A Comparison of Tree Search Methods for Graph
Topology Design Problems

Ada-Rhodes Short, Bryony L. DuPont, and Matthew 1. Campbell
Oregon State University, USA

In this paper, we discuss the relevance and effectiveness of two common
methods for searching decision trees that represent design problems. When
design problems are encoded in decision trees they are often multimodal,
capture a range of complexity in valid solutions, and have distinguishable
internal locations. We propose the use of a simple Color Graph problem to
represent these characteristics. The two methods evaluated are a genetic
algorithm and a Monte Carlo tree search. Using the Color Graph problem,
it is demonstrated that a genetic algorithm can perform exceptionally well
on such unbounded and opaque design decision trees and that Monte Carlo
tree searches are ineffective. Insights from this experiment are used to
draw conclusions about the nature of design problems stored in decision
trees and the need for new methods to search such trees and lead us to be-
lieve that exploitative methods are more effective than rigorously explora-
tive methods.

1. Introduction

Al tree-searches are a common method for the creation of generative de-
signs. This requires the problem to first be represented as a decision tree.
Problems represented as decision trees have a benefit over conventional
numerical optimization because the design space can have arbitrary com-
plexity as opposed to being limited to a fixed vector of decision variables
as in optimization.

Therefore, in this paper, we are exploring tree-search methods for find-
ing the best solution to a design problem. It is our conjecture that the de-
sign decision trees we define in this paper are different from typical tree-
search spaces explored by computer scientists. For example, the majority

Design Computing and Cognition DCC’18.]J.S. Gero (ed), 81
pp. 81-97. © Springer 2018

82 A.R. Short

of tree-search problems can be defined as path-planning problems or game
trees. Path-planning trees are distinguished by the fact that the tree termi-
nates at easily discernible goal states and the tree often contains mono-
tonicities in approaching that goal. Game trees also terminate in goal or
end-game states despite the fact that two or more agents control the deci-
sion making and are typically operating under counterproductive utility
functions.

Design decision trees are marked by four unique qualities. First, they are
often multimodal. There is rarely a monotonicity in the metrics that can be
used to guide us towards a solution. Second, the solutions are of unbound-
ed complexity meaning that non-terminal states in the tree can be a valid
solution even though additional decisions can be made on them to make
more complex solutions. As result, there is no clear sense of a valid goal
state, and in some cases, even the starting seed may be seen as a valid solu-
tion. Third, because design decision trees are often comprised of a struc-
ture (in this paper we use a graph structure), the design has /ocations with-
in it that can be leveraged in the subsequent decision making. For example,
if a generative graph grammar [1] is used to define transitions in the deci-
sion tree, then the mapping of the left-hand-side of grammar rules through
the recognition process may be reasoned about with some independence
from the application or change produced by the rule (as indicated by the
right-hand-side of the rule). Finally, design problems often contain states
that are not evaluable. This means that the effect of each decision cannot
be readily determined if the resulting state does not update the defined
metric of quality. As a result, sometimes multiple cascading decisions are
required to arrive at an evaluable state. For example, the comfort, dynamic
response, or aesthetics of a bicycle cannot be determined without complet-
ing decisions on all relevant parts such as the drive-train, frame, wheels,
and suspension. Sometimes predictions can be made but within an auto-
mated process, the effort to make such predictions would be significant
over merely invoking a few more decisions to arrive at an evaluable state.
We refer to this final quality as opaqueness.

Typically, deterministic methods like best first search (e.g. A* [2]) are
used in path-planning algorithms, but these are rarely useful for the generic
class of “design” trees that are described here. G for searching trees — also
known as Genet[3] — has stagnated in recent decades in favor of the more
generic concept of Monte-Carlo Tree Search (MCTS) methods[4]-[6].
However, the capabilities of these methods for problems portraying the
four characteristics above (multimodality, unbounded, location, and
opaqueness) is not well studied. This paper is a first attempt at exploring
these methods to understand which are most applicable to design problems
represented as decision trees.

