

1 **TITLE:**

2 Demography and life history of a group of white-bellied spider monkeys (*Ateles belzebuth*)
3 in western Amazonia

4

5 **AUTHORS:**

6 Andrés Link^{1,2,3}, Krista Milich^{4,5} & Anthony Di Fiore^{1,4}

7

8 **AFFILIATIONS:**

9 ¹ Proyecto Primates

10 ² Department of Biological Sciences, Universidad de Los Andes

11 ³ School of Management, Universidad de Los Andes

12 ⁴ Department of Anthropology, University of Texas at Austin.

13 ⁵ Department of Anthropology, Washington University in St. Louis

14

15 **CORRESPONDING AUTHOR:**

16 Andrés Link

17 Department of Biological Sciences

18 Universidad de Los Andes

19 Calle 18A No. 1 – 12

20 Bogotá Colombia

21 Email: a.link74@uniandes.edu.co

22 Phone: +57-1-3394949 ext. 2346

23

24 **SHORT TITLE:**

25 Demography and life history of wild spider monkeys

26

27

28 **ABSTRACT**

29 Species-specific demographic parameters and life history variables are important for
30 understanding how individual primate taxa have adapted to evolutionary and ecological
31 pressures and for conducting interspecific comparisons as well as for conducting population
32 viability analyses and for managing captive populations. Here, we describe results from a
33 12+ year study of the demographic dynamics of a wild group of white-bellied spider
34 monkeys (*Ateles belzebuth belzebuth*) living near the Tiputini Biodiversity Station in a
35 largely pristine rainforest in western Amazonia. Across the study period, group size varied
36 between 25 and 37 individuals, and there was a clearly female-biased sex ratio within all
37 age classes. Females were the dispersing sex, as 19 females born into the group disappeared
38 close to reaching adult body size and were presumed to have emigrated, while seven
39 subadult or adult females joined the group during the study period. We estimated the age of
40 dispersal for females at $5.9 \pm \text{SD } 0.4$ years ($N = 13$). Our study confirms that males are the
41 philopatric sex, as all natal males have remained in the group and some have begun to
42 reproduce, while no males have immigrated. Males began ranging independently from their
43 mothers at ~ 4.5 years of age and began copulating with adult females by the age of ~ 5
44 years. Females had long inter-birth intervals ($44.2 \pm \text{SD } 7.8$ months; range: 32 – 64 months,
45 $N = 21$). Based on our data, female spider monkeys might have longer life spans than
46 males, as only one out of six adult males but 9 out of 11 adult females present in the group
47 in mid 2005 were still present in January 2018. The slow development and extended life
48 histories of wild spider monkeys pose significant challenges for the ability of these

49 primates to cope with habitat degradation and hunting throughout their geographical
50 distribution. (300 words)

51

52 **KEY WORDS:**

53 Atelines, Dispersal, Long-term studies, Philopatry, Reproduction

54

55 INTRODUCTION

56 Life history variables (such as survival and mortality rates, fertility, age at first
57 reproduction, interbirth intervals and lifespan) are important parameters for understanding
58 the evolutionary pressures faced by particular primate species as well as for conducting
59 interspecific comparisons (Sugiyama, 2004; Leigh & Blomquist, 2010; Clutton-Brock,
60 2012; van Schaik & Isler, 2012; Bronikowski et al., 2016). Estimates of these parameters
61 are also necessary for understanding age-structured population dynamics (Strier, 2014;
62 Bronikowski et al., 2016) and for conducting population viability analyses (Pierson et al.,
63 2015) and are important to the design and implementation of effective captive management
64 and reintroduction programs. As anthropogenic activity and disturbance pervasively
65 increases in natural habitats (Achard et al., 2002), the study of life history variables of wild
66 populations living in relatively undisturbed areas is important for establishing baseline data
67 that allow us to better understand how these changes impact wild populations (Clutton-
68 Brock & Janson, 2012; Estrada et al., 2017). However, because the collection of life history
69 variables requires a long-term investment in individual-based monitoring of primate
70 groups, there is still relatively limited knowledge of life history characteristics in many
71 long-lived species (Kappeler & Pereira, 2003; Strier et al., 2010; Bronikowski et al., 2016).
72
73 In the neotropics, the atelid primates (howler monkeys: *Alouatta*; spider monkeys: *Ateles*;
74 woolly monkeys: *Lagothrix*; and muriquis: *Brachyteles*) are among the largest and longest-
75 lived taxa of extant mammals and are considered important indicators of ecosystem health
76 (Stevenson, 2011). Field studies on all four genera of atelids have contributed significantly

77 to our understanding of their ecology and social behavior (Campbell, 2008; Defler &
78 Stevenson, 2014; Di Fiore, Link, & Campbell, 2010; Kowalewski, Garber, Cortés-Ortíz,
79 Urbani, & Youlatos, 2015; Strier, 2014; Strier, Possamai, & Mendes, 2015), but only
80 limited data are available on life history parameters and long-term demographic dynamics
81 of wild atelids, and only for a handful of wild populations (*Alouatta*: Neville, 1976; Rudran
82 & Fernandez-Duque, 2003; *Ateles*: Shimooka et al., 2008; *Lagothrix*: Nishimura, 1990,
83 2003; *Brachyteles*: Strier, 2014). Here, we report the results of a 12+ year study of the
84 demographic dynamics of one wild group of white-bellied spider monkeys (*Ateles*
85 *belzebuth belzebuth*) living in a largely pristine rainforest in western Amazonia.

86

87 Spider monkeys typically live in large multimale-multifemale groups of 15 to 56
88 individuals, where adult females generally outnumber adult males (Shimooka et al., 2008).
89 Spider monkey societies, like those of chimpanzees (*Pan troglodytes*) and bonobos (*Pan*
90 *paniscus*), are characterized by extremely flexible grouping patterns and manifest a high
91 degree of fission-fusion dynamics (Aureli et al., 2008). Spider monkey groups are highly
92 territorial, and the home ranges of neighboring groups overlap minimally, if at all
93 (Symington, 1988; Di Fiore and Link, unpublished data). Female spider monkeys are
94 reported to disperse from their natal groups as they reach sexual maturity (Di Fiore, Link,
95 & Campbell, 2010; Di Fiore, Link, Schmitt, & Spehar, 2009; Shimooka et al., 2008;
96 Symington, 1988), while male spider monkeys remain in their natal groups. Thus, spider
97 monkey societies are considered to be structured around a core of related, philopatric males
98 (Di Fiore, Link, & Campbell, 2010; Di Fiore, Link, Schmitt, & Spehar, 2009).

99

100 As one of the largest platyrhines, spider monkeys are expected to have “slow” life
101 histories, including a late age at first reproduction, long interbirth intervals, and a long
102 lifespan (Promislow & Harvey, 1990), and, even when body size is controlled for, spider
103 monkeys seem to have even slower life histories than expected compared to other
104 platyrhines (Di Fiore, Link, & Campbell, 2010; Harvey, Read, & Promislow, 1989). Still,
105 due to the logistical challenges of conducting long-term studies of individually-recognized
106 animals, data on most reproductive and life history parameters of wild spider monkeys
107 remain limited. In a major review, Shimooka, et al. (2008) summarized the available
108 demographic and life history data from 17 groups of wild spider monkeys that had been
109 studied for periods of between 5 and 72 months (average $25 \pm SD 20$ months) at 13 sites
110 spanning the genus’ geographic range. Data from the various sites suggest interspecific
111 differences in interbirth intervals (IBI) for females, with *A. belzebuth* having the longest IBI
112 ($43.7 \pm SD 5.1$ months) and *A. chamek* ($34.5 \pm SD 5.8$ months) and *A. geoffroyi* ($31.9 \pm SD$
113 3.0 months and $32.0 \pm SD 6.0$ months) the shortest IBIs. However, even given Shimooka,
114 et al.’s (2008) thorough review, data on dispersal patterns, age at dispersal, age at which
115 immatures begin to travel independently from their mothers (but see Vick et al., 2008), age
116 at first reproduction, and longevity are still scarce for wild populations of *Ateles*. For
117 example, although previous studies have concluded that dispersal is strongly female-biased
118 (as females often disappear from their natal groups when they are subadults, prior to
119 mating, and new females sometimes join groups where researchers can recognize group

120 members individually), the average age at dispersal for female spider monkeys is still
121 unknown (Shimooka, et al. 2008).

122

123 Here, we use a combination of observational and genetic data from a 12.5-year study
124 conducted at the Tiputini Biodiversity Station, Ecuador – one of longest-running field
125 studies of spider monkeys – to provide estimates of key life history variables for wild
126 white-bellied spider monkeys. We present data on age-sex composition across the study
127 period and on age at dispersal and IBI for females, age at first independent travel for
128 individuals of both sexes, and age at first observed mating and first successful reproduction
129 for males. Data for this study come from one primary research group that, over the past
130 year, seems to have progressed far into a process of permanent fission in which the original
131 group has split into two smaller daughter groups. Estimates for these kinds of demographic
132 parameters from wild populations of spider monkeys are critical for population viability
133 studies and for modeling sustainability and extinction risk for these large-bodied primates,
134 which are often targets for subsistence hunting and are sensitive indicators of anthropogenic
135 habitat disturbance.

136

137 **METHODS**

138 *Study Site and Subjects*

139 Research was conducted at the Tiputini Biodiversity Station (TBS) in eastern Ecuador
140 (76°08" W, 0°38" S). The field site comprises over 600 ha of old-growth tropical rainforest
141 adjacent to Yasuní National Park (982,000 ha) and is part of the Yasuní Biosphere Reserve

142 (Figure 1). Annual rainfall at the site averages over 3000 mm. Data on the behavior and
143 genetics of one main study group (MQ-1) have been collected over an approximately 12.5-
144 year period (June 2005 – January 2018). During this time, the group varied in size between
145 25 and 37 individual spider monkeys. At the onset of the study, the group included six adult
146 males and 11 adult females. Throughout the study, all group members were habituated to
147 the presence of researchers and could be individually recognized through unique facial and
148 anogenital characteristics. For the analyses below, we include all demographic and life
149 history data collected on MQ-1 individuals through January 2018, while noting that data
150 from the past year pertain to a time when the group was in the process of dividing into two
151 daughter groups with progressively less contact between certain subsets of group members.

152

153 [INSERT FIGURE 1 ABOUT HERE]

154

155 *Data Collection*

156 Intensive observations of the MQ-1 study group began in mid 2005 and are ongoing, with
157 occasional discontinuities in data collection, the longest being from September 2005 to July
158 2006 and from September 2015 to June 2016. Since the onset of the study period, we have
159 regularly conducted full and partial day focal animal follows and *ad libitum* behavioral
160 sampling on all adult group members, with observers attempting to rotate behavioral
161 sampling across individuals.

162

163 During follows, the behavior of the focal individual was recorded at set intervals, and the
164 identities of all animals in association with a focal individual (i.e., the “subgroup
165 composition”) were recorded continuously. That is, after identifying the initial composition
166 of the subgroup of monkeys to which a focal animal belongs, we kept a continuous record
167 of all changes in subgroup size and composition. Subgroup “fusion” events were scored as
168 soon as an individual not previously observed in the subgroup was detected, while
169 subgroup “fission” events – defined as when an individual that was previously present in a
170 subgroup was not observed for >60 min (excluding resting periods) – were assigned post-
171 hoc. From this continuous record, we extracted subgroup compositions at 15-minute
172 interval and used these records for demographic and association analyses.

173

174 Individuals recorded in at least one composition record collected during a given month
175 were considered “present” in the group during that month. For periods of discontinuity in
176 data collection, when observers were absent from the field, we scored any individual spider
177 monkeys who were recorded as “present” in the month before and the month after the break
178 as “present” throughout the break. Similarly, if an animal was not recorded as “present” in
179 a given month based on subgroup composition record data, but was present the month
180 before and the month after, we inferred it to have been present.

181

182 During focal follows we also collected fecal samples from known individuals for DNA
183 extraction and multilocus genotyping, using methods described previously (Di Fiore, Link,
184 Schmitt, & Spehar, 2009). These genotypes have been used to estimate pairwise relatedness

185 among group members and to evaluate maternity and paternity of infants born in the group
186 using maximum likelihood-based methods (Di Fiore and Link 2011, 2016, and in
187 preparation).

188

189 Finally, we compiled the timing of key demographic events (births, disappearances,
190 presumed dispersals) from our long-term data as follows:

191

192 First, for all infants, we assigned the month and year of birth as the month in which they
193 were first directly observed being carried by a female, unless an infant's physical
194 appearance, mobility, or location of carriage (i.e., off of the ventrum) suggested it had been
195 born more than a month previously and the mother had not been seen traveling
196 unencumbered in the previous month. These latter cases were rare, but are not unexpected
197 given the large home range size and highly flexible association patterns of spider monkeys.

198 For the few cases where we had to infer a prior birth month for an infant, we assigned a
199 date of birth of 1, 2, or greater than 2 months prior to first observation, based on the infant's
200 developmental stage. We also confirmed the month of birth for some infants born early on
201 in the study through photographic records from camera traps that we used to monitor spider
202 monkey visits to a mineral lick that the group visited frequently (on average ~1x per week
203 from August 2006 to April 2009; see details in Galvis, Link, & Di Fiore, 2014). We
204 considered these **birth date estimates** to be "good" if infants were assigned a birth month
205 0, 1, or 2 months prior to first being observed.

206

207 We then calculated **interbirth intervals** (IBI) as the number of months between the month
208 of birth of an offspring to a given female and the month of birth of her subsequent
209 offspring, provided that the first offspring survived and was still present in the group at the
210 time of the birth of its sibling. We only included IBI estimations when the dates of birth of
211 both offspring were considered “good”.

212

213 We calculated **age at dispersal** for natal females as the difference, in months, between the
214 month that a female was last seen in the group and her date of birth. We calculated **age at**
215 **first independent travel** for natal individuals as the difference, in months, between the
216 first day an animal was recorded traveling in a subgroup without its mother present and its
217 date of birth. The **age at first copulation** by natal males was calculated as the difference
218 between the first date the male was observed mating and his date of birth (natal females
219 were never observed to copulate). Finally, to determine **age at first successful**
220 **reproduction** for natal males, we calculated the difference between the date of birth for the
221 first infant for whom a natal male was assigned and the natal male’s date of birth.

222

223 This research complied with protocols approved by the Institutional Animal Care and Use
224 Committee (IACUC) at University of Texas at Austin and the University Animal Welfare
225 Committee (UAWC) at New York University, adhered to Ecuadorian legal requirements,
226 and adhered to the American Society of Primatologists' Principles for the Ethical Treatment
227 of Primates.

228

229 **RESULTS**230 *Demographic Dynamics and Longevity*

231 Overall, between June 2005 and January 2018, a total of 77 individuals have been part of
232 the MQ-1 study group of white-bellied spider monkeys. Adult females outnumbered adult
233 males in the group in all study years, with the female-to-male sex ratio varying between
234 1.4:1 and 2:1. The number of adult males in the group at any given time ranged between 3
235 and 9, and the number of adult females ranged from 10 to 13 (Figure 2). As of January
236 2018, one of the daughter groups into which MQ-1 seems to have split contained 3 adult
237 males and 6 adult females, while the other contained 4 adult males and 7 adult females.
238 Throughout the study, all but the recently-immigrated (and presumably nulliparous) adult
239 females had either one or two offspring with them at all times. Thus, the size of the original
240 MQ-1 group varied between 25 and 37 individuals across the study period (Figure 2), and
241 the sizes of the two daughter groups, as of January 2018, are 15 and 17 individuals,
242 respectively. As of January 2018, more than 12.5 years after the onset of monitoring, only
243 11 out of 28 members of the group were still present. These included eight of 11 initial
244 resident adult females, one of six initial resident adult males, and two immature males who
245 reached adulthood during the study. Although at this point of the study we cannot robustly
246 estimate the lifespan of wild spider monkeys in this population, based on the age of the
247 oldest offspring of adult females resident in the group in 2005 – and given that females
248 have their first offspring when they are approximately eight years old (see results below) –
249 eight of the adult females in the population as of January 2018 must be at least 24 years of
250 age. Moreover, given that males reach adulthood and begin reproducing around age seven

251 (see results below), three of these females are estimated to be over 27 years of age as they
252 were determined to be the mothers of males that were already adults in 2005. As of January
253 2018, these three females are still reproductively active.

254

255 [INSERT FIGURE 2 ABOUT HERE]

256

257 *Infant Mortality*

258 During the period between June 2005 and January 2018, a total of 42 known infants were
259 born, including 30 females and 11 males, yielding a female-biased sex ratio among
260 neonates of 2.7:1. We were unable to determine the sex of one of the infants born early in
261 the study (2005) prior to its disappearance. In total, seven out of these 42 known infants
262 (17%) disappeared and are presumed to have died before reaching one year of age, and an
263 additional juvenile male disappeared at ~26 months of age. The factors influencing
264 mortality or disappearance of immatures were unclear. Two female infants disappeared at
265 <1 month and sometime between 12 and 22 months of age, simultaneously with their
266 mothers. Three infant males disappeared within their first few days of life, and, for at least
267 one of them, there was circumstantial evidence of intragroup infanticide (Alvarez et al.,
268 2015). Finally, we could not determine the causes of disappearance for the three remaining
269 offspring.

270

271 As noted above, five adult males disappeared from the original group during the study
272 period, and we presume that these individuals died (rather than emigrated) as we have

273 observed no cases of male immigration into the group (but see Aureli, Di Fiore, Murillo-
274 Chacon, Kawamura, & Schaffner, 2013). Three of these males disappeared during a period
275 of time characterized by a high rate of intergroup encounters (Link, 2011) and might have
276 been killed or injured during episodes of escalated aggression between neighboring groups.
277 In fact, during this period (2007–2008) we observed at least two adult males (one from our
278 main study group and one from a neighboring group) with large, open wounds immediately
279 following intergroup encounters. Three adult females also disappeared during the 12.5-year
280 study, including two whose infants disappeared with them at the same time. These
281 individuals also presumably died as there is no evidence of secondary dispersal in wild
282 spider monkeys (Shimooka et al., 2008), and we have never seen either fully adult females
283 or females with a dependent offspring immigrate into a group.

284

285 *Female Interbirth Intervals*

286 We calculated 21 interbirth intervals (IBIs) for females (N=10) who gave birth to an infant
287 after the survival of a previous infant to the birth of its younger sibling. IBIs were
288 approximately 3.7 years ($44.2 \pm SD 7.8$ months; range: 32 – 64 months, N = 21). All but
289 one of the females that gave birth to more than one offspring had both female and male
290 infants (Table 1).

291 [INSERT TABLE 1 ABOUT HERE]

292

293 *Dispersal and Philopatry*

294 We were able to estimate age at dispersal for 13 females born during the study period.
295 Females dispersed, on average, at $5.9 \pm \text{SD } 0.4$ years ($70.8 \pm \text{SD } 5.2$ months; range: 63 – 79
296 months, $N = 13$). We were unable to estimate precisely the age at dispersal of two
297 additional females that disappeared from the original group in 2015-2016 due to a
298 discontinuity in data collection, but these females must have been between 64 and 70
299 months and between 65 and 71 months of age, respectively, when they left. Four additional
300 females who were subadults at the onset of the study were estimated to have dispersed at a
301 similar age, after almost reaching adult body size. Most natal subadult females were not
302 observed ranging independently of their mothers for any significant amount of time before
303 disappearing from the group. In fact, 15 of these females were in a subgroup with their
304 mothers the last time they were seen, and another three were seen ranging with their
305 mothers less than or equal to one week before their last sighting in the group. One subadult
306 female spent 4.5 months regularly ranging independently of her mother within the home
307 range of MQ-1 prior to their dispersal, and a second subadult female, who was last seen in
308 November 2017, spent at least 5 months occasionally ranging independently of her mother
309 before her mother disappeared between January and May 2015.

310

311 To date, we have not been able to determine the presence of any of the 19 females that
312 presumably have dispersed from our focal group in two of the three neighboring social
313 groups MQ-2 and MQ-3, both of which are partially habituated and whose demography we
314 have monitored at frequently visited mineral licks using camera traps (see Methods in

315 Galvis, Link, & Di Fiore, 2014). Additionally, we were unable to localize a radiocollared
316 subadult female who disappeared from the study group in 2007 during multiple searches for
317 her signal upriver and downriver from the site. Together, these observations suggest that
318 females are likely to disperse into groups that are beyond the neighboring territories of their
319 natal group. We have not witnessed any cases of natal subadult females involved in
320 copulations or any kind of reproductive activity prior to their dispersal. Finally, seven
321 subadult females immigrated either into our original study group (N=5) or into one of the
322 daughter groups (N=2) between October 2008 and January 2018, and several additional
323 females joined the original group transiently for periods of between one and a few months
324 (Figure 2). Five of the seven immigrant females first gave birth to infants in the group 20,
325 22, 42, 42, and 47 months after their immigration, and the sixth and seventh have only been
326 present since November 2017 and January 2018, respectively.

327

328 The timing of independent travel and first reproduction are important milestones for male
329 spider monkeys. Within our sample, we had three males for whom we can estimate the age
330 at independent travel, as we knew their birth date and the date of first observation of those
331 males traveling in a subgroup not containing their mothers. All three males were between 4
332 and 5 years old (53 months, 55 months, 56 months) when they began to frequently range
333 independently from their mothers. For these same three males, we were able to estimate the
334 age when they were first observed copulating with adult females. Each was first seen
335 copulating soon after reaching five years of age, at 62, 62, and 66 months, respectively.
336 Finally, for two additional natal males, we were able to calculate age at first successful

337 reproduction based on paternity analysis. These two males sired their first offspring at ~79
338 months of age.

339

340 **DISCUSSION**

341 Some of the most notable characteristics of primates are their extended periods of juvenile
342 development and their generally “slow” life histories compared to most other mammals,
343 and explaining these general aspects of primate developmental biology – as well as
344 explaining variation in life history strategy within different primate lineages – has been a
345 major challenge for comparative evolutionary biologists (Harvey, Read, & Promislow,
346 1989; Ross, 1991). Slow maturation and long life spans in primates are associated with the
347 need for extended infant and juvenile stages, where a large amount of parental investment
348 is thought to be required in order to reduce predation or mortality on extremely “costly”
349 offspring. Other authors have suggested that differences in developmental rates and
350 lifespans across primates are related to important environmental variables, such as habitat
351 type (Ross, 1991) and/or environmental unpredictability (Richard et al., 2002).

352

353 Our results help confirm that, amongst primates, wild spider monkeys in natural conditions
354 have particularly slow life histories that closely resemble those of muriquis (Strier, 2014)
355 and are more similar to those of apes than those of other monkeys of similar body weight
356 (Di Fiore et al., 2011). The spider monkey’s slow life history is reflected at many stages
357 throughout the life course: [1] infants and juveniles spend long periods of time (4.5 to 6
358 years) in close association with their mothers prior to social independence, [2] adult

359 females have long interbirth intervals of approximately 3 to 4 years, and [3] individual
360 animals can have very long lifespans in the wild.

361

362 Additionally, although our sample size is small, our results suggest that males and females
363 both reach sexual maturity at relatively late ages for their body size compared to both other
364 anthropoids and other platyrhines. For example, three natal males in our original study
365 group first began mating at 5 to 5.5 years, but did not sire offspring until more than a year
366 to a year and a half later. For females, we estimate that mean age at first reproduction is
367 somewhat older. Because mean dispersal age is approximately six years – and because
368 females only give birth to their first offspring between 1.5 and 3 years after immigrating
369 into a new social group – most females will not give birth before 7.5 years of age. Previous
370 studies have estimated that female spider monkeys reached sexual maturity at around 6.5
371 years of age (Eisenberg, 1973; Milton, 1981), with first infants being born when mothers
372 are between 7 and 8 years old (Chapman & Chapman, 1990). Thus, our observations of
373 females dispersing at ~6 years of age fits well within the time frame that females would be
374 reaching adulthood and transferring into other social groups. Previous information on age at
375 emigration for female spider monkeys comes from Manu National Park, where Symington
376 (1988) estimated the age of three female *Ateles b. chamek* who disappeared to be 4 to 5
377 years. Vick (2008) found that female *Ateles geoffroyi* from Punta Laguna, Mexico
378 dispersed from their natal groups slightly later, at an average age of $\sim 5.6 \pm 0.5$ years ($66.6 \pm$
379 SD 5.7 months, range=59 to 76 months, N = 8 females). Data from our current study
380 suggests the age at emigration for female spider monkeys in Ecuador is even later and more

381 similar to estimates for *Lagothrix* ($6.0 \pm \text{SD } 0.4$ years) and *Brachyteles* ($6.1 \pm \text{SD } 0.6$ years)
382 and much later than that for female howler monkeys, who disperse around 2 to 4 years of
383 age (reviewed in Di Fiore et al., 2011).

384

385 The average interbirth interval of female spider monkeys at TBS ($44.2 \pm \text{SD } 7.8$ months) is
386 similar to some previously published estimates for other spider monkey populations
387 (Shimooka et al., 2008), but quite a bit higher than the estimate of 34.5 months for *Ateles b.*
388 *chamek* in Manu National Park, Péru (Symington, 1988) and the estimate of 36.6 months
389 for *Ateles geoffroyi* in Punta Laguna, Mexico (Vick, 2008). Potential explanations for these
390 differences in IBI amongst different populations of spider monkeys are not clear, but may
391 include factors associated with sample size, and further research is needed to determine if
392 episodes of spontaneous abortion (Campbell et al., 2001), male-directed infanticide (Gibson
393 et al., 2008; Alvarez et al., 2015), or degree of seasonality at different field sites (Shimooka
394 et al. 2008) might help explain the variation. In fact, average interbirth intervals for female
395 spider monkeys at TBS are amongst the longest reported for living atelines. Howler
396 monkeys have much shorter IBIs than other atelines, between 16 and 22 months. Female
397 woolly monkeys have an average IBI of 36.7 months (reviewed in Di Fiore et al., 2011),
398 and female muriquis at Reserva Particular Patrimonio Natural-Feliciano Miguel Abdala in
399 the Atlantic forest of Brazil have an average IBI of 35.8 months (Strier, 2014), both quite a
400 bit shorter than the average interval we found for TBS *Ateles*.

401

402 Based on our long-term study of spider monkeys at TBS, dispersal seems to be strongly
403 biased towards females, as has been reported for other populations. We recorded 19
404 subadult females disappearing from their natal group at, on average, ~6 years of age, and
405 we observed seven females immigrate into the group, and two transient females were each
406 observed in the group for a handful of months. Also, our data suggests dispersal events
407 usually occur once in a lifetime in female spider monkeys, as most of the adult females that
408 have been residents in the group are currently present in one of the daughter groups.
409 Shimooka et al. (2008) also report no evidence of secondary dispersal in wild spider
410 monkeys. Together, these observational data support previous molecular findings that
411 males in our original study group are closely related to each other (with the exception of
412 one male), while average genetic relatedness between adult females is low (Di Fiore et al.,
413 2009). Interestingly, based on genetic parentage data, we also know that two of the adult
414 males in each of the current daughter groups have paternal half-siblings among the set of
415 males in the other daughter group.

416
417 Within primates, non-cooperatively breeding species tend to have birth sex ratios skewed
418 towards the dispersing sex, as predicted by the Local Resource Competition hypothesis
419 (Silk & Brown 2008). Consistent with this pattern, a number of studies have reported
420 female-biased sex ratios at birth in populations of wild spider monkeys (Symington 1988;
421 Shimooka et al. 2008; this study), and this pattern persists in adulthood. Thus, most studies
422 of wild spider monkey groups with individually recognized animals report strongly skewed

423 adult sex ratios, where adult females outnumber adult males roughly 2:1 (Shimooka et al.
424 2008 and references therein).

425

426

427 Male maturation in spider monkeys is estimated by determining when males begin traveling
428 with other animals in subgroups that do not contain their mother, most commonly with
429 older males. Milton (1981) observed male *A. geoffroyi* moving independently from their
430 mothers during their fourth and fifth years of age, and this is roughly the same age at which
431 we found male *Ateles belzebuth belzebuth* began traveling independently from their
432 mothers. At Punta Laguna, too, Vick (2008) found that, while *Ateles geoffroyi* offspring of
433 both sexes were consistently seen with their mothers until they reached 42 months of age,
434 males began ranging in different subgroups between the ages of 42 and 60 months while
435 females tended to continue to associate with their mothers.

436

437 As noted above, five of the six adult males that were originally present in the group in 2005
438 have disappeared, and we presume that these individuals died as there is no evidence of
439 male dispersal at TBS (but see Aureli, et al. 2013 for one case of collective male
440 immigration in *Ateles geoffroyi* in Costa Rica). Although the causes of their disappearances
441 are not clear, several of these males vanished during a period of frequent and intense
442 intergroup conflict and aggression (Link, 2011). Given that male spider monkeys jointly
443 participate in cooperative territorial defense, boundary patrols, and incursions into
444 neighboring territories – and given that intergroup relations between spider monkeys are

445 invariably hostile – we suspect that some of the adult males might have disappeared in
446 relation to escalating aggression between rival groups of males (see Aureli et al., 2006).

447

448 Primatologists have long appreciated the fact that the expected behavior of individual
449 monkeys can be strongly influenced by demographic conditions (Strier, 2014), as variation
450 in group size impacts the degree of within group competition and varying operational sex
451 ratios influence the nature of male-female social interactions. But we are also coming to
452 realize that many other aspects of the behavioral biology of nonhuman primates can be very
453 sensitive to demographic fluctuations. For example, it has been argued that lethal
454 intragroup aggression in spider monkeys (where adult males jointly cooperate in directing
455 lethal aggression towards a subadult male) might take place in situations where female-to-
456 male sex ratios are low and competition for females within social groups is more intense
457 (Campbell, 2006; Valero et al., 2006). Demographic context can also influence the
458 outcomes of intergroup encounters, as has been reported in chimpanzees where imbalances
459 in numbers of males predicts the likelihood of escalated aggression between parties from
460 different groups (Watts & Mitani, 2001; Wilson et al. 2012). Long-term field studies of
461 known individuals provide valuable and fascinating datasets for examining how social and
462 demographic conditions influence many aspects of primate behavioral biology.

