ANAGRAM-FREE CHROMATIC NUMBER IS NOT PATHWIDTH-BOUNDED?
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AsstrRACT. The anagram-free chromatic number is a new graph parameter introduced
independently by Kamcdev, Luczak, and Sudakov [1]] and Wilson and Wood [5]]. In this note,
we show that there are planar graphs of pathwidth 3 with arbitrarily large anagram-free
chromatic number. More specifically, we describe 2n-vertex planar graphs of pathwidth
3 with anagram-free chromatic number ()(logn). We also describe kn vertex graphs with
pathwidth 2k — 1 having anagram-free chromatic number in Q(klogn).

1 Introduction

A string s = sq,...,5yk is called an anagram if sq,...,s; is a permutation of si,q,...,s5;. For
a graph G, a c-colouring ¢ : V(G) — {1,...,c} is anagram-free if, for every odd-length path
V1,V,...,Vy in G, the string @(vy),..., (vok) is not an anagram. The anagram-free chromatic
number of G, denoted 7, (G), is the smallest value of ¢ for which G has an anagram-free
c-colouring.

Answering a long-standing question of Erd6s and Brown, Kerdnen [2] showed that
the path P, on n vertices has an anagram-free 4-colouring. A straightforward divide-and-
conquer algorithm applied to any n-vertex graph of treewidth k yields an anagram-free
O(klogn)-colouring. The same divide-and-conquer algoritm, applied to graphs that exclude
a fixed minor gives an anagram free O(v/n)-colouring [[1]. An interesting variant of this
divide-and-conquer algorithm is used by Wilson and Wood [5]] to obtain anagram-free
(4k + 1)-colourings of trees of pathwidth k. On the negative side, Kamcev, Luczak, and
Sudakov [1]] and Wilson and Wood [55] have shown that there are trees—even binary trees—
with arbitrarily large anagram-free chromatic number. These results, and some others, are
summarized in Table[1]

All of the examples of graphs having large anagram-free chromatic number are
graphs with large pathwidth [3]. Therefore, an obvious question is whether anagram-
free chromatic number is pathwidth-bounded, i.e., can 7, (G) be upper bounded by some
function of the pathwidth pw(G) of G? Such a result seems plausible, for two reasons:

1. pathwidth is a measure of how path-like a graph is and Kerdnen showed that paths
have anagram-free 4-colourings; and

2. the result of Wilson and Wood [5] shows that 7, (T) < 4pw(T) + 1 for every tree, T.

*This work was partly funded by NSERC and the Ontario Ministry of Research, Innovation and Science
6Department of Computer Science, Ben-Gurion University of the Negev
%School of Computer Science and Electrical Engineering, University of Ottawa

%School of Computer Science, Carleton University




Graph class Bounds Reference

Paths T, (G) =4 [2, Theorem 1]
Graphs of treewidth k 1,(G) € O(klogn) folklore

Graphs excluding a minor of size h  7,(G) € O(h¥?n'/?) [1], Proposition 1.2]
Trees 1, (G) € Q(logn/loglogn) [5, Theorem 3]
Trees of pathwidth k k<m,(G)<4k+1 [5, Theorem 5]
Trees of radius r r<m,(G)<r+1 [5, Theorem 4]
Binary trees 7,(G) € Q(y/logn/loglogn) [1, Proposition 1.1]
4-regular graphs 7. (G) € Q(v/n/logn) [T, Proposition 3.1]
d-regular graphs 7, (G) € Q(n) [1, Theorem 1.3]
Subdivisions of graphs 1,(G) < (4] Theorem 6]
Planar graphs 7,(G) € O(\/n) [1} Corollary 2.3]
Planar graphs of maximum degree 3 7,(G) €

[5, Theorem 1]
(logn) Theorem
(klogn) Theorem

Planar graphs of pathwidth 3 1,(G) €

Q

8

@)

Q(logn/loglogn) (1, Proposition 2.4]
Q
Graphs of pathwidth k > 3 7,(G) € Q

Table 1: Bounds on anagram-free chromatic number. Upper bounds apply to all graphs in
the class. Lower bounds apply to some graphs in the class.

