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‘Turn slightly to the left’ the navigational system announces, with the aim of directing a blind user to merge into a corridor.
Yet, due to long reaction time, the user turns too late and proceeds into the wrong hallway. Observations of such user behavior
in real-world navigation settings motivate us to study the manner in which blind users react to the instructional feedback of a
turn-by-turn guidance system. We found little previous work analyzing the extent of the variability among blind users in
reaction to di�erent instructional guidance during assisted navigation. To gain insight into how navigational interfaces can
be better designed to accommodate the information needs of di�erent users, we conduct a data-driven analysis of reaction
variability as de�ned by motion and timing measures. Based on continuously tracked user motion during real-world navigation
with a deployed system, we� nd signi�cant variability between users in their reaction characteristics. Speci�cally, the statistical
analysis reveals signi�cant variability during the crucial elements of the navigation (e.g., turning and encountering obstacles).
With the end-user experience in mind, we identify the need to not only adjust interface timing and content to each user’s
personal walking pace, but also their individual navigation skill and style. The design implications of our study inform the
development of assistive systems which consider such user-speci�c behavior to ensure successful navigation.
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1 INTRODUCTION
Designing the guidance feedback of assistive indoor navigation systems requires carefully considering the speci�c
needs of the end-user [6, 56]. While technologies for navigation assistance have been previously developed by
researchers [2, 11, 16, 17, 34, 69], current turn-by-turn guidance systems for people with visual impairments
often do not consider individual di�erences between users. However, such di�erences can potentially impact
the navigation experience and the ultimate success of the navigation task [46]. For instance, consider a scenario
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where the system may ask the blind user to ‘turn slightly to the left’ to merge into a di�erent corridor. However,
due to longer reaction time, the current user turns too late and proceeds into the wrong hallway. In this example,
personal user motion characteristics (e.g., reaction time, task performance, over-turning, etc.) can impact the
success of the navigation task. In an unfamiliar environment, the recovery from a navigation error such as this
one may be lengthy [2]. Therefore, a lack of a model for personal di�erences in reaction characteristics can result
in navigational errors, collision, or user confusion.
In this work, we focus on analyzing personal characteristics in real-world user motion data with respect to

di�erent instructional context. To gain insight into how e�ective navigational interfaces can be designed, our
work studies two interconnected but less explored components of the interaction between a blind user and
a navigation system, (1) data-driven analysis of user motion behavior, and (2) the role of inter-user reaction
variability.

We propose a data-driven analysis framework of user motion (i.e., reactions) following interface guidance
cues. In-depth, quantitative analysis of blind user reaction characteristics is often lacking in related research
studies [17, 32, 56]. Studies in assistive indoor navigation systems often evaluate system performance in terms of
system localization error, overall route statistics (e.g., total completion time, total incidents, etc.), and subjective
user reports [11, 16, 18, 20, 34, 38, 41, 47, 60, 69]. Moreover, studies are mostly conducted in lab or in simpli�ed
environments. In contrast, our work employs continuous tracking of real-world users to extract and summarize
a set of data-driven reaction measures. The proposed framework provides quantitative trends which can be
automatically extracted from sensor data, hence useful when analyzing behavior in larger-scale settings and
facilitating a rigorous comparison among future studies. Our� ndings regarding user behavior, challenges, and
strategies are leveraged to infer several novel system design implications, as discussed next.
We use the analysis framework to argue that the navigation interface should support each user’s unique

navigation style to ensure pleasant navigation. Speci�cally, we uncover the signi�cant impact of inter-user
variability on the end-user experience. The practical issue of accommodating the information needs of diverse
users has been discussed in previous research only brie�y and qualitatively [17, 22]. Hence, we emphasize it
throughout the quantitative analysis. We� nd inter-user variability to play an essential role in determining the
quality of the interaction experience and ultimately the success of the navigation. We explain the variability
by discussing di�erences in navigation techniques and personal mobility style among users. By examining
summarized motion measures within each user, across multiple users, and across varying instructional context,
we tie novel insights regarding user behavior patterns with implications for system design. The implications can
be used to enable a more useful collaboration between the system and varying types of users.
To better understand the role of reaction variability of blind users in assisted navigation settings, we studied

sensor data collected in a real-world deployment of a smartphone and Bluetooth beacon-based navigation solution
over a multi-building area. The analysis of motion and timing reaction measures in a total of 1,553 interaction
events is used to uncover di�erent system-user interaction patterns which can impact the navigation success. To
our knowledge, this is the� rst study to employ automatic extraction of sensor readings to analyze, on a time
scale of seconds, blind user path following in a real-world large-scale indoor navigation study.

1.1 Key Findings
Our study revealed three main� ndings. First, we� nd that timing of instructional content, in particular when
approaching turns, should be made adaptive. Through extensive analysis on measures of reaction time and
motion, we demonstrate how di�erent users can end up several meters apart (i.e., reaction time and type vary
signi�cantly) during a task which is critical to the navigation task. Hence, successful turning becomes challenging
in certain environmental context. To avoid missing turns due to late or early turning (the most common cause
of navigation error in the data), the interface timing should accommodate users traveling at di�erent speeds
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(a) Approaching a turn (b) Turn left (c) Proceed forward

(c) Turn right (d) Turn right diagonally (e) Obstacle on the right

Fig. 1. Examples of blind users holding a smartphone in their hand while following the turn-by-turn assistive indoor
navigation app. We analyze user motion data to understand variability in reactions to di�erent navigational context (e.g.,
turns, obstacles). Towards assistive mobility technologies with a more personalized interaction experience, our findings reveal
the significant role of personal mobility characteristics during assisted navigation.

and reacting to instructions di�erently. Yet, existing navigation interfaces do not consider tailoring timing of
instructions to di�erent users.

Second, we� nd that our de�ned reaction measures allow for automatic identi�cation of a variety of� ne-grained
user-speci�c navigation strategies, including cane techniques, cautious navigation, or challenging navigation
tasks, as discussed in Section 5.3. This� nding is encouraging, as it enables real-time systems that can adjust the
content of the guidance (e.g., level of context and verbosity) across diverse users and user states.

Third, beyond analysis of task-dependent variability among individual users, we cluster user motion trends to
identify broader interaction patterns and system design implications. We� nd that users can be categorized into
roughly four broad interaction trends (Section 5.5), based on how they interpret and utilize di�erent types of
instructions, e.g., slowing down to a near stop during turns cautiously with careful attention to instructions or
maintain speed with minimal slow down.

In addition, we present several additional novel� ndings about user behavior during speci�c navigation tasks,
such as large variability in slight turns and reaction during large turns. The� ndings highlight information needs
and opportunities in designing better assistive navigation systems for people with visual impairments.

2 RELATED RESEARCH
User behavior analysis and modeling (e.g., task performance time, reaction time, motion analysis) has been
long-studied in interactive and ubiquitous technologies [23, 24, 57, 59, 62, 70]. Inspired by behavior and reaction
time models in other application domains, such as driving-based applications with sighted people [19, 30]
and interactive computer systems [12, 27, 35, 39, 50, 58], we analyze the motion of blind users in reaction to
navigational guidance in real-world settings. Below, we compare our work to relevant studies analyzing the
mobility and navigation behavior of blind people.
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Table 1. Comparison to representative related research studies.

Research Study Number of
Participants

Indoor Personalized
Route Preference

Visual Im-
pairment

Motion
Tracking

Reaction
Variability

Wang et al. [67] 11 X X X
Akasaka and Onisawa [3] 11 X X
Thorsten and Gerhard [63] - X X X
Macik et al. [40] - X X
Fallah et al. [16] 6 X X X
Riehle et al. [51] 8 X X X
Sato et al. [52] 10 X X X
Ivanov [28] 8 X X X
Adebiyi at al. [1] 11 X X
This Work 12 X X X X

2.1 Behavior Analysis in Mobility of Blind People
Researchers have employed a variety of measures to analyze the impact of di�erent training strategies and
assistive technologies on the independent mobility of blind people [37]. Such studies are relevant to our work,
as we aim to better understand how to meet the needs of a blind user under assisted speech-based navigation.
Soong et al. [55] and Black et al. [8] studied walking e�ciency and error score of visually impaired people with
and without O&M training. Most commonly, studies emphasize route completion time or number of navigation
errors, with only anecdotal or subjective feedback regarding behavior along the route.

