable.

Even in the absence of these improvements, we anticipate in-
corporation of our exploration algorithm and visualization tool
into software for CAD and 3D modeling. By helping engineers and
designers understand the possible ways to trade off between perfor-
mance metrics, we hope to alleviate the dependence on unintuitive
and often brittle parameters currently permeating design software.

A PROOF OF PROPOSITION 5.1

Since x(t) € P for all t € (—¢, ¢), each point x(t) must satisfy the
KKT conditions (2). Hence, we can assume the existence of time-
varying dual variables a(t) : (—¢,¢) — RY and B(t) : (—&,€) — RK,
Generically these functions are differentiable in ¢.

For a given critical point x* = x(0), without loss of generality
permute the constraints so that the first K’ inequality constraints
are active, i.e. gr(x*) = 0 for all k < K’, and that the remaining
constraints are inactive, i.e. gy (x*) < 0 for all k > K.

Applying the complementary slackness condition in (2), we must
have f(0) = 0 for all inactive constraints g (x*). By continuity, if a
constraint is inactive at t = 0 it must remain inactive in a nonempty
open interval surrounding ¢ = 0. After possibly restricting ¢, we can
assume fi(t) =0 forall k > K’ and t € (—¢,¢).



Collecting our observations so far, we rewrite the KKT condi-
tions (2) as follows:
ai(t) >0 Vie{l,...,d},t € (—¢,¢)
pit) =0 Vje{1,...,K'},t € (—¢,¢)
ﬁjgj(x(t)) =0 Vje{l,...,k}t €(—¢¢)
Y4 ai(t) =1t € (—¢¢)
S, a(OVfix®) + I, B (Vg (x(1) = 0 Vi € (—¢,¢)
)
Note this form effectively ignores the inactive constraints since they
do not figure into the problem near t = 0.
Our next task is to differentiate the final condition in (9) with
respect to t at t = 0. Define:

d K’
h(t) = ) etV fix() + ) Bi(6)Vg;(x(1))
i=1 j=1
Then,

d
W (t) = DFT (x(0)a’(t) + | ) ai(®)Hy, (x(1)) | ¥ ()
i=1

K/
+DGT (x(1)p' (1) + Zﬁk(t)Hgk(X(t)) x'(t)
k=1

Here, Du indicates the Jacobian and H,, indicates the Hessian of a
function u(x).
Evaluating at t = 0 and recalling x(0) = x* shows

d
W (0) = DFT (x")a’(0) + Zai(O)Hfi x| x'(0)
i=1

K/
+ DG, (x")B'(0) + | )" Bie(0)Hy, (x") | X'(0)

k=1
We use DGk to denote the part of the Jacobian of G corresponding to
active constraints. Defining H := 3 a;(0)H, (x*) + X P (0)Hy, (x*)
allows us to simplify our expression to

h'(0) = DFT (x*)a’(0) + DGy, (x*)B’(0) + Hx'(0). (10)
From the KKT conditions, we know A(t) = 0—and hence h’(t) =

0—for all ¢ € (—¢, ). Rearranging slightly shows
Hx’(0) € Im(DF " (x*)) ® Im(DG ., (x*)). (11)

We obtain an additional property of x”(0) by revisiting the comple-
mentary slackness condition in (9), which shows i (¢)gr(x(¢)) = 0
fort € (—¢,¢)and k € {1,...,K’}. Again differentiating both sides
with respect to t shows

0 = B (g (x(1)) + Br (1) Vgr (x(t) "X/ ().

Recall gi (x*) = 0 since constraint k is active; we furthermore can
assume f;(0) # 0 since the constraint is active. Hence the first term
vanishes and at t = 0 we are left with

Vo (x)Tx'(0) =0 Vk € {1,...,K'}, (12)
Combining different k’s shows
DGg(x*)x(0) = 0,

as desired.
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