The purpose of this note, however, is to show that the result of Wilson and Wood can not
be strengthened even to planar graphs of pathwidth 3 and maximum degree 5. (Here and
throughout, log x = log, x denotes the binary logarithm of x.)

Theorem 1. For every n € N, there exists a 2n-vertex planar graph of pathwidth 3 and maximum
degree 5 whose anagram-free chromatic number is at least log(n + 1).

Theorem 2. For every n € N and every integer k > 3, there exists a kn-vertex graph of pathwidth
2k — 1 and maximum degree 3k — 1 whose anagram-free chromatic number is at least (k —
2)log(n/3).

These two results show that the straightforward divide-and-conquer algorithm using
separators gives asymptotically worst-case optimal colourings for graphs of pathwidth k
and graphs of treewidth k.

2 Proof of Theorem

Let s € X" be a string over some alphabet X. For each a € ¥, we let n,(s) denote the number
of occurences of a in s. We say that s is even if n,(s) is even for each a € ¥. The following
lemma says that strings with no even substrings must use an alphabet of at least logarithmic
size.

Lemma 1. If s = sg,...,5y,_1 € X%" and || < log(n + 1), then s contains a non-empty even
substring sp;,...,spj-1 for some 0 <i<j<n.

Proof. For any string g € X*, we define the parity vector P(q) = (n,(q) mod 2 : a € ¥) and
observe that g is even if and only if P(q) = (0,...,0). Furthermore, for two strings p and g,




the parity vector of their concatenation pq is equal to the xor-sum (i.e., modulo 2 sum) of
their parity vectors:

P(pq)=P(p)®P(q) -

Define the strings t,...,t,, where t; is the empty string and, for each i € {1,...,n}, define
t; =S9,..-,52i_1-

Now consider the parity vectors P(tg), P(t1),...,P(t,). Each of these n+1 vectors is a
binary string of length |X| < log(n + 1) therefore, there must exist two indices 7, € {0, ..., n}
with i < j such that P(t;) = P(t;). However,

P(tj) = P(t;)® P(s2i,-..,S2j-1)

and since P(t;) = P(t;), this implies that P(s;,...,52j-1) =(0,...,0) and s5;,...,52j_1 is even,
as required. O

The next lemma says that if we split an even string into consecutive pairs, then
we can can colour one element of each pair red and the other blue in such a way that the
resulting red and blue multisets are exactly the same.

Lemma 2. Let s = s,...,52,_1 € 2" be an even string. Then there exists a binary sequence
Vo, .-+, Vy_1 Such that the string s, = Sy, S24v,r-++»S2(r=1)+v,_, 15 14(5y) =n,(s)/2 forall a € ¥.

Proof. Suppose for the sake of contradiction that the lemma is not true, and let s be the
shortest counterexample. For v € {0,1}, let s3 = So11-y,,S241-v,7+-+»S2(r—1)+1-v, , D€ the
complement of s,,. Let v € {0,1}" be the binary vector that minimizes

D Ialsy) = nalso)l - (1)

aey

Since s is a counterexample to the lemma, (1)) is greater than zero.

For each j €{0,...,r—1}, letx; = $2j+v; and let y; = $2j+1-v; SO that s, = xq,...,x,_1 and
S5 =Y0,---,Yr_1. Since (1) is non-zero, there exists some j; such that My, (sy) > My, (s7). This
means that ny. (sy) > ny. (s7), otherwise ﬂippinéﬂ v;, would decrease 1} by two. Further-
more, y;, # X; since, otherwise, we could remove sy; and 55,1 from s and obtain a smaller
counterexample, since the value of v; has no effect on .

