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Abstract

We prove the following conjecture of Leighton and Moitra. Let T
be a tournament on [n] and &,, the set of permutations of [n]. For an
arc uv of T, let Ay, = {0 € &, : o(u) < o(v)}.

Theorem. For a fixed € > 0, if P is a probability distribution on &,
such that P(Ay,) > 1/2 + € for every arc wv of T, then the binary
entropy of P is at most (1 — 9J.) log, n! for some (fixed) positive 9.

When T is transitive the theorem is due to Leighton and Moitra; for
this case we give a short proof with a better ¢..

1 Introduction

In what follows we use log for log, and H(-) for binary entropy. The purpose
of this note is to prove the following natural statement, which was conjec-
tured by Tom Leighton and Ankur Moitra [6] (and told to the third author
by Moitra in 2008).

Theorem 1. Let T be a tournament on [n] and o a random (not necessarily
uniform) permutation of [n] satisfying:

for each arc wv of T, P(o(u) < o(v)) >1/2+¢. (1)
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Then
H(o) < (1—19)logn!, (2)

where ¥ > 0 depends only on €.

(We will usually think of permutations as bijections o : [n] — [n]). The
original motivation for Leighton and Moitra came mostly from questions
about sorting partially ordered sets; see [6] for more on this.

For the special case of transitive T, Theorem 1 was proved in [6] with
¥J. = Ce'. Note that for a typical (ak.a. random) T, the conjecture’s
hypothesis is unachievable, since, as shown long ago by Erdds and Moon [2],
no o agrees with 7' on more than a (1/2+o0(1))-fraction of its arcs. In fact, it
seems natural to expect that transitive tournaments are the worst instances,
being the ones for which the hypothesized agreement is easiest to achieve.
From this standpoint, what we do here may be considered somewhat unsat-
isfactory, as our 9’s (for general T') are quite a bit worse than what [6] gives
for transitive 7". In this special case it’s easy to see [6, Claim 4.14] that one
can’t take ¥ greater than 2e, which seems likely to be close to the truth.
We make some progress on this, giving a surprisingly simple proof of the
following improvement of [6].

Theorem 2. For T, P, 0 as Theorem 1 with T transitive,

H(o) < (1 —¢€*/8)nlogn.

The proof of Theorem 1 is given in Section 3 following brief preliminaries
in Section 2. The underlying idea is similar to that of [6], which in turn was
based on the beautiful tournament ranking bound of W. Fernandez de la
Vega [1]; see Section 3 (end of “Sketch”) for an indication of the relation
to [6]. Theorem 2 is proved in Section 4.

2 Preliminaries

Usage

In what follows we assume n is large enough to support our arguments
and pretend all large numbers are integers.

As usual G[X] is the subgraph of G induced by X; we use G[X,Y] for
the bipartite subgraph induced (in the obvious sense) by disjoint X and Y.
For a digraph D, D[X] and D[X,Y] are used analogously. For both graphs
and digraphs, we use | - | for number of edges (or arcs).



Also as usual, the density of a pair (X,Y") of disjoint subsets of V(G) is
d(X,)Y) =da(X,Y) = |G[X,Y]|/(|X]|Y]), and we extend this to bipartite
digraphs D in which

at most one of DN (X xY), DN (Y x X) is nonempty. (3)

For a digraph D, D" is the digraph gotten from D by reversing its arcs.

Write &,, for the set of permutations of [n]. For ¢ € &,,, we use T,
for the corresponding (transitive) tournament on [n] (that is, uv € T, iff
o(u) < o(v)) and for a digraph D (on [n]) define

fit(o, D) = |D NT,| — |D" N

(e.g. when D is a tournament, this is a measure of the quality of o as a
ranking of D).

Regularity

Here we need just Szemerédi’s basic notion [7] of a regular pair and a
very weak version (Lemma 3) of his Regularity Lemma. As usual a bipartite
graph H on disjoint X UY is é-regular if

|dH(X/7Y/) - dH(X7Y>| <9

whenever X' C X, Y’ CY, |X'| > §|X| and |Y'| > 0]V, and we extend this
in the obvious way to the situation in (3). It is easy to see that if a bigraph
H is §-regular then its bipartite complement is as well; this implies that for
a tournament 7" on [n] and X, Y disjoint subsets of [n],

TN (X xY) is d-regular if and only if TN (Y x X) is. (4)

The following statement should perhaps be considered folklore, though
similar results were proved by Janos Komlds, circa 1991 (see [5, Sec. 7.3]).

