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Abstract

Head movements are an integral part of human nonver-
bal communication. As such, the ability to detect various
types of head gestures from video is important for robotic
systems that need to interact with people or for assistive
technologies that may need to detect conversational ges-
tures to aid communication. To this end, we propose a novel
Multi-Scale Deep Convolution-LSTM architecture, capable
of recognizing short and long term motion patterns found
in head gestures, from video data of natural and uncon-
strained conversations. In particular, our models use Con-
volutional Neural Networks (CNNs) to learn meaningful
representations from short time windows over head motion
data. To capture longer term dependencies, we use Recur-
rent Neural Networks (RNNs) that extract temporal patterns
across the output of the CNNs. We compare against classi-
cal approaches using discriminative and generative graph-
ical models and show that our model is able to significantly
outperform baseline models.

1. Introduction

We address the problem of detecting spontaneous head
gestures in everyday interactions to enable intelligent sys-
tems to better understand human interaction. Indeed, head
movements coordinate speech production [14], regulate
turn-taking [6], serve as back-channeling functions [12] and
can convey attitudinal and emotional information [8]. Vari-
ation in head movement frequency and amplitude can also
be an indicator of giving feedback, turn-taking or audiovi-
sual prosody. Thus, head gestures play an invaluable role
as a concurrent interaction channel during verbal commu-
nication [8]. They are also tied directly to the linguistic
structure and perform semantic and communicative func-
tions during speech production [14]. The ability to recog-
nize human head gestures is therefore critical for intelligent
systems to understand their human counterparts.

One of the key challenges with vision-based head gesture

978-1-5386-4886-5/18/$31.00 ©2018 IEEE
DOI 10.1109/WACV.2018.00050

400

Qutput

Fully Connected Layer *

@
~-0-0-0 -0-0-0 -0-0-0
=

LSTM Layers

Convolution Layers

Multi-Scale Input R oraat ] [ oo ARTIMA D]
Feature Trajectories WWAW%WMW
A

Input

Figure 1. Proposed Multi-Scale ConvLSTM. At each step, take
multiple temporal slices from the input, each being passed through
Conv-LSTM layers. Concatenate representations from each tem-
poral stream.

recognition is the large variation observed in spontaneous
head gestures across different users and gesture categories.
For example, a person’s nod during natural conversations
can be very quick, where a single up-down motion can last
less than 100 milliseconds. A nod can also extend over sev-
eral seconds as a consecutive sequence of repeated nods.
Across head gesture classes there can be an even larger dif-
ference in temporal scale e.g., a nod might last a second but
other gestures like turning or tilting can take several seconds
[14]. This implies that any successful detection algorithm
must be able to extract the visual signatures of head gestures
at multiple temporal scales.

Taking the above challenges into account, we propose a
novel multi-scale deep convolution LSTM architecture for
the task of spontaneous head gesture recognition. We use
the representational power of convolutional neural networks
(CNNs) to learn the features of head gesture primitives over
multiple scales of the temporal data. Then the multi-scale
features generated by each of the CNNSs are passed to a two
layer Recurrent Neural Network (RNN) with LSTM mod-
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Figure 2. Example frames in FIPCO. The users are free to act in any way.

ules to model the temporal dependencies over a sequence
of CNN features. The outputs of multiple RNN streams are
fused and passed to a fully connected softmax layer to out-
put gesture class probabilities. The network architecture is
illustrated in Figure 1.

To the best of our knowledge, this is the first work to
present state-of-the-art results on the problem of multi-class
head gesture recognition, e.g., 5 to 11 categories beyond the
basic nod or shake gesture categories [10, 20, 17]. The sec-
ond contribution is our proposed Multi-Scale Convolution-
LSTM architecture for the problem of spontaneous head
gesture recognition in natural conversations. We show em-
pirically that our proposed model outperforms the state-of-
the-art CRF based models by a large margin on the NAIST
Natural Conversation Dataset [2 1 ] and Cardiff Conversation
Database [2].

2. Related Work

Despite the large role head gestures play in our commu-
nication, the problem of head gesture recognition in natural
unconstrained environments has received limited attention
in the vision community. Although there exists prior work
on head gesture recognition [10, 20, 17, 16], most of these
approaches are validated in constrained environments and
with a small set of head gestures. Also, the size of ex-
isting public datasets are limited and thus difficult to use
as meaningful benchmarks. Only recently have researchers
[21] collected large datasets for head gesture recognition.

