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Abstract—We investigate the nonparametric, composite hypoth-
esis testing problem for arbitrary unknown distributions in the
asymptotic regime where both the sample size and the number of
hypothesis grow exponentially large. Such asymptotic analysis is
important in many practical problems, where the number of vari-
ations that can exist within a family of distributions can be count-
ably infinite. We introduce the notion of discrimination capacity,
which captures the largest exponential growth rate of the number
of hypothesis relative to the sample size so that there exists a test
with asymptotically vanishing probability of error. Our approach
is based on various distributional distance metrics in order to in-
corporate the generative model of the data. We provide analyses
of the error exponent using the maximum mean discrepancy and
Kolmogorov—-Smirnov distance and characterize the correspond-
ing discrimination rates, i.e., lower bounds on the discrimination
capacity, for these tests. Finally, an upper bound on the discrimina-
tion capacity based on Fano’s inequality is developed. Numerical
results are presented to validate the theoretical results.

Index Terms—Channel coding, maximum mean discrepancy,
Kolmogorov-Smirnov distance, error exponent, discrimination
rate.

1. INTRODUCTION

NFORMATION theory was largely developed in the con-
I text of communication systems, where it plays an important
role in characterizing performance limits. However, another im-
portant area where information theory has proved useful is in
statistical inference, e.g., hypothesis testing. For parametric hy-
pothesis testing problems, information theoretic tools such as
joint typicality, the equipartition property, and Sanov’s theorem
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have been developed to characterize the error exponent [1]—
[3]. Information theory has also been applied to investigate a
class of parametric hypothesis testing problems [4], [5], where
correlated data samples are observed over multiple terminals
and data compression needs to be carried out in a decentralized
manner. Additionally, information theory has also been applied
to solve nonparametric hypothesis testing problems under the
Neyman-Pearson framework [6], [7].

In this paper, we apply information theoretic tools to study
the nonparametric hypothesis testing problem, but with a focus
on the average error probability instead of the Neyman-Pearson
formulation. We address a more general scenario, where each
hypothesis corresponds to a cluster of distributions. Such a
nonparametric problem has not been thoroughly explored in
the literature. We develop two nonparametric tests based re-
spectively on the maximum mean discrepancy (MMD) and the
Kolmogorov-Smirnov (KS) distance, and characterize the expo-
nential error decay rate for these tests. Furthermore, in contrast
to previous works where the number of hypotheses is assumed
fixed, we study the regime where the number of hypotheses
scales along with the sample size. This is analogous to the in-
formation theoretic channel coding problem where the number
of messages scales along with the codeword length. Hence, in
our study, information theory not only provides a technical tool
to analyze the performance, but also provides an asymptotic
perspective for understanding nonparametric hypothesis testing
problems in the regime where the number of hypotheses is large,
i.e., in the large-hypothesis large-sample regime.

More specifically, this paper assumes that there are M hy-
potheses, each corresponding to a cluster of distributions, which
are unknown. During the training phase, sequences of length-n
training data samples generated by each distribution are avail-
able. The more general case with the training data sequences
having different lengths is discussed in Section III-D. Then,
during the testing phase, a length n data stream is observed,
consisting of samples generated by one of the distributions. The
goal is to determine the cluster that contains the distribution that
generated the observed test sequence. We are interested in the
large-hypothesis regime, in which M = 2"? | i.e., the number
of hypotheses scales exponentially in the number of samples
with a constant rate ). The analogy to the channel coding
problem [1] is now apparent where the exponent represents
the transmission rate, i.e., the transmitted bits per channel use,
for the channel coding problem, here D represents the number
of hypothesis bits that can be distinguished per observation
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sample. Correspondingly, we refer to D as the discrimination
rate, and the largest such value is referred to as the discrimina-
tion capacity. The notion of discrimination capacity provides
the fundamental performance limit for the hypothesis testing
problem in the large-hypothesis and large-sample regime.

A. Main Contributions

This paper makes the following major contributions.

® We provide an asymptotic viewpoint to understand the
nonparametric hypothesis testing problem in the regime
where the number of hypotheses scales exponentially in the
sample size. Based on its connection to the channel coding
problem, we introduce the notions of the discrimination
rate and the discrimination capacity as the performance
metrics in such an asymptotic regime.

* We develop two nonparametric approaches that are based
respectively on the maximum mean discrepancy (MMD)
and the Kolmogorov-Smirnov (KS) distance. For both
tests, we derive the error exponents and the discrimina-
tion rates. Our results show that as long as the number
M of hypotheses does not scale too fast, i.e., the scaling
(discrimination) exponent is less than a certain threshold,
the derived tests are exponentially consistent. For each al-
gorithm, the proof of its discrimination rate is similar to
the achievability proof in channel coding.

® We also derive an upper bound on the discrimination capac-
ity, which serves as an upper limit beyond which exponen-
tial consistency cannot be achieved by any nonparametric
composite hypothesis testing rule. This upper bound is
based on the Fano minimax method, and is similar to the
converse proof used in channel coding.

B. Related Work

Parametric hypothesis testing: For parametric hypothesis
testing problems, information theoretic tools have been devel-
oped to characterize the error exponent [1]-[3], [8], and to study
a class of distributed parametric hypothesis testing problems
[4]. [5], [9]. For sequential multi-hypothesis testing, informa-
tion theoretic bounds on the sample size subject to constraints
on the error probabilities have been developed in [10]. A gener-
alization of the classical hypothesis testing problem is studied in
[11], where a Bayesian decision maker is designed to enhance
its information about the correct hypothesis. Information theory
has also been applied to study nonparametric hypothesis testing
problems with the primary focus being on the Neyman-Pearson
formulation [6], [7]. An information-theoretic approach to the
problem of a nonparametric hypothesis test with a Bayesian
formulation is presented in [12]. By factorizing dependent vari-
ables into mutually independent subsets, it has been shown that
the likelihood ratio can be written as the sum of two sets of
Kullback-Leibler divergence (KLD) terms, which is then used
to quantify loss in hypothesis separability. Our study is different
in that we focus on the asymptotic regime where the number of
hypotheses scales with sample size.

Supervised learning: The problem we study here can also be
viewed as a supervised learning problem studied in the machine
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learning literature. However, the problem formulated here is
different from the traditional supervised learning problem [13],
where sample points corresponding to the same label are treated
as individual samples, and their underlying statistical structure
is not exploited in the design of classification rules. For example,
the support vector machine (SVM) is one of the important clas-
sification algorithms for supervised learning, where the distance
between samples is measured either by the Euclidean distance or
by a kernel-based distance. Such distances do not exploit the un-
derlying statistical distributions of data samples. A robust form
of the SVM in [14] incorporates the probabilistic uncertainty
into the maximization of the margin. Our formulation exploits
the underlying probabilistic structure of data samples, which is
also robust to missing data, system noise, etc.

A formulation of the supervised learning problem that is sim-
ilar to our formulation has been studied previously in [15]. The
proposed approach, therein named support measure machine
(SMM), exploits the kernel mean embedding to estimate the
distance between probability distributions. In fact, the compari-
son between an SMM and an SVM also reflects the differences
between our formulation and the traditional supervised learning
problem. However, the study in [15] focused only on the regime
with finite and fixed number of classes, and did not character-
ize the decay exponent of the error probability, whereas our
focus is mainly on the asymptotic regime with infinite number
of classes, and on the scaling behavior of the number of classes
under which an asymptotically small error probability can be
guaranteed. Nevertheless, the kernel-based approach developed
in [15] as well as in various other papers [16]-[18] provide
important techniques that we exploit in our study.

Information theory in learning: Quite a few recent studies
have applied various notions in information theory for studying
supervised learning problems. A minimax approach for super-
vised learning, where the goal is to minimize the worst-case
expected loss function over a certain set of probability distribu-
tions was developed in [19]. The designed classification rules
are expected to be robust over datasets generated by any prob-
ability distribution in the set. A classification problem, where
the observation is obtained via a linear mapping of a vector
input was studied in [20]. The notion of classification capacity
was proposed, which is similar to the discrimination capac-
ity we propose. However, the results in [20] are derived under
the Gaussian model, whereas our formulation does not assume
any specific distributions and is hence much more general. Fur-
thermore, a parametric setting is implicitly assumed in [20],
whereas our focus is on the nonparametric problem. A con-
nection between the hypothesis testing problems and channel
coding was established in [20], whereas in this paper we focus
on the asymptotic case where the number of classes can grow
exponentially large. A supervised learning problem, where the
joint distribution of the data sample and its label is assumed to
be known but with an unknown parameter, was studied in [21].
A classifier was proposed and the corresponding performance
was analyzed. The connection of the problem to rate-distortion
theory was explored. There are several key differences between
the work in [21] and our study. There is no notion of discrimi-
nation rate in [21], and the performance is not defined in terms
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of the asymptotic classification error probability. Additionally,
our study does not assume any joint distribution of both the data
sample and its label.

II. PROBLEM FORMULATION

In this section, we first describe our composite nonparamet-
ric hypothesis model, and then connect it to the channel coding
problem, which motivates several information theory related
definitions that we will use to characterize system performance.
For ease of readability, we also give preliminaries on the para-
metric hypothesis testing problem.

A. Supervised Learning as Nonparametric Hypothesis Testing

Consider the following nonparametric hypothesis testing
problem with composite distributions. Suppose there are M
hypotheses, and each hypothesis corresponds to a set P, of
distributions for m =1, ..., M. For a given distance measure
d(p, g) between two probability distributions p and g, define

d(Pm):= sup d(pi,pir),

iy ,P,-:E'Pm

d(pi,pr) form#m'. (1)

inf
Pi €P P EP

d(Pm, Pmr) ==

Hence, d(Py, ) represents the diameter of the m-th distribution
set and d(Pp,, Pr’) represents the inter-set distance between
the mth and the m/th sets.

We assume that

limsup sup d(Pn) < Dy,
M—oco m=1,....M
]ili\ﬁn—»]?of m,m'LDif:,,,‘g‘ff 4(Prm, Pm') > Do, @
m#Em'

where D; < Dg. That is, the intra-set distance (diameter) is
always smaller than the inter-set distance for the composite
hypothesis testing problem. The actual values of D; and Dg
depend on the distance metrics used. Furthermore, lim sup,,_, .,
and lim infys . in (2) require that the conditions hold in the
limit of asymptotically large M, i.e., the limit taken over the
sequences of distribution clusters. We study the case where
none of the distributions in the sets P,,, form =1,..., M are
known. Instead, for m = 1,..., M, we assume that each dis-
tribution py, 4, € P, Where i, € '™ = {1,2,..., My, } is
the index of the distribution, generates one training sequence
Xm,i, € R" consisting of n independently and identically dis-
tributed (i.i.d.) scalar training samples. We use X,, to denote
all training sequences generated by the distributions in P, .
We assume that a test sequence y € R" of n i.i.d. scalar sam-
ples is generated by one of the distributions in one of the sets
Pr,. The goal is to determine the hypothesis that the test se-
quence y belongs to, i.e., which set contains the distribution that
generated y.

A practical example of the considered problem involves non-
parametric detection of micro-Doppler modulated radar returns,
such as those which occur in a ground moving target indicator
(GMTI) radar [22]. The micro-Doppler motion of a particu-
lar target generates a specific sideband structure, which varies
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within a distributional radius as the fundamental frequency of
the target’s micro motion changes, i.e., D;. The difference be-
tween the fundamental sideband structure of the micro-Doppler
modulations for different target types implies a distributional
difference, i.e., Dg. This problem is clearly composite (based
on an unknown fundamental modulation frequency), and a para-
metric realization is in many cases impractical as the specific
physics of the movement can be very difficult to model in a
closed form.

Let 6({X,, }M_,,y) denote a test based on the given data.
Then, the error probability for § is defined as

M

Po= 3 P(S(Xn}1,9) # moly ~ s € P )

mg=1
- P(my), (3)

where P(my) is the a priori probability that y is drawn from
the myg-th set of distributions.

For the above M -ary hypothesis testing problem, we are in-
terested in the regime, in which the number M of hypotheses
scales with the number of samples. In particular, we assume
M = 2P where the parameter D captures how fast M scales
with n. We refer to D as the discrimination rate.

Definition 1: We say that the discrimination rate D is achiev-
able, if there exists a classification rule ¢ such that the proba-
bility of error converges to zero as the number n of observation
samples converges to infinity.

For a given composite hypothesis testing problem, we define
the largest possible discrimination rate, D, to be the discrimi-
nation capacity, and denote it as D.

B. Connection to the Channel Coding Problem

Next, we discuss the connection between the asymptotic
regime of the hypothesis testing problem and the channel cod-
ing problem studied in communications, which in fact motivated
our definition of the discrimination rate and the discrimination
capacity.

In the channel coding problem (see Fig. 1(a)), assume there
are M = {1,...,2"%} messages to be transmitted with equal
probability. An encoder maps each message m € M one-to-
one onto a length-n codeword v, = {¥m1,-..,Ymn },» Which
is transmitted over the channel. The channel maps each input
symbol to an output symbol in a discrete memoryless fash-
ion with the transition probability Py y (x|y) for each chan-
nel use, and the corresponding output sequence is given by
" ={x1,..., T, }. A decoder then estimates the original mes-
sage as m based on the output sequence. Essentially, in the
channel coding problem, there are a total of M possible condi-
tional distributions py, (") = Pxy (=" |yy, ) given yy,, where
m=1,..., M, and the decoder determines which distribution
p* € {p1,...,py } most probably generated the observed chan-
nel output z".

The decoding process of the channel coding problem de-
scribed above is a hypothesis testing problem. Inspired by the
channel coding problem, our total number of hypotheses cor-
responds to the total number of messages in channel coding,
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(a) An illustration of the channel coding problem.
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(b) An illustration of the multiple hypothesis testing problem.

Fig. 1.

and the discrimination rate D we define corresponds to the
communication rate R in channel coding, which represents the
transmitted message bits per coded symbol. By analogy, the dis-
crimination rate D can be interpreted as the number of class-bits
that can be distinguished per observation sample. Similarly, the
discrimination capacity D corresponds to the capacity in chan-
nel coding, and serves as the fundamental limit in hypothesis
testing problems. Note that in channel coding, the transmitter
can choose to shape the distributions of transmitted symbols.
Here, the hypothesis testing problem corresponds to the case
where the distributions remain unshaped.

Essentially, Shannon’s channel coding theorem guarantees
error-free transmission of an exponentially increasing number
of messages provided that the transmission rate R is less than the
channel capacity C'. In other words, Shannon’s theorem implies
that codewords {y"} can be designed such that exponentially
increasing number of conditional probability distributions can
be distinguished given the channel output. Here, for the hypoth-
esis testing problem, channel coding motivates us to investigate
the following problems:

* Which tests distinguish an exponentially increasing num-
ber of hypotheses with asymptotically small error proba-
bility based on n observation samples?

® What are the corresponding discrimination rates?

C. Preliminaries on Parametric Hypothesis Testing

The aforementioned questions can be answered for the para-
metric hypothesis testing problem in the asymptotic regime
based on existing studies, e.g., [1]. We explain this in detail
for single distributions below as preliminary material before we
delve into the main focus of this paper on the nonparametric
composite hypothesis testing problem.

Consider the parametric hypothesis testing problem, where
there are M = 2"P known distinct distributions p;, ..., par cor-
responding respectively to M hypotheses. Given a test sequence
y consisting of n i.i.d. samples generated from one of these dis-
tributions, the goal is to determine the true hypothesis, i.e.,
which distribution p; generated the test sequence.

We apply the likelihood test given by:

6(y) = arg max Py, (y) 4

where the test labels the observed test data as hypothesis i if p;
generates y with the largest probability. It can be shown [1] that

Tllustrations of the channel coding problem and the multiple hypothesis testing problem.

the likelihood test in (4) is equivalently given by
d(y) = argmin D1, (v(y)|p:), (5)

where D, (+]|-) is the KLD between two distributions, and ~(-)
is the empirical distribution of the sequence. It suggests that the
testing rule labels the test data as hypothesis z if the empirical
distribution of the test data is closest to p; in KLD.

We next analyze the average error probability of the above
testing rule as follows.

gnDd

1 . 1 o
szﬁgp(é(y) = 3|HJ-)=HJ;P(32 # st &i|H;)

gn D

n D nD
- 12
<3722 P&lH) =77 > exp{-nC(pi, p;)}
J=1ii#j J=1i,i#]

nD-nloge ]}El_[gf 15%?3‘1254 C(p:i.p;)

; (6)

where C'(p;, p; ) denotes the Chernoff distance

Cloi,p) = guax o [ o) s0)'dp, )
and £ denotes the event that given H;, the KLD between y and
pj is greater than the KLD between y and p; for some i # j,
i.e., fori # j, Dxr(v(¥)|pi) < Dxr(v(¥)|[p;)- Note that for
simplicity, the default base for log in this paper is 2. Thus,
if D < logeliminfys o mini<; j<ur C(pi, p;), then the error
probability is asymptotically small as n goes to infinity, which
proves the following proposition.

Proposition 1: For the parametric multiple hypothesis test-
ing problem, the discrimination rate D is achievable if

D < 1036]}.,?_}?0{: 12:2_:‘]31?M C(pi,p;)-

Hence, for the discrimination rate to be positive, we require
that the smallest pairwise Chernoff information be bounded
away from zero for asymptotically large M, i.e., the limit taken
over the sequences of distribution clusters.

III. MAIN RESULTS

In this section, we obtain the performance bounds for the
nonparametric hypothesis testing problem, with two different
distance measures, i.e., MMD and KS distance.
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A. MMD-Based Test

We construct a nonparametric test based on the MMD be-
tween two distributions p and g [18] defined as

— Hqlln- (8)

where /i, (-) maps a distribution p into an element in a repro-
ducing kernel Hilbert space (RKHS) associated with a kernel
k() as

MMD? (p, q) := ||y

pn() = Eylktc, )] = [ K, dp(a). ©

An unbiased estimator of (8) based on n samples of x =
{z1,...,T, } generated by distribution p and m samples of
vy ={v1,...,ym |} generated by distribution g, is [18]:

I)ZZM;;,IJ)

i=1 j#i
sz(%vy} izzk('ﬂi,yj)- (10)
i=1 j=1

z—l j#Fi

MMD?(x, y)—

m(m

Note that ;,y; € R%, and the dimension d > 1.

We employ the MMD to measure the distance between the test
sequence and the training sequences, and declare the hypothesis
of the test sequence to be the same as the training sequence that
has the smallest MMD to the test sequence. The constructed
MMD-based nonparametric composite hypothesis test is given

by

S ({Xom b -1, ¥) = arg min MMD? (Xm s, ,¥). (1)

The following theorem characterizes the average probability
of error performance of the proposed MMD-based test under
composite distributions.

Theorem 1: Suppose the MMD-based test in (11) is applied
to the nonparametric composite hypothesis testing problem un-
der assumption (2), where the kernel satisfies 0 < k(z,y) < K
for all (z,y). Then, the average probability of error is upper
bounded as

D n(Do — D;)*
P <2 exp (‘W
Thus, the achievable discrimination rate is
loge
D= Do — Dy)%. 12
96K2 ===t =lix) (12)
Proof: See Appendix A. =

Next, we study a special case where each hypothesis is as-
sociated with a single distribution, i.e., the m-th hypothesis is
associated with only one distribution p,,, m = 1,..., M. Then,
we have the following corollary.

Corollary 1: Suppose the MMD-based test is applied to the
nonparametric hypothesis testing problem under assumption
(2). and each hypothesis is associated with a single distribu-
tion, where the kernel satisfies 0 < k(z,y) < K for all (z, y).
Then, the average probability of error under equally probable

1009
hypotheses is upper bounded as
P < 2nD—n;—“’:‘3-fz-llm_35fl<1lnlu N[N[[)“[p,,pj} 13)
Thus, the achievable discrimination rate is
1
D=—S"liminf min MMD(p;,p;).  (14)

96}\2 M —oc 1<i,j<M

Note that, for the discrimination rate to be positive, we require
the smallest pairwise MMD between the distributions to be
bounded away from zero for asymptotically large M, where the
limit is taken over the sequences of distribution clusters.

Proof: By Theorem 1, we set Dy =0 and Dp =
liminfar o ming <; j<pr MMD? (p;, p;). Therefore, we can
bound the probability of error as the number of classes scales
according to M = 2"P

nliminf min MMD?* (pi,p;)

M—oo 1<i,j<M

P.<Mexp|— 962

loge
nD—n ]I!Il inf min MMD*
<9 R L B (ps p;)

(15)

Then, it is straightforward to obtain the achievable discrimina-
tion rate for the MMD test as

loge

D=Seicz

lim1i min_ MMD* (p;, p; ).

(16)
M —oo 1<i,j<M

B. Kolmogorov-Smirnov Test

In this section, we construct a nonparametric hypothesis test-
ing test based on the KS distance defined as follows. Suppose
X ={r1,...,Tn}, and i.i.d. samples x; € R, are generated by
the distribution p. Then the empirical CDF of p is given by

1
; ; ]-[—-DG‘E](-E?:):

where 1| . , is the indicator function. The KS distance be-
tween x and y having respectively been generated by p and q is
defined as

Fy(a) = (17)

Dg s(x,y) = sup |Fx(a) — Fy(a)|. (18)
ach
We construct the following KS based nonparametric compos-

ite hypothesis test

0k s({Xm tm=1,¥) = arg min Dy s (Xm i,,,¥), (19
The following theorem characterizes the performance of the
proposed KS-based test.
Theorem 2: Suppose the KS-based test in (19) is applied to
the nonparametric hypothesis testing problem under assumption

(2). Then, the average probability of error is upper bounded as

n(Do — DI)E) _

Pe§6-2“‘gexp(— 2
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Thus, the achievable discrimination rate is

log e

D= (Do — Dy). (20)

Proof: See Appendix B. |

Consider the case where each hypothesis is associated with a
single distribution, and we have the following corollary.

Corollary 2: Suppose the KS-based test is applied to the
nonparametric hypothesis testing problem under assumption (2),
and each hypothesis is associated with a single distribution.
Then, the average probability of error under equally probable
hypotheses is upper bounded as

loge - 7} a2
nD—n=EZliminf min d i Di
B M oo lsi,jeM K s (Piops)

P <6-2 (21)
Thus, the achievable discrimination rate is
1
D=—Climinf min dig(pip).  (22)

M—oo 1<ij<

Hence, for the discrimination rate to be positive, we re-
quire the least pairwise KS distance between distributions to
be bounded away from zero for asymptotically large M, where
the limit is taken over the sequences of distribution clusters.

Proof: By Theorem 2, we set Dy =0 and Dp =
].}‘rliﬂ_’]_ol;f 1(]31}1_11 di s(pi,p;j), and have

nD— n—"gil{m_{ifquﬂjm d% 5 (Pi,p;)

-'PS S6'2RD_HLUE£DE 36 2

Then, it is straightforward to obtain the achievable discrimina-
tion rate for the KS test. |

C. Upper Bound on the Discrimination Capacity

In this section, we provide an upper bound on the discrim-
ination capacity for the composite hypothesis testing problem.
Let h be a random index representing the actual hypothesis that
occurs. We assume that h is uniformly distributed over the M
hypotheses, and k' has the same distribution as m, but is inde-
pendent from h. Then, Lemma 2.10 in [23] directly yields the
following upper bound on the discrimination capacity D.

Remark 1: The discrimination capacity D is upper bounded
as

D <limsupEs wDrr (pn||pr),
M—o0

(23)

where Dy (+]|-) is the KLD between two distributions.

Note that the above limit lim sup,,; _, . is taken over the se-
quences of distribution clusters. In Appendix C, we provide an
alternative but simpler proof based on Fano’s inequality for the
above upper bound, which is closely related to the proposed
concept of discrimination capacity.

D. Training Sequences of Unequal Length

In this subsection, we discuss the impact of different number
of training samples in different classes on the probability of error
and the discrimination rate. Here, we still assume that there are
n test samples. To keep the problem formulation meaningful,
we assume that the number M of classes increases exponen-
tially with n at a rate D, i.e.,, M = 2"P, To avoid notational
confusion, we use the non-composite case, i.e., with each class
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Fig.2. Error probabilities of different hypothesis testing algorithms for Gaus-
sian distributions with different means.

corresponding to one distribution, to illustrate the idea. Sup-
pose that each class, i.e., each distribution, generates ~,, (n)
training samples, for m = 1,..., M, where ~,, (n) represents
the number of samples in the m-th class (as a function of n).
Let ymin (1) = minj <m<ar ¥m (n). In particular, for the MMD-
based test, the probability of error can be bounded as

. Ymin(n)yloge(Dn-Dy)?
R(D—mm{l, i} gsOLZ L

B.<?2 (24)

For the KS-based test, the probability of error can be bounded
as

. D2
n D—min{l‘jm’,‘,’{n}}lugcwg Dp )

P.x<6:2 ( (25)
It can be seen that here the ratio 2z (") plays an important role
in determining the error exponent asymptotlcally For example,
for the MMD-based test, if the ratio converges to zero for large
n, i.e., the shortest training length ~pi, (1) scales as an order-
level slower than the test length, then there is no guarantee
of exponential error decay, and the discrimination rate equals

zero. On the other hand, if lim,, ., """”;L(“} =cwith0 <c< 1,
2
then the discrimination rate D = c12& c(g%‘j’c_ Di)_ Furthermore,

it By, e "“”;’lﬁ = ¢ with ¢ > 1, then the discrimination rate

D = kge(Do Di)” A sketch of the proof of (24) and (25) can
be found in Appendix D

IV. NUMERICAL RESULTS

In this section, we present numerical results to compare the
performance of the proposed tests. In the experiment, the num-
ber of classes is set to be five, and the error probability versus
the number of samples for the proposed algorithms is plotted.
For the MMD based test, we use the standard Gaussian kernel
given by k(z,z') = exp(—w).

In the first experiment, all the hypotheses correspond to Gaus-
sian distributions with the same variance o2 = 1 but differ-
ent mean values p = {—2,—1,0,1,2}. A training sequence is
drawn from each distribution and a test sequence is randomly
generated from one of the five distributions. The sample size of
each sequence ranges from 5 to 45. A total of 10° monte carlo
runs are conducted. The simulation results are given in Fig. 2. It
can be seen that all the tests give better performance as the sam-
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sian distributions with different variances.

TABLE1

COMPARISON OF BOUNDS

Error probabilities of different hypothesis testing algorithms for Gaus-

Lower Bounds Upper Bounds

KS MMD | Parametric | FB
Empirical 0.0897 | 0.0916 | 0.146 25
Theoretical | 0.0183 | 0.0071 | 0.125 -

ple size n increases. We can also see that the MMD-based test
slightly outperforms the KS-based test. We also provide results
for the parametric likelihood test as a lower bound on the proba-
bility of error for performance comparison. It can be seen that the
performance of the two nonparametric tests are close to the para-
metric likelihood test even with a moderate number of samples.

In the second experiment, all the hypotheses correspond to
Gaussian distributions with the same mean ;. = 1 but differ-
ent variance values o2 = {0.52,12,1.52,22 2.52}. The simula-
tion results are given in Fig. 3. In this experiment, the MMD-
based test yields the worst performance, which suggests that this
method is not suitable when the distributions overlap substan-
tially with each other. The two simulation results also suggest
that none of the three tests perform the best universally over all
distributions. Although there is a gap between the performance
of MMD and KS tests and that of the parametric likelihood test,
we observe that the error decay rates of these tests are still close.

To show the tightness of the bounds derived in the paper,
we provide a table (See Table I) of error decay exponents (and
thus the discrimination rates) for different algorithms. Esti-
mates of error decay exponent of KS and MMD based tests on
a multi-hypothesis testing problem are presented for the prob-
lem considered in the first experiment. Note that the theoretical
lower bounds in the table correspond to the achievable discrim-
ination rates of the methods asymptotically. Fano’s bound (FB
in the table) is estimated by using data-dependent partition es-
timators of Kullback-Leibler divergence [24]. The parametric
upper bound is based on the maximum likelihood test, which
can serve as an upper bound on the error decay exponent (and
hence intuitively on the discrimination capacity). It can be seen
from the table that both the KS and MMD tests do achieve an
exponential error decay and have positive discrimination rates
as we show in our theorems. Clearly, the empirical values of
the bounds for both tests are better than the corresponding the-
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Fig.5. Error probabilities of different hypothesis testing algorithms for com-
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oretical values. More importantly, both of the empirical lower
bounds are close to the likelihood upper bound, demonstrating
that the actual performance of the two tests are satisfactory. We
also note that the Fano’s upper bound is not very close to the
lower bound.

To better illustrate the bounds in Table I, we provide ex-
perimental results with different number of hypotheses M in
Fig. 4. In particular, we present the simulation results with
M = 5,10,15. We use a similar experiment setting as that in
the first experiment, where Gaussian distributions have the same
variance and different mean values, and the mean values are
{=2, =1, ..o, 2 {45, 8.5, ;A8 and f =T, =8 oy T}
respectively. The parametric maximum likelihood test serves as
an unpper bound for the error decay exponent for all of the three
cases. Similar to the case M = 5, KS and MMD nonparametric
tests achieve an exponential error decay and hence the positive
discrimination rates for the cases M = 10 and M = 15.

We now conduct experiments with composite distributions.
First, we still use five hypotheses with Gaussian distribu-
tions with variance ¢ =1 and different mean values p =
{—2,—1,0,1, 2}. For each hypothesis, we vary the mean values
by £0.1. Thus, within each hypothesis, there are three different
distributions with mean values in {g — 0.1, g, 0 +0.1}. The
results are presented in Fig. 5. As expected, the performance
improves as the sample size n increases. The two tests perform
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almost identically, with the MMD-based test slightly outper-
forming the KS-based test for small n

We again vary the variances of the Gaussian distributions as
in the second experiment in a similar way. In particular, the
variances in the same class are {(o — 0.1)2, 02, (0 +0.1)2},
and o € {0.5,1,1.5,2,2.5} . In Fig. 6, we observe the perfor-
mance improvement as the sample size n increases. Different
from the results in the second experiment, the MMD-based test
outperforms the KS-based test in the composite setting.

V. CONCLUSION

This paper developed a nonparametric composite hypoth-
esis testing approach for arbitrary distributions based on the
maximum mean discrepancy (MMD) and Kolmogorov-Smirnov
(KS) distance measure based tests. We introduced the informa-
tion theoretic notion of discrimination capacity that was defined
for the regime where the number of hypotheses scales along
with the sample size. We also provided characterization of the
corresponding error exponent and the discrimination rate, i.e., a
lower bound on the discrimination capacity. Our framework can
been extended to unsupervised learning problems and similar
performance limits can be investigated.

APPENDIX
A. Proof of Theorem 1

The proof uses the following inequality.
Lemma I: [McDiarmid’s Inequality [25]] Let f : A™ — R
be afunctionsuchthatforallz € {1,...,m}, thereexiste; < co

for which
Sup |g($11"'3Ii—11£1$f+11"'1rm)| S C’! (26}
Xexm FeX
where g(Ila"'3If—lj:‘E:If+1:'--1Im):f(Ilj'--jIm)_
flx1,...,Ti1,%,Tiy1,...,Tm ). Then for all probability

measure p and every € > 0,

9 2
Zm—ecg)a (27)
=13

where X denotes (z1, ...,y ), Ex[] denotes the expectation
over the m random variables z; ~ p, and Px denotes the prob-
ability over these m variables.

Py (F(X) —Ex[f(X)] > ¢) < exp (—
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To apply the McDiarmid’s inequality, we first define the fol-
lowing quantity

Am (x*) = MMD? (X 4, , ¥) — MMD? (Xmi,_,,¥)  (28)

where X* := {Xpm i,, , Xm’,i,,,, Y } consists of 3n data samples.
Given H;, it can be shown that

E[MMD? (X, ;,.,¥)] < Dy (29)

E[MMD?(Xpm':_,,¥)] > Do. (30)

We next define x*, the same as x* except that the s-th com-
ponent x7 is removed. We also define X as another sequence
generated by the same underlying distribution for x¢. Then, x7
affects A\, (x®) via the following three cases.

e Case 1:xj isinthe sequence X, ;,, . Inthis case, x7 affects

N (x“) through the following terms

3 kG xme, () QZk(x y(D):

n(n_ 1)1 1,1#s

e Case 2: x7 is in the sequence Xy ;_,. In this case, xJ
affects A, (x®) through the following terms

n(n_l) 3 k(xs:y(f))——Zk(xs,xmx ).

1=1,l+#s

® (Case 3: x{ is in the sequence y. In this case, x{ affects
A (x*) through the following terms

) B s
=5 Dk Xm i () = =5 YRS, X, (D)
=1 =1

Thus, since the kernel is bounded, i.e., 0 < k(z;y) < K for
any (z,y), considering the above three cases, the variation in
the value of A, (x*) when xJ varies is bounded by £, Then,

| B (2 35) ~ B (02, ) < 22 @3)
We now apply Lemma 1 and obtain

P (MMD? (X, ;,, ,¥) = MMD? (X7 ,,))

= P(MMD? (X, ;,, ,¥) — MMD? (X5, ¥) = 0)

=P (Am(x*) —E[An(x%)] > —E[An (x)])

< P(Am(x*) — E[Am (x®)] > Do — Dy)
e

Q(DQ — DI )2 R(DO — D;)E

6ak2z ) TP\ oKz - 62
The first inequality is based on the results in (29) and (30) that
—E[A,(x*)] = Dy — Dy . Therefore,

P, :p(am’ £m, i, € M An(x®) > 0,Vin € I“’“)

i Z min exp —n(DO =1 )2
m= ot eritm 96K2
n(DO — D[ )2 )

96K 2 )

SMGXP(—

log 2
Thus, D = 96!(,2 (Dg 1y)=.
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B. Proof of Theorem 2

We first introduce two lemmas to help establish the theorem.
Lemma 2: [26] Suppose X is generated by p and Fy (a) is the
corresponding empirical c.d.f.. Then

(sl -

Lemma 3: Suppose two distribution clusters P; and P, sat-
isfy (2). Assume that for j = 1,2, x; ~ p; satisfying p; € P;.
Then for any x3 ~ p3 satisfying p; € Py,

> E) < Qexp(—anﬂ).

n(Do 8— DI)Q)_

Proof: By the triangle inequality and the property of supre-
mum, we have

dis(x1,X3) < dgs(p1,X1) +di + dis(p3,X3),
dgs(X2,X3) > —dis(ps, X3) + da
where D; < dy < ds < Dg. Then

P (drs(x1,X3) > drs(x2,X3))

P(dxs(X1,X3) > drs(X2,%x3)) < 6exp (—

—di 5(p2,X3).

<P (dKS(plaxl) +dg s(p3,X3) +2dgs(p2, X2) > J)

d d
<P (dﬁ's(Pl,Ki) > Z) + P (dKS('PS:KS) > Z)

P (d;{s(pQ,XQJ = g) < ﬁexp (—%)

where d = ds — d;. Then, we have the desired result. . ]

Without loss of generality, assume that the probability that
y is generated from py ;, is 5 for all m € {1,..., M} and
im €1{1,...,Mp}. By Lemma 3 and the union bound, the
probability of error is bounded by

M,

P, < Z Z %, 3, P(dﬁS(xm in:Y)

m=lim=1m'#£m i, =1

. 1
s VY ~ Pt i € {1, .,Mm}l)ﬁ

o 2
n(Do — Dy) ) )

< 6M exp ( -
8
Thus, the achievable discrimination rate is '—°§£ (Do — Dy)2.

C. Proof of Remark 1

Here we provide an alternative proof for Remark 1, which is
different from that given in [Lemma 2.10 [23]].
By Fano’s inequality [1], we obtain
H(hly) < 1+ P.log(M —1). (35)
Since h is uniformly distributed over all the hypotheses, we have
log(M) = H(h) = I(h;y) + H(hly)

<I(h;y)+1+ Pelog M. (36)
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Let P, (h), Py(y), and P, y(h,y) represent the marginal and
joint distributions of h and y. Recall that we represent the like-
lihood function of y under m as P(y|h) = pn(y). The mutual
information between h and y can be expressed as

_ .
M;Zy:pn(yﬂog Py )
o pa(y)
i ;;pn (¥)log —r———— T ——

1 M
= EZ ZPn(Y)

h=1 ¥y

M
1
log pn (y)—log D _ <rpw (.Y)]

h’—l
Applying Jensen’s inequality, it is further upper bounded as

| M
EZZP"(”

h=1 ¥y

I(h;y) <

3 Mo
log pn (y) — Z i 10gphf(¥)]

h'=1

Simplifying, we finally have

M
Ihy) < = 33 m(y)

h=1y
M 1 M 1
g — logpn(y) — — log p/(y)
5 aresmn - 35 )
_H 1 < Pﬁ(Y)

= ﬂlﬁ'% Z Z nDgr (pnl|pn)

h=1h'=1

=nEs wDrr (pr||pn)- (37

where b’ has the same distribution as h, but is independent from
h. Substituting (37) into the (36), we obtain

log M < nEp pDg . (pn||par) +1+log M P, (38)
which implies that
logM _ EpnDrkr(pnllpw) 1
< ¥
_— i +n(1—R3 (39)
Since M = 2P we can have

1-P, n(l—PF)

Thus, for any test that satisfies P, — 0 as n— oo, D <
lim supys oo Bm.m' Dic £ (Pm ||Pmr) @8 n — oo. Therefore,

D < lim supEy ;' D £ (Pm ||Pm)-

M—o0

(41)
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D. Sketch of the Proof for (24) and (25)

To prove (24), we follow the steps to obtain (32). Note

that now X := {Xm i, , Xm",i,,, ¥ } consists of .+ vy, (n) +
~vm+(n) data samples, and | Ay, (x2,,%x57) — A (x2,,X7)| <
8K

nJ’ ?
choice is based on the location of x¢'. Then, we can write

P (MMD? (Xpm i, , ¥) > MMD? (Xpn'i._,, ¥))
< P(Ap(x*) —E[An(x*)] > Do — Dy)

_ 2
Sexp | — ?(DO 1DI) 1
64K2 (L + L + »rm—m)
. ) _ 2
< exp (_m_m{n, '}'mmé'-’ﬁ?c}:z(DO DI) ) )
Thus, it yields

Po= (

: n(Do — Dr)*

(_mj_u{n: 'Yminé:})g?(DO - )2) -

To prove (25), we follow the steps to obtain (34).
Note that if the sequences y, X, i, ;Xm’,i,, have length of

7, ¥m (1), Ym’ () respectively, we can obtain

P(dKS(Xm,im ¥ > dKS(Xm"imv:YJ)

=%, where n' € {n,vm(n),Ym¢(n)} and the correponding

(42)

A (x° )>ove'me1{""m)

(43)

¥m(n)(Do — Dr)?

< 2exp (—M) +2exp (—

8 8
oy (D0 = DI)E)
8
< 6exp (_ min{n, Wmiu(ﬂ;}(Do = DI)Q)_
Thus, it yields

M My Mgy,
Z Z Z Z (dKS(Xm,imay) >
e W

m=1ig

1
dKS(xm’,imr;y)ly ~ Pmiy, 3m = {11"'3Mm}|)ﬁ

min{n, Ynin (n) Do — DI)Q )

< 6M exp (— 3

(44)
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