Lemma 3. For each § > 0 there is a 8 > 207" guch that for any bigraph
H on X UY with |X|,|Y| > n, there is a §-reqular pair (X', Y") with X' C
X,Y' CY and each of | X'|,|Y’| at least fn.

Corollary 4. For each § > 0, 8 as in Lemma 3 and digraph G = (V, E),
there is a partition LU RUW of V' such that EN (L x R) is §-reqular and
min{|L],|Rl} > BVI/2

Proof. Let X UY be an (arbitrary) equipartition of V' and apply Lemma 3
to the undirected graph H underlying the digraph G N (X x Y). O



3 Proof of Theorem 1

We now assume that ¢ drawn from the probability distribution P on &,
satisfies (1) and try to show (2) (with ¥ TBA). We use E for expectation
w.r.t. P and p for uniform distribution on &,,.

Sketch and connection with [6]
We will produce S1,...,S5, C€ T with S; C L; x R; for some disjoint
L;, R; C [n], satisfying:

(i) with [|.S;]| := min{|L;|, |Ri|}, D ||Si]| = Q(nlogn) (where the implied

constant depends on €);
(ii) each S; is d-regular (with § = 0. TBA);
(iii) for all i < j, either (L; U R;) N (L; UR;) = @ or Lj U R; is contained

in one of L;, R; (note this implies the S;’s are disjoint).

Let A; = {fit(o,S;) > ¢|S;|} and Q = {D>_ 14, - ||Si|| = Q(nlogn)} (where
we follow the standard use of curly brackets to denote events). The main
points are then:

(a) P(Q) is bounded below by a positive function of . (This is just (i)
together with a couple applications of Markov’s Inequality.)

(b) Regularity of S; implies pu(A;) < exp[—Q(]|Si|])]-
(c¢) Under (iii), for any I C [m],
p(NierAi) < expl=3 ;i Q([1Si)]

(a weak version of independence of the A;’s under u).

And these points easily combine to give (2) (see (6) and (8)).

For the transitive case in [6] most of this argument is unnecessary; in
particular, regularity disappears and there is a natural decomposition of T
into S;’s: Supposing T' = {ab : a < b} and (for simplicity) n = 2¥, we may
take the S;’s to be the sets L; x R; with (L;, R;) running over pairs

([(2s —2)277n +1,(2s — 1)277n), [(2s — 1)279n + 1,25279n]),  (5)

with j € [k] and s € [277!]. (As mentioned earlier, this decomposition of
the (identity) permutation (1,...,n) also provides the framework for [1].)



After some translation, our argument (really, a fairly small subset thereof)
then specializes to essentially what’s done in [6]. O

Set 0 = .03¢ and let 8 be half the 8 of Lemma 3 and Corollary 4. We use
the corollary to find a rooted tree 7 each of whose internal nodes has degree
(number of children) 2 or 3, together with disjoint subsets S1,S2, ..., Sy, of
(the arc set of) T', corresponding to the internal nodes of 7. The nodes of
T will be subsets of [n] (so the size, |U|, of a node U is its size as a set).

To construct 7T, start with root V3 = [n] and repeat the following for
k = 1,... until each unprocessed node has size less than (say) t := /n.
Let Vi be an unprocessed node of size at least ¢t and apply Corollary 4 to
T'[Vk] to produce a partition Vi, = Ly U Ry UWy, with |Lg|, |Rx| > 5|Vi| and
Sk :=T N (Lg x Ry) d-regular of density at least 1/2. (Note (4) says we can
reverse the roles of Ly and Ry if the density of T'N (Lx x Ry) is less than
1/2.) Add Lg, Ri, Wy to T as the children of Vj and mark V) “processed.”
(Note the V}’s are the internal nodes of T; nodes of size less then ¢ are not
processed and are automatically leaves. Note also that there is no restriction
on |Wy| and that, for k > 1, V is equal to one of L;, R;, W; for some i < k.)

Let m be the number of internal nodes of T (the final tree). Note that
the leaves of T have size at most ¢ and that the S;’s satisfy (ii) and (iii) of
the proof sketch; that they also satisfy (i) is shown by the next lemma.

Set

A= Z:il |Vz|,

this quantity will play a central role in what follows.
Lemma 5. A > %nloggn

Proof. This will follow easily from the next general (presumably known)
observation, for which we assume 7 is a tree satisfying:

e the nodes of T are subsets of S, an s-set which is also the root of T;

e the children of each internal node U of T form a partition of U with
at most b blocks;

e the leaves of T are Uy, ..., U,, with |U;| = u; <t (any t) and depth d;.

Lemma 6. With the setup above, Y w;d; > slogy(s/t).

(Of course this is exact if 7 is the complete b-ary tree of depth d and all
leaves have size 27°5s).



Proof. Recall that the relative entropy between probability distributions p
and g on [r] is

D(pllq) = sz' log(pi/qi) > 0

(the inequality given by the concavity of the logarithm). We apply this with
p; = u;/s and g; the probability that the ordinary random walk down the
tree ends at u;. In particular ¢; > b~%, which, with nonnegativity of D(p||q)
and the assumption u; < t, gives

> (ui/s)dilogh > (ui/s)log(1/g;)
> Z(uz/s) log(s/u;) > log(s/t).

The lemma follows. O

This gives Lemma 5 since ) |Vi| = > ; |U|d(U), with U ranging over
leaves of 7 (and d(-) again denoting depth). O

Lemma 7. The number m of internal nodes of T is less than n.

Proof. A straightforward induction shows that the number of leaves of a
rooted tree is 1 + > (b(w) — 1), where w ranges over internal nodes and b
denotes number of children. The lemma follows since here the number of
leaves is at most n (actually at most 3y/n) and each d(w) is at least 2. []

Recalling that A; = {o € &,, : fit(o, S;) > €]5;|} and that E refers to P,
we have E[fit(o, S;)] > 2¢|S;|, which with

Effit(o, 5:)] < P(A:)|Si] + (1 = P(A))e|Sif < (P(Ai) +€)]5i]

gives P(A;) > e (essentially Markov’s Inequality applied to |S;| — fit(o, .S;)).

Set & = |Vi|14, and £ = Y, &. Recall A = 77", |Vi| and let Q be
the event {{ > eA/2}. Then E[§] = |Vi|P(4;) > €|Vi|, implying E[¢] =
Y E[&] > €A, and (since & < |V;]) & < A; so using Markov’s Inequality as
above gives P(Q) > ¢/2.

Thus, with ¢ chosen from &,, according to PP, we have

H(o) < H(P(Q)) + (1 - P(Q))logn! + P(Q) log Q]
< 1+logn!+P(Q)logu(Q) < 1+logn!+ (¢/2)log u(Q) (6)

(recall p is uniform measure on &,,).



Let
T={IClm]: Ties IVi| > A/2)

and, for I € J, let A; = NjerA;. Set
b=¢e25p33/33 (7)
(see (12) for the reason for the choice of b). We will show, for each I € 7,
p(Ar) < e N2, (®)
which implies
log u(Q) = log u(Ureg Ar) < log|J| — (beAloge)/2 < n — (beAloge)/2,

the second inequality following from | 7| < 2™ together with Lemma 7. With
c=¢e363%/150 < (belogs €)/4, this bounds (for large n) the r.h.s. of (6) by

(1 —ec/2)logn!,
which proves Theorem 1 with ¥ = £4§3%/300 = exp[—e ()], O

The rest of our discussion is devoted to the proof of (8). For a digraph
D C L x R with L, R disjoint subsets of V', say a pair (X,Y) of disjoint
subsets of [n] with |X| = |L|, |Y| = |R| is safe for D if

fit(r, D) < e|L||R|/4 9)

for every bijection 7 : LUR — X UY with 7(L) = X (where fit(r, D) has
the obvious meaning). We also say o € &,, is safe for D if (o(L),0(R))
is. Note that since S; has density at least 1/2 in L; X R;, the o’s in A; are
unsafe for S;.

Lemma 8. Assume the above setup with |L|+ |R| =1 and |L| = 7l, and set
A =26 and ( = €dy(1 —~)/4. Let I; U---U I, be the natural partition of
X UY into intervals of size Al. If D is §-reqular and

(X NIj| = (yA£ Q) Vi€ [r], (10)
then (X,Y) is safe for D.

(Of course an intervalof Z = {i; < --- < iy} is one of the sets {is,...,754+¢}.)