Past work in the field of head gesture recognition has
been dominated by approaches that use Graphical models
such as Conditional Random Fields (CRF) [13] or Hidden
Markov Models (HMM). These approaches often involve
extraction of manually engineered spatio-temporal descrip-
tors which are then used directly by the classification model.

In [10] the authors use a combination of a pupil track-
ing system with a HMM based algorithm for real-time head
nod and shake detection. In [5] the authors segment the eye
using thresholding and then use eye tracking with a HMM
classifier. However, one problem with using eye tracking
as a feature descriptor is the inability to generalize to en-
vironments where the users face or eyes are occluded from
the cameras view, a situation that arises often in conversa-
tion. Additionally, problems with eye tracking can occur
if someone is wearing eyeglasses e.g., people with visual
impairments.

Since generative models such as HMM above assume
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observations to be conditionally independent, they often
fail to learn a shared common structure between different
classes [20].

To alleviate these problems, conditional models such as
CRF [13] have been used extensively for gesture recogni-
tion. For example, [20] used Hidden Conditional Random
Fields (HCRF) for head gesture recognition. However, [20]
uses pre-segmented gestures for training which prevents it
from capturing the dynamics between gesture labels.

To capture these inter-gesture dynamics [17] proposed
Latent-Dynamic Conditional Random Field (LDCRF). LD-
CREF uses latent state variables to model the sub-structure of
a gesture class which allows it to learn inter-label dynamics.
However, to keep inference in LDCREF tractable, the authors
assume a disjoint set of hidden states per class label.

Unlike the above approaches, in this work we focus on
large datasets of natural unconstrained conversations with
a much larger set of gesture categories (5 to 11) [21, 2].
We do not assume input videos to be pre-segmented for our
model. Our proposed architecture can also better learn the
substructure for each gesture and the inter-gesture dynamics
since in our model all the gesture labels are associated with
the same set of network parameters.

3. Head Gesture Properties

As noted above, one of the main challenges of head ges-
ture recognition is the large variances observed in sponta-
neous head gestures. Our aim is to quantitatively observe
these variances to identify the main challenges of head ges-
ture recognition. Since in this work we focus on head
gesture recognition in everyday interactions, for our anal-
ysis we use the recently released FIPCO dataset [21]. The
FIPCO dataset is a natural conversation dataset containing
15 hours of recorded video of about 20 participants, with
each video frame annotated using a dense 11 gesture cate-
gorization. Thus, the large amount of data from different
people along with multiple categories make FIPCO a good
source to identify the above challenges.

The two main properties of all head gestures include (1)
motion: how large is the head movement and (2) duration:
how long is the head movement. We show here that these
properties can display large variances across different users
when comparing the same gesture (inter-person) as well as
when comparing different gestures for the same user (intra-
person).

Intra-Person Motion Variance: Figure 3 shows the mo-
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Figure 3. Intra-Person Motion Variance: Gesture motion for a user
in FIPCO.
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Figure 5. Intra-Person Time Variance: Time variance for different
gestures for a user in FIPCO.

tion for different gestures for a user. We can notice that
there is a large motion difference between different ges-
tures. For example, nods and jerks are much shorter than
up and down gestures. Additionally, there is large variance
while performing the same gesture. For example, backward
and tick gestures can have small motion as well as large
motion.

Inter-Person Motion Variance: Figure 4 compares the
gesture motion between two different users for the same set
of gestures. The above plot shows large amount of variance
exhibited by different users while performing similar ges-
ture. This is expected since some people can have larger
nods as compared to others.

Intra-Person Time Variance: Figure 5 shows the large
temporal variance between different gestures for a given
user. It is worth noting that gestures such as backward
(mean duration ~ 60 frames) usually last much longer as
compared to nod (mean duration ~ 20 frames). We also no-
tice that the same gesture (e.g., turn) can be performed very
quickly as well as slowly.

Inter-Person Time Variance: Figure 6 compares the time
duration for two different users for a set of gestures. Notice
that the same gesture can be performed at varying speeds
by different users. As expected some users can have faster
gestures (e.g., nod) compared to others.

Due to this large variance in head gestures in natural
conversations, an effective recognition scheme would re-
quire appropriate gesture representation at multiple spatio-
temporal scales. Taking these challenges into account, we
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Figure 4. Inter-Person Motion Variance: Gesture motion for
two different users for same set of gestures.
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now propose our approach for head gesture recognition.

4. Proposed Approach

Different feature inputs (e.g., head pose, eye gaze etc.)
can be used for head gesture recognition. Hence we first
discuss our gesture representation scheme. We then propose
our Multi-Scale ConvLSTM architecture which uses the
above representation from multiple spatio-temporal scales
for effective head gesture recognition.

4.1. Gesture Representation

What are the motion features that are most informative
for head gesture recognition? Head pose, i.e., the 6 degrees
of motion from 3D translation and 3D rotation (roll, pitch,
yaw), is a feature that has been used extensively for head
gesture recognition [17, 18].

While estimating head pose over time does provide im-
portant visual signal for recognizing head gestures, relying
on head pose alone might be insufficient for very subtle ges-
tures. For instance, detecting a subtle nod requires very ac-
curate head pose estimation which might not be possible in
natural environments with frequent pose changes.

Alternatively, facial landmark motion features can also
provide key cues for head movement and have been used
for head gesture recognition [1]. Thus, in addition to head
pose we explore the use of facial landmarks to provide an al-
ternate modality for recognizing head gestures. Facial land-
marks are divided into “fiducial” (primary) landmarks (nose
tip, eye corner etc.) and “ancillary” (secondary) landmarks



Inter annotator agreement
Nod Tilt Shake Forward Mean
0.397 0.383 0.348 0.561 0.430
0.433 0.306 0.337 0.484 0.401

Table 1. The inter annotator agreement between three annotators
on FIPCO [21]. First row contains raw values, second row con-
tains mean normalized values. [21]

(chin tip, cheek contours, efc.) [4]. Both of these are use-
ful in gesture and facial expression understanding [4], and
therefore we select a few landmarks from both of these sets.

Since primary landmarks are easy to track and can be es-
timated accurately over time we select a small set of these
landmarks (nose tip and eye corner). Among the secondary
landmarks we select a small set of cheek contour landmarks
and the chin tip. Notice that, we choose these landmarks
such that we are able to span the entire frontal face i.e.,
left and right side (cheek contours), bottom (chin tip) and
top (nose tip and eye corner). Later, we empirically show
that choosing landmarks heuristically is better than select-
ing all the landmarks as well as randomly selecting a subset
of landmarks from one face side.

4.2. Multi-Scale Convolution-LSTM (ConvLSTM)

‘We now propose our model for head gesture recognition.
Since head gestures display large spatio-temporal variance
using a local representation for gesture classification is in-
sufficient. Hence we propose our multi-scale deep neural
architecture (Figure 1) to extract the gesture context at dif-
ferent temporal scales and use them together for final clas-
sification.

Our architecture consists of a Multi-Scale Convolution-
LSTM (MS-ConvLSTM) model. At each video frame we
extract the above gesture representation at different tempo-
ral scales and process each of them independently. Pre-
cisely, to classify the frame at time ¢ we extract features
from multiple temporal windows that extend from [t —k, ¢ +
k] with k € {16, 32,64}.

Each of the above temporal windows is then processed
by a separate ConvLSTM layer. The convolution layers in
the network are used to learn hierarchical representations
for short temporal data streams, while the LSTM [9] layers
are used to extract meaningful information from this tempo-
ral representation. We then use late fusion to combine the
representations from each different scale. Finally, we use a
fully connected layer before classification layer.
Architecture Details: Our model is a 3-stream network ar-
chitecture with inputs at scales 16, 32, and 64. Each stream
consists of 3 temporal convolution layers (1-D convolution).
For each convolution layer we use, stride 1 and 128 chan-
nels. For the 16 and 32 temporal streams we use convolu-
tion kernels of size 3, while for 64 temporal stream kernels
of size 5. For the LSTM model we use the basic LSTM
architecture [7] with 256 nodes. The LSTM outputs from
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multiple temporal scales are concatenated and passed to a
fully-connected layer with 128 nodes. Finally, we have the
classification layer with the number of outputs equal to the
number of head gestures to classify. In experiments below
we look at how each part of the network is useful for classi-
fication.

5. Datasets

To evaluate the performance of our proposed architecture
on different datasets we use two publicly available datasets.
Namely, we use NAIST Natural Conversation Dataset [21]
and Cardiff Conversation Database [2] respectively.