A Comparison of Methods for Graph Topology Design Problems 83

1.1 Aims

This paper aims to establish an easily evaluable test problem to explore
how different tree search methods perform as applied to graph topology
design problems. In this paper, an emphasis was placed on the clear de-
scription of the implementation and methods for the purpose of repeatabil-
ity, and to lay a foundation for future work that uses other methods and
approaches to study the Color Graph design problem.

2. Significance

This work has profound potential significance in the field of automated de-
sign for three reasons. First, it describes a class of problem that is rarely
studied in the abstract. Second, it establishes a standard evaluation metric
for unbounded opaque topological design problems. Finally, it presents
findings that are widely generalizable to many real-world automated de-
sign problems.

2.1 Problem Definition

The unbounded opaque design decision tree problem has three unique
qualities. They are 1) multimodal and non-monotonic, 2) unbounded, and
3) contain multiple internal locations.

Multimodality complicates the design and analysis of a system. This is
because the design cannot be evaluated until it is complete, as early choic-
es may be a good in the beginning but lead to complications later on. An
example of this would be constructing a multistory building to minimize
cost. If a choice is judged by its value before the building is completed,
then it will likely not have a foundation can sufficiently support later lev-
els. However, if the whole building is designed first and then evaluated,
the designer will be able to determine if the foundation was sufficient.

The arbitrary complexity of the unbounded opaque design decision tree
creates further complications. Traditional tree search methods are capable
of finding an optimal solution in a bounded tree, but because this class of
design decision tree can have a potentially infinite number of choices the
problem become intractably large and no state can be described as globally
optimal.

Multiple internal locations make the problem more complex. A new lo-
cation is added the system as it is constructed, resulting in a factorial
branch factor. This means that the problem can become intractably large
very quickly, and it becomes impossible to significantly sample the space.

84 A.R. Short

2.2 Potential Applications and Generalization

While the exploration of unbounded opaque design decision trees is aca-
demically interesting for their own sake, this work is broadly generalizable
to many applications. Including Automated Metallic-Organic Framework
[7] design (directly inspired this work), architectural design [8], mechani-
cal structures [9]-[12], piping systems like HVAC [13], and truss design
[14]-[16]. It should be noted that Color Graph is capable of being feasibly
represented as a binary GA which may not be true for all design problems,
however insights gained should still be generally applicable.

3. Method

In this paper, we present the results of two methods applied to the same
design problem. A simple design problem was created that can be evaluat-
ed in a very short amount of time, roughly 0.001243 seconds on the ma-
chine that was used for this experiment.

3.1 The Color Graph Design Problem

A Color Graph is a directed graph composed of a seed node, n,, to which
red, orange, yellow, green, blue, or violet colored nodes are added. In addi-
tion to the seed node, colored nodes can be added to other colored nodes
already existing in the graph. Fig. 1 shows three examples of Color Graph
candidates found in the search tree.

Fig. 1 Three examples of a Color Graph

The design decision tree for a Color Graph alternates between location
decisions and color decisions. There are six branches coming off the root
representing the six potential colors for the added node. From each of
those six color options, there are two branches representing potential loca-
tions in the Color Graph to add the next node. One for the Color Graph
seed node, n,, and one for the first node added, n;. From each of those lo-
cation options the design decision tree branches again with the six color
options. The design decision tree continues to repeat this way between
color and location, with the number of location options increasing every

A Comparison of Methods for Graph Topology Design Problems 85

time a node is added to the Color Graph. Fig. 2 shows the design decision
tree and corresponding Color Graph for the first four nodes added.

oo

FPY TN

A

VAN ERTRN ED
K, e 0, 0,0 .E

a0
AR

c,;o e, 0, 0,0,

&
/

"
FIEA
s, y*\;r ®y®, .
.
"“/r‘og‘k .
'r' o %) % %
A;}f«m s i P l
o % 0 fe ®6 0 ‘ED
FYR