Proof. For 7 as in the line after (9), let L; = LNt Y(1;) and R; = RN Y(1;)
(4 € [r]). Then

it(r, D) < Y IIDN(Li x Ry)| = DN (Ly x Ra)l[ + (1 = 7)N% (11)

1<i<j<r

Here the last term is an upper bound on the contribution of pairs contained

in the Ij’s: if |Lj| = ~;|I;| = %Al (so |R;| = (1 —;)Al and 325 = 7/A),

then
Yl =) £ Xy = () r=(r =7/
gives
S ILGIR ) = 3095 (1 = ) A2 < (1 = y)N2.
On the other hand, regularity and (10) (which implies |L;| > 0| L| (= 1)
since YA — ¢ > 4, and similarly |R;| > 0|R|) give, for all ¢ # j,
[D N (Li x Rj)| = (d £ 6)|Li]| Ry,

where d is the density of D. Combining this with (10) bounds each of the
summands in (11) by

[(d+0)( A+ (A =NA+C) — (d =) (A = (L =)A= Q)P

= 2[A¢d + 6(y(1 — )N + )P
and the r.h.s. of (11) by

{2(5) A+ 0(v(1 = )A2 + ) + (1 = AL P < ev(1 = )12 /4.

(The main term on the L.h.s. is the one with A(d, which, since 7~ = \ = 24,
is less than half the r.h.s. The second and third terms are much smaller (the
second since ¢ is much smaller than ¢).) O

Corollary 9. For D and parameters as in Lemma 8, and o uniform from
Sn,
Pr(o is unsafe for D) < 2rexp[—2¢21/)].

Proof. Let (X,Y) = (0(L),0(R)). Once we've chosen X UY (determining
I,..., 1), 2exp[—2¢?%1/)] is the usual Hoeffding bound [3, Eq. (2.3)] on the
probability that X violates (10) for a given j. (The bound may be more
familiar when elements of X UY are in X independently, but also applies
to the hypergeometric r.v. | X N I;|; see e.g. [4, Thm. 2.10 and (2.12)].) O



Proof of (8). Let
B; = {0 €&, : o is unsafe for S;}

and Br = N;erB;. Then A; C B; (as noted above) and (therefore) A; C By.
Moreover—perhaps the central point—the B;’s are independent, since B;
depends only on the relative positions of o(L;) and o(R;) within o(V}).

On the other hand, Corollary 9, applied with D = S; (so L = L;, R = R;,
I = Lil + |R and 5 = |Li|/i € (8,1 — B)) gives

Pr(B;) < 2rexp[—2¢%1/\] < 2r exp[—£253%1/64]
< 2rexp[—e263%|V;|/32] < e MVil, (12)
Recall b was defined in (7); since we assume |V;| is large (|V;| > t = \/n
( ; g :

the choice leaves a little room to absorb the 2r.) And of course (12) and the
independence of the B;’s give (8). O

4 Back to the transitive case

Theorem 2 is an easy consequence of the next observation.

Lemma 10. Let Y a random m-subset of [2m] satisfying
El{(a,b):a<ba€2m]\Y,be Y} > (2 +e)m” (13)

Then H(Y) < (1 —¢€%/8)2m.

To get Theorem 2 from this, let 7' = {ab : a < b} and, for simplicity,
n = 2% and decompose T = |J(L; x R;) as in (5). For each i, say with
|Li| (= |Ri|) = m,, let Y; C [2my;] consist of the indices of positions within
o(L; U R;) occupied by o(R;); that is, if o(L; UR;) = {j1 < -+ < Jom, }
then Y; = {l : ji € 0(R;)}. Then Lemma 10 (its hypothesis provided by
(1)) gives
H(Y;) < (1—¢2/8)2my;

so, since ¢ is determined by the Y;’s, we have
H(o) <> H(Y;) < (1-¢2/8)Y(2m;) = (1 — £2/8)nlogn. O
Remark. Note that the Q(e2) of Theorem 2 is the best one can do without

using (1) for more than its implication of (13) for the (L;, R;, Y;)’s, which is
all we are getting from it here.



Proof of Lemma 10. For a € [2m], set P(a € Y) =1/2+ J,. Then
H(Y) < 3, H(1/2 4 8,) < ,(1 - 262)
(where the 2 could actually be 2loge); so it is enough to show
3262 > e?m/8.
For a given m-subset Y of [2m], we have

fY):=|{(a,b):a<byac2m]\Y,be Y}
=2 hey(0=1) = (3) = Xpey b - (mzﬂ)

(the first sum counts pairs (a,b) with a < b and b € Y, and (7;) is the
number of such pairs with a also in Y'); so we have

(3 +e)m® <EF(Y) =33 +0)b— ("37) = X b+ m?/2,
implying > dyb > em?. Combining this with 2m > 25,5006 = D dpb, we have
5,50 9% > €m/2 and then, using Cauchy-Schwarz,

S0 > 305500 = 5 (em/2)? = 2m/8. O

m
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