5.1. Natural Conversation Dataset (FIPCO)

Recently, a large corpus of data for human face to face
conversations has been made available in [21]. The dataset
contains annotations for every frame based on 11 head ges-
ture classes. The classes include None (background class),
Nod (head up and down), Jerk (head down and up), Up
(pitch up for a while), Down (pitch down for a while), Tick
(repeated nods), Tilt, Shake, Turn, Forward (lean forward),
Backward (lean backward).

Overall the dataset consists of 30 conversations with
close to 15 hours of recorded video data from a wearable
and a static tripod camera. We use the video recorded with
the tripod camera. Figure 2 shows some of the video frames
in the dataset.

Despite the abundance of data there exists a large skew in
the data distribution between different classes. In particular,
close to 70% of the data belongs to one class, None. Also,
of the total 5000 annotated gestures, there exist 6 classes
which have less than 100 samples in the dataset. This dis-
tribution reflects a common feature of data collected from
natural conversations — certain target gestures occur very
infrequently.

Data Augmentation: To address this data imbalance we
use data augmentation. Since video data is very high di-
mensional we use the extracted gesture representations for
these augmentations. To create these augmentations we
cluster gestures together based on their motion and time val-
ues. Since gestures in each cluster will have similar spatio-
temporal (motion-time) scale we can now create new ges-
tures by manipulating these scales i.e., by slightly varying
the speed of these gestures as well as by varying their mo-
tion. We approximate each feature of the gesture represen-
tation using multiple function approximators with radial ba-
sis functions. To create new gestures we sample from these
approximations by varying the spatio-temporal scale. We
only vary the scales by a small amount therefore the aug-
mented gesture is similar in structure to the original gesture.
Coarse Gesture Categories: We now look at the original
11 gesture categories (as defined above) used in FIPCO in
more detail. The 11 gesture categories used in FIPCO can
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Figure 7. Example frames in CCDb. As can be seen CCDb does not capture subtle body motion cues.
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result in ambiguous labelings i.e., although the categories
are well defined the occurrences sometimes may be hard
to label. As a result, it is hard to gather consistent ground
truth labels. It has been reported [2 1] that the inter annotator
agreement is quite low (mean for all gestures less than 0.5,
Table 1). Hence in addition to the original 11 categories, we
propose an alternative categorization of head gestures using
5 or 7 categories, as shown in Figure 8. Below, we discuss
the rationale behind these alternative categorizations.

Nod, Tick and Jerk: The difference between these ges-
tures is the initial direction of head movement and period-
icity. Both of these are difficult visual cues for human anno-
tators. For example, the difference between one small head
nod versus two small nods is almost indiscernible. Simi-
larly, distinguishing between small nod and small jerk re-
quires identifying the onset of a small movement at the be-
ginning of the gesture, which is very difficult to perceive.
For these reasons we group Nod, Jerk and Tick into one
group.

Up and Down: These gestures are defined as keeping
pitch up and down for a long duration respectively. Thus the
time period while the pitch is either up or down is crucial.
However, notice in Figure 6 these gestures can also have a
very short duration, this contradiction makes them almost
indistinguishable from nods, since a very quick down ges-
ture looks similar to a nod for most human observers. Hence
we experiment with two settings (1) merge these two ges-
tures together (7 categories) and (2) merge them with above
defined nod (5 categories).

Shake and Turn: There exists a dichotomy in the ac-
tual labeling and definition of turn in FIPCO, by definition
it involves significant amount of head rotation, however in
FIPCO a small head rotation coupled with eye gaze changes
in the same plane (similar to shake) are also annotated as
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turn. Hence we compare two settings (1) keeping both ges-
tures separate (7 categories) and (2) merging them together
(5 categories).

Forward and Backward: These gestures are defined
as leaning forward and backward respectively. As seen in
Table 1 there exists large confusion among human anno-
tators for these gestures. We believe this confusion exists
since human annotators find it hard to precisely annotate
the boundaries of these gestures, as they usually occur in
sequence. Hence we combine these gestures together in our
coarse categories.

Thus in addition to the original 11 gesture categories we
also evaluate coarse gesture categories in our experiments.

