

SYMPOSIUM INTRODUCTION

Sensory Feedback and Animal Locomotion: Perspectives from Biology and Biorobotics: An Introduction to the Symposium

Brett R. Aiello,^{1,*} Gary B. Gillis[†] and Jessica L. Fox[‡]

¹Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th Street, Chicago, IL 60637, USA;

[†]Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA; [‡]Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA

All authors contributed equally to this work.

From the symposium “Sensory Feedback and Animal Locomotion: Perspectives from Biology and Biorobotics” presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3–7, 2018 at San Francisco, California.

¹E-mail: braiello@uchicago.edu

Synopsis The successful completion of many behaviors relies on sensory feedback. This symposium brought together researchers using novel techniques to study how different stimuli are encoded, how and where multimodal feedback is integrated, and how feedback modulates motor output in diverse modes of locomotion (aerial, aquatic, and terrestrial) in a diverse range of taxa (insects, fish, tetrapods), and in robots. Similar to biological organisms, robots can be equipped with integrated sensors and can rely on sensory feedback to adjust the output signal of a controller. Engineers often look to biology for inspiration on how animals have evolved solutions to problems similar to those experienced in robotic movement. Similarly, biologists too must proactively engage with engineers to apply computer and robotic models to test hypotheses and answer questions on the capacity and roles of sensory feedback in generating effective movement. Through a diverse group of researchers, including both biologists and engineers, the symposium attempted to catalyze new interdisciplinary collaborations and identify future research directions for the development of bioinspired sensory control systems, as well as the use of robots to test hypotheses in neuromechanics.

Introduction

The symposium Sensory Feedback and Animal Locomotion: Perspectives from Biology and Biorobotics (January 2018, Annual meeting for the Society for Integrative and Comparative Biology, SICB) sought to answer a question fundamental to both biology and robotics: how is sensory feedback used to modulate motor output? This question is particularly relevant in the context of locomotion, because, for most animals, locomotor capability is essential to survival. More generally, all organisms possess a means of mechanosensation (Kung 2005), and even sessile organisms as diverse as Venus fly-traps, hydra, and adult mussels rely on body movements for their survival. Animal movement is often the result of the coordinated activation of specific suites of muscles. The neural commands for these

patterns can be complex, and they are not a unidirectional cascade: they are further complicated by the need for, and integration of, rapid sensory feedback. This feedback helps control and modulate the three-dimensional movements that enable animals to successfully complete behaviors ranging from the closure of a mussel’s bivalve shell, to the movement of a hydra’s appendage, to the navigation of an unstable and unpredictable environment during locomotion (e.g., Sainburg et al. 1995; Sane et al. 2007; Mongeau et al. 2015; Williams and Hale 2015).

The successful completion of complex behaviors relies on a range of sensory modalities to acquire information and provide feedback from the external world, the animal’s own movement in space, and the animal’s physical interaction with the environment. Across a diversity of behaviors, multiple sensory

pathways, including visual, chemical, thermal, and mechanical sensation, can be used in parallel to finely control the motor output driving a given movement (Sherman and Dickinson 2003; Raguso and Willis 2005; Taylor and Krapp 2007; van Breugel et al. 2015). The contribution of a single modality or the relative contribution of multiple modalities to produce a movement can vary across behaviors. The completion of the reach-and-grasp behavior in primates, for example, uses visual feedback while planning the movement and mechanosensory feedback to control and adjust the movement in space (Sober and Sabes 2005). Further, while the ability of a moth to track a moving flower during feeding occurs through multimodal feedback from both visual and mechanosensory pathways, each of these modalities is sufficient for successful flower tracking on its own (Roth et al. 2016). While some animals strongly rely on visual feedback during locomotion, environmental and behavioral conditions can limit its effectiveness. For example, in organisms that have lost vision, such as the Mexican cavefish (*Astyanax mexicanus*), or those that live in the deep sea where light cannot penetrate, other sensory modalities like mechanosensation and chemosensation must dominate (Soares and Niemiller 2013). Furthermore, during the performance of extremely rapid behaviors like wing movement during insect flight, visual processing speeds are too slow to provide within-cycle feedback (Theobald et al. 2010; Sponberg et al. 2015), and mechanosensation is necessary to maintain stability (Sherman and Dickinson 2003, 2004).