Several studies examined reaction times and gait of visually impaired people during general mobility [43, 61].
Turano et al. [61] examined walking speeds and reaction times of visually impaired people to randomly emitted
sounds, showing signi�cantly higher reaction times when compared to sighted people. In contract, we focus on
reaction time and speed measures during real-world assisted navigation, and not in a controlled experiment. For
instance, in our application users are already informed of the upcoming navigation tasks, such as turns, before
arriving to them.

2.2 Navigation for People with Visual Impairments
Technologies for mobility assistance have been extensively studied by researchers [17, 20, 68]. Current approaches
include both solutions to provide spatial knowledge of the environment prior to navigation, such as maps (i.e.,
tactile or interactive) [15] or virtual navigation [21], and in-situ navigation assistance through turn-by-turn
instructions [2, 13, 33] or landmarks about the surroundings [9, 31]. In the context of navigation for people
with visual impairments, accurate systems often rely primarily on speech output (sometimes complemented
with soni�ed and vibro-tactile cues), the preferred modality for navigational interfaces for people with visual
impairments [4]
Indoor Localization. Achieving accurate indoor localization has been extensively studied by researchers [16,

18, 38, 41]. For instance, Otsason et al. [47] presented a GSM indoor localization system in 2005 with a median
accuracy of� ve meters. Moreover, walking detection and step counting using the smartphone sensors have
been used in Pedestrian Dead Reckoning (PDR) systems to estimate the user’s movement and respective indoor
location [10, 34]. Such solutions are often combined with other techniques that use sensors in the environment
(e.g.,Wi-Fi or Bluetooth Low Energy beacons) in order to increase the localization accuracy and robustness [25, 26].
Other approaches include using computer vision to improve the localization accuracy or to detect and avoid
obstacles [11, 36, 69]. Although an important technological milestone of practical localization has been recently
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Table 2. Participants’ demographics. ‘Since’ column shows blindness onset age).

ID Gender Age Visual Acuity Since Mobility
P1 M 54 Totally Blind 2y White Cane
P2 M 38 Totally Blind 5y White Cane
P3 M 48 20/2000 both eyes 28y White Cane
P4 F 48 Totally Blind 0y White Cane
P5 F 40 Totally Blind 20y White Cane
P6 M 42 20/500 Left, Blind Right 1y White Cane
P7 F 53 20/500 Left, Blind Right 49y White Cane
P8 F 44 Totally Blind 10y Guide Dog
P9 M 65 Totally Blind 12y White Cane
P10 M 33 Totally Blind 30y White Cane
P11 F 42 20/2000 Both Eyes – White Cane
P12 F 46 20/500 Right, Blind Left 0y White Cane

reached, the great majority of studies evaluate system performance in terms of either system-centered measures,
such as localization error [16], or overall route statistics [16, 28, 44] and subjective user reports [16, 49]. Although
in our application interaction occurs by providing frequent instruction feedback to the user so that the user may
react and move accordingly, we� nd little research on deeper analysis of� ne-grained motion measures of blind
users during real-world assisted navigation.
Motion and Reaction Analysis. Related studies have performed preliminary analysis of reactions in con-

trolled or simpli�ed environments. Wachaja et al. [64, 65] estimated overall reaction time and velocity during
turns with blindfolded participants and a smart walker. However, it is known that blindfolded and blind people
have signi�cantly di�erent mobility skills and strategies [54]. Adebiyi et al. [1] assessed feedback modalities
provided by a human following behind participants through an obstacle course. In contrast, we emphasize
inter-user variability in identifying insights in real-world user behavior and system design limitations during
long navigation routes, which has been relatively unexplored (see Table 1). Our study also demonstrates the
feasibility of automatic data-driven techniques for studying such motion variability.
Personal Needs in Navigation Interfaces. Investigation of the personal needs in navigation interfaces goes

beyond route preferences [40] and di�erent feedback modalities. In the particular case of people with visual
impairments, selecting the best content and the timing of the instructions is a challenging task, yet crucial for
reducing navigation errors [7, 14, 22]. While studying user reactions to the interface can enable improvements in
the quality and success of the navigation, a detailed large-scale analysis of reactions among di�erent users for
di�erent instruction types as well as overall motion patterns for groups of users is lacking. Table 1 summarizes
similar studies that also have a representative number of participants, depicting that little previous work has
investigated reaction variability and its implications for blind navigation.

3 EXPERIMENTAL SETTINGS
Environment. To quantify the extent of reaction variability among users, we utilize real-world user motion data
collected in a large-scale deployment of a smartphone-based turn-by-turn navigation system. While walking
across� oors in a public building, users traveled a total length of 400 meters, including diverse points of interest,
varying spatial layouts (e.g., both large open spaces and narrow hallways), surrounding people, frequent obstacles,
elevators, and automatic doors. Over 200 Bluetooth beacons, positioned at 5-10 meter intervals across multiple
�oors, were used for providing step-by-step navigation guidance.
Participants. Data from 12 participants was used in the study, as detailed in Table 2. The data was collected

under IRB and video consent of the participants. All participants were white cane users besides P8 who had a
guide-dog. Participants age ranged 38-65, with an average 46.08 (SD: 8.46).
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Apparatus. We employ navigation data collected using the open-sourced turn-by-turn indoor navigation
smartphone app developed in [52]. The participants received a short training session regarding the app, the
instruction it generates, and its usage before the onset of the navigation. The smartphone app determines the user
location along the planned path and produces turn-by-turn navigational instructions with contextual information
about the surroundings. Given an annotated map of the environment, the system provides information about
landmarks in the scene, such as the presence of elevators, obstacles, doors, restrooms, etc.

3.1 Semantic Clustering of Instructions

Turn Right

Forward and 
Turn Diagonal Left

Approaching

Turn Diagonal Left

Forward and 
Turn Diagonal Left

Info
Forward

User
Instruction
Path

Fig. 2. Example user trajectory in the floor plan,
with overlaid instructional guidance categories. No-
tice how a user over-turns a diagonal turn and begins
to veer o� the planned path.

For meaningful analysis, we semantically cluster instructional
guidance cues (over 100 in total provided along the route) into
8 main categories, with an example visualized in Figure 2. The
clusters are, (1)Approaching noti�cations are presented to the
users at a� xed distance before any type of turn. (2) Forward
noti�cations include ‘proceed 80 ft forward’ and ‘you are 100
ft from your destination.’ As can be seen in Figure 2, such noti�-
cations often follow a turning point. (3) Obstacle noti�cations
include ‘obstacle on your right side,’ as portions of the route
include chairs, signage, and other types of static obstacles. (4)
Info noti�cations provide information about the area, such as
‘automatic doors ahead’ or points of interest, such as shops,
landmarks, or changes in� oor types. Turn noti�cations are cru-
cial components of the navigation [2]. Turns are categorized by
magnitude into the following, (5) Large turns (90 degrees, e.g.,
turn right or left), (6) Small turns (60 degrees or less, e.g., turn
diagonally or slightly to the right or left), and (7)U-turns. Users
were provided information regarding the turns and their types
before the onset of the experiment. We pair slight turns (i.e.,
when user orientation slightly needs to be adjusted to proceed
into a corridor) and diagonal turns (45 degrees) as we found
that users had a di�cult time gauging their exact orientation
changes for these and reacted in a similar manner. Moreover, combining the small turns provides a meaningful
analysis as otherwise the number of events is sparse (the route contained more large turns than small turns).
We also removed U-turn from the analysis as it only occurred in cases where participants veered o� the path,
which occurred rarely and only with a subset of the participants (6 of them). Once a turn noti�cation is made
and the user begins the turning motion, a (8) Sound and vibration follows when the user achieves the correct
orientation for the turn, which is the� nal category for the reaction analysis. Not including this turn completion
feedback, there are a total of 1,553 audio noti�cations in the dataset (i.e., user-interface interactions).

4 DATA-DRIVEN USER REACTION MEASURES
The goal of the navigation system is to assist users in their movement to the destination. To characterize user
reactions along the planned route, we employ several motion measures of speed and timing, as described next.
The measures are extracted following instructional cues to analyze the impact of the guidance. By employing
measures which can be automatically extracted from sensor data, we are able to quantitatively analyze immediate
user reaction in a scalable manner, facilitating larger-scale analysis and comparative evaluation in future studies.
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4.1 Post-Instruction Average Linear and Angular Speed
The most basic characterization of user behavior involves the walking speed of users. It can be used to depict
general trends in user behavior following di�erent instruction types. The extent of variability in user speeds is
therefore useful for discussing the feasibility and challenges in adaptive interface design (i.e., impact of timing)
and studying user navigation strategies (i.e., angular speed when approaching a turn).
Formally, at each time step t , the user is parameterized by a position in the map and an orientation, Pt =

(Xt ,Yt ,�t ). The user’s instantaneous velocity Vt can be computed from Pt at each time step. The Euclidean
norm of the� rst two components of Vt forms the linear speed SLt in meters per second, referred to as speed
hereafter, and the magnitude of the third component provides the angular speed SAt , in radians per second.
These two measures are useful for obtaining overall motion trends across users, as well analyzing variability
across instructions within the same user. For instance, users may walk with an overall slower speed during a ‘turn
right’ noti�cation as opposed to a ‘proceed forward.’ Based on our survey of related literature, while there has
been reporting of average walking speed in general mobility, reports of walking speed variability among users
during di�erent instructional guidance are lacking. To better understand real-world usage of assistive navigation
technologies, we report such values and compare their average and standard deviation (SD). To produce more
easily interpretable results than the raw speed signals, we consider their averages over a temporal window
following the onset of the instruction. We plot 1

T
ÕT

i=0 Si , where i = 0 is the onset of the instruction, T is the
length of the temporal window, and S may be SLt or SAt .
Since reactions may last several seconds, the temporal window must allow su�cient time for the user to

hear the full instruction, interpret it, and act accordingly. In the comparative analysis among instructions, we
average speed values over a window of 6 seconds, beginning at the onset of the instruction. A value of 6 seconds
was empirically determined based on observations from the data, in particularly for turns (see Figure 5). For
‘approaching a turn’ noti�cations, the window is set to be at 4 seconds due to the short noti�cation and to avoid
including the turn instruction which follows. Although these appropriate values were determined empirically, in
the experiments we veri�ed that small changes of up to a couple of seconds in the window size has minimal
impact on the signi�cance of the statistical analysis.
The computation of the speed measures will change in Section 5.4 to accommodate longer instructions (e.g.,

info), by computing speed following the completion of the instruction announcement as opposed to its onset.
The original, pre-averaged temporal signals are provided in a supplementary for the interested reader.

4.2 Post-Instruction Average Speed Change
A user may maintain, slow down, or increase their speed because of an instruction. To capture the impact on
user motion, we study an additional speed measure which better highlights personal variability. Based on the
observation that each user’s averagewalking speedmay be signi�cantly di�erent, we also analyze the speed change
incurred due to the instruction. To normalize for the actual user speed, we compute 1

T
ÕT

i=1(Si �Si�1) = 1
T (ST �S0),

inm/s2.
In contrast with average magnitude of user acceleration, this measure can summarize the change in speed

due to an instruction as well as its signed direction. Also, we note that here we are only concerned whether any
impact by the instruction on the user speed, and not whether its occurring during a forward or a circular motion
(i.e., acceleration). While this speed change measure can provide more meaningful inter-user comparison of
reaction, it has certain limitations, in possible cases where user may slow down and then re-gain speed back
within the average time window. We avoid such issues by (1) keeping the temporal window small, (2) inspecting
the original temporal signals (in the supplementary). We note that in the case of angular speed, this type of speed
normalization is not as meaningful, since users are generally expected to walk forward when no-instruction is
provided, i.e., an angular speed of 0.
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4.3 Timing
Measuring reaction and task performance time has been long studied in the research community as means for
understanding interactivity. Variability in reaction time among users is a phenomenon that could be leveraged by
an adaptive interface, for instance to gauge appropriate timing of instructions and reduce the chance of navigation
errors. We study a complementary motion reaction measure to the speed dynamics which involves the amount of
time between instruction onset and onset of the task performance by the user, i.e., beginning of a turning motion.
Speci�cally for turn noti�cations, the onset of the user reaction and the completion of the turning task can

be identi�ed automatically by inspecting the user’s orientation signal. Hence, for these noti�cations it is also
meaningful to explore variability in the time between instruction onset and the onset or completion of the turn
maneuver in seconds. Since we� nd large variability in turn task performance, in the analysis we decompose turns
into subtasks and compute timing statistics for each subtask. These subtasks include reaction time for turning,
which is the time between the onset of instruction announcement and the beginning of the turning action. Also,
reaction time for the correct heading feedback before the completion of the turn. The timing measures are useful
to understand how users interact with guidance cues as well as gaining insight into the optimal system design.

4.4 Implementation Details
The dataset for the analysis was collected using the turn-by-turn indoor navigation smartphone app of [52]. The
app is paired with a localization algorithm to provide the instructional feedback. As discussed in the related
research studies, solutions for localization based on Pedestrian Dead Reckoning (PDR) and the smartphone’s
Inertial Measurement Unit (IMU) [10, 34] often su�er from drift and insu�cient accuracy for providing navigation
instructions for blind people. As a tradeo� between cost and accuracy, user tracking is performed with both IMU
and Bluetooth Low Energy (BLE) beacon sensors placed in the environment. The accuracy will be empirically
validated on the dataset in Section 5.1. The IMU and BLE sensor readings are fused using a Particle Filter [5]
to track the location and heading of the user. The algorithm is e�cient for continuously estimation the user’s
pose and implemented using the open-source library of [53]. The smartphone app was modi�ed to log all user
pose data, recorded at 50ms intervals, as well as the time of instruction announcement onset and instruction
announcement completion.

5 ANALYSIS AND RESULTS
Our analysis is organized as follows. For completeness, Section 5.1 details an error evaluation analysis of the
employed sensor measurements. To validate the proposed measures and discuss general interactivity in our
domain, Section 5.2 depicts overall motion patterns in the dataset across all users within each speech instruction
type. Next, Section 5.3 presents a focused analysis of inter-user variability for each instruction type. Section 5.4
discusses overall trends in inter-user variability among di�erent instructions, which are then used in a cluster
analysis in Section 5.5.

Statistical testing is performed to ensure statistical signi�cance in user behavior variability. Unless otherwise
speci�ed, for each test we� x the action type as the independent variable for studying variability across instructions,
and the participant id as the independent variable when studying inter-user variability. When reporting�ndings,
we� x a motion measure (e.g., average angular speed) as the dependent variable. In all the experiments normality
is� rst veri�ed using a Shapiro-Wilk test, and followed by ANOVA under normality or a t-test otherwise, with an
alpha level of .05.

5.1 Measurement Error Evaluation
Our study emphasizes a data-driven approach for analyzing user behavior in response to instructional guidance.
We argue that our sensor-based approach has several advantages for large-scale analysis of assistive navigation
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Fig. 3. Overall motion variability across di�erent types of instructions. (a) Average linear speed in a temporal window
following each instruction type, (b) average speed change, and (c) average angular speed. Black bars show standard deviation.

interfaces for blind users, as it does not require manual annotation. Before dwelling into meaningful trends in the
user motion data, we sought to evaluate the inherent sensor error in the measurements employed (smartphone
and beacon-based localization). We use the annotations for reporting error rates so that researchers performing
large-scale data-driven analysis may be able to better compare with this work in the future.
We employ hand annotated user positions at� xed 1 second intervals. As we leverage sub-second timings in

some of the behavior measures (e.g., reaction time to instructions), we do not employ the annotations in our main
analysis, but only use them to validate our approach. The average localization error rate of the state-of-the-art
indoor localization system was determined to be 1.8m on average (SD=1.28). The speed error on average is
0.10m/s (SD=0.09) (complete details, such as per-instruction error, can be found in the supplementary material).
The timing measurements analyzed in our work are not in�uenced by the localization accuracy of the system
but by the gyroscope, which we found to be accurate to about 10 degrees. While motivating us to pursue more
accurate systems in the future, we generally� nd low error rates with similar motions trends between annotated
vs. sensor-estimated data, a�rming our choice of sensor-based data analysis.

5.2 Variability across Instructions
To understand overall user behavior in the data, speed measures across di�erent instructions for all users are
depicted in Figure 3. In Figure 3(a), the variation among all instructions is statistically signi�cant (F (5, 1547) =
44.55,p < .0001) for linear speed (with instruction type as the independent variable) but only due to the
‘approaching’ instruction. A further study showed no statistical signi�cance among the other 5 types of instructions
once ‘approaching’ is removed. While identifying user’s average walking speeds is important for comfortable
timing of instructions, this initial� nding demonstrates that there may be more variability within each instruction
(i.e., di�erent users) as opposed to among instructions. To contextualize the user-speci�c variability analysis
which follows in the next subsections, we� rst explain these� ndings of general interactivity patterns in greater
detail.
Approaching Noti�cations Have Narrow Context. Although user-agnostic statistics limits our analysis,

we� nd ‘approaching’ noti�cations to result in signi�cantly higher average speed than other types of instructions.
The reason ‘approaching a turn’ generally results in higher speeds is that they always occur at each user’s
undisturbed pace or even during an acceleration (in the case of multiple turns in close spatial proximity, as
validated by inspecting the pre-averaged temporal signals in the supplementary). Moreover, since the main
purpose of ‘approaching’ instructions is to prepare users to an on-coming turn, users can expect an additional
time before the need to slow-down for the turn and the following ‘info’ and ‘forward’ instruction. While we do
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�nd average speeds during ‘info’ and ‘forward’ noti�cations to be generally higher when compared to turning
and obstacle noti�cations, these are longer instructions, as opposed to the short and constant instruction of
‘approaching.’

Speed Reduction Following Info. Average speed changes reveal additional insights in general interactivity
under assisted navigation, as shown in Figure 3(b). In general, we� nd that users tend to slow down under
instructional guidance, but to a varying extent (F (5, 1547) = 61.3,p < .0001 among instructions). As users tend to
slow down (often to a near stop) during turns, we� nd statistically signi�cant variability between ‘large turns’
and all other instruction types, with the largest reduction in speed overall. Comparing ‘forward’ and ‘obstacle’
with other instructions, we also� nd that all di�erences are statistically signi�cant. ‘Forward’ noti�cations often
occur following turns, as users re-gain their normal walking pace, or as concise noti�cations during long forward
stretches, hence the large di�erence to the other instructions. While reduction in speed during turns is expected
(as users gain angular speed, Figure 3(c)), we also observe a reduction in speed during ‘info’ instructions, which
can be explained in two ways. First, the ‘info’ instructions are often long to utter (unlike ‘approaching,’ which
is a short instruction that always repeats in the same manner). As previously shown in literature [61], mental
workload can also signi�cantly impact reaction of blind and sighted people. Hence, the overall reduction in
speeds due to instructions (even without turning) can be explained by an increased attention to the instructional
guidance, which was also apparent from the video recordings. Comparing speed changes following the end of
the instruction announcement (as opposed to its onset, Figure 9) aids in clarifying this phenomenon further and
will be discussed in Section 5.4. A second reason is that the information provided includes cues related to the
navigation (e.g., ‘elevator ahead’), and hence results in a slow-down as users adjust their mobility accordingly.
A deeper analysis will reveal sharp di�erences on an individual basis among these instructions, which will

also help explain the higher standard deviation in speed changes in some of the instruction categories, such as in
‘obstacle’ and ‘small turns’ noti�cations (Figure 3(c)).

Angular Speed and Navigation Tasks. Analyzing the angular speed during di�erent instruction types
(Figure 3(c)) reveals statistical signi�cance (F (5, 1547) = 65.12,p < .0001) between the instructional groups, as
expected. In pairwise comparisons we� nd ‘large turns’ to be signi�cantly di�erent to all other instruction types,
including ‘small turns’. ‘Small turns’ is also statistically signi�cant from the rest, besides ‘obstacle’ noti�cations,
due to the small angular motion in both instances. ‘Info’ and ‘forward’ are not found to be statistically signi�cant
from each other in their average angular speed, and ‘approaching’ still signi�cantly di�ers from all other
groups, with minimal turning. These� ndings can be explained by users tending to turn slightly around obstacle
noti�cations (e.g., ‘chair on your left’) or veer and correct when proceeding forward. Unlike ‘approaching,’ ‘forward’
noti�cations occur immediately after a turn completion, when users may correct their heading immediately when
meeting a wall or an obstacle in a hallway, hence the increase in average angular speed.

5.3 Variability across Users
Our aim is to explore the role of user-speci�c di�erences during assisted navigation, so that interfaces can
be better designed to accommodate individual di�erences. To study per-user variability, we will next analyze
the speed measures on an individual basis within each instruction type. Throughout all the plots and tables,
participants are always sorted according to their average speed change during large turns 4(b), as there is large
variability in this reaction measure.

5.3.1 Turns. We begin with turn instructions (Figure 4) as reactions to ‘turn’ noti�cations reveal the most
signi�cant inter-user variability, with speci�c insights to timing of the instructional guidance. Variability in linear
speed is signi�cant both for large turns (F (11, 174) = 4.22,p < .0001) and small turns (F (11, 135) = 4.16,p < .0001).
We� nd that the guide-dog user P8 is generally faster than other participants, but cane users (e.g., P4) can maintain
similar speed during turns, so that even when testing without the guide-dog user variability among participants
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Fig. 4. Comparison of (a) average speed, (b) average speed change, and (c) average angular speed, following ‘large turn’ (90
degrees) and ‘small turn’ (less than 60 degrees) instructions. Black bars show standard deviation.

is still signi�cant (p < .001). Since reactions to ‘turn’ noti�cations involve the largest reduction in speed among
all instruction types (Figure 3(b)), the statistical di�erence remains in average speed change (p < .001 for both
large and small turns among users). The large spectrum includes P1, who tends to maintain speed at turns with
only a slight overall reduction (Figure 4(b, e)), and P12, who reduces speed signi�cantly. Hence, we can see
that timing such noti�cations to minimize navigation errors is not just dependent on user speed, but also their
user-speci�c reactions. As will be shown, users may travel several meters during their reaction, which together
with the inherent localization error pose a challenge for successful turning.

Small Turns are Di�cult. In the case of large turns, we do not� nd the angular speed variability to be
statistically signi�cant among users (p = .516), yet it is signi�cant for small turns (p = .013). This can be explained
by the physically easier task of gauging orientation during a sharp turn (90 degrees) compared to diagonal or
slighter turns. Also, some users treat small turns with less care. While all users were instructed and trained on
the di�erences between turn types and their extent before the study onset, small variations in orientation could
easily result in over or under-turning, and consequently veering o� the planned path. As a concrete example, we
�nd that a diagonal turn in an open space area along the route caused P3, P5, and P8 to veer o� the path in several
occasions. Interestingly, P5 and P8 also maintain the largest angular speed average during small turns among all
the participants, as shown in Figure 4(f). One example scenario is depicted in Figure 2 for P3, where the user
over-turns following an instruction to turn diagonally to the left (fortunately, the presence of poles prevents the
user from further veering o� the path). Hence, we can see how considering personal characteristics in reactions
to turn instructions can be useful for developing interfaces which better prevent user-related navigation errors.
These novel observations are not found in related studies yet have signi�cant implications on system design.
While occasional over or under-turning is expected, the observation that these are user-speci�c di�erences
provides several opportunities for improved interface design which will be discussed in Section 6.
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Turn Timing
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Fig. 5. For in-depth study of the variability in turn task performance, we decompose a turn to components, including
(a) Instruction onset to turning onset time, (b) instruction onset to turn completion time, and (c) correct heading
feedback to turn completion time.