463

464 Finally, it is important to note that in the current global economic climate, where primate
465 habitats are pervasively being transformed into agricultural landscapes (Estrada et al.,
466 2017), taxa with slow life histories – like spider monkeys – are particularly susceptible to

467 anthropogenic habitat modifications (e.g., deforestation and fragmentation) and to direct
468 threats associated with increased contact with humans (e.g., hunting, anthroponotic disease
469 transmission). Spider monkeys not only have very stringent ecological requirements due to
470 their specialist frugivorous diets (Di Fiore et al., 2008) and their strong preference for
471 undisturbed forests, but they also are often preferred targets for subsistence hunting
472 (Franzen, 2006). Having evolved a long period of juvenile dependency, a late age at sexual
473 maturity, and long interbirth intervals may preclude spider monkeys from having sufficient
474 flexibility to cope with the rapid changes that are currently taking place in their natural
475 habitats (Ramos-Fernandez & Wallace, 2008; Estrada et al., 2017). In fact, spider monkeys
476 are some of the first neotropical vertebrates to go locally extinct in fragmented landscapes
477 (Michalski & Peres, 2005), making it even more important for conservation managers to
478 have access to accurate estimates of demographic parameters from wild populations for use
479 in sustainability and extinction modeling.

480

481 **ACKNOWLEDGEMENTS**

482 We are grateful to the Ecuadorian government and the Ministerio de Ambiente for
483 permission to work in the Yasuní region and to the Universidad San Francisco de Quito and
484 the directors and staff of the Tiputini Biodiversity Station for facilitating our primatological
485 research at the site for over a decade. A large number of extremely dedicated Proyecto
486 Primates research assistants helped to collect the demographic and behavioral data
487 summarized here, including Laura Abondano, Cristian Alvarado, Sara Álvarez, Ricardo
488 Arango, Marcela Córdoba, Nelson Galvis, Miguel García, Nausica de Gibert, Alice

489 Giunchi, Laura Gómez, Mauricio Guerra, Erin Fleming, Ryan Manders, Leonardo
490 Mendieta, Ana Palma, Mónica Ramírez, Sebastián Ramírez, and Clara Scarry. Special
491 thanks are due to David and Consuelo Romo, Kelly Swing, Diego Mosquera, Gaby
492 Vinueza, Tomi Sugahara, Majo Rendón and all of the station's "tigres" who have provided
493 continuous logistical support and friendship to our research team in the field. This project
494 was funded by NSF SES 0726133, BCS 1062540, and BCS 1638822; the Wenner-Gren,
495 L.S.B. Leakey, and Harry Frank Guggenheim Foundations, and the National Geographic
496 Society.

497

498 **REFERENCES**

499 Achard, F., Eva, H. D., Stibig, H.-J., Mayaux, P., Gallego, J., Richards, T., & Malingreau,
500 J.-P. (2002). Determination of deforestation rates of the world's humid tropical forests.
501 *Science*, 297, 999–1002. <https://doi.org/10.1126/science.1070656>

502 Alvarez, S., Di Fiore, A., Champion, J., Pavelka, M. S., Páez, J., & Link, A. (2015). Male-
503 directed infanticide in spider monkeys (*Ateles* spp.). *Primates*, 56, 173–181.
504 <https://doi.org/10.1007/s10329-014-0454-y>

505 Asensio, N., Korstjens, A. H., & Aureli, F. (2009). Fissioning minimizes ranging costs in
506 spider monkeys: A multiple-level approach. *Behavioural Ecology and Sociobiology*,
507 63, 649–659. <https://doi.org/10.1007/s00265-008-0699-9>

508 Aureli, F., Di Fiore, A., Murillo-Chacon, E., Kawamura, S., & Schaffner, C. M. (2013).
509 Male philopatry in spider monkeys revisited. *American Journal of Physical
510 Anthropology*, 152, 86–95. <https://doi.org/10.1002/ajpa.22331>

511 Aureli, F., Schaffner, C. M., Boesch, C., Bearder, S. K., Call, J., Chapman, C. A., Connor,
512 R., Di Fiore, A., Dunbar, R. I. M., Henzi, S. P., Holekamp, K., Korstjens, A. H.,
513 Layton, R., Lee, P., Lehman, J., Manson, J. H., Ramos-Fernandez, G., Strier, K. B., &
514 van Schaik, C. P. (2008). Fission-fusion dynamics: New research frameworks. *Current
515 Anthropology*, 49, 627–654. <https://doi.org/10.1086/586708>

516 Aureli, F., Schaffner, C. M., Verpoorten, J., Slater, K., & Ramos-Fernández, G. (2006).
517 Raiding parties of male spider monkeys: Insights into human warfare? *American
518 Journal of Physical Anthropology*, 131, 486–497. <https://doi.org/10.1002/ajpa.20451>

519 Bronikowski, A. M., Cords, M., Alberts, S. C., Altmann, J., Brockman, D. K., Fedigan, L.
520 M., Pusey, A., Stoinski, T., Strier, K. B., & Morris, W. F. (2016). Female and male life
521 tables for seven wild primate species. *Scientific Data*, 3, article 160006.
522 <https://doi:10.1038/sdata.2016.6>

523 Campbell, C. J. (2006). Lethal intragroup aggression by adult male spider monkeys (*Ateles*
524 *geoffroyi*). *American Journal of Primatology*, 68, 1197–1201.
525 <https://doi.org/10.1002/ajp.20305>

526 Campbell, C. J. (2008). *Spider Monkeys: Behavior, Ecology, and Evolution of the Genus*
527 *Ateles*. Cambridge, UK; New York: Cambridge University Press.

528 Campbell, C. J., Shideler, S. E., Todd, H. E., & Lasley, B. L. (2001). Fecal analysis of
529 ovarian cycles in female black-handed spider monkeys (*Ateles geoffroyi*). *American*
530 *Journal of Primatology*, 54, 79–89.

531 Chapman, C. A., & Chapman, L. J. (1990). Reproductive biology of captive and free-
532 ranging spider monkeys. *Zoo Biology*, 9, 1-10.

533 Clutton-Brock, T. (2012). Long-term, individual-based field studies. In P. M. Kappeler &
534 D. P. Watts (Eds.), *Long-Term Field Studies of Primates* (pp. 437–449). Berlin:
535 Springer.

536 Clutton-Brock, T., & Janson, C. (2012). Primate socioecology at the crossroads: Past,
537 present, and future. *Evolutionary Anthropology*, 21, 136–150.
538 <https://doi.org/10.1002/evan.21316>

539 Defler, T. R., & Stevenson, P. R. (Eds.). (2014). *The Woolly Monkey*. New York, NY:
540 Springer.

541 Di Fiore, A., Link, A., & Campbell, C. J. (2010). The atelines: Behavioral and
542 socioecological diversity in a New World radiation. In C. J. Campbell, A. Fuentes, K.
543 C. MacKinnon, S. K. Bearder, & R. M. Stumpf (Eds.), *Primates in Perspective* (2nd
544 Edition, pp. 155–185). Oxford: Oxford University Press.