The locomotor appendages of animals, from insect wings to fish fins to tetrapod limbs, perform dual roles as sensors and propulsors, and mechanosensory feedback from appendages and/or the central body axis has been shown to be critical to an animal's motor performance. Mechanosensory feedback can modulate the motor output of a central pattern generator (CPG) (Grillner and Zanger 1984) to maintain normal movement in the event of an unexpected perturbation during rhythmic behaviors like walking and swimming (Grillner and Zanger 1984; Giuliani and Smith 1987; Sainburg et al. 1993). Following the removal of sensory feedback, CPG-driven movement occurs with atypical kinematics (Gettrup and Wilson 1964; Polit and Buzzi 1978, 1979; Pearson and Wolf 1987; Bosco and Poppele 2001; Williams and Hale 2015) and reduced accuracy and adaptability (Grillner 1975; Sanes et al. 1985; Nathan et al. 1986). Following such disruption, other sensory modalities, like vision, are needed to provide compensatory feedback about appendage movements (Sanes et al. 1985).

Across animals, we can observe large interspecific variations in environment (e.g., aquatic, terrestrial, aerial), the type and material properties of the appendages, the kinematics of appendages and their interactions with the environment, and the number and type of sensory modalities used to acquire sensory feedback from the environment. Even sensory organs that have evolved to encode similar mechanical stimuli can vary widely across taxa: for example, to sense fluid flow and self-movement, fishes and sharks utilize the mechanosensitive lateral line (Dijkgraaf 1963; Liao 2010), while many flying insects rely on antennae for similar purposes (Sane et al. 2007). Together, variations in environment and body mechanics, as well as the physiological and anatomical differences of sensory organs, suggest that processes of sensorimotor feedback and integration can also widely vary across animals. In other words, animals have evolved a diverse range of satisfactory mechanisms for gathering sensory feedback. Thus, comparative studies can be very useful in the development of engineered solutions for robotic movement, and robots can be very useful in determining the universal encoding features common across the diversity of sensors.

Robots are powerful tools for studying sensory feedback in animals. Similar to animals, the propulsors of robots are often outfitted with integrated sensors to collect feedback that can be used to adjust the output signal of the controller. Robots can thus be used to test hypotheses about locomotor feedback by implementing neural circuitry and processing algorithms in robotic controllers. For example, the use of robots allows biologists to systematically explore and identify the bounds of parameter space, or enable subtle behaviors or small movements to be amplified in order to test hypotheses on sensory feedback in animals (Eberle et al. 2015). Further, the physical interaction between a robot and a natural environment allows researchers to test hypotheses under the physical conditions experienced by biological organisms, an advantage over mathematical or computer models. The natural environment provides a realistic source of sensory noise and other complex conditions that may be simplified or non-existent in simulations (Webb 2002). Ultimately, the use of robots could lead to more realistic models and representations of the neural circuitry, stimulus encoding, and processing that exists in animals.

The limitations of information processing and control systems in robots are often similar to the type of problems for which animals have evolved solutions. This allows circuitry and processing algorithms similar to those found in freely behaving animals to

be implemented in robots (Webb and Scutt 2000). Single sensory modality robotic sensorimotor systems have been developed (Lund et al. 1998; Damper et al. 2000; Hoshino et al. 2000; Phelan et al. 2010). However, the processing time associated with some sensory modalities (i.e., vision) is often large relative to the duration of a propulsive cycle, and is limited in its effectiveness under certain conditions (Warzecha and Egelhaaf 2000). The next step in robotics is to not only model and incorporate visual feedback, but also combine this sense with other modalities (i.e., mechanosensation) to produce robots with multimodal sensory feedback (Chapman 2001). The study of sensorimotor integration in animals will be very useful for the successful and efficient implementation of multimodal sensory feedback in robots. Studies are already being conducted to determine how convergent sensory feedback pathways are weighted and how feedback from each sensory modality or source will modulate motor output independently and in combination with other senses (Hinterwirth and Daniel 2010; Roth et al. 2016). Yet, the most effective implantation of bioinspired circuitry, stimulus encoding, information processing, and sensorimotor integration will depend on large-scale and long-term collaborations between biologists and engineers. We believe that these collