
Deep Radio-Visual Localization

Tatsuya Ishihara�‡ Kris M. Kitani� Chieko Asakawa�† Michitaka Hirose‡
�Carnegie Mellon University †IBM Research ‡The University of Tokyo

tishihar@cmu.edu, kkitani@cs.cmu.edu, chiekoa@us.ibm.com, hirose@cyber.t.u-tokyo.ac.jp

Abstract

For many automated navigation applications, the under-
lying localization algorithm must be able to continuously
produce both accurate and stable results by using a spec-
trum of redundant sensing technologies. To this end, var-
ious sensors have been used for localization, such as Wi-
Fi, Bluetooth, GPS, LiDAR and cameras. In particular, a
class of vision-based localization techniques using Struc-
ture from Motion (SfM) has been shown to produce very
accurate position estimates in the real-world with moderate
assumptions about the motion of the camera and the amount
of visual texture in the environment. However, when these
assumptions are violated, SfM techniques can fail catas-
trophically (i.e., cannot generate any estimate). Recently, a
deep convolutional neural network (CNN) has been applied
to images to robustly regress 6-DOF camera poses at the
cost of lower accuracy than SfM. In this work, we propose
improving image-based localization accuracy of deep CNN
by combining Bluetooth radio-wave signal readings. In our
experiments, we show that our proposed dual-stream CNN
can robustly regress 6-DOF poses from images and radio-
wave signals better than one sensing modality alone. More
importantly, we show that when both modes are used, the
localization accuracy of the proposed deep CNN is compa-
rable to that of SfM and significantly more robust than SfM.

1. Introduction
Localization is essential for various applications, such as

pedestrian navigation, augmented reality, and autonomous

robot navigation. Various sensors have been studied for

realizing accurate and robust localization systems, such as

GPS, radio-wave signals, laser ranging scanners, and cam-

eras [41]. In real-world situations, these sensors are often

affected by unexpected noises. Thus, an accurate and ro-

bust localization system that continuously gives stable re-

sults is necessary for deploying navigation applications in

the real-world.

Image based localization is a promising approach be-

cause cameras are already installed in commodity mobile

Figure 1. Images where feature-based SfM fails but our proposed

radio-visual localization network is successful.

devices, such as smartphones. Structure from Motion (SfM)

is a common approach for image based localization. By

matching local keypoints in a query image with keypoints

in a 3D model, SfM can estimate an accurate 6-DOF cam-

era pose. In general, SfM can estimate more accurate lo-

cations than radio-wave localization [38]. However, SfM

based approaches have problems when an environment does

not have enough distinctive visual features. This is because

SfM based approaches rely on hand-crafted local keypoint

descriptors, such as SIFT [27]. When environments have

fewer visual features or many repetitive features, distinctive

local keypoints are difficult to find. SfM often produces

large errors or sometimes fails to localize in these difficult

situations. Because of these problems, SfM based localiza-

tion systems are more appropriate for texture rich scenarios.

Since many commercial navigation systems require

more robustness than accuracy in localization, GPS and

radio-wave based localization are commonly used. Al-

though GPS works without installing devices in environ-

ments, its localization error is usually more than several

meters and at times more than 10 meters when there are

many nearby building structures. Moreover, it does not

work in indoor environments where a GPS signal is not

available. For indoor environments, Wi-Fi based localiza-

tion is a traditional approach because many buildings al-

ready have Wi-Fi. Although Wi-Fi localization works in

indoor environments, the localization error is generally still
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more than several meters [16]. Furthermore, the positions

of Wi-Fi routers are not placed to support device localiza-

tion but rather strategically placed for efficient data transfer.

Bluetooth Low Energy (BLE) beacons are becoming

popular for pedestrian localization [6] because they are easy

to install in new environments and most smartphones can

read BLE signals. BLE beacons are commercially avail-

able at low prices and can be installed both in indoor and

outdoor environments. By installing enough beacons in an

environment, we can realize more accurate localization than

Wi-Fi [6], but the error of BLE based localization is gener-

ally still a few meters.