545 Di Fiore, A., Link, A., & Dew, J. L. (2008). Diets of wild spider monkeys. In C. J.
546 Campbell (Ed.), *Spider Monkeys: Behavior, Ecology and Evolution of the Genus*
547 *Ateles* (pp. 81–137). Cambridge: Cambridge University Press.

548 Di Fiore, A., Link, A., Schmitt, C. A., & Spehar, S. N. (2009). Dispersal patterns in
549 sympatric woolly and spider monkeys: Integrating molecular and observational data.
550 *Behaviour*, 146, 437–470. <https://doi.org/10.1163/156853909X426345>

551 Eisenberg, J. F. (1973). Reproduction in two species of spider monkeys, *Ateles fusciceps*
552 and *Ateles geoffroyi*. *Journal of Mammalogy*, 54, 955–957.
553 <https://doi.org/10.2307/1379089>

554 Estrada, A., Garber, P. A., Rylands, A. B., Roos, C., Fernandez-Duque, E., Di Fiore, A.,
555 Nekaris, K. A.-I., Nijman, V., Heymann, E. W., Lambert, J. E., Rovero, F., Barelli, C.,
556 Setchell, J. M., Gillespie, T. R., Mittermeier, R. A., Arregoitia, L. V., de Guinea, M.,
557 Gouveia, S., Dobrovolski, R., Shanee, S., Shanee, N., Boyle, S.A., Fuentes, A.,
558 MacKinnon, K. C., Amato, K. R., Meyer, A. L. S., Wich, S., Sussman, R. W., Pan, R.,
559 Kone, I., & Li, B. (2017). Impending extinction crisis of the world's primates: Why

560 primates matter. *Science Advances*, 3, e1600946. <https://doi.org/DOI:10.1126/sciadv.1600946>

561

562 Franzen, M. (2006). Evaluating the sustainability of hunting: A comparison of harvest

563 profiles across three Huaorani communities. *Environmental Conservation*, 33, 36–45.

564 Galvis, N., Link, A., & Di Fiore, A. (2014). A novel use of camera traps to study

565 demography and life history in wild animals: a case study of spider monkeys (*ateles*

566 *belzebuth*). *International Journal of Primatology*, 35, 908–918.

567 <https://doi.org/10.1007/s10764-014-9791-3>

568 Gibson, K. N., Vick, L. G., Palma, A. C., Carrasco, F. M., Taub, D., & Ramos-Fernández,

569 G. (2008). Intra-community infanticide and forced copulation in spider monkeys: a

570 multi-site comparison between Cocha Cashu, Peru and Punta Laguna, Mexico.

571 *American Journal of Primatology*, 70, 485–489.

572 Harvey, P. H., Read, A. F., & Promislow, D. E. (1989). Life history variation in placental

573 mammals: Unifying the data with theory. *Oxford Surveys in Evolutionary Biology*, 6,

574 13–31.

575 Kappeler, P. M., & Pereira, M. E. (Eds.). (2003). *Primate life histories and socioecology*.

576 University of Chicago Press.

577 Kowalewski, M. M., Garber, P. A., Cortés-Ortiz, L., Urbani, B., & Youlatos, D. (Eds.).

578 (2015). *Howler Monkeys*. New York, NY: Springer.

579 Leigh, S.R., & Blomquist, G.E. (2010). Life history. In C. J. Campbell, A. Fuentes, K. C.
580 MacKinnon, S. K. Bearder, & R. M. Stumpf (Eds.), *Primates in Perspective* (2nd
581 Edition, pp. 396-407). Oxford: Oxford University Press.

582 Link, A. (2011). *Social and Ecological Determinants of "Fission-Fusion" Sociality and*
583 *Grouping Strategies in the White Bellied Spider Monkey (Ateles belzebuth belzebuth)*
584 *in a Lowland Rainforest in Western Amazonia*. Ph.D. Thesis, New York University.

585 Link, A., & Di Fiore, A. (2013). Effects of predation risk on the grouping patterns of white-
586 bellied spider monkeys (*Ateles belzebuth belzebuth*) in Western Amazonia. *American*
587 *Journal of Physical Anthropology*, 150, 579–590. <https://doi.org/10.1002/ajpa.22230>

588 Michalski, F., & Peres, C. A. (2005). Anthropogenic determinants of primate and carnivore
589 local extinctions in a fragmented forest landscape of southern Amazonia. *Biological*
590 *Conservation*, 124, 383–396.

591 Mitani, J. C., & Watts, D. P. (2005). Correlates of territorial boundary patrol behaviour in
592 wild chimpanzees. *Animal Behaviour*, 70, 1079–1086.
593 <https://doi.org/10.1016/j.anbehav.2005.02.012>

594 Mooney, J., & Lee, P. (1999). Reproductive parameters in captive woolly monkeys
595 (*Lagothrix lagotricha*). *Zoo Biology*, 18, 421–427.

596 Neville, M. (1976). The population and conservation of howler monkeys in Venezuela and
597 Trinidad. In J. R. W. Thorington & P. G. Heltne (Eds.), *Neotropical Primates: Field*
598 *Studies and Conservation* (Vols. 1–WI 007899, pp. 101–109). Washington, DC.:
599 National Academy of Sciences.

600 Pierson, J. C., Beissinger, S. R., Bragg, J. G., Coates, D. J., Oostermeijer, J. G. B.,
601 Sunnucks, P., Schumaker, N. H., Trotter, M. V., & Young, A. G. (2015). Incorporating
602 evolutionary processes into population viability models. *Conservation Biology*, 29,
603 755–764.

604 Promislow, D., & Harvey, P. (1990). Living fast and dying young: A comparative analysis
605 of life-history variation in mammals. *Journal of Zoology, London*, 220, 417–437.

606 Ramos-Fernández, G., Pinacho-Guendulain, B., Miranda-Pérez, A., & Boyer, D. (2011).
607 No evidence of coordination between different subgroups in the fission–fusion society
608 of spider monkeys (*Ateles geoffroyi*). *International Journal of Primatology*, 1–16.
609 <https://doi.org/10.1007/s10764-011-9544-5>

610 Ramos-Fernández, G., & Wallace, R. B. (2008). Spider monkey conservation in the twenty-
611 first century: Recognizing risks and opportunities. In C. J. Campbell (Ed.), *Spider
612 Monkeys: Behavior, Ecology and Evolution of the Genus Ateles* (pp. 351–372).
613 Cambridge: Cambridge University Press.

614 Richard, A. F., Dewar, R. E., Schwartz, M., & Ratsirarson, J. (2002). Life in the slow lane?
615 Demography and life histories of male and female sifaka (*Propithecus verreauxi
616 verreauxi*). *Journal of Zoology*, 256, 421–436.

617 Ross, C. (1991). Life history patterns of New World monkeys. *International Journal of
618 Primatology*, 12, 481–502.

619 Rudran, R., & Fernandez-Duque, E. (2003). Demographic changes over thirty years in a red
620 howler population in Venezuela. *International Journal of Primatology*, 24, 925–947.

621 Shimooka, Y., Campbell, C. J., Di Fiore, A., Felton, A., Izawa, K., Link, A., Nishimura, A.,
622 Ramos-Fernández, G., & Wallace, R. (2008). Demography and group composition in
623 Ateles. In C. J. Campbell (Ed.), *Spider Monkeys: Behavior, Ecology and Evolution of*
624 *the Genus Ateles* (pp. 329–350). Cambridge: Cambridge University Press.

625 Silk, J. B., & Brown, G. R. (2008). Local resource competition and local resource
626 enhancement shape primate birth sex ratios. *Proceedings of the Royal Society of*
627 *London B: Biological Sciences*, 275, 1761-1765.