Timing-based Decomposition of Turns. Correct turning is a critical component of the navigation, involving
a multi-step process. We were not able to identify related research studies with similar� ne-grained insights
about user behavior during assisted navigation. Hence, we further analyze reaction and task completion statistics
following turning instructions, also� nding signi�cant variability among users. To study the variability in
depth, we compute a variety of timing statistics (as mentioned in Section 4.3), with three main ones plotted in
Figure 5. The remaining timing statistics can be found in the supplementary material. We decompose a turn into
components to analyze (1) the reaction time of announcement onset to turn onset, (2) overall task performance,
and (3) time from correct heading sound feedback to the end of user turning motion. For the latter, the feedback
is meant to be used for proper re-orientation during the turn, yet we� nd reaction to it takes another 0.87s on
average, SD=0.62. This system-speci�c insight suggests a more careful design of this functionality.
Variability in Turn Subtasks. In general, we� nd that the signi�cant variability occurs within components

of the turning task, including reaction time and heading feedback reaction time. The reaction time between
onset of instruction and beginning of the turning action is shown to be signi�cantly variable among users
(F (11, 298) = 3.23,p < .001). While the average reaction time (average 1.43s, SD=1.18) is close to the one reported
in related literature [1], related studies are often performed in controlled settings and therefore miss the crucial
�nding of signi�cant variability among users. In contrast, during real-world independent smartphone-based
navigation, we show it to be highly variable in Figure 5(a). We also� nd that the total time to complete this task
may last over 4 seconds for some users (average 3.52s, SD=1.17, p < .0001) as shown in Figure 5(b). We perform
additional analysis to explain this variability.
Is It Due to Age Di�erences? One possible explanation for the variability could be users’ age, but this was

not con�rmed by our data. While our user population is generally older (6 participants are under 46 years old),
we attempted to group participants into two groups using varying age group de�nitions but found no statistically
signi�cant di�erences with respect to reaction time or overall task time. While the number of participants is
representative to other studies in our application, this hypothesis needs to be further studied in the future with a
larger participant pool. A similar conclusion holds for other personal attributes of the users.
Variability in Navigation Strategies During Turns.We explain this phenomenon by inspecting each user’s

mobility during the navigation. Speci�cally, some users are able to better anticipate upcoming turns. The insight
came by inspecting the video data, in particular between the ‘fastest turner’ P1 compared to a slower one, such as
P9. P1 is able to use several navigation strategies to achieve correct and quick turning. Since users are informed
of the upcoming navigation turning point and turn direction after completion of the previous turn, P1 constantly
checks for an available turn with the cane in the noti�ed direction (only with the cane, at the same time while
still walking forward). Hence, the moment a turn is available, P1 immediately begins turning, even before the
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Fig. 6. Comparison of (a) average speed, (b) average speed change, and (c) average angular speed, following ‘approaching a
turn’ instruction. Black bars show standard deviation.

turn noti�cation completes. On the other hand, P9 walks in the middle of the hallway, and does not employ a
similar strategy. Instead, P9 simply awaits the next instruction while using the cane to avoid obstacles, but not
for anticipating or seeking turns. Also, P9 pauses before turning, and turns very cautiously as if hesitating before
acting due to a noti�cation. Inspecting videos with other users, we found each to be on a spectrum, between the
behavior of P1 and P9 in terms of mobility strategies. Hence, we conclude that personal di�erences in mobility
skill and style help explain variability in reaction to turn noti�cations. Section 6 discusses how such insights
could inform the system design.

5.3.2 Approaching. Based on our previous analysis in Section 5.2, overall behavior following ‘approaching’ was
shown to be signi�cantly di�erent from all other types of instructions in terms of average speed. The higher
speeds are due to the context in which this instruction occurs, which is usually while the user is at or approaching
the normal walking pace.

Three Types of Users. We� nd variability in average speed change to be statistically signi�cant (shown in
Figure 6(b), F (11, 298) = 3.19,p < .001). Generally, users reduce their speed as they approach an upcoming turn,
but some signi�cantly more than others, leading to roughly three types of observed behaviors (also discussed in
detail through user cluster analysis in Section 5.5). Users may slow down signi�cantly in anticipation for a turn
(P2, P6, P8, P9, P12), minimally alter their speed due to an ‘approaching’ noti�cation (P1, P4, P5), or even increase
their speed when approaching a turn (P10). As these di�erent interaction modes impact how users react to the
consequent ‘turn,’ and ‘forward,’ noti�cations, we see how even this short and narrowly used instruction can result
in signi�cant reaction variability due to personal mobility style. Considering that ‘approaching’ noti�cations are
immediately followed by ‘turn,’ the interface should support each user’s personal mobility to avoid incorrect
turning task performance (and going down a wrong corridor).
A similar observation can be made by inspecting the inter-user variability in average angular speed shown

in Figure 6(c). The statistically signi�cant di�erence (p = .034) re�ects how users approach turns in di�erent
ways. For instance, we can see from the data how some users consistently attempt to turn immediately following
‘approaching’ noti�cations (and hence, too early), e.g., P6, a generally cautious user that is more hesitant in their
motion. We also tested for the motion measures relationship with user age, but none were found to be statistically
signi�cant (considering the previously de�ned group de�nition of 46 years old).

5.3.3 Forward and Info. Although not as signi�cantly as during turns, we see how the data-driven analysis
reveals personal user behavior in ‘forward’ and ‘info’ noti�cations. We� nd that variability in reactions to
‘forward’ instructions is signi�cant when considering average speed change values F (11, 430) = 5.66,p < .0001
(Figure 7(b)). This is intuitive, as most ‘forward’ noti�cations occur immediately following a completion of a turn
and during long forward stretches.
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Fig. 7. Comparison of average speed, average speed change, and average angular speed, following informational instructions
regarding points of interest in the environment and ‘forward’ instructions such as ‘go X � forward’ or ‘destination is X�
away.’

Recognizing Cane Technique from Angular Speed. One participant, P7, stands out in terms of average
angular speed (Figure 7(c)). This single user is the reason for statistical signi�cance (p = .031) in this case. We
explain this result by looking at P7’s cane techniques, as it is relevant to understanding one particular user-speci�c
interaction mode.

P7 does not regularly employ common cane techniques (i.e., side-to-side or wall following) when approaching
or after completing a turn. Instead, she consistently turns in one swift motion immediately following a noti�cation,
without verifying the orientation or any landmarks after the turn and during the ‘forward’ noti�cation. This is
also a�rmed by the fact that P7 has the lowest timing for the turn task itself, as shown in Figure 5. In navigation
P7 is reserved and minimal in motion. She generally moves her cane front-back instead of side-to-side, which
allows her to maintain low angular speed during the navigation, while at the same time hindering awareness
of the immediate surroundings. We can see how the data reveals di�erent cane techniques, which provide an
opportunity to provide tailored support from the interface in such cases.

Identifying Cautiousness When Resuming Pace. The interface should support the user’s unique naviga-
tion style to ensure correct and pleasant navigation. Just as we analyzed user slow down before and during turns,
we can analyze how users speed up to resume pace.

A key di�erence among users is in the amount of time spent pausing before resuming walking speed following
a turn (Figure 7(b)). Speci�cally, we� nd some users (e.g., P10, P12) slow down to a near stop regularly during
turns, yet P12 resumes speed at a much quicker rate. The varying rates of resuming normal pace can also be seen
by inspecting the pre-averaged temporal signal in the supplementary. We explain this di�erence by observing
the video data and noticing a speci�c, post-turning strategy. Speci�cally, some users (e.g., P10) tend to scan
their nearby environment with their cane following a turn, as to proceed carefully. Hence, this provides another
example on how user strategy can be supported by interface, for instance, with additional verbosity and contextual
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Fig. 8. Comparison of (a) average speed, (b) average speed change, and (c) average angular speed, with standard deviation,
following ‘obstacle’ notifications, such as ‘chair on your right.’

support. As certain navigation scenarios may bene�t from such a strategy, it could be elicited by the interface. A
model for pausing can also be useful in determining the real-time state of the user, with additional discussion in
Section 6.
Info Noti�cations Require Further Study. After accounting for each user’s speed, no signi�cant variability

is found among users for reactions to ‘info’ noti�cations (Figure 7(e)). These noti�cations regarding points-of-
interest along the way can be long, and at times combine with ‘forward’ noti�cations, e.g., ‘Proceed 42 meters
and go to the� rst� oor using the elevator on the left.’ As shown in Figure 7, users tend to reduce their speed
in a similar manner following this noti�cation. While some info noti�cations include relevant information to
the navigation (e.g., elevators or building information), in general they may not illicit an immediate reaction
from users (or one that heavily involves individual navigation skills). We note that this does not imply that such
noti�cations have no association with user behavior and motion. For example, info noti�cations may prevent a
user from getting lost or a�rm their knowledge and con�dence, and so need to be further studied in the future.

5.3.4 Obstacles. Noti�cations regarding existence of objects along the path are useful for maintaining situational
awareness and ensuring safe navigation. Our initial analysis in Section 5.2 revealed a higher standard deviation
when compared to other types of instructions (Figure 3). Yet, due to the smaller number of events, the�ndings
are di�cult to interpret, and insights are limited. After normalization by each user’s personal walking speed,
the reaction variability is not signi�cant (p = .171), with some users accelerating to avoid obstacles, some not
changing their speed, and some slowing down at times.

Navigation Aid and Obstacles. Although statistical signi�cance was not found among users in Figure 8(c),
inspecting the� gure suggests similarities to reactions’ angular speed during ‘small turns’ noti�cations, as users
turn away from the obstacle in a variable manner. Having a guide-dog in this scenario would clearly imply a
di�erent behavior mode around obstacles. For the guide-dog user P8, we indeed observe an abnormally high
(highest overall) average angular speed at .26 radians per second. Guide-dog users can quickly change their
motion direction around obstacles without slowing down (e.g., due to physical contact). Hence, although further
study is needed, we can still use the analysis to demonstrate the bene�t of an adaptive, personalized navigation
interface which can reason over the need for ‘obstacle’ noti�cations.

5.4 Evolution of Reaction during and a�er Announcements
We continue in analyzing user behavior trends that highlight the bene�t of designing a more personalized
interaction experience. The main aim in this subsection is to analyze a complementary component of user
variability–the temporal evolution of reaction as it relates to the instruction announcement. We also study reaction
patterns over multiple instructions, as opposed to in isolation as done thus far. The motion patterns will be used
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for clustering user interaction modes in Section 5.5. We� nd that users complete their reactions and navigation
tasks at variable time (previously only analyzed for turns). This� nding reveals novel insights regarding system-
user interactivity. The main design implication is that timing certain instructions could be made adaptive, with
additional insights about interactivity and user behavior for longer instructions and system verbosity.
Throughout the paper, meaningful analysis was pursued by clustering the instructions into a small set, but

this process ignores the temporal realization of instructions. As users react to di�erent instructions, the onset
and completion of such reactions may occur both during, and/or following the complete announcement of the
instructional guidance. For instance, ‘approaching’ and ‘turn’ noti�cations are concise, and hence the complete
user reaction is often included in the temporal window immediately following the onset of the announcements. In
contrast, other noti�cation types may span multiple seconds when announcing, potentially delaying the reaction
of the user. Hence, while comparing instructions in terms of their onset provides a natural framework for analysis
across varying instruction types, in practice it is limited in comparing among instructions with highly variable
length.

We complement our previous analysis by computing the motion measures following announcement completion
of instructions instead of onset. We expect similar trends, but with changes for instructions which take longer to
announce, such as ‘info’ and ‘obstacle.’ For direct comparison, Figure 9(a-c) depicts all of our previous analysis
in a condensed form (only averages, no standard deviation), while Figure 9(d-f) depicts the motion measures
computed post-announcement. In Figure 9, we emphasize the spread of the overall distribution of averages across
all users and maintain the per-user coloring to identify user-speci�c interaction modes.

Turns. The analysis reveals more complex patterns of interactions across users and instructional context, but
several key insights can be made. As user reaction time is variable and the temporal window is now sampled
during the reaction, trends show a larger distribution of the motion statistics across users (Figure 9(d-f)). We can
see how large turns are still unfolding following instruction completion, while small turns are being completed
for some users, e.g., P7 and P8 show an upward trend in speed in Figure 9(e). When approaching turns, the
trend in speed reduction becomes more pronounced, yet some users such as P10 are still increasing speed in
anticipation of the turn (and hence could bene�t from tailored instructions to reduce navigation errors). These
observations a�rm our previous analysis of variable task time for turns.

ABetter Look at Longer Instructions. Amain observation is that average speeds are now higher following
the longer instructions of ‘info’ and ‘obstacle’ noti�cations, as seen by comparing Figure 9(b) with Figure 9(e), yet
the data reveals a variety of reaction patterns among di�erent users. The key insight in the� gure is that some
users stand out due to a slower or longer reaction and task performance time on the order of seconds, as previously
observed for turn instructions. For ‘info,’ most users show an increase in average speed change (i.e., accelerating),
yet P2, P6, P4, and P12 are still slowing down following announcement completion, as their reaction is longer and
more pronounced for this instruction. Moreover, while most users are now accelerating following the completed
‘obstacle’ instruction, some users (P4, P8, and P7) stand out as decelerating and still reacting. P7, a user which
does not employ a side-to-side cane scanning technique, stands out in long reaction time and large increase in
average angular speed even long after the announcement. We note that the angular speed is also high for the
guide-dog user P8 in this case, but is consistent during both the announcement onset and its completion as to be
expected from a guide-dog user.

In summary, while previous analysis ignored the temporal realization of instructions, depicting the relationship
between instruction realization and reaction demonstrated additional rare and common interaction modes
between the user and the system. We see that in longer instructions, inter-user variability is pronounced as
well. Understanding user behavior as a function of instruction length can be useful in dense environments that
require the announcement of multiple instructions and user reactions in close proximity (e.g., ‘turn left,’ ‘there
are obstacles on both sides,’ and ‘turn slightly right’ immediately) with implications to interface timing, content
selection, and real-time user state modeling.
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Fig. 9. Motion statistics of the participants following instruction onset (a-c), instruction announcement completion (d-f),
and the di�erence between the two (g-i, for each column) which highlights overall trends and user-specific variability during
the realization of instructions.

5.5 Clustering Mobility Pa�erns
Researchers often employ unsupervised clustering to analyze the behavior patterns of users [66]. In the previous
subsections, we uncovered signi�cant variability in reactions and explained it on an individual basis. However, in
inspecting the large amount of interaction events on a per-user basis, the exploratory analysis was limited in its
ability to capture mobility patterns among multiple users. To reveal reaction motion trends across user groups, we
next cluster the user-speci�c data described in the previous sections (Figure 9). By analyzing broader interaction
patterns and commonalities, we aim to provide additional design implications for navigation interfaces (i.e.,
accommodating reactions for groups or types of users). Beyond user categorization into di�erent types of walkers,
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we expect to gain a better understanding into the multi-dimensional nature of reaction, speci�cally by identifying
rare and prominent user interaction modes.

5.6 Clustering Approach
To identify clusters in user behavior, we represent each user as a vector of motion statistics for the six instruction
types. An element in this vector corresponds to the average value of a reaction measure for a single instruction
type (i.e., average speed change during ‘approaching’). The samples are standardized to have zero mean and unit
variance before constructing a similarity graph.