A deep convolutional neural network (CNN) has recently

been applied to image based localization [23]. CNN based

approaches directly regress 6-DOF poses from input images

and use global context in images for localization. Unlike

SfM based approaches, CNN based approaches do not need

to detect local keypoints and are more robust to difficult

conditions, such as fewer visual features, motion blur, and

lighting condition changes. Also, CNN based approaches

have advantages in terms of speed and memory efficiency

when localizing images. However, CNN based approaches

are less accurate than SfM based approaches because they

do not make explicit use of 3D geometry.

In this work, we propose an approach to improve accu-

racy of CNN based image localization by incorporating ro-

bust radio-wave information. In our approach, both images

and radio-wave signals are input to a dual-stream CNN and

the network directly regresses 6-DOF camera poses. As far

as we know, this is the first work to integrate radio-wave

signals to CNN based image localization. Through our ex-

periment, we will show that robustness of BLE signals helps

to learn a more accurate CNN based localization model.

Our results show that the proposed approach is more accu-

rate than the state-of-the-art CNN based image localization.

The proposed approach is significantly more robust and has

comparable localization accuracy to SfM based localization

(Figure 1 shows example images where SfM fails but our

proposed approach is successful).

We emphasize here that our approach is not limited to

BLE signals but can be used with other radio-wave sig-

nals, such as Wi-Fi. We also note that our approach does

not require any prior knowledge about the position of BLE

beacons in the environment. Thus, our approach is easy

to apply in environments where BLE beacons are already

installed. Because most smartphones have cameras and

BLE sensors, the assumptions of our approach for local-

izing pedestrians are both practical and realistic.

2. Related Work
2.1. Keypoint based Localization

Traditional image based localization can be categorized

into two major types of approaches: SfM based and image

retrieval based approaches.

SfM based approaches need to build 3D models from

collections of images before localizing images. Localiza-

tion is done by first matching keypoints from a query image

to keypoints in a 3D model and then estimating a camera

pose by solving a PnP problem [25]. In SfM, hand-crafted

local features are typically used. Reconstructing a large 3D

model takes longer time, but recent advances of SfM makes

it possible to build 3D models from a large collection of

photos [35, 13, 17]. In spite of these advances, SfM still re-

quires high computational cost both for 3D reconstruction

and localization when 3D models become large. Although

the localization is accurate in the environment with enough

visual features, error will be large or localization will fail

if the environments do not have enough distinctive visual

features. This is because SfM approaches rely on matching

local feature points.

Image retrieval based approaches estimate a position of

a query image by finding the most similar images from

database images [9, 15]. Image retrieval based approaches

can localize images more quickly but less accurately than

SfM based approaches. Also, it cannot estimate 6-DOF

poses directly. Image retrieval based approaches typically

create a feature vector for a query image by aggregating lo-

cal keypoint descriptors. Similar to SfM based approaches,

an environment with few visual features or many repetitive

features makes localization difficult [37, 32]. A CNN has

recently been used to build visual vocabularies for image

retrieval [7, 31]. Although these approaches are more ac-

curate than traditional keypoint based image retrieval ap-

proaches, they are still less accurate than SfM based ap-

proaches and cannot estimate 6-DOF poses directly.

2.2. Supervised Learning for Localization

A deep neural network was first successfully applied to

object classification [24] and object detection [14]. This

has also been applied in other areas, such as camera relo-

calization [23], relative camera motion [28], visual odome-

tory [40], and RANSAC pose estimation [8].

Kendall et al. first proposed a CNN based image local-

ization approach that directly regresses 6-DOF poses from

input images [23]. Their approach is called PoseNet, and its

network architecture is based on GoogLeNet [36]. PoseNet

is more robust than SfM based approaches under difficult

image conditions, such as feature-less environments. The

CNN based approach is more suitable for real time appli-

cations. When using a GPU, the CNN based approach can

localize one image in less than 10ms. Also, the localiza-

tion speed and required memory do not change with the size

of environment. Because the required image resolution is

smaller (e.g. 224×224) than that in SfM based approaches,

communication between mobile devices and the server is

fast as well.
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To improve the accuracy of CNN based image local-

ization, various approaches have been proposed. In [20],

Kendall and Cipolla proposed an approach to improve the

accuracy of PoseNet by introducing uncertainty of predic-

tion. In [21], Kendall and Cipolla proposed two new loss

functions: the first loss function improves the accuracy of

PoseNet by estimating the hyperparameter of multi-task

learning, and the second loss function minimizes the 2D

projection error of a 3D point cloud. They showed that

using both loss functions improved the localization accu-

racy, but the second loss function requires a 3D point cloud

and is not suitable for a texture-less environment in which

SfM reconstruction is difficult. Thus, our approach uses

only the first loss function to train our network. Walch et
al. applied LSTM to incorporate the information of spatial

context [39]. Clark et al. proposed applying bidirectional

LSTM to utilize temporal information [10]. These various

current approaches complement our approach and will be

able to be integrated with it.

Similar to CNN based image localization approaches,

different supervised learning approaches are applied to lo-

calize from RGBD camera input. Shotton et al. proposed

using random forest for localization that used an RGBD

camera [33]. They predict 3D coordinates of each pixel

to estimate a camera pose. Li et al. proposed using an

RGBD camera for CNN localization [26]. Similar to our

approach, they used dual-stream CNN for estimating a cam-

era pose using an RGB image and a depth image. We fo-

cused on RGB cameras because they are installed in most

smartphones and our approach can be applied in various ap-

plications, such as pedestrian navigation systems.

2.3. Sensor Fusion for Localization

To improve the efficiency and accuracy of image based

localization, fusing different types of sensors with images

has been studied [4, 11, 18]. Clark et al. applied a proba-

bilistic approach to integrate Wi-Fi signals with SfM based

localization [11]. They used Wi-Fi signals to estimate vis-

ible 3D keypoints, and accelerated the step of keypoint

matching. Ishihara et al. proposed an approach for BLE

guided SfM localization [18] that searches for candidate

match keypoints in a 3D model using BLE signals and real-

izes accurate and efficient localization. Although these ap-

proaches reduced the computational cost of feature match-

ing and improved the accuracy of SfM localization using

additional sensors, localization may still fail if the environ-

ment does not have enough visual features.

Although deep learning has been successfully applied in

various applications, few studies have applied deep learn-

ing for radio-wave based localization. Nowicki and Wi-

etrzykowski proposed a deep learning approach for Wi-Fi

place recognition [30], but they focused on estimating rough

locations and used an auto encoder to recognize floors. Our

work directly regresses 6-DOF poses from radio wave sig-

nals, and can be combined with different types of CNN

based image localization approaches.

3. Approach
The advantage of a deep CNN is its high accuracy and

flexibility of models. Our dual-stream network is composed

of two networks with different modalities: one network re-

gresses 6-DOF poses from images, and the other regresses

6-DOF poses from radio-wave signals. We will describe

how these two different sensors are processed in the follow-

ing sections.

3.1. Image Network Architecture

For processing image information, we use PoseNet ar-

chitecture [23]. In PoseNet, the input value I is an image,

and the output value is a three dimensional camera position

x ∈ R3 and a four dimensional camera orientation q ∈ R4

represented by quaternion. Loss function Lβ (I) for the in-

put image I is defined as follows:

Lβ (I) = L (I)x + βL (I)q

L (I)x = ‖x̂− x‖γ
L (I)q = ‖q̂ − q

‖q‖‖γ
(1)

Here, x and q are ground truth camera positions and ro-

tation, and x̂ and q̂ are their estimated values. L (I)x and

L (I)q are loss functions for camera positions and rotations,

respectively. β is a constant parameter for balancing posi-

tional loss with rotational loss. ‖‖γ is the L1 norm if γ is 1
and the L2 norm if γ is 2. Because equation (1) optimizes

both L (I)x and L (I)q , PoseNet solves multi-task learning.

The optimal β can be found by grid search.

PoseNet uses GoogLeNet architecture [36], and the L2

norm is used for the loss function. GoogLeNet has three

output layers, and loss functions are calculated for all three

to prevent the vanishing gradient problem. PoseNet also has

three loss functions represented by equation (1).

Kendall and Cipolla [21] showed the weighting param-

eter β in the loss function can be replaced with trainable

parameters by introducing homoscedastic uncertainty [22].

By introducing additional scalar parameters ŝx, ŝq , the loss

function can be replaced by the following function:

Ls (I) = L (I)x exp(−ŝx) + ŝx + L (I)q exp(−ŝq) + ŝq
(2)

ŝx, ŝq represents the task specific uncertainty, and these

parameters will be learned from the training data. L1 norm

is used for the loss function (2). Our approach can be ap-

plied in general CNN based image localization approaches,

so we used the approach that solves the loss function (2)
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Figure 2. Architecture of network to process BLE signals.

conv(1 × 1) represents a convolution layer. ReLU represents a

rectified linear unit layer. fc represents a fully connected layer.

because it is more accurate than other CNN based image

localization approaches.

3.2. Radio-Wave Network Architecture

Although CNN has been actively studied in many appli-

cations, it has not been studied thoroughly for radio-wave

based localization. We propose a network architecture that

directly regresses 6-DOF poses from radio-wave signals.

We focus on BLE devices because they are becoming

commonly used in pedestrian navigation. BLE beacons

continuously emits Bluetooth signals with a device ID at

certain time intervals. The strength of BLE signal is repre-

sented by an RSSI (received signal strength indicator) value.

In our implementation, we used the Apple iOS SDK and

observe raw RSSI values from −99 (very weak) to 0 (very

strong). Before inputting RSSI values to our network, we

pre-process the values. For observed beacons, we add 100
to the raw RSSI value. For beacons that are not observed,

we set the value as 0. Then, we will obtain the value from 0
to 100 for all beacons installed in the environment. In every

time step, we have a fixed-size vector that can be input to a

fixed-size network.

The network architecture for beacon signal is shown in

Figure 2. If the environment has N beacons, the input

data for network will be a N × 1 × 1 tensor. To com-

bine a radio-wave network with an image network, we used

a similar architecture to PoseNet. It is composed of three

sub-networks, and each sub-network outputs a three dimen-

sional position vector x and four dimensional orientation

vector q. Each sub-network has one 1×1 convolution layer

and ReLU activation unit. Each output layer is connected

with fully connected layers having 2048 nodes.

Note that our approach does not assume any prior knowl-

edge about environments, such as where radio-wave trans-

mitters are located. We only assume all IDs of BLE de-

vices installed in the environment are known. Once we walk

around the environment and scan the BLE signals, we can
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Figure 3. Overall architecture of the proposed dual-stream network

collect them. This step can be done at the same time as col-

lecting training data, and there is no additional workload.

Therefore, our approach is easy to apply in an environment

where BLE beacons are already installed.

Because our radio-wave network can directly regress 6-

DOF poses from radio-wave signals, the network architec-

ture in Figure 2 can be used by itself for BLE based local-

ization. In later experiments, we will show the localization

results when only BLE signals were used.

3.3. Radio-Visual Localization Network

For inputting both image information and radio wave in-

formation, we combined PoseNet [23] and a radio-wave

network as shown in Figure 3 as a dual-stream network.

Multiple information has been successfully combined by

using a dual-stream CNN in different areas, such as video

action recognition [34, 12]. As far as we know, this is the

first approach to combine radio-wave information and im-

ages in end-to-end learning. In our experiments, the input

image is first resized to the resolution of 455×256, and then

the center region of 224×224 is cropped in accordance with

the settings of [23].

Both networks consist of three sub-networks and three

output layers. To combine two different networks, we com-

bined only output layers. Therefore, output variables for

position and rotation are connected to two fully connected

layers for both an image network and a radio-wave network.

We have three loss functions. Each loss function is calcu-

lated by equation (2). Following GoogLeNet [36], the total
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loss function is calculated by adding the first and the sec-

ond auxiliary loss functions weighted by 0.3 to the last loss

function. During test time, only the last output layer is used.

3.4. Image and Beacon Data Collection

A large amount of training data is needed to improve the

accuracy of deep CNN. To train our network, we need im-

ages and BLE signals labeled with 6-DOF poses. Because

manually labeling 6-DOF poses for a large set of images is

practically impossible, we used a LiDAR to create ground

truth 6-DOF poses. A LiDAR can generally achieve cen-

timeter level localization accuracy [19]. We used Velodyne

VLP-16 for LiDAR. To associate positions estimated by Li-

DAR and images, a LiDAR and a smartphone are fixed to

a tripod at fixed locations. At the same time as the LiDAR

point cloud is recorded, images and BLE signals are col-

lected by the smartphone. We collected data by walking

around the environments with this tripod.

3D maps of environments and 6-DOF poses of the Li-

DAR are calculated offline by using the LiDAR SLAM al-

gorithm [19]. To collect large datasets, we need to record

multiple times for the same environments. Because the co-

ordinates of the 3D map created by SLAM will be different

every time we record data, we need to align the coordinates

of the 3D map. To align the coordinates, we first projected

a 3D point cloud on a 2D map and then manually registered

the 2D projected point cloud to the floor plan. The ground

truth position of each image is calculated by transforming

the 6-DOF poses in the 3D map to this registered map.

3.5. Beacon Data Augmentation

In image classification, data augmentation is often used

to create more training data from existing training data [24].

By using data augmentation, we can prevent overfitting and

improve the accuracy. When using data augmentation, the

new data should be created by adding noises to original data

while preserving the labels of the original data. In image

classification, there are several means of data augmentation,

such as flipping original images, cropping different areas of

images, and changing intensities of RGB channels.

For beacon signals, signals fluctuate even at the same po-

sitions because of their interference with other radio-wave

signals or obstacles. By considering this effect, we aug-

ment data by changing the values of observed beacons only.

To simulate BLE signals weakened by the interference, we

randomly change observed BLE signals to smaller values.

When augmenting each data, we first randomly select a cer-

tain ratio of observed beacons and weakened selected sig-

nals by a random rate.

In our experiments, we set the ratio of randomly selected

beacons to observed beacons as 0.1. For each randomly se-

lected beacon, the rate to weaken the RSSI signal is sampled

by uniform random variables from 0 to 1. For each training

Area size # Beacons # Training # Test

D1 63m× 42m 99 2265 739
D2 40m× 32m 59 2542 828
D3 58m× 60m 55 4147 1350
D4 29m× 28m 64 1492 507
D5 41m× 33m 90 2363 763
D6 40m× 50m 112 2491 833

Table 1. Dataset for localization evaluation. # Beacons, # Training,

# Test show number of beacons, number of training video frames,

and number of test video frames respectively.

D1 D2

D3 D4

D5 D6
Figure 4. 3D map reconstructed by LiDAR SLAM. Dotted lines

show paths along which training and test videos are recorded. Grid

lines are drawn for 5m2 areas.

data, we create 5 augmented data.

4. Experiments
4.1. Dataset for Evaluation

By following the data collection steps described in the

section 3.4, we collected several large scale indoor datasets.

Images are captured at the resolution of 1280 × 720, and

undistorted before training and test. An iPhone7 is used for

collecting data. For recording both training and test data,

images are captured at 2 fps. Bluetooth signals are captured

at 1Hz by the iPhone (1Hz is a fixed setting of the iPhone).

All images are associated with Bluetooth signals that are

recorded at the closest timestamp.
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D1 D2 D3 D4 D5 D6

Figure 5. Example image for each location

We created datasets for six different locations. The area

size, number of beacons, and number of video frames are

shown in Table 1. For each location, we recorded three

videos for training and one video for testing. In each en-

vironment, BLE beacons were positioned every 4-6 meters.

The locations of the BLE beacons were decided on the ba-

sis of a previous study to balance the localization accuracy

and deployment cost [3]. Figure 4 shows a 3D point cloud

created by LiDAR SLAM. Dotted lines show paths where

training and test videos are recorded. We recorded two op-

posite directions on all paths. In all locations, we recorded

the same path for training and test. As shown in this 3D

map, we recorded in different area sizes and different path

shapes. Figure 5 shows example images for all locations.

4.2. Baselines

In our following experiments, we compared the follow-

ing baseline approaches with our proposed approach.

• SfM BoW : SfM based localization that uses BoW

(bag-of-words) for image retrieval [29] to accelerate

keypoint matching

• SfM BLE : SfM based localization that uses BLE

signals to accelerate keypoint matching as proposed

in [18]

• PoseNet β : PoseNet trained using the loss function in

equation (1) as proposed in [23]

• PoseNet σ : PoseNet trained using the loss function in

equation (2) as proposed in [21]

In SfM based baselines, keypoint matching requires

a large computational cost. The baseline “SfM BoW”

matches keypoints in a query image with keypoints in a 3D

model that are extracted only from visually similar images.

The visually similar images in the 3D model are selected

by a common BoW based image retrieval approach [29].

The step of searching for candidate matching images sig-

nificantly reduces the localization time. The baseline “SfM

BLE” uses BLE signals to search for candidate matching

images in addition to BoW [18]. The experimental results

of [18] showed that “SfM BLE” is more accurate than “SfM

BoW” even though computational cost is almost the same.

The implementation for baselines “SfM BoW” and “SfM

BLE” is based on the open source implementation [1]. Be-

cause our dataset covers large areas, we modified a 3D re-

construction pipeline of the original implementation as fol-

lows. First, we separated each training video into short 60

frames video clips and applied SfM for all video clips. Each

small 3D model has different 3D coordinates, and we need

to convert them into the same coordinate to merge them.

Because all video frames have ground truth positions es-

timated by LiDAR SLAM, we merged all 3D models by

using these positions. For each 3D model, similarity trans-

formation that convert camera positions in 3D model to

ground truth positions is calculated. Then, all 3D models

are merged into one large 3D model by applying similarity

transformation.

For the baseline “SfM BoW”, we selected 200 candidate

matching images by using BoW image retrieval. For the

baseline “SfM BLE”, we first selected 400 candidate match-

ing images by using BLE signals and then reduced candi-

date images to 200 by using BoW image retrieval. For both

of these baselines, we used AKAZE [5] as a local feature

detector and descriptors.

In all experiments for CNN based localization, the net-

work is trained by stochastic gradient descent using Adam

solver. The learning rate is set as 10−4, the batch size as 64,

and the number of training iterations as 30k. For the base-

line “PoseNet β”, parameter β for weighting positional loss

and rotational loss is set as 500. For the baseline “PoseNet

σ”, we need initial values for sx, sq . Following [21], we

set these initial values as sx = 0.0, sq = −3.0. These

CNN based baselines and our proposed approach are im-

plemented in TensorFlow [2].

As described in PoseNet [23], the network weight for

CNN based image localization is initialized by using the

classification network trained by the Places database [42].

For initializing network weight for BLE beacons, we set

random values as initial values.

4.3. Evaluation of Radio-Wave Network

First, we evaluated the localization accuracy of the pro-

posed radio-wave CNN model. In this experiment, we used

only the CNN model shown in Figure 2, and only BLE sig-

nals as the input data. The loss function for this radio-wave

CNN model is calculated by using the equation (2) in the

same way to the proposed dual-stream network.

Table 2 shows the results for average positional errors

in meters and average rotational errors in degrees. We first

evaluated the accuracy when we did not use beacon data

augmentation described in Section 3.5. “BLE Net (w/o

Aug.)” shows the results. The results show that our CNN

model can estimate location only by one observation of
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BLE Net (w/o Aug.) BLE Net

Pos. Error Rot. Error Pos. Error Rot. Error

D1 1.26± 3.2 67◦ ± 52 1.12 ± 3.2 68◦ ± 52
D2 1.09± 0.8 68◦ ± 53 1.04 ± 0.7 69◦ ± 51
D3 1.65 ± 4.7 69◦ ± 59 1.70± 4.6 71◦ ± 59
D4 1.16± 0.8 66◦ ± 53 1.12 ± 0.8 65◦ ± 53
D5 1.05± 0.7 69◦ ± 54 1.00 ± 0.7 66◦ ± 53
D6 1.03± 0.7 57◦ ± 48 0.87 ± 0.6 56◦ ± 46

Table 2. Average and standard deviation of positional errors in me-

ters and rotational errors in degrees for radio-wave network. Only

BLE signals are input for the proposed radio-wave network. “BLE

Net (w/o Aug.)” shows the results when beacon data augmenta-

tion is not used and “BLE Net” shows the results when beacon

data augmentation is used. “Pos. Error” shows positional errors,

and “Rot. Error” shows rotational errors.