Refer to Figure[I] Let a; = X;, and for k =2,3,4..., define % = Pji, and.deﬁn.e jk. to
be any index such that x;, = a;. Notice that that n, (s,) > n,, (s7) since, otherwise, flipping
vj,...,vj,_, would decrease the value of . Indeed, flipping v;,,...,v;, , decreases ng (s,) by
one, increases 1, (s,) by one, and does not change 7,(s,) for any a € ¥\ {a;, ar}. This implies
that ji is well-defined since n, (s,) > 1,4, (s3) > 1.

Since s is finite, there is some minimum value k such that a; = ai for some k’ < k.

This defines a sequence of indices ji,..., jx—1 such that

L e =Xj, =9j,, = ap

2. ap=yj,,=xj forallle{k’+1,....k-1}.

Here and throughout, flipping a binary variable b means changing its value to 1 —b.
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Figure 1: The proof of Lemma

Figure 2: The graph G in the proof of Theorem 1]

In words, for each £ € {k/,..., k}, each occurrence of a; in s, is matched with a corresponding
occurrence of a, in s. We claim that this contradicts the minimality of s. Indeed, by
TeMOVING 82, ,52j,415 52,17 52y +1r+ 7 52j5 17 S2j_y+1 from s we obtain a smaller counterex-
ample. O

Proof of Theorem |1} Let G be the graph with vertex set V(G) = {xy,...,x,,v1,...,¥,} and with

edge set
n-2

E(G) = {x;pi i €10,...,n =1 U|_J{xigisr, xipi) -
i=0

The graph G has pathwidth 3 as can be seen from the path decomposition By, ..., B,,_, where
B; = {v;,w;,vi;1,w;;1}. See Figure 2] Although not immediately obvious from Figure[2] G is
also planar—see Figure

Now, consider some colouring ¢ : V(G) — X with [Z| <log(n+1). Applying Lemmall]
to the string s = @(x1), @(v1),..., ¢(x,,), ¢(v,) we conclude that there is some i < j such that
o(x;), (vi),--., p(xj), (y;) is even. By Lemmaand the symmetry between each x; and y;
we can assume that n,(@(x;),..., ¢(x;)) = n,(¢(yi),..., ¢(y;)) for each a € . But then the path
Xiy.-,Xj,Yj,Yj-1,---,¥; has a colour sequence @(x;),..., @(x;), 9(v;), (Yj-1),-.., ¢(y;) that is
an anagram. O

3 Proof of Theorem

Lemma 3. For every sequence of sets Xy,...,X,, C X, each of size k > 2, with |X| < (k—2)log(n/3),
there exists indices 1 <i < j < n and subsets Xi’,...,X]f such that, for each € € {i,..., j}, X, C X,,
|Xé| > 2 and, for each a € ¥ the number of subsets in Xl-’,...,X]f that contain a is even.




Figure 3: The graph G in the proof of Theorem[l]is planar and is even a 2-page graph.

Proof. Forany 1 <i<j<mn,lety;; U€ ;Xjand, forany I C ¥
Xy N1 #0}. We distinguish between two cases.

ij let Nji(I) ={Celi,...,j}:

Case 1: There is some pair of indices 1 <i <j < such that, forevery IC ¥, ;,

INi,j (DI = [T}/ (k=2) . (2)

In this case we will show the existence of the desired sets X{,...,X]f. Without loss of
generality, assume i = 1, j = 1, and define N = Ny ,,.

Define a bipartite graph H with vertex set V(H) =X U{l,...,n} and edge set E(H) =
{(a,i) : i €{1,...,n},a € X;}. We will show that E(H) contains a subset E’ such that each
element a € ¥ appears exactly once in E’ and each element of {1,...,n} appears at most k — 2
t1mes in E’. That is, E’ defines a mapping f : ¥ — {1,...,n} in Wthh foranyie{l,...,n},
If1() <k-2.

The existence of the mapping f establishes the lemma since we can start with
Xi’ = X; for all i € {1,...,n} and then, for each a € ¥ that appears an odd number of times,
we can remove a from the set X}(a). When this process is complete each X! has size at least
2 and each a € ¥ occurs in an even number of the sets X7,..., X,

All that remains is to prove the existence of the edge set E’, which we do using an
augmenting paths argument like that used, for example, to prove Hall’s Marriage Theorem.
Consider an edge set E’ C E(H) that contains exactly one edge incident to each a € ¥ and let
f:X —{1,...,n} be the corresponding mapping. Then we define

Zmax0|f (- (k-=2)}

Note that the set E’ we hope to find has ®(E’) = 0. Now, select some E’ that minimizes
®(E’). If D(E’) = 0 then we are done, so assume by way of contradiction, that ®(E’) > 0.
Thus, there exists some index iy € {1,...,n} such that |f ! (iy)| > k — 1 and therefore the set
¥ = f~!(ip) has size at least k — 1. Therefore,

Zol | |k-1
ol || (5]




In particular, N(Xy) \ {ip} is non-empty. Let Iy = {iy} and observe that each i; € N(Xy) \ I
must have |f 71 (i1)] > k — 2 since, otherwise we could replace the edge (a;,iy) with (ay,i;) in
E’ and this would decrease ®(E’). Let I; = N(X() and let ©; = Uilel,-f_l(il)- We have just
argued that

12412 L|(k-2)+1

and therefore,

124 [Ii|(k-2)+1
s E =2

“lell—i_l .

But now we can continue this argument, defining I; = N(X;_;) and ¥; = Ui}_d]_f‘l(ij).

Again, each i; € I; \ U]gjl Iy must have If‘l(ij)l > k — 2, otherwise we can find a path
ig,ag,11,41,...,4;_1i; and replace, in E’, the edges igay,...,ij_1a;_1 with agiy,ayis,...,aj_1i;
which would decrease ®(E’). In this way, we obtain an infinite sequence of subsets
Iy,....Io € {1,...,n} such that |[;| > |[;_|. This is clearly a contradiction, since each |I;]
is an an integer in {1,...,n}.

Case 2: Forevery 1 <i<j<n,thereexists aset I C¥;;such that |N;;(I)| <|I|/(k-2). In
this case, we will show that |¥| > (k — 2)log(n/3).

Before jumping into the messy details, we sketch an inductive proof that gives the
main intuition for why |X| € Q(klogn): There is some set Iy C ¥ such that N(I) partitions
{1,...,n} into O(|I|/k) intervals. One such interval i,..., j, must have size QQ(nk/|I|). By
induction on #, |¥; Q(klog(nk/|I])). But X; . is disjoint from I, so

ool = 0o

|X| > |I| + Q(klog(nk/|1])) = |I| + Q(klogn) — O(klog(|I|/k)) = Q(klogn) .

The messy details occur when |I| = k — 1 since then the |I| and —O(klog(|I|/k) terms are close
in magnitude.

Let ng=mn,ig=1, jo=n, Xy =X and let Iy C ¥ be such that |[N(Iy)| <|I|/(k — 2). For
each integer ¢ with n,_; > 1, we define

1. ipand jy such that iy <iy <jy <je_1, {ig,..., Je} N Nig,l,jg,l (Ir.1)=0,and np = jp—ip+1
is maximized.

2. I, C ):i[’]'[ such that |N;, : (Ip)| < I |/k;

0]e

In words, N;, i (I,_1) partitions ig_y,..., j_1 into intervals and we choose iy and j, to be
the endpoints of a largest such interval and recurse on that interval using a new set I,.