Cluster analysis in our application domain is challenging due to the inherent diversity of the interactions
and the di�culty in collecting data for many users. While the exploratory analysis involved a large number of
interaction events (a total of 1,553 in the dataset), representing each user as summarized motion statistics as
in Figure 9 necessarily implies dealing with a small number of data points. Yet, as the modes of interaction are
assumed to be limited as well, we anticipate that clustering will result in shared behavior patterns, with users
falling into certain reaction patterns (e.g., cautious users).
We follow conventional hierarchical clustering [66], which is consistent with our automatic and scalable

analysis performed thus far. By leveraging a similarity graph between data points, it can be used to gain insight
into patterns in our dataset. The cophenetic correlation coe�cient [29] was used to measure the quality of the
clustering and verify the choice of cosine similarity measure between samples and average linkage. These choices
are also considered suitable for exploratory analysis [42]. A cophenetic correlation coe�cient ranges of ⇠.88 was
obtained, which is considered su�cient as a goodness-of-�t test [42].

5.7 Clustering Results
We emphasize clustering results on average speed change measures, as clustering the raw speed measures in
Figure 9 would lead to an arbitrary separation based on the participants pool, i.e., low vs. high speed users. In
Figure 10(a) we observe how even a simple 2-cluster partition of the data results in an interpretable representation
of Figure 9(b). It appears that on a high-level, users may be divided into two categories, speci�cally in how they
behave before, during, and after turn instructions; In C1, users reserve most of their slow-down to the actual turn,
despite the ‘approaching’ noti�cation. In contrast, this trend is inverted with most users falling in C2, where the
signi�cant slow-down occurs not during the actual turn, but before, when approaching the turn (or in a roughly
equal amount). Considering that turns are the most frequent places for navigation errors [2] and that reaction
could span several meters (Figure 9(c)), understanding these interaction modes is crucial for reducing navigation
errors. These results suggest implications to user-speci�c timing of instructions, as user types interpret and
leverage instructions di�erently. Additional conclusions can be made by inspecting Figure 10(a). In general, C1
users tend to have more volatile speed changes, including around obstacles, as opposed to their C2 counterparts,
which are more stable in their reactions across di�erent instruction types. Speci�cally, users in C1 slow down
signi�cantly during the turn to a near stop, which also requires a signi�cant acceleration to match during the
following ‘forward’ instruction, as shown by a relatively large positive speed change in all the C1 users. C2 users,
on the other hand, slow down or speed up throughout the instructions in a more consistent manner. For instance,
we see minimal speed change at ‘forward’ noti�cations. Similarly, C2 users also appear to slightly slow down
more at ‘info’ noti�cations, in preparation to upcoming points of interest.
We can see how the progressive hierarchical clustering reveals relationships between common interaction

patterns as well as provide insight into rarer user behavior. Several reaction patterns still appear as in-cluster
outliers, so that adding a third cluster in Figure 10(b) identi�es two users with highly similar reaction patterns.
The users, on the extreme end of C1 who slow down almost exclusively before a large or a small turn. Separated
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Fig. 10. Clustering user speed change reactions. Results are shown for di�erent numbers of clusters, with (a) 2 clusters, (b) 3
clusters, and (c) 4 clusters.

due to their unique behavior following ‘approaching.’ Similarly, C4 includes a user which tends to accelerate in
anticipation for turns, leading to a sharp reduction in speed following the turn noti�cation onset.
We� nd signi�cant variability (p < .001) among these clusters of users. Observing the signi�cantly di�erent

patterns in Figure 10(c) implies that users falling in clusters C1-C4 can bene�t from adaptively timed noti�cations.
Speci�cally, users in C4 may over-shoot a turn while C3 are unlikely to do so. This observation was con�rmed in
inspection of the video data. For instance, P10 can be seen signi�cantly passing a turn, leading to deviation from
the planned path into an open space.

6 DISCUSSION
We present our key� ndings that include signi�cant variability between users during the most critical elements
of the navigation. We relate these� ndings with prior research in identifying user behaviors that cause navigation
errors and discuss how these� ndings can be used to prevent such errors. We begin by discussing overall design
implications in the� rst three subsections, followed by instruction-speci�c insights.

6.1 Timing of Instructional Cues
One main design implication is in the adaptive timing instructional cues. We argue that a single user model is not
su�cient for successful real-world navigation. Yet, essentially all existing navigation interfaces do not consider
tailoring timing of instructions to di�erent users nor propose one can go about doing so. Speci�cally, we�nd
that di�erent users travel at di�erent speeds, react to instructions di�erently (i.e., slowing down to a near stop or
maintaining speed), and employ di�erent strategies throughout the assistive navigation. To emphasize this point
in a more interpretable manner, we report these� ndings in distance measurements in Figure 11(a, b) for turn
events, and in Figure 11(c) for all events (the� gure plots the di�erence, in meters, between the actually traversed
distance over the time window T and the distance that would have been traversed assuming a constant speed
model).
In the data, the most common cause of navigation errors occurred around turns, at times without ability to

recovery. This� nding is consistent with prior research [2] which studied the frequency of missing turns while
emphasizing localization accuracy, but not the role of user behavior. As missing a turn occurs due to early or late
turning by the user, our study extensively analyzed user reaction and navigation task performance during turns.

We observe opportunities for tailoring the interface when approaching a turn, during large turns, during small
turns, and other instruction types as well. For instance, we can see that the distance traveled during reaction onset
or task performance for turns could vary by over 1-2 meters across di�erent users. Depending on the situational
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Fig. 11. To be�er understand the relationship between user motion, instruction timing, and potential navigation errors,
we plot the distance traveled by users during, (a) initial reaction in turning task (between instruction onset to turning
motion onset), and (b) the entire turn task (instruction onset to turning motion completion), and (c) the impact of di�erent
instructions on the distance traveled by users following instruction announcement completion.

context (i.e., open space), dealing with variability over several meters can translate to errors in navigation. On top
of an inherent localization error, these� ndings emphasize the need for adaptive timing of instructional content.
In the case of dense environments with multiple instructions or longer instructions, we see that inter-user

variability in reaction should also be considered in timing the interface. We� nd that some users may bene�t
from joint announcements of multiple nearby instructions (e.g., ‘turn left and turn slightly right’ immediately
after), to avoid missing a turn. This increased verbosity can be made user-speci�c, due to the likely associated
increase in cognitive load.

6.2 Leveraging a Finer-Grained Model of Users for Content Selection
The interface should support the user’s unique navigation style to ensure correct and pleasant navigation. One
bene�t of our data-driven approach is that it provides a framework for supporting the real-time state of the
user by observing motion and timing dynamics. For instance, Section 5.3.3 discussed how user cane techniques
or states of cautiousness could be recognized in the data. In previous research, [2] reports some preliminary
user-speci�c patterns (i.e., one participant stops 7 times while another 0 times to listen for instructions), yet
statistical signi�cance was not tested nor� ner-grained user behavior such as cautiousness discussed.

We� nd that in unfamiliar environments and large-scale settings with diverse users, supporting a� ner-grained
interaction can be used to improve the quality of the navigation experience. Speci�cally, the system can determine
if additional context and verbosity, in the form of landmarks, frequency of instructions, uncertainty of the system,
or a�rming user behavior, can bene�t the current user. A model for pausing and resuming walking speed, also
discussed in Section 5.3.3, can facilitate such a system in a more automatic manner.

Instructional guidance can be adjusted for users with varying navigation aids or visual acuity. As discussed in
Section 5.3.4, the behavior of the guide-dog user around obstacles di�ers from most of the cane users, as expected.
In the case of guide-dog users, obstacle noti�cations may be omitted to ensure a concise and useful interaction,
yet other personal factors besides navigation aid were also found to play a role when navigating around obstacles,
e.g., cane techniques. As user behavior around obstacles is somewhat similar to during slight turning tasks, an
assistive interface could be designed to provide additional feedback around obstacles regarding user heading to
avoid veering from the path.