BLE signals. The average localization error is less than 2.0
meters for all locations.

We also evaluated the accuracy when we used the pro-

posed beacon data augmentation. “BLE Net” shows the

results. The results shows that beacon data augmentation

improved the localization accuracy in general and reduced

localization error about 0.15m at most. In following ex-

perimental results with BLE beacons, we used beacon data

augmentation.

4.4. Evaluation of Radio-Visual Network

We then evaluated the accuracy of proposed dual-stream

network. Table 3 compares CNN based baselines and our

proposed approach. The results show average positional

errors in meters, and average rotational errors in degrees.

“PoseNet σ” can estimate locations more accurately than

“PoseNet β” because it learns the optimal weight from the

training data. For all six datasets, our approach improved

the localization accuracy even more with the help of robust

BLE signals. Our proposed approach reduced the average

positional error about 0.2m at most.

Table 5 shows 90 percentile localization errors for the

“PoseNet σ” and our proposed approach. In the case of 90

percentile error, our approach reduced the positional error at

most about 0.4m. As shown in these results, our proposed

approach consistently has better localization accuracy than

the state-of-the-art approach. One limitation of our ap-

proach is it has slightly worse rotational accuracy than base-

line approaches. The difference is small (at most about 2

degrees), but it will be possible to use other baseline ap-

proaches only for rotation estimation and use our approach

for position estimation for an application that requires accu-

rate rotation estimation. The additional computational cost

for this will be very small because CNN localization can

process one image in less than 10ms.
Table 4 compares SfM based baselines and our proposed

approach. “PROPOSED, SfM BLE” in Table 4 shows the
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Figure 6. Cumulative localization errors.

results when “SfM BLE” is used at first and then our ap-

proach is used only for the image that “SfM BLE” cannot

localize. As for the SfM baseline approaches, “SfM BLE” is

more accurate than “SfM BoW” in general. “PROPOSED”

in Table 3 is significantly more robust for all datasets and

even more accurate than SfM based approaches for two

datasets (D2, D3). Figure 6 shows the cumulative local-

ization error for “SfM BLE”, “PoseNet σ” and our pro-

posed approach. As shown in these results, CNN based ap-

proaches are significantly more robust than “SfM BLE” and

our proposed approach is more accurate than “PoseNet σ”.

When SfM works well (i.e. in feature rich environ-

ments), “PROPOSED, SfM BLE” is slower than CNN

based approached but can be the more accurate choice as

shown in Table 4. Because SfM baselines will require

about 0.5 seconds for localizing a image, “PROPOSED,

SfM BLE” will take about 0.5 seconds longer than “PRO-

POSED”.

4.5. Evaluation of Localization Speed

We evaluated the speed of localization. CNN based im-

age localization is much faster than SfM based localization,

and the speed is not dependent on area size. We evaluated

localization speed for our datasets. Table 6 shows the aver-

602



PoseNet β [23] PoseNet σ [21] PROPOSED

Pos. Error Rot. Error Pos. Error Rot. Error Pos. Error Rot. Error

D1 1.06± 1.1 4.2◦ ± 4.8 0.91± 0.8 4.2◦ ± 4.9 0.72 ± 0.6 6.3◦ ± 7.3
D2 0.95± 0.8 2.6◦ ± 6.5 0.69± 0.4 2.3◦ ± 3.3 0.55 ± 0.3 2.8◦ ± 5.6
D3 1.19± 1.1 3.6◦ ± 4.0 0.71± 0.7 4.4◦ ± 7.9 0.64 ± 0.6 5.9◦ ± 13.5
D4 0.96± 0.8 3.2◦ ± 5.8 0.73± 0.8 3.5◦ ± 5.7 0.53 ± 0.6 4.8◦ ± 8.3
D5 1.01± 1.4 3.8◦ ± 9.9 0.80± 1.2 3.7◦ ± 7.8 0.63 ± 0.9 4.2◦ ± 7.7
D6 1.06± 1.4 3.0◦ ± 5.3 0.73± 0.8 3.5◦ ± 8.3 0.61 ± 0.8 5.0◦ ± 4.5

Table 3. Average and standard deviation of positional errors in meters and rotational errors in degrees for CNN based baselines and our

approach

SfM BoW SfM BLE [18] PROPOSED, SfM BLE

Pos. Error Rot. Error Succ. Pos. Error Rot. Error Succ. Pos. Error Rot. Error Succ.

D1 0.67± 0.6 12.9◦ ± 19.3 83% 0.41± 0.7 14.9◦ ± 31.6 70% 0.51± 0.8 12.0◦ ± 27.0 100%
D2 0.58± 0.7 13.8◦ ± 25.6 91% 0.73± 1.0 6.0◦ ± 3.6 77% 0.69± 0.9 5.8◦ ± 6.4 100%
D3 1.04± 2.4 18.8◦ ± 32.5 84% 0.98± 2.3 17.1◦ ± 35.6 74% 0.91± 2.0 14.4◦ ± 31.6 100%
D4 0.48± 0.4 13.1◦ ± 11.6 88% 0.38± 0.2 21.3◦ ± 26.6 78% 0.42± 0.3 18.1◦ ± 24.7 100%
D5 0.34± 0.4 9.7◦ ± 6.0 85% 0.19± 0.2 9.4◦ ± 5.6 69% 0.37± 0.9 8.1◦ ± 8.5 100%
D6 0.46± 0.5 11.8◦ ± 5.3 89% 0.43± 0.3 11.9◦ ± 4.1 80% 0.49± 0.5 10.8◦ ± 5.0 100%

Table 4. Average and standard deviation of positional errors in meters and rotational errors in degrees for SfM based baselines and our

approach combined with “SfM BLE”. “PROPOSED, SfM BLE” is evaluated by using “SfM BLE” at first and then using our approach

only for the images that “SfM BLE” cannot localize. “Succ.” shows the percentage of test frames that are localized.

PoseNet σ PROPOSED

Pos. Error Rot. Error Pos. Error Rot. Error

D1 1.50 6.2◦ 1.18 4.9◦

D2 1.07 4.8◦ 0.90 5.1◦

D3 1.26 8.2◦ 1.13 9.3◦

D4 1.44 7.6◦ 1.05 9.7◦

D5 1.48 5.5◦ 1.10 6.1◦

D6 1.30 5.1◦ 1.04 7.4◦

Table 5. 90 percentile positional errors in meters and rotational

errors in degrees

SfM BLE PoseNet σ BLE Net PROPOSED

0.545 0.007 0.002 0.007

Table 6. Average time to localize one image (seconds).

age time to localize one image for all six datasets. For the

localization server, we used a PC with an Intel Xeon CPU

E5-2660 v3 2.60 GHz (10 cores) processor with an NVIDIA

TITAN X (Pascal) GPU.

“BLE Net” shows the result of our proposed approach

when inputting only BLE signals. “PROPOSED” shows the

result for our proposed approach when inputting both im-

ages and BLE signals. Although our approach has a dual-

stream network and requires slightly more computational

cost than “PoseNet σ”, the average time to localize an image

is same. Both “PROPOSED” and “PoseNet σ” can localize

one image in less than 10ms and are much faster than “SfM

BLE”. Our approach and other CNN based approaches will

be suitable for real time applications.

5. Conclusion
We proposed an approach to improve the accuracy of

deep CNN based image localization by integrating radio-

wave information. In our experiments, we first showed the

proposed radio-wave CNN model can directly regress 6-

DOF poses only by using radio-wave signals. Then, we

showed the proposed radio-visual network is more accurate

than the state-of-the-art CNN based image localization. Our

approach reduced the average localization error about 0.2m
at most, and the 90 percentile localization error about 0.4m
at most compared to the state-of-the-art CNN based image

localization. We also showed that our approach is signif-

icantly more robust than SfM based approaches. We inte-

grate our approach to a PoseNet based model, but it can be

applied to other CNN based image localization approaches

that considers spatial context or temporal context of images.

Our approach is not limited by BLE signals, and can be

used with other radio-wave signals, such as Wi-Fi. Also,

our approach does not require any additional prior knowl-

edge about environments, such as locations of radio-wave

transmitters. Because most smartphones have cameras and

BLE sensors, our approach can be applied in wider applica-

tion areas.
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