Letting y¢ = |N;, j,(I¢)|, observe that, for £ > 1,

np > M1 =861 Mer
Ve-1+1  Ypa+1

By expanding the preceding equation we can easily show that

n

>— 2.
M2h (v +1)

1y




Note that 1y, is defined until n, < 1 so combining this with the preceding equation and
taking logs yields

S

-1
(v + 1) >log(n/3) (3)

<
Il
(=)

Finally, observe that the sets I,...,I,_; are disjoint, so

(-1

-1
B2 ) Il > ) (k=2)p, . (4)
=0 =0

Now, minimizing (4) subject to (3) and using the fact that each y, > 1 is an integer shows
that |X| > (k — 2)log(n/3), as desired. (The minimum is obtained when ¢ = log(n/3) and

Vi=V2==y1=1) O

Proof of Theorem |2} The pathwidth 2k — 1 graph, G, used in this proof is a natural gener-
alization of the pathwidth 3 graph used in the proof of Theorem (1| The kn vertices of G
are partitioned in subsets Vy,...,V,, each size of size k. For each i € {1,...,n}, V; is a clique
and, for each i € {1,...,n—1}, every vertex in V; is adjacent to every vertex in V;,;. That this
graph has pathwidth 2k — 1 can be seen from the path decomposition By,...,B,_, where
each B; ={V; U Vj,1}.

Suppose we have some colouring ¢ : V(G) — X, with |X| < (k—2)log(n/3). Define the
sets Xy,..., X, where X; = {@(v) : v € V;}. By Lemma [3} we can find indices i € {0,...,n— 1}
and r > 0 and subsets V/,..., V// such that, for each £ € {1,...,7}, V] C V;,4, [V/| > 2, and such
that each colour a € ¥ appears in an even number of V/,..., V.

Next, label the vertices in VJ,..., V/ red and blue as follows. If |[V| is even, then
label half its vertices red and half its vertices blue, arbitrarily. Let Qy,...,Q; denote the
subsequence of V/,..., V/ consisting of only sets of odd size (so the vertices in Q1,...,Q; are
not labelled red or blue yet). Then, for odd values of i, label [|Q;|/2] vertices of Q; red and
the remaining blue. For even values of i label | |Q;|/2] vertices of Q; red and the remaining
blue. Observe that, since Zle |Vl.’| is even, t is also even, so exactly half the vertices in

i—1 V/ are red and half are blue.

Now, consider the following perfect bichromatic matching of [ Ji_; V/: In every set
V! of even size we match each red vertex in V with a blue vertex in V. In each odd size set
Q;, we match [|Q;|/2] red vertices with blue vertices leaving one vertex v; unmatched. This
leaves t unmatched vertices vy,...,v; and these vertices alternate colour between red and
blue. To complete the matching, we match v,; with v,;_ for each i € {1,...,1/2}.

Now, treat this matching as a long string s = x1,1,...,x,,y, where each x; = ¢(v;),
each y; = p(w;), and each (v;, w;) is a matched pair of vertices. Now, applying Lemma
to s, we obtain two sets of vertices V = {v{,...,v{;} and W = {wi,...,w,;} such that, for each
a€X, ng(o@y),...,0(vy)) = ng(p(wy),..., p(wy)). Thus, all that remains is to show that G
contains a path P whose first half is some permutation of V and whose second half is some
permutation of W. But this is obvious, because, for each i € {1,...,7}, V/ contains at least
one vertex of V and at least one vertex of W. Thus, the path P first visits all the vertices
of V N V] followed by all the vertices of V NV, and so on until visiting all the vertices in
V N V/. Next, the path returns and visits all the vertices in WNV/, Wn Vr’_l, and so on




back to W N V. The existence of the path P shows that no colouring of G with fewer than
(k —2)log(n/3) colours is anagram-free, so 1, (G) > (k — 2)log(n/3). O

4 Remarks

We have show that anagram-free chromatic number is not pathwidth-bounded, even for
planar graphs. The graph we use in the proof of Theorem [1]is a 2-page graph; it has a book
embedding using two pages. Outerplanar graphs have a book embedding using a single
page. Is anagram-free chromatic number pathwidth-bounded for outerplanar graphs? We
do not even know if the 2 x n grid has constant anagram-free chromatic number.
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