As user-speci�c cane strategies are also present across di�erent instructional contexts, such as when approach-
ing turns or resuming normal walking pace following a turn, the system can use such information to determine
the real-time state of the user, as well as facilitate user learning [45]. Speci�cally, as certain navigation scenarios
may bene�t from certain cane techniques, they can even be elicited by the interface.
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6.3 Ambiguous and Di�icult Tasks
We� nd that increased di�culty or ambiguity of certain navigation tasks results in larger inter-user variability.
The analysis on small turns demonstrated signi�cant variability in angular speeds. Large turns are less likely
to result in over- or under-turning as 90-degree turns are prevalent in indoor and outdoor environments. As
discussed in Section 5.3.1, over- and under-turning in smaller turns is a known issue. However, studying this
phenomenon on a per-user basis has not been done before and suggests several design improvements.
An interface could be designed to minimize such scenarios along a route. Since a single heading feedback

following turns was also shown to be insu�cient in our analysis, a more useful approach would be to provide
additional feedback to support the user in case of over or under turning, e.g., in the form of continuous soni�cation
or additional information about the scene. This additional feedback may be useful for participants who often
over or under turn. Hence, our analysis suggests that the interface can also support users with certain mobility
skills by providing additional contextual information during turns, e.g., ‘turn after the plant on your left.’ Alerting
users that they may have passed the turning point or providing feedback to support more accurate turning can
therefore be done on a user-speci�c, scenario-speci�c manner.

As shown in Figure 5(c), P5 exhibits the same angular speed in both large and small turns, suggesting proneness
to over-turning. While this� nding was somewhat expected in navigation by people with visual impairments,
depending on the surrounding context (i.e., open space or narrow hallway) even small changes in user heading
may quickly lead to deviation from the path and navigation errors. In general, as over-turning in small turns is a
common navigation error, a clear design implication would be to (1) choose routes that minimize small turns, if
possible, and (2) provide additional re-orientation feedback in small turns (e.g., with a continuous soni�ed signal
to guide the user slowly), (3) more verbose interface, when possible, to immediately validate correct heading
using surrounding landmarks. Alternatively, considering practical limitations and inherent localization error,
the users could be prompted to perform the task slowly and carefully. Although the design implications are
straightforward, our analysis re-a�rms the signi�cant importance of carefully addressing interactions under
ambiguous or di�cult tasks, such as slight turning.

6.4 Approaching Notification Timing
Approaching noti�cations prepare users for an upcoming turn and were favorably reported as preferred by most
of the users. Yet, variability in user reaction suggests that this instruction is leveraged in a di�erent manner
across users. Users may slow down signi�cantly in anticipation for a turn, minimally alter their speed due to an
‘approaching’ noti�cation, or even increase their speed in approaching a turn. Considering that ‘approaching’
noti�cations are immediately followed by a turn, the interface should support each user’s personal mobility to
avoid incorrect turning task performance. For instance, the interface may delay the ‘approaching’ instruction
for users that usually present higher angular speeds immediately after listening ‘approaching’ and therefore
preventing an earlier wrong turn in certain environmental context.

6.5 Further Research is Needed for Info Instructions
Based on our analysis, informational noti�cations have little association with individual average speed changes.
This is not entirely surprising, as many of the informational noti�cations provide additional context but are not
essential to an immediate navigation task. Besides a�rming our intuition, we conclude that such instructions may
be left generic across users, but caution that further studies are needed (e.g., too many info noti�cations could
be distracting or associate with behavior in a longer time window). Previous research reports that people with
visual impairments appreciate gaining knowledge about their surroundings, but also stresses that the amount of
information can be overwhelming [48]. While there may still be room for personalizing info noti�cations on an
individual basis, the association with user reactions and cognitive load requires further study.
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6.6 Variability in Reaction to Forward Instructions
We� nd that the way in which users pause and resume motion is indicative of personal mobility. Interfaces could
accommodate and adapt to di�erent user needs and styles as shown by the signi�cant variability in the average
speed change after ‘forward’ instructions, which often follow turns. More cautious users often pause when
turning, interpret the instructional guidance, scan the path ahead with their cane to make sure they are in the
correct orientation and only then resume their pace. The di�erent nature of these users could allow the interface
to convey additional information about both their immediate and long-term surroundings, rather than generic
‘proceed X feet and turn right’ type instructions. To cite one example, the interface could provide additional
context on the next path segment so that the user knows what to expect (e.g., ‘You should have a table on your
right. Proceed 50 feet in a very narrow corridor and turn left at the end of the corridor’). As previously discussed,
we envision an interface which provides instructional content that actively supports or a�rms user strategies
(e.g., cane techniques, as discussed in the analysis for P7) which can be recognized in the data.

However, users such as P1, P3 and P4 usually proceed with minimal speed changes, continuing their normal
pace when listening to ‘forward’ instructions. These users may have reduced time, or even need, for verbose
communication and could potentially bene�t from combined ‘turn’ and ‘forward’ instructions (e.g., ‘turn right
and proceed 50 feet’). However, this hypothesis requires experimental validation in the future and caution is
needed for instance when relevant landmarks, such as a door, can be found right after a turn. Given the users’
almost constant speed (even during turns) it may be bene�cial to warn about those landmarks during or before
the turn (e.g., ‘turn right and you’ll� nd a door’), instead of waiting for the user to complete the turn.

6.7 Obstacles and Their Impact on Angular Velocity
Despite the smaller sample size, we� nd a clear impact of obstacle noti�cations on users’ angular speed, showing
that users slightly change their orientation to make sure they avoid bumping into obstacles. This� nding suggests
that the system can take advantage of this knowledge to foresee user behavior and reduce the chances of
over/under-turning (similarly to what occurs in ‘small turns’ events) and consequently veering and deviating
from the intended path. For instance, the interface may omit obstacles that are not at the reach of the user’s
cane if the user is known to veer after obstacle noti�cations. Alternatively, the system may provide additional
context (i.e., distance and direction to the obstacle feedback in a continuous manner) or instructions to prevent
navigation errors (e.g., ‘there are obstacles on your right, but keep on the right side until the next turn’).
While our study only includes one guide-dog user (who also changed her orientation when noti�ed about

obstacles) previous research supports that obstacle noti�cations are not required for these users due to the
guide-dog’s ability to avoid them [49, 68].

7 LIMITATIONS AND FUTURE DIRECTIONS
Our study� nds signi�cant motion variability across 12 participants following navigational guidance in a large-
scale, real-world environment. For meaningful comparison, the navigation route and instructional cues were kept
�xed. As our method can be easily extended to automatically analyze additional data, we can see how studying
the motion variability distribution can bene�t from additional participants with diverse characteristics, as well as
additional environments (but 5-12 participants is representative in our domain). The additional data can be used
to further study more rare events, such as interaction with di�erent types of obstacles and environmental factors.
Moreover, although we did discuss association with personal characteristics (i.e., age), the limited distribution in
our data prevented us from gaining insights into such potentially relevant factors. Since real-world environments
include surround pedestrians as well, analysis of user behavior and system design for such scenarios should be
done in the future. Informed by insights from this work, another future direction would be to study the impact of
di�erent adaptive interfaces and personalization schemes on the navigation task and the user-experience.
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8 CONCLUSION AND FUTURE WORK
We presented the extent of user-speci�c motion variability of blind users in assisted indoor navigation. Towards
assistive mobility technologies with a more personalized interaction experience, our� ndings reveal the signi�cant
role of personal navigation style when following turn-by-turn navigational guidance. Speci�cally, we identi�ed
the need to not only adjust the interface to each user’s personal walking pace (i.e., speed), but also other
navigation characteristics (i.e., reaction onset, reaction length, reaction type and task performance). The results
were reported using automatically extracted motion measures from smartphone and beacon sensors. By describing
how instructional content and timing selection could be performed on an individual basis, this work provides a
myriad of opportunities for future research in independent navigation by users with visual impairments.
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