628 Stevenson, P. R. (2011). The abundance of large Ateline monkeys is positively associated
629 with the diversity of plants regenerating in Neotropical forests. *Biotropica*, 43(4), 512-
630 519.

631 Strier, K. B. (2014). Northern muriqui monkeys: Behavior, demography, and conservation.
632 In J. Yamagiwa & L. Karczmarski (Eds.), *Primates and Cetaceans: Field Studies and*
633 *Conservation of Complex Mammalian Societies* (pp. 233–247). New York: Springer.

634 Strier, K. B., Altmann, J., Brockman, D. K., Bronikowski, A. M., Cords, M., Fedigan, L.
635 M, Lapp, H., Liu, X., Morris, W. F., Pusey, A. E., Stoinski, T. S., & Alberts, S.C.
636 (2010). The Primate Life History Database: A unique shared ecological data resource.
637 *Methods in Ecology and Evolution*, 1, 199-211. <https://doi.org/10.1111/j.2041-210X.2010.00023.x>

639 Strier, K. B., Possamai, C. B., & Mendes, S. L. (2015). Dispersal patterns of female
640 northern muriquis: Implications for social dynamics, life history, and conservation. In

641 T. Furuichi, F. Aureli, & J. Yamagiwa (Eds.), *Dispersing Primate Females* (pp. 3–21).
642 Tokyo: Springer.

643 Sugiyama, Y. (2004). Demographic parameters and life history of chimpanzees at Bossou,
644 Guinea. *American Journal of Physical Anthropology*, 124, 154–165.

645 Symington, M. M. (1988). Demography, ranging patterns, and activity budgets of black
646 spider monkeys (*Ateles paniscus chamek*) in the Manu National Park, Peru. *American
647 Journal of Primatology*, 15, 45–67.

648 Symington, M. M. (1990). Fission-fusion social organization in *Ateles* and *Pan*.
649 *International Journal of Primatology*, 11, 47–61.

650 Valero, A., Schaffner, C. M., Vick, L. G., Aureli, F., & Ramos-Fernández, G. (2006).
651 Intragroup lethal aggression in wild spider monkeys. *American Journal of
652 Primatology*, 68, 732–737. <https://doi.org/10.1002/ajp.20263>

653 Van Schaik, C.P., & Isler, K. (2012). Life-history evolution in primates. In J.C. Mitani, J.
654 Call, P.M. Kappeler, R.A. Palombari, & J.B. Silk (Eds.), *The Evolution of Primate
655 Societies* (pp. 220–244). Chicago, IL: University of Chicago Press.

656 Vick, L. G. (2008). Immaturity in spider monkeys: a risky business. In C. J. Campbell
657 (Ed.), *Spider Monkeys: Behavior, Ecology and Evolution of the Genus Ateles* (pp. 288–
658 328). Cambridge: Cambridge University Press.

659 Wallace, R. B. (2007). Towing the party line: Territoriality, risky boundaries and male
660 group size in spider monkey fission–fusion societies. *American Journal of
661 Primatology*, 69, 1–16. <https://doi.org/10.1002/ajp.20484>

662 Watts, D. P., & Mitani, J. C. (2001). Boundary patrols and intergroup encounters in wild
663 chimpanzees. *Behaviour*, 138, 299–328.

664 Wilson, M. L., Kahlenberg, S. M., Wells, M., & Wrangham, R. W. (2012). Ecological and
665 social factors affect the occurrence and outcomes of intergroup encounters in
666 chimpanzees. *Animal Behaviour*, 83, 277–291.

667 Wilson, M. L., & Wrangham, R. W. (2003). Intergroup relations in chimpanzees. *Annual
668 Review of Anthropology*, 32, 363–392.
669 <https://doi.org/10.1146/annurev.anthro.32.061002.120046>

670 Wrangham, R. W. (1999). Evolution of coalitionary killing. *Yearbook of Physical
671 Anthropology*, 42, 1–30.

672

673 **TABLES**

674

675 **Table 1.** Summary of offspring produced by each adult female over the course of the study.

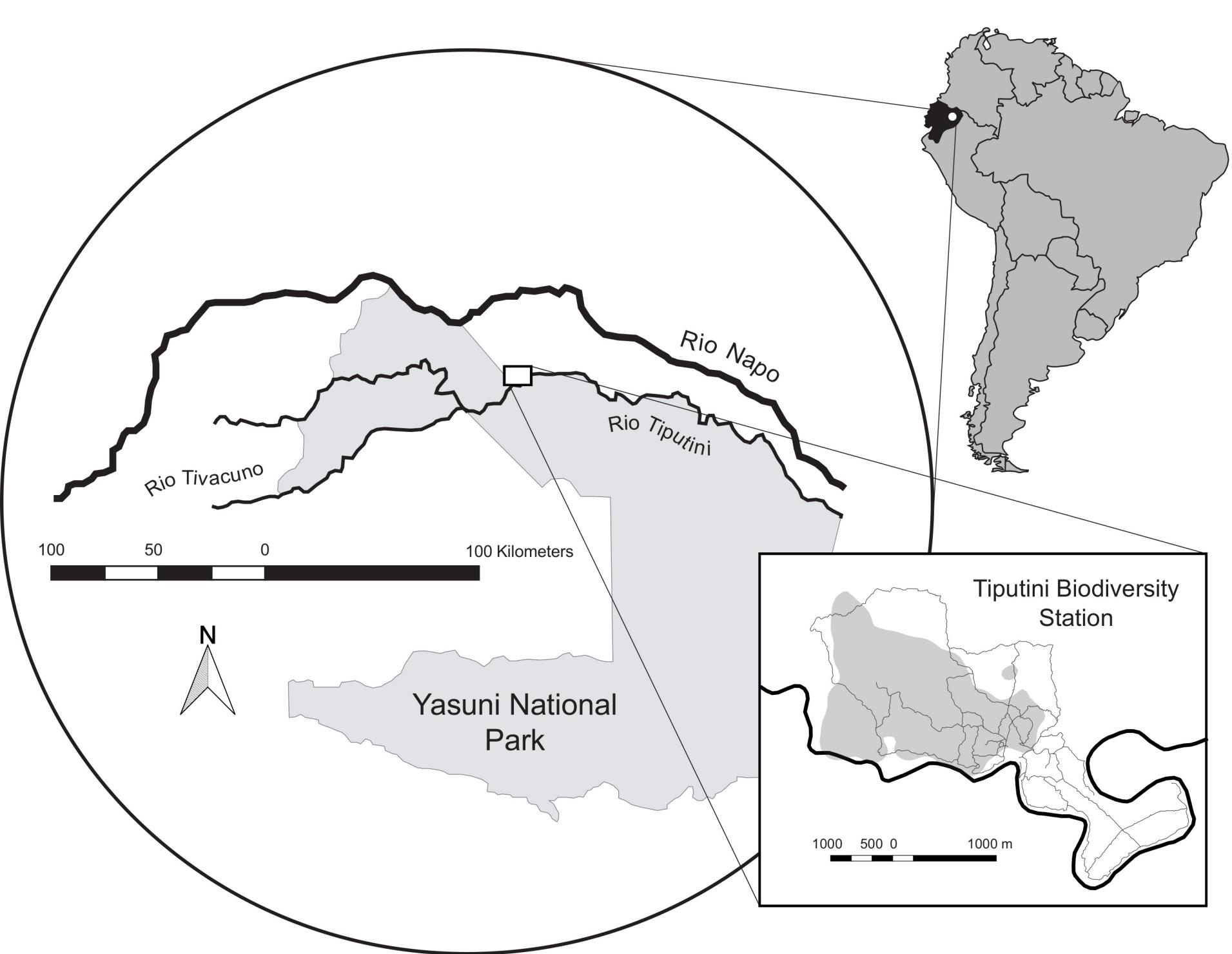
676 Five immigrant females who have given birth since immigration are indicated by asterisks

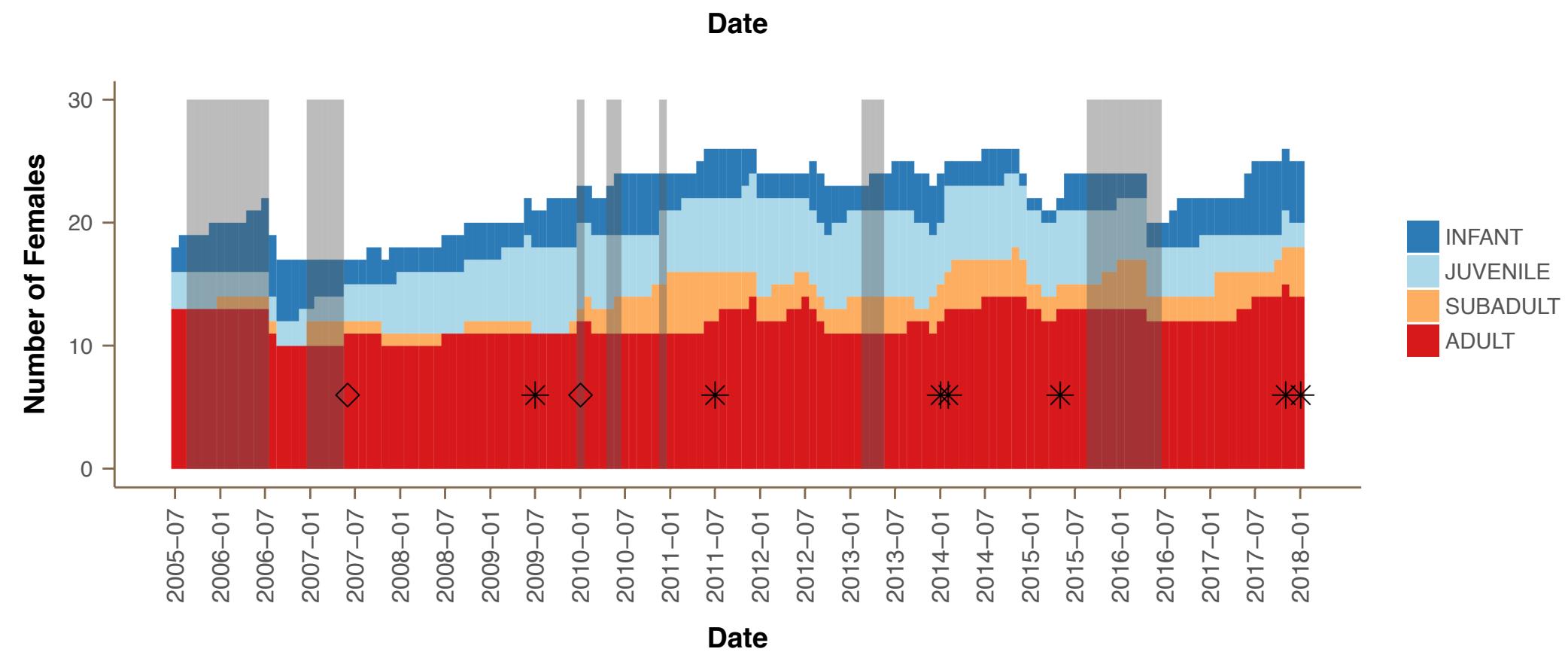
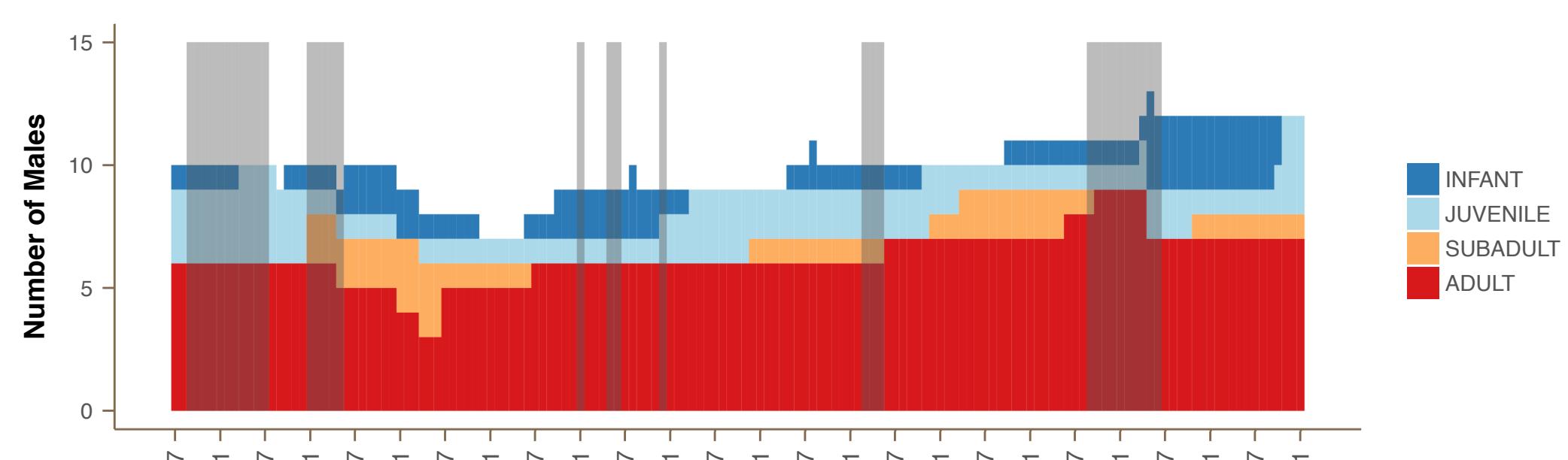
677 (*), while three original residents indicated by crosses (†) disappeared during the course of

678 the study.

MOTHER	OFFSPRING			
	MALES	FEMALES	UNKNOWN	TOTAL
ANA	3	3	---	6
BUKA	1	2	---	3
COTINGA *	0	1	---	1
EVA	1	4	---	5
FIONA *	1	0	---	1
GISELLA †	1	1	---	2
JULIETA *	0	2	---	2
KAUO †	1	3	---	4
LUNA	1	4	---	5
MIKA	1	3	---	4
NIPA	1	3	---	4
OIKAMO †	1	1	1	3
RUMBA *	0	1	---	1
SOFIA	2	2	---	4
TAIGA *	0	1	---	1
VITA	1	2	---	3
TOTAL OFFSPRING	15	33	1	49
OFFSPRING BORN SINCE 2005	11	30	1	39

679


680



681 **FIGURE LEGENDS**

682 **Figure 1.** Location of the Tiputini Biodiversity Station within Ecuador and an overview of
683 trail system at the study site. The 95% kernel density home range of the main *Ateles* study
684 group, MQ-1, for the majority of the study is indicated with grey shading.

685

686 **Figure 2.** Summary of changes in the demographic composition of males (upper panel) and
687 females (lower panel) in the main *Ateles* study group, MQ-1, since 2005. Periods of
688 inconsistent observer presence are indicated by grey shading. Cases of immigrations
689 (asterisks) and transient visitations (diamonds) by young adult females are also indicated in
690 the lower panel.

