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Abstract

Similarity joins are a fundamental database operation. Given data sets S and R, the goal of a similarity
join is to find all points x ∈ S and y ∈ R with distance at most r. Recent research has investigated how
locality-sensitive hashing (LSH) can be used for similarity join, and in particular two recent lines of work
have made exciting progress on LSH-based join performance. Hu, Tao, and Yi (PODS 17) investigated
joins in a massively parallel setting, showing strong results that adapt to the size of the output. Meanwhile,
Ahle, Aumüller, and Pagh (SODA 17) showed a sequential algorithm that adapts to the structure of the
data, matching classic bounds in the worst case but improving them significantly on more structured data.

We show that this adaptive strategy can be adapted to the parallel setting, combining the advantages
of these approaches. In particular, we show that a simple modification to Hu et al.’s algorithm achieves
bounds that depend on the density of points in the dataset as well as the total outsize of the output.
Our algorithm uses no extra parameters over other LSH approaches (in particular, its execution does not
depend on the structure of the dataset), and is likely to be efficient in practice.

1 Introduction

Similarity search is a fundamental problem in computer science where we seek to find items that are similar
to one another. In this paper, we focus on the problem of similarity joins for high dimensional data, which
can be viewed as a large number of batched similarity searches. In particular, given two sets R and S, we
wish to find all pairs (x, y) (with x ∈ R and y ∈ S) where x and y have similarity above some threshold r.
Our results are largely agnostic to the particular similarity function used; for example one can immediately
apply our techniques to Hamming distance, ℓ1 or ℓ2 distances, cosine similarity, Jaccard or Braun-Blanquet
similarity [9] or even more exotic measures like Frechet distance [10]. Similarity joins have wide-ranging
applications, such as web deduplication [5], document clustering [7], and data cleaning [3].

Unfortunately, similarity joins are extremely computationally intensive.1 For this reason, when performing
similarity joins on large datasets it is often useful to use massively parallel machines using frameworks like
MapReduce and Spark. A recent work [12] has proposed an output sensitive MapReduce algorithm that
leverages Locality Sensitive Hashing (LSH). When executed on p machines and on two relations containing n
tuples, their solution requires O (1) rounds and load (i.e., maximum number of messages received/sent by a
processor)

O

(√
OUTr

p
pρ/(1+ρ) +

√
OUTcr

p
+

n

p
pρ/(1+ρ)

)
, (1)

where OUTr is the number of pairs with distances smaller than or equal to r, OUTcr is the number of
pairs with distances in the range (r, cr], and ρ ∈ [0, 1] is a value characterizing the LSH (see Section 2.4).
This bound highlights some limitations of the standard LSH approach: there is an OUTcr term due to “false
positives” of the LSH, and there is a multiplicative term pρ/(1+ρ) in the OUTr contribution due to near pairs
being reported multiple times.

In this paper we show how the load of the previous algorithm can be improved by exploiting the novel LSH
approach presented in [2], which leverages a multi-level LSH data structure for solving the range reporting
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problem. Specifically, we set a small term κ based on p and the LSH parameters. For each 1 ≤ i < κ, we
say that a point in x ∈ R is i-dense if its number of near points in S is in the range [npi−1

2 , npi2); a point is
κ-dense if its number of near points in S is smaller than npκ2 (similar definitions hold for points in S). We let
OUTr, i denote the number of near pairs containing at least one i-dense point. In this paper, we describe an
MPC algorithm requiring O (1) rounds and load
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In the most extreme cases, there are no dense clusters (i.e. all close pairs contain only κ-dense points),
in which case we get the same performance as [12]. However, the data structure has any dense clusters we
get improved bounds. For example, if there is a cluster of Ω(n) close points, the first term of Hu et al. is
O(n/p1/(2(1+ρ))) while for us it is O(n/p1/2). Our bounds give a smooth decrease in performance as the size
of the cluster decreases.

1.1 Related Work

Exact similarity search has been widely studied in the literature; we refer to [4] for a survey. Approximate
algorithms for similarity join often rely on LSH, with the underlying idea to adapt the indexing approach in
[11]. This approach has been adapted for use in the I/O model [14] and in the MPC model [12].

A novel sequential LSH approach was recently introduced [2] which dynamically adapts to the difficulty
of each query; our result implements this idea in a massively parallel setting. In short, this approach uses a
simple recursive stopping rule to adapt to the structure of the dataset; we adapt this rule to the similarity join
setting. Recently, the paper [9] adapted this approach for similarity join under Braun-Blanquet similarity;
our results share the same basic principles but apply to more general distance metrics.

2 Preliminaries

In this section, we describe the adopted computational model and some relevant results on equi-joins, similarity
search and LSH.

2.1 Computational model

In the literature, there are several computational models for massively parallel systems aiming at describing
MapReduce-like systems (e.g., [15, 6, 13]). The majority of these models are very close to the bulk-synchronous
parallel (BSP) model by L. Valiant [16], and in general they differ from the BSP on the cost functions (e.g.,
round number vs running time), parameters (e.g., local and global memory vs bandwidth and latency), and
on some modeling aspects (e.g., a dynamic number of processing units vs a fixed number of processors in
order to capture elastic settings in cloud).

In this paper, in continuity with the previous work on similarity join in MapReduce [12], we use the
Massively Parallel Computational (MPC) model in [6]. It consists of p processors P1, P2, . . . , Pp that are
connected by a complete network. In each round, each server does some local computation and then sends
messages to other servers, which will be received at the beginning of the subsequent round. The complexity of
the algorithm is the number of rounds and the load L, which is the maximum size of sent/received messages
by each processor in each round. For simplicity, we assume in the paper that p < nϵ for some constant
0 < ϵ < 1: this implies that sorting and prefix sum computations on input size n can be performed in O (1)
rounds and load O (n/p). In general, the goal is to design MapReduce algorithms with a constant number of
rounds. However, some works have shown that there are some inherent tradeoffs between round number and
total communciation cost [8, 1].

2.2 Equi-Join

Let R,S be two relations of total size n. The equi-join of R and S, denoted with R ▷◁ S, is the set containing
all pairs (r, s) such that r ∈ R, s ∈ S and r = s. Hu et al. [12] provided an optimal output sensitive and
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O (1)-round MPC algorithm for equi-join, with the following bounds:

Theorem 1 ([12]). There is an optimal deterministic algorithm that computes the equi-join between two

relations of total size n in O (1) rounds and with load Θ
(√

O/p+ n/p
)
, where O = |R ▷◁ S| denotes the

equi-join size. It does not assume any prior statistical information about the data.

The term optimal holds for tuple-based algorithms, that is algorithms where tuples are atomic elements
that must be processed or communicated in their entirety (i.e., indivisibility assumption).

2.3 Similarity search problems

Consider a space U and a distance function d : U× U → R. Let r > 0 be an input parameter. The r-near
neigbor problem is defined as follows: given a set R of n points from U and a query point q ∈ U, return a point
x in R at distance d(x, q) ≤ r if it exists. The approximate version of the problem, named the (r, c)-near
neighbor problem where c > 1 is the approximation factor, returns a point x in R with distance d(x, q) ≤ cr
when there exists a point x′ ∈ R with distance d(x′, q) ≤ r. The r-range reporting problem requires to find
all points at distance at most r from a given query q.

For convenience, we say that a pair (x, y) is far if d(x, y) > cr (those that should not be reported), near if
d(x, y) ≤ r (those that should be reported), and c-near if r < d(x, y) ≤ cr (those that should not be reported
but the LSH provides no collision guarantees). We also assume that each point in U can be stored in O (1)
memory words and that d(x, y) can be computed in constant time (it is easy to extend bounds to the general
case).

The similarity join problem is a batch version of the near neigbor problem. Specifically, the similarity
join with radius r > 0 on the sets R,S ⊆ U is defined as the set R ▷◁≤r S = {(x, y) ∈ R × S | d(x, y) ≤ r}.
We let n = |R|+ |S|. In this paper, we will give a randomized solution that finds all pairs in R ▷◁≤r S with
high probability. The proposed solution will generate also pairs at distance larger than r (i.e., false positives):
while false positives can be easily removed by checking the true distance before emitting a pair, they still
affect the performance of the algorithm (see the term OUTr in the load upper bound).

2.4 Locality-Sensitive Hashing

Much of recent work on similarity search and join has focused on locality-sensitive hashing (LSH). In LSH, we
hash each item in the dataset to a single hash bucket given by a randomized hash function. Once the entire
dataset is hashed, we perform a brute-force comparison between all pairs of points in the bucket, returning
any similar points found. The key idea behind LSH is the following property. At a high level, an LSH family
must map similar points to the same bucket with a much higher probability than far points. Formally, we
have:

Definition 2. Fix a distance function d : U× U → R. A locality-sensitive hash (LSH) family H is a family
of functions h : U → R such that for each pair x, y ∈ X and a random h ∈ H, for arbitrary q ∈ U, whenever
d(q, x) ≤ d(q, y) we have Pr[h(q) = h(x)] ≥ Pr[h(q) = h(y)].

When an LSH is applied to solve the (c, r)-near neighbor problem, it is common to describe the scheme
with the probabilities p1 and p2 defined as follows: for each x, y with d(x, y) ≤ r then Pr[h(x) = h(y)] ≥ p1;
for each x, y with d(x, y) > cr then Pr[h(x) = h(y)] ≤ p2 (there are no requirements for pairs with distance
in (r, cr]). We define ρ(r1, r2) = log p(r1)/log p(r2), where p(r) is the collision probability at distance r, and
define ρ = ρ(r, cr).

Oftentimes, probabilities p1 and p2 are constants. Thus, hashing a single time would lead to poor recall
(we would be likely to miss close points) and poor precision (most points—np2 of them to be precise—would
hash to a given bucket in expectation, so searching within a bucket would be extremely costly). For many use
cases, this can be handled using a two-pronged approach: we concatenate many hash functions to improve
precision, and use many independent repetitions to improve recall. This approach can be formalized as follows,
using a k-concatenated hash Hk. Let H be a hash family with p1, p2 = Ω(1). Let Hk = (h1, h2, . . . , hk) be a
hash function consisting of the concatenation of k independent hash functions from H, and let k = log1/p2

n.
Then
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• for x, y with s(x, y) ≥ r, Pr(Hk(x) = Hk(y)) ≥ 1/nρ. Thus, after nρ independent repetitions, x and y
will hash to the same bucket with constant probability.

• for x, y with s(x, y) ≤ cr, Pr(Hk(x) = Hk(y)) ≤ 1/n. Thus, each bucket will contain one far point in
expectation.

In a single-processor setting, this framework allows us to perform single similarity searches in Õ(nρ) time.
Let R and S be sets of size n. Let R ▷◁r S denote the set of pairs x ∈ R and y ∈ S with s(x, y) ≥ r; likewise
let R ▷◁cr S denote the set of pairs with s(x, y) ≥ cr. Then the join between S and R can be computed
using a k-concatenated LSH with parameters p1 and p2 in time O

(
n1+ρ + nρ|R ▷◁r S|+ |R ▷◁cr S|

)
. These

LSH-based approaches form the basic building blocks of this paper.

2.5 Adaptive Near Neighbor

Our work leverages the recent work by Ahle et al. [2] that presents a data structure for the range reporting
problem (in which we wish to find all near points to a query). Let Nr(q) be the number of near points to a
query q (similarly, Ncr(q) is the number of c-near points). Let the expansion c∗q be the largest value such that
there are at most twice as many c∗q-near points of q than there are r-near points of q. (i.e. Ncr(q) ≤ 2Nr(q)).

Theorem 3 ([2]). Consider a query point q, and parameters r > 0 and c > 1. Then, the near neighbors of q
can be reported with constant probability in time

• O
(
Nr(q)(n/Nr(q))

ρ(r,c∗q)
)
if c∗q ≥ c, or

• O
(
Nr(q)(n/Nr(q))

ρ(r,c) +Ncr(q)
)
if c∗q < c.

Let Hk denote the LSH obtained concatenating k randomly and uniformly selected hashes from H and let
K = ⌈ρ log1/p2

n⌉. The data structure leverages a multi-level LSH: in each level 0 ≤ k < K, the input set is

partitioned according to O
(
p−k
1 log k

)
hash functions in Hk. For a given query q, we let Wq,k be the cost

for finding the near neighbor of q using the LSH at level k. Since Pr[hk(q) = hk(x)] = Pr[h(q) = h(x)]k, the
expected value of Wq,k is:

E[Wq,k] = p−k
1

(
1 +

∑
x∈R

Pr[h(q) = h(x)]k

)
.

The value kx = argmink∈[K] Wq,k gives the best level to use for finding all near neighbors of q. The data

structure computes an estimate W̃q,k of Wq,k by summing the sizes of buckets where q collides at level k and

then computing k̃x = argmink∈[K] W̃q,k. It is relevant to recall that the cost of removing x at level k′x is
upper bounded by the cost at level ⌈log(n/N(q, r))/ log(1/p2)⌉ (without knowing the actual output size).

3 A constant-round algorithm for similarity join

Let H be an (r, cr, p1, p2) LSH family, let ρ = log p1/ log p2, and let Hk denote the LSH family obtained by
concatenating k ≥ 1 copies of independent and identically distributed LSHs in H.

At the high level, the algorithm constructs a multi-level LSH data structure as in [2], where the i-level
uses i-concatenated LSHs and the bottom levels (i.e., below a given threshold κ) are removed. Then, the
algorithm removes each input point x ∈ R ∪ S by searching in the buckets of LSHs at level kx, which is
a suitable value that reduces the communication cost for removing point x. We initially assume that all
the kx values are known, and we will later show that they can be computed (with a slight increase in the
communication complexity) in one round.

Let κ = ⌈(ρ/(1 + ρ)) logp−1
1

p⌉. For each point x ∈ R, we define kx = argmini∈[κ] E[Wx,i], that is:

kx = argmin
i∈[κ]

⎛⎝p−i
1

⎛⎝1 +
∑
y∈S

Pr [hi(x) = hi(y)]

⎞⎠⎞⎠ .
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We recall that the value kx defined in [2] is defined using κ = ⌈ρ log1/p1
n⌉. The term ky for each y ∈ S is

defined equivalently.
The algorithm consists of κ phases, each one requiring O (1) rounds. These phases can be executed

sequentially, resulting in an O (κ)-round algorithm; however, since there is no dependency among phases,
they can be executed concurrently to give an O (1)-round algorithm. We assume the input to be evenly
distributed among the p processors. An input point x ∈ R ∪ S is said active during the kx-th phase, passive
during the i-th phase for each 1 ≤ i < kx, and dead during the i-th phase for each i > kx. The i-th phase,
with i ∈ [κ], is organized as follows:

1. Choose ti = Θ(p−i
1 ) hash functions hi

1, . . . , h
i
ti in Hk randomly and independently, and broadcast them

to all p processors.

2. Verify if x, for each x ∈ R ∪ S, is passive, active, or dead by comparing the index i with the value kx.

3. For each point x ∈ R ∪ S and hash functions hi
1, . . . , h

i
ti in Hk, generate a tuple with key (i, j, hi

j(x))
and value x (including its status as active or passive).

4. Let Q(i,j,ℓ) be the set of tuples with key (i, j, ℓ). Remove all tuples associated with a key (i, j, ℓ) that
does not have an active point in Q(i,j,ℓ). This step can be executed with a sort and a prefix-sum
computation.

5. Using the equi-join algorithm from [12] (see Theorem 1) on the remaining tuples, generate all pairs
(x, y) such that x ∈ R, y ∈ S and at least one of x and y is active, and then output only near pairs (i.e.,
d(x, y) ≤ r).

When the κ phases are run concurrently, each entry x is at the same time passive, active and dead. In
other words, for each entry x we generate the hash values (i, j, hi

j(x) for each 1 ≤ i ≤ kx and 1 ≤ j < ti.
Note that the κ equi-joins can be run as a single equi-join, with a slight improve of the load. We have the
following theorem.

Theorem 4. The above algorithm runs in O (1) rounds and load:

Õ

⎛⎝
√( κ∑

i=0

OUTr,i

ppi1

)
+

√
OUTcr

p
+

n

p1/(1+ρ)

⎞⎠ .

Proof. The correctness of the algorithm follows from [2]. We now upper bound the cost of Step 4. Consider
a point x in R ∪ S, and let x be ℓx-dense. Denote with Nr(x) and Ncr(x) the number of near and cr-near
points to x respectively. We observe that

OUTr,i = Θ

( ∑
i-dense x

Nr(x)

)
, and OUTcr = Θ

(∑
x

Ncr(x)

)
.

By construction, the total number of output pairs involving x is upper bounded by Wkx,x ≤ Wℓx,x. We now
bound Wℓx,x; summing over these gives the total number of output pairs.

If ℓx = κ, then Wℓx,x ≤ Nr(x)/p
κ
1 +Ncr(x) + n(p2/p1)

κ. We have n(p2/p1)
κ = n/p

κ(1−1/ρ)
1 = Θ(n/pp2κ1 ).

If ℓx < κ, then Wℓx,x ≤ Nr(x)/p
ℓx
1 +Ncr(x)+n(p2/p1)

ℓx . Since x is ℓx-dense, Nr(x)/p
ℓx
1 = Θ(n(p2/p1)

ℓx).

Thus, Wℓx,x = O(Nr(x)/p
ℓx
1 +Ncr(x)).

Summing over all x and invoking Theorem 1, Step 4 has load

Õ

⎛⎝
√( κ∑

i=0

OUTr,i

pi1
+OUTcr +

n2

pp2κ1

)
1

p

⎞⎠
which reduces to the claimed bounds using Jensen’s inequality.

We now consider the first three steps. We observe that the number of processors is at most nϵ for some
constant ϵ > 0, and hence prefix-sum, broadcast, sorting require constant rounds and load O (I/p), where I is
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the input size. Therefore the first three steps require O (1) rounds. Step 1 requires load Õ
(
p−κ
1 /p

)
. For Step

2, we observe that each input point is only copied once for each hash function; since there are Õ
(
p−κ
1

)
hash

functions and each processor contains O (n/p) points, the load is Õ
(
np−κ

1 /p
)
= n

p1/(1+ρ) (indeed the sorting

step guarantee load balancing). Step 3 consists of a sorting and prefix sum on Õ
(
np−κ

1

)
points and hence

its load is Õ
(
np−κ

1 /p
)
= n

p1/(1+ρ) . Therefore, the first three steps meet the claimed bound and the theorem

follows.

The previous algorithm assumes that kx is known for each input point. However, it is easy to see that the

values can be computed in O (1) rounds and load Õ
(

n
p1/(1+ρ)

)
, which is negligible compared to the overall

cost of the algorithm. Indeed, it suffices to generate all keys up to level κ, sort them and compute some prefix
sums to estimate the expected costs E[Wi,x] as in [2].

4 Conclusion

We have seen how to improve the output sensitivity of the algorithm in [12] with a simple O (1)-round
algorithm. A limit of our approach is the n/p1/(1+ρ) term in the load, which is due to the computation of kx
values (and to a non tight bound in the proof of Theorem 4). We conjecture that it is possible to reduce
this term for some output densities by using approximations to the kx values. One promising approach is
the technique for the Braun-Blanquet similarity in [9], where kx values are replaced with greedily-computed
collision probabilities. However, such an approach seems to increase the number of rounds to O (log n).

Another interesting direction is an experimental evaluation of our approach. Analysis for specific inputs
in [2] and experiments in [9] indicate that our recursive approach may give speedups beyond the worst-case
theoretical analysis. It would be interesting to see the load incurred using our approach on practical datasets.
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