20 ®n1®n2

AFPNRX

o e, 8, 0 0%

/‘XM‘

., V.‘O .J' .g
AlWﬁ’

o o .y‘iq ., e,

_afoalnr ®n2

o e

o % %o 2P

Wy W,

®-
,
|

*n0 e dn2®ns ®

o e, 8, 0 e,

Fig. 2 Design Decision Tree and Corresponding Color Graph

The edges of a Color Graph design determine its quality. The edge’s
scores are determined by the source node and target node of each edge. For
the case study presented in this paper, the edges have three arbitrary prop-
erties: &, f3, and y, with a range of -5 to 5. These edge properties are inde-
pendent and are randomly generated. When a completed Color Graph is
evaluated, the scores for each edge are summed giving a three-dimensional
score [EZa,Xf,Zy]. Then, the design is rated on its proximity to a target
score, which was [0,0,0] for this paper. Table 1 shows example edge
scores for a Color Graph, and an example Color Graph is scored based on
its edges in Figure 3.

86 A.R. Short
Table 1 Edge Properties
Target Node
a B v

Red |Orange |Yellow|Green| Blue | Violet| | Red [Orange |Yellow|Green| Blue | Violet| | Red | Orange|Yellow|Green|Blue | Violet

Red|-3.15| 3.83| -0.71] 3.18[3.27| -3.49| | 0.38| 1.06| -1.94| 1.85|-2.20[-0.37| |-0.06] -2.46[2.57[-3.85|-3.62| -2.53

3 Orange| 3.56 3.45| -4.28| 4.09] 1.92| -1.10| | 1.55| -1.42] 0.54| -0.96| 4.06| -2.65| |-2.82 2.11] 0.74] 2.83| 4.89[1.81]

Z° Yellow| 3.72[-4.54] 2.93] -3.12|-4.44]| 0.85| | 0.18 3.95| -4.32| -2.88|-3.94| -3.00| | 1.88 1.33] -0.24[-4.92| 0.98] -3.91

g Green| 1.14 0.76] 1.13| -0.04(-3.27| 1.43| [-2.37| 0.66| 0.54| 2.31[-1.89] 4.99| [0.74] 2.62| 1.65| 2.80[1.22[1.29

3 Blue| 0.30] -4.27[-1.79] 2.81| 1.42| -4.48| | 4.56| -2.19| -4.55| 1.45| 2.52| -3.87| | 4.15| -3.46 1.03[4.29] 3.66| 4.23

o Violet| 0.93| -3.20| -4.42| 3.99| 4.58| 4.47| |-0.40| -4.58) -0.39| -0.71|-0.64| 1.59| |-3.41 0.96| 4.89] -1.42[-4.40[-0.16|

Seed|-1.51] -0.22| -0.64| -3.32|-4.89| -2.38 | 1.34] -3.98| 3.83] 0.47[1.08] 4.99| | 0.09] -4.52| 3.58| 0.86| 3.58| -2.48|

Figure 3 shows an example of how a Color Graph is scored using the
edge properties from Error! Reference source not found.. The edge be-
tween ng (the seed node) and n; (the orange node) has an a value
of—0.22, a § value of —3.98, and a y value of —4.52. We sum these with
the edge scores from the remaining four edges and get totals of
a=—2.72, f = —2.10, and y = 3.04 or as a three dimensional coordi-
nate in a design space [-2.72,-2.10,3.01]. We compare this to our target de-
sign score of [0,0,0] and determine the quality of the design by its proximi-
ty to the target. This can be found by calculating the distance between the
two points using Euclidean distance, giving the design a final quality score
of 4.59. A perfect score would be a 0 meaning that the design perfectly

recreated the target design.

[—3.32,0.47,0.86]

i

-

[~1.10,—2.65,1.81]

l N [—0.22, —3.98, —4.52]
® ¢

- [1.92,4.06,4.89]

Figure 3 Color Graph Edge Properties

The Color Graph problem exhibits all of the properties of interest of the
design decision tree. The design objective function for evaluating solution
quality is multimodal and non-monotonically related to the number of

A Comparison of Methods for Graph Topology Design Problems 87

nodes present in the Color Graph. For example, if the Color Graph in Fig-
ure 3 was only the first four nodes of a larger design and a designer added
a red node to ny, then the design quality would improve, but if a designer
added a violet node to n; the quality of the design would decrease. This
problem is compounded by the opaqueness of the design decision tree. The
Color Graph design process is opaque as the final design performance can-
not be determined from the performance of an incomplete Color Graph de-
sign. In many real-world cases, opaqueness exists in designs that are not
immediately or intuitively obvious to a human, due to a large number of
sensitive design variables and multimodality of the design. The Color
Graph design decision tree is unbounded because it has no set limit on the
number of nodes that can be added to the Color Graph. Lastly, it possesses
an increasing number of internal locations, as the locations where nodes
can be placed increases with the number of nodes already present in the
Color Graph. This gives the design decision tree for the Color Graph a
branching factor of n X 6, making its growth both geometric and factorial.
Fig. 4 shows a sub-section of the Color Graph design decision tree with 9
levels (selecting node color 5 times and node location 4 times).

3.2 Algorithms evaluated

Two algorithms were evaluated on their ability to design a Color Graph.
The chosen algorithms were a genetic algorithm [17] and a Monte Carlo
tree search [4]. We implemented both methods in the 2017 edition of
MATLAB [18].

88 A.R. Short

3.3 Genetic Algorithm

A Genetic Algorithm (GA) is a metaheuristic design algorithm inspired by
natural selection. A GA is one of a larger class of bioinspired algorithms
called Evolutionary Algorithms (EA). For the Color Graph problem, the
individual graph designs are represented by a set of chromosomes repre-
senting the location where a node is added, and the color of the added
node. For example a chromosome could be [red, seed; blue, node-1; green,
seed; yellow, node-2; blue, node-3] as shown in Fig. 5, additionally, we
can say the length of the set of chromosomes is itself defined by an addi-
tional chromosome that was not varied during these trials. The effect of
modulating the length though can be explored in future work.

Node Color | Location
Added | Added
1 Red S
2 Blue 1
3 Green S
4 Yellow 2
5 Blue 3

Fig. 5 Example Color Graph with chromosome [red, seed; blue, node-1; green, seed; yel-
low, node-2; blue, node-3]

The algorithm starts by randomly generating 100 parent solutions. The
algorithm then rates each solution with a fitness function, in this case, the
Color Graph edge evaluation. The 10 top-performing individuals are cop-
ied into the next generation. The remaining 90 spots in the next generation
are filled with the offspring of two parents randomly selected from the
previous generation. Next, there is a small probability that a node color
will randomly mutate. The GA is performed for 20 generations, and the fi-
nal design is recorded.

The GA’s greatest advantage is not its ability to search a tree in the tra-
ditional sense, but instead, they generate a constantly improving set of
completed solutions. This has two advantages: 1) GAs find completed so-
lutions, and 2) they do not have to follow a traditional search path and can
make large moves to completely new branches. One potential weakness of

A Comparison of Methods for Graph Topology Design Problems 89

the GA is that while it can quickly find a good solution, it is highly sto-
chastic and there is no guarantee that the GA will converge on a globally
optimal solution. Genetic algorithms have a tendency to become fixated on
a region and never explore beyond it unless a serendipitous mutation
should arise to introduce new regions of improvement. So, one could pre-
scribe a level of quality that is considered good enough and running the
GA until the level of quality is reached.

Each of the 100 solutions in all 20 generations was evaluated and had
its design and the quality score recorded in a cell array. When a new gen-
eration was created, the top 10 offspring in the previous generation were
copied into the new generation. Next, a normal distribution with ¢ = 8 and
u =0 was used in a Cumulative Density Function (CDF) to select two
parents. Two random values between 0 and 1 were generated and used to
look up the inverse value in the normal CDF. These numbers would corre-
spond to the rank of the two parents. The chromosomes of the offspring
were randomly selected from the two parents, with equal frequency. Next,
the random mutation would occur. For each added node, there was a prob-
ability of 0.05 that it would randomly mutate to a different color. This
would preserve the overall structure of the Color Graph while switching
the design decision tree to a different, but similar branch. The best scoring
design was recorded into the final results, along with the number of gener-
ations needed to reach the design. The GA algorithm is shown below in
Fig. 6.

90 A.R. Short

Algorithm1: GeneticAlgorithm

Input: Mumberof nodes N, and edge properties e, £, and y, target
properties t, generation size b, and number of generations G.

Output: & colorgraph design

. Randomly generate b offspring
2. Compute offspring’s «, f, y properties
Compute offspring on prozmity to ¢
Loop Process
4 forg=2: Gdo

5. Clone top 10 offspring to new generation
Loop Process
. for offspring 11: b
7. Select random parents biased to stop
sconng of last generation
8. Select chromosomes randomly from parents
a9, Randomly mmutate chromosotmes

Fig. 6 The Genetic Algorithm

3.4 Monte Carlo Tree Search Algorithm

A Monte Carlo Tree Search (MCTYS) is a type of heuristic search algorithm
that is often used in the analysis of games. MCTS consists of four basic
steps: 1) selection, 2) expansion, 3) simulation, and 4) back-propagation.
During selection, MCTS uses a policy to select the best option currently
available. A policy is a set of rules developed by MCTS that dictate what
decisions should be made. Starting from the root node, the seed in a Color
Graph, the search traverses until a leaf is reached in the decision tree.
When a leaf is reached, MCTS begins expansion. During expansion,
MCTS adds the next round of potential choices to the branch. MCTS then
performs simulation, consisting of selecting a leaf node that was just added
and randomly sampling the potential branches beneath it until completed
designs have been generated. The completed designs are then scored on
quality. Finally, quality scores are back-propagated through the branch and
back to the root, expanding on the previous policy by adding one more
level of informed decision. This is performed for all the adjacent leaves at
this level.

A Comparison of Methods for Graph Topology Design Problems 91

One reason for interest in MCTS is that it has been successfully applied
to similar problems trees in game theory before [19], however, when ap-
plied to problems that could be classified as unbounded opaque design de-
cision trees, MCTS has been shown to have inferior performance. A moti-
vation for studying and publishing this work is to better understand and
describe why MCTS underperforms on unbounded opaque design decision
trees, such as Color Graph.

The best implementation found to store the quality scores of nodes was
inside a digraph object (a graph with directed edges) in MATLAB directly
[20]. Starting at the root location (the Color Graph seed), the design deci-
sion tree was expanded to add the six possible color choices. A sample of
100 random designs was taken. The sample size of 100 was selected after
performing a parameter sweep on sample sizes to determine what generat-
ed a policy the most effectively. To compare MCTS more directly to the
GA, parallelization of the search was not used. This was to create a base-
line for comparison showed the general feasibility of the method, not the
computer’s ability to brute force the problem. In order to keep MCTS from
running for an infeasibly long time, a time was implemented that stops
MCTS after 20 minutes has elapsed and records the current best quality
score and policy. The MCTS algorithm is shown below in Fig. 7.

92 A.R. Short

Algorithm2: Monte CarlaTree Search

Input: MNumberof nodes N, and edge properties a, £, and y, target
propertiest, samplesizes,

Output: & colorgraph design

[MITIALIZATION
1. Select the root node
SELECTION
Loop Process
While design policy has not reached length n
While design policy exsts
Select branch with the best score
End while
EXPAND
If terrminal leafis alocation in the color graph
Add six new leaves representing color options
Elseifterminal leaf 1z a color decision
Add a number of leaves equal to the number of nodes m the
color graph
10: Endif
SIMULATION
Loop Process
11: While new unexplored leaf exmsts

Moo b

MO -] O

12: Generate s random completed design branches
13: Calculate the average score for decision tree leaf
14: End while
BACK PROPAGATION
15: While current nodes root
16: Select node back one level i the branch
17: Compute the awverage score for that node based on
SIAULATION

Fig. 7 Monte Carlo Tree Search Algorithm

3.5 Experimental Setup

For both the GA and MCTS method, we conducted an experiment in
which Color Graphs with 3, 5, and 10 added nodes are designed. Each al-

A Comparison of Methods for Graph Topology Design Problems 93

gorithm explores graphs of variable sizes because the unbounded nature of
the design decision tree means that more choice could always be made,
therefore it is important to study how each method behaves as the size of
the decision tree grows.

For each method and size of Color Graph 10 trials were performed. 10
sets of random edge properties were generated prior to performance of the
experiment, one for each trial. This was to ensure that the results would not
be biased due to of a single set of properties, and enables comparison
across methods and graph sizes.

The metrics of interest are the quality score of the designed graph, the
length of time needed to reach the solution, and the number of graph de-
signs analyzed during the process. Additionally, we recorded the number
of generations before the solution was discovered (for the GA), the depth
of the policy (MCTS). This allowed us to gain additional insight on the ca-
pability of the methods, even if they fail to generate a completed design
within the allotted 20-minute limit. The best Color Graph from each trial is
stored in a cell array for later review.

In addition to the GA- and MCTS-generated Color Graphs, purely ran-
dom Color Graphs (consisting of randomly chosen colors placed in ran-
dom locations) will be generated for each trial as a control, and analyzed
as a baseline for comparison.

4. Results

The entire experiment took approximately 7 hours and 45 minutes to run
on an ordinary desktop computer with a 3.4 GHz Intel Xeon CPU [21] and
16 GB of RAM. A summary of the mean algorithm scores (with 0 being
the best possible score) is shown in Fig. 8.

94

[= T S S S
o N B O

Score (best possible is 0}

(= -]

Mean Score of Algorithms

GA

Fig. 8 Summary of Mean Scores

MCTS

Algorithm

4.1 Three-Node Color Graph

Control

A.R. Short

M Three-Node

& Five-Node

Ten-Node

In the first test, each method was used to generate a Color Graph with
three added nodes, and we performed 10 trials for each of the methods.
The methods were scored on their ability to improve Color Graph quality,
with a best possible score of 0. Table 2 shows a summary of the results.

Table 2 Results of the Three-Node Test

Three-Node Color Graph

Genetic Algorithm Monte Carlos Tree Search Control
Quality Run Nodes Quality | Run Nodes Quality
Score | Time (s) |Evaluated] | Score |Time (s)|Evaluated Score
Mean 1.044 7.46 2000 6.630 309 6951 7.945
std 0.457 2.45 0.711

The best performing method was the GA with a mean score of 1.044,
and a standard deviation of 0.457. MCTS had a mean score of 6.6296 and
a standard deviation of 2.453. For this size, MCTS was only marginally
better than the control and was 1.84 standard deviations away from a pure-
ly random design. The purely random control had a mean score of 7.945
with a standard deviation of 0.712.

A Comparison of Methods for Graph Topology Design Problems 95

4.2 Five-Node Color Graph

Again, the best performing method was the GA with a mean score of
0.9843, and a standard deviation of 0.413. MCTS had a mean score of
6.9008 and a standard deviation of 3.89. This significantly out-performed
the purely random control, with a mean score of 10.59 and standard devia-
tion of 0.929, but still performed much worse than the GA. Table 3 shows
a summary of the results.

Table 3 Results of the Five-Node Test

Five-Node Color Graph

Genetic Algorithm Monte Carlos Tree Search Control

Quality Run Nodes Quality Run Nodes Quality
Score | Time (s) |Evaluated Score |Time (s)|Evaluated Score

Mean 0.9843 11.6 2000 6.901 1221 17700 10.59

std 0.413 3.88 0.929

Another notable result is that for the five-node Color Graph, only three
of the 10 MCTS trials successfully developed a full five-step design deci-
sion tree policy during the allotted 20 minutes. The other seven trials were
only able to develop a four-step design decision tree policy, meaning that
the final node's location and color are indeterminate and the final score
was based on expected value if the branch were to be randomly completed.
For comparison, the run that took the longest only lasted 11.6 seconds.

4.3 Ten-Node Color Graph

As in the first two tests, the best performing method was the GA with a
mean score of 0.9290, and a standard deviation of 0.393. MCTS had a
mean score of 9.774 and a standard deviation of 5.54, which is worse than

Table 4 Results of the Ten-Node Test

Ten-Node Color Graph

Genetic Algorithm Monte Carlos Tree Search Control

Quality Run Nodes Quality Run Nodes Quality
Score | Time (s) |Evaluated Score |Time (s)|Evaluated Score

Mean 0.9290 21.3 2000 9.774 1217 17880 16.07

std 0.393 5.54 1.29

96 A.R. Short

During the 10-node test, MCTS completely failed to generate a com-
pleted policy within the allotted 20 minutes. In four of the trials, MCTS
developed a five-node design decision tree policy, in five trials it devel-
oped a four-node design decision tree policy, and in one trial it only devel-
oped a three-node design decision tree policy. The longest the GA took to
complete was 21.3 seconds.

4.4 Discussion of Results

Analysis of the results leads to several interesting observations.

The first and most obvious observation is that the GA significantly out-
performed MCTS in both quality score and runtime with a p-value of
0.0001 or less in all three cases. This was likely related to the branching
factor of the design decision tree being n X 6 resulting in a tree that rapid-
ly becomes too large to feasibly search. MCTS struggles with this because
it must search through the actual tree in order to find good design solu-
tions. The GA avoids this problem by not relying on the design decision
tree structure, and instead, working directly on designs.

It is expected that this observation is broadly generalizable outside of
these two methods. For example other Evolutionary Algorithms (EA) that
work directly on the Color Graph without considering the design decision
tree would likely be able to find a solution relatively quickly, on the other
hand, algorithms that search through the design decision tree directly, such
as an Ant Colony Optimization (ACO), are likely to fail for find particular-
ly good solutions.

A second notable result is the usefulness of MCTS was very sensitive to
the size of the Color Graph. For the three-node Color Graph, MCTS did
not significantly perform better than random (p-value of 0.1205), because
it was not able to find a particularly good node due to how large the design
decision tree becomes. However, as for the five-node Color Graph test,
MCTS performs significantly better than random (p-value of 0.0091). This
appears to be because MCTS is capable of finding an okay solution, but as
the problem grows larger pure random selection performs increasingly
poorly. However, the capability of MCTS is limited as the problem size
continues to grow because the runtime needed quickly becomes infeasible.

5. Conclusion

Based on the results of the experiment, it can be concluded that a Genetic
Algorithm (GA) is much better suited than a Monte Carlo Tree Search
(MCTS) to the problem of designing systems with design decision trees

A Comparison of Methods for Graph Topology Design Problems 97

that are multimodal, unbounded, and contain multiple internal locations. In
future work we hope to explore this further and validate that it is a result of
how the methods utilize the design decision tree different.

Additionally, it has been shown that the Color Graph design problem
serves as a good benchmark for the study and comparison of various forms
of automated design methods in real-world unbounded problems. The de-
signs of Color Graphs can be evaluated at a rate of approximately 1000
graphs per second on commonly available desktop computers while pre-
serving characteristic multimodality, unbounded complexity, and multiple
internal locations.

5.1 Future Work

Future work will focus on further exploration of the Color Graph design
problem using a wider variety of methods. Additionally, experimentation
will be performed to explore questions of option design complexity, the
complexity of design properties and behavior, and the development of new
and novel methods for automated system design.

6. Acknowledgments

This material is based upon work supported by the National Science Foun-
dation under grant CMMI-1662731. Any opinions, findings, and conclu-
sions or recommendations presented in this paper are those of the authors
and do not necessarily reflect the views of the National Science Founda-
tion.

7. References

[1] G. Rozenberg and H. Ehrig, “Handbook of Graph Grammars and Computing
by Graph Transformation", 1997.

[2] L. N. Kanal and V. Kumar, Search in artificial intelligence. Springer-Verlag,
1988.

[3] J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection. The MIT press, 1992.

[4] C. Browne and E. Powley, “A survey of monte carlo tree search methods,”
IEEE Trans. Intell. AI Games, vol. 4, no. 1, pp. 1-49, 2012.

[5] D. Perez et al., “Solving the Physical Traveling Salesman Problem: Tree
Search and Macro Actions,” IEEE Trans. Comput. Intell. AI Games, vol. 6,
no. 1, pp. 31-45, Mar. 2014.

[6] D. Perez, P. Rohlfshagen, and S. M. Lucas, “Monte Carlo Tree Search: Long-
term versus short-term planning,” in 2012 IEEE Conference on Computation-
al Intelligence and Games (CIG), 2012, pp. 219-226.

98 A.R. Short

[7] C. A. Manion, R. Arlitt, I. Y. Tumer, M. 1. Campbell, and P. A. Greaney,
“TOWARDS AUTOMATED DESIGN OF MECHANICALLY
FUNCTIONAL MOLECULES,” in Volume 2A: 41st Design Automation
Conference, 2015, p. VO2AT03A004.

[8] H. Koning and J. Eizenberg, “The language of the prairie: Frank Lloyd
Wright’s prairie houses,” Environ. Plan. B Plan. Des., vol. 8, no. 3, pp. 295—
323, 1981.

[9] J. Patel and M. 1. Campbell, “An Approach to Automate Concept Generation
of Sheet Metal Parts Based on Manufacturing Operations,” in Volume 1: 34th
Design Automation Conference, Parts A and B, 2008, vol. DETC2008-4, pp.
133-142.

[10]J. Patel and M. 1. Campbell, “Topological and Parametric Tune and Prune
Synthesis of Sheet Metal Parts Compared to Genetic Algorithm,” in
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2008.

[11]A. Swantner and M. 1. Campbell, “Topological and parametric optimization of
gear trains,” Eng. Optim., vol. in review, pp. 1-18, Mar. 2012.

[12]P. Radhakrishnan and M. 1. Campbell, “A graph grammar based scheme for
generating and evaluating planar mechanisms,” in Design Computing and
Cognition ’10, 2010, pp. 663—679.

[13]W. R. J. Patterson and M. 1. Campbell, “PipeSynth: An Algorithm for Auto-
mated Topological and Parametric Design and Optimization of Pipe Net-
works,” in ASME Conference Proceedings, 2011, vol. 2011, no. 54822, pp.
13-23.

[14]A. Hooshmand and M. 1. Campbell, “Truss layout design and optimization us-
ing a generative synthesis approach,” Comput. Struct., vol. 163, pp. 1-28, Jan.
2016.

[15]K. Shea, E. Fest, and I. F. C. Smith, “Developing intelligent tensegrity struc-
tures with stochastic search,” Adv. Eng. Inform., vol. 16, no. 1, pp. 21-40,
2002.

[16]P. Shankar, J. Ju, J. D. Summers, and J. C. Ziegert, “DETC2010- DESIGN
OF SINUSOIDAL AUXETIC STRUCTURES FOR HIGH SHEAR,” Eng.
Conf., pp. 1-10, 2010.

[17]D. Whitley, “A genetic algorithm tutorial,” Stat. Comput., vol. 4, no. 2, pp.
65-85, 1994.

[18]“MATLAB - The Language of Technical Computing,” 09-Dec-2015.
[Online]. Available: http://www.mathworks.com/products/matlab/. [Accessed:
09-Dec-2015].

[19]C. B. Browne et al., “A survey of monte carlo tree search methods,” IEEE
Trans. Comput. Intell. AI Games, vol. 4, no. 1, pp. 1-43, 2012.

[20]“Graph with directed edges - MATLAB.” .

[21]“Intel® Xeon® Processor E3-1240 v2 (8M Cache, 3.40 GHz) Product Speci-
fications,” Intel® ARK (Product Specs). [Online]. Available:
https://ark.intel.com/products/65730/Intel-Xeon-Processor-E3-1240-v2-8M-
Cache-3_40-GHz. [Accessed: 16-Dec-2017].

	1. Introduction
	1.1 Aims

	2. Significance
	2.1 Problem Definition
	2.2 Potential Applications and Generalization

	3. Method
	3.1 The Color Graph Design Problem
	3.2 Algorithms evaluated
	3.3 Genetic Algorithm
	3.4 Monte Carlo Tree Search Algorithm
	3.5 Experimental Setup

	4. Results
	4.1 Three-Node Color Graph
	4.2 Five-Node Color Graph
	4.3 Ten-Node Color Graph
	4.4 Discussion of Results

	5. Conclusion
	5.1 Future Work

	6. Acknowledgments
	7. References