5.2. Cardiff Conversation Database (CCDb)

The Cardiff Conversation Database (CCDb) [2] is a 2D
conversation database which contains natural conversations
between people. It contains a total of 30 conversations of
which only 8 are fully annotated for head motion. The
dataset consists of labels for only three gestures Nods,
Shakes and Tilts. As before, the dataset consists of less than
100 gestures each for both shakes and tilts. Also, the defini-
tion of these gestures are slightly different from FIPCO e.g.
Nod in FIPCO consists of one down and up motion while in
CCDb it is defined to be a rigid repetitive head motion.

Figure 7 shows some of the video frames in CCDb. No-
tice the difference from FIPCO videos (Figure 2), in CCDb
the camera is very close to the user while in FIPCO the cam-
era is much further away, this causes subtle motion to be
exaggerated in CCDb as compared to FIPCO. Given these
differences we use both these datasets together to evaluate
our proposed architecture.

6. Evaluation

We now compare our proposed architecture against sev-
eral baseline models on the above datasets. We first dis-
cuss the experimental setup including the different baseline
models, metrics and the hyperparameters used during eval-
uation. We then observe the results of our proposed archi-
tecture and the baseline models on both the datasets.

6.1. Experimental Setup

Baseline Models: Following [17] we use the Latent Dy-
namic Conditional Random Field (LDCRF) and Condi-
tional Random Field (CRF) as our baseline models. We
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Figure 9. Confusion matrix for the original 11-class classification on FIPCO [21].

11 class 5 class
Model F1 Wt-Fl1 F1 Wt-Fl1
MS-ConvLSTM 0.542 0.751 0.629 0.779
SS-ConvLSTM 0.493 0.731 0.612 0.757
LSTM 0.426 0.667 0.571 0.732
LDCRF [17] 0.076 0.081 0.180 0.207
CRF [13] 0.071 0.084 013 0.16

Table 2. Performance on FIPCO [21] with original labels (11 cat-
egories) and coarse gesture categories (5 categories).

vary the window size for CRF models between 8 and 32.
We also vary the number of parameters between 5 and 30.
Similar to previous work [17] we use the BFGS optimizer
during training. We use the HCRF library [15].

Additionally, to show the efficacy of using multiple tem-
poral scales, we compare our approach against a Single-
Scale ConvLSTM model (SS-ConvLSTM). SS-ConvLSTM
is similar to MS-ConvLLSTM but with input limited to one
temporal scale i.e., 32. To examine the role of convolution
layers we also compare against a pure LSTM model.

Feature vector: We use OpenFace [3], a state-of-the-art
facial analysis algorithm. It outputs 6DOF head pose and
68 facial landmark positions. Based on the 6DOF signal,
we use both position and velocity profiles, which yield a
12 dimension vector. Among facial landmarks we select 5
landmarks from cheek contours, chin tip, nose tip and 1 eye
corner. From these 8 landmarks we get 16 features (both
(x,y)). Thus our final feature representation is of size 28.

Training Hyperparameters: We use the architecture as
described in Section 4.2. We use the Adam optimizer [ 1]
for training and set an initial learning rate of 10~%. We use
Categorical Cross-Entropy as our loss function. The input
to the model is taken by centering at each frame of the input
video and taking temporal slices of size 16, 32, and 64.

Evaluation metrics: For our evaluation metric we perform
dense classification i.e., detect gesture at every video frame
and report both Fl-score and the weighted F1-scores. Al-
though, both of the metrics are influenced by the skew in
the data we believe that collectively they give an appropri-
ate assessment of our approach.
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6.2. Comparative Performance Analysis on FIPCO

We now analyze the performance of our proposed archi-

tecture against the baseline models on FIPCO. For compar-
ative analysis we use both the original gesture categories as
well as the coarse gesture categories.
Original Category Recognition Performance: Quantita-
tive results for both baseline models and our proposed ar-
chitecture are given in Table 2. As seen above, our pro-
posed Multi-Scale ConvLSTM architecture performs the
best with a weighted-F1 of 0.751. The LSTM based mod-
els (LSTM, SS-ConvLSTM and MS-ConvLSTM) perform
better than the CRF models presumably due to the large
number of parameters and non-linearities modeled by the
underlying LSTM. Also, Conv-LSTM (SS-ConvLSTM and
MS-ConvLSTM) models perform better than LSTM which
shows that the convolution layers are helpful in extracting a
better representation than the raw gesture signals.

Next, we analyze the qualitative performance of our ar-
chitecture. Figure 9 shows the gesture confusion matrix for
the above models. The CRF based models are not able to
discover the underlying structure of each gesture as they
predict all gestures belonging to one class. Conversely, both
Conv-LSTM architectures perform well on most classes
and hence are able to discover the general substructure of
the gestures. However, our proposed architecture (MS-
ConvLSTM) has better performance uniformly across all
gesture classes while SS-ConvLSTM is skewed towards
certain gestures. In particular, our architecture performs
better for Forward and Backward gestures, both of which
are long duration gestures. Also notice that SS-ConvLSTM
displays large confusion between Shake and Turn, both of
which involve visually similar head motion but with differ-
ent duration. Thus we observe that encoding information at
multiple scales helps our model perform better.

Additionally, we look at the failure cases for the Conv-
LSTM model. Notice the major confusing gesture in Figure
9 is None. This confusion is least for our proposed MS-
ConvLSTM, however it is seen for all models and across all
gestures. We believe this occurs partly because of (1) misla-
beling by human annotators and (2) very subtle head motion
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Figure 10. MS-ConvLSTM results on fine to coarse gesture categories on FIPCO. Right: ROC curve for 5-class classification using MS-

ConvLSTM.

Fl-score | Weighted F1

MS-ConvLSTM 0.522 0.840

SS-ConvLSTM 0.507 0.820

MS-ConvLSTM - pretrain 0.528 0.866

SS-ConvLSTM - pretrain 0.493 0.838

LDCRF [17] 0.341 0.370

CRF [20] 0.216 0.338

Table 3. Results for training and evaluation on CCDb.

which confuses our models. Another source of confusion is
between a small subset of valid gestures, for example be-
tween nod and jerk gestures as well as between forward and
backward gestures. As discussed above, this confusion also
manifests itself among human annotators which highlights
the inherent problems of classifying subtle motion.

Coarse Category Recognition Performance: We also
show the performance for the reduced set of aggregated
head gesture categories in Table 2. Notice that our pro-
posed MS-ConvLSTM still performs better than all other
models. Also, as expected, the weighted F1 score increases
to 0.84 as frequently confused fine-grained categories have
been merged together. Notice, in Figure 10 that, as we ag-
gregate more gestures the confusion between fine-grained
gesture categories disappears.

6.3. Comparative Performance Analysis on CCDb

We analyze the performance of our proposed architec-
ture on CCDb in two different settings. First we use CCDb
for both training and testing, i.e., we randomly split the
dataset into a train and test set and report performance on
it. However, since CCDb has a small amount of data com-
pared to FIPCO, we also experiment with transfer learning
by training a model on FIPCO and finetuning it on CCDb.
Since the definitions of gestures between the two datasets
are not identical, we pre-train the model on coarse gesture
categories in FIPCO (Figure 8).

Comparative Performance Analysis: We compare the
quantitative performance of our proposed model against the
baseline models in Table 3. As observed before, the Conv-
LSTM based non-linear models are able to outperform the
linear CRF based models. Within the ConvLSTM models

406

we see that extracting multiple temporal scales from the
input helps the classifier, as our weighted-F1 increases to
0.840. This indicates that our proposed MS-ConvLSTM
model is able to outperform baseline models even for a
small set of gesture categories.

We also look at the qualitative results for the above mod-

els in Figure 11. As seen above, the CRF based models
fail to generalize across different gesture categories as they
predict all gestures belonging to a small set of categories.
As before, notice that our proposed MS-ConvLSTM per-
forms well across all gesture categories. SS-ConvLSTM
is skewed towards certain gestures (nod) while it performs
poorly on shakes and tilts. This shows that our proposed
MS-ConvLSTM is able to use the multiple temporal scales
to better generalize across different gestures.
Transfer Learning Performance: We now look at the
Transfer learning performance when using a pretrained
model from FIPCO in Table 3. Notice that our pro-
posed model performs better than SS-ConvLSTM with a
weighted-F1 of 0.866. Also notice, in Figure 12, that
our finetuned model has almost similar performance when
training a model from scratch. Thus, even though the
recorded videos in FIPCO and CCDb are quite different,
the network is able to learn the appropriate gesture repre-
sentations and generalize across datasets.

6.4. Ablation Study

In this section, we look at the effect of using different
temporal scales and feature representations in our proposed
architecture. We report all results using the FIPCO [21]
dataset, with the same train and test data as used above.

To observe the effect of using convolution layers in our
proposed architecture we compare the performance of a
LSTM model against the proposed ConvLSTM architec-
tures. Figure 13 shows the confusion matrix for a LSTM
model. Notice that, compared to Figure 10, the performance
of LSTM on the background class (None) is much worse.
Since the background class includes subtle unintended head
motion, this shows that the LSTM model fails to differen-
tiate between subtle gestures and unintended head motion.
Thus, the convolution layers help in extracting useful rep-
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Figure 11. Confusion Matrix for CCDb dataset [2]

Model Scales Fl-score | Weighted F1
Multi Scale-ConvLSTM | 16, 32, 64 0.542 0.751
Single Scale-ConvLSTM 32 0.493 0.731
Single Scale-ConvLSTM 16 0.457 0.679
Single Scale-ConvLSTM 64 0.501 0.734
Two Scale ConvLSTM 16, 32 0.509 0.732
Two Scale ConvLSTM 16, 64 0.515 0.745
Two Scale ConvLSTM 32,64 0.514 0.732
LSTM 32 0.426 0.667

Table 4. Performance with different models and scales using the
original gesture categories in FIPCO.

None 0.00

0.00

0.05 0.01 0.
021 0.01 0.
014 0.16 .
0.20 0.04
Down 0.07 0
Tick 0.23 0
Tilt 0.02 0.
Shake 0.03
Tum 0.02 0

Forward 0.01 0.

Back 0.09 0.

Figure 13. Classification results on FIPCO using LSTM with input
temporal scale 32.

resentations from subtle gestures. Also, large confusion ex-
ists between gesture groups such as shake and turn as well
as nod, jerk and tick. This further shows the inability of an
LSTM only model to capture the inter-gesture dynamics.
Next, we observe the effect of different input feature rep-
resentations on recognition performance in Table 5. No-
tice that just using the 6DOF head pose as input represen-
tation performs better than all the facial landmarks only.
This shows that head pose provides a better signal for head
gesture recognition compared to facial landmarks. How-
ever, interestingly, combining head pose and all facial land-
marks together seems to perform worse than using head
pose only. We believe that this happens because of the curse
of dimensionality [19], since the facial landmark features
(136 features) are far greater than the head pose features
(12 features). This might cause our network to fit to ir-
relevant noise. Also, notice that, when we combine head
pose with a subset of the selected landmarks, i.e., primary
and secondary landmarks separately, we get improved per-
formance. Moreover, using secondary landmarks from one

LDCREF [17]
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Figure 12. Transfer Learning results with pretraining on

FIPCO [21].
Features Fl-score | Wt-F1
6DOF Head Pose + Selected Landmarks 0.629 0.779
6DOF Head Pose + All Face Landmarks 0.545 0.756
6DOF Head Pose + Fiducial landmark 0.614 0.760
6DOF Head Pose + Ancillary landmark 0.616 0.772
6DOF Head Pose + 1 face side landmarks 0.622 0.766
6DOF Head Pose Only 0.597 0.750
All Face Landmarks Only 0.547 0.760

Table 5. Performance with different input features for 5 class clas-
sification using MS-ConvLSTM architecture.

face side also improve performance (0.622), but it is out-
performed by heuristically chosen landmarks (0.629). This
shows that rather than choosing landmarks randomly, se-
lecting a small set of both primary and secondary landmarks
leads to a better classification performance.

We also analyze the results using different temporal
scales for head gesture recognition . Table 4 shows the
results for multiple different architectures with different
scales. Among single scale architectures, using a small
scale of 16 performs worse than 32 and 64, which indicates
that using a longer temporal context provides better gesture
recognition. Also, notice that two scale Conv-LSTM archi-
tectures perform better than single scale architectures. This
is expected since using two scales allows the model to bet-
ter generalize across gestures as compared to single scale
models. However, using a multi-scale architecture which
combines information from short, medium and large tem-
poral scales performs better than all the other models.

7. Conclusion

In this paper, we address the problem of head gesture
recognition in natural conversations. We show that, since
head gestures display large inter-person and inter-gesture
spatio-temporal variance, effective recognition requires ap-
propriate temporal context around each gesture. To extract
this temporal context we design a simple and intuitive multi-
scale architecture for continuous gesture detection. We test
the efficacy of our method by evaluating it on two very dif-
ferent head gesture datasets and observe that our model has
significantly better performance than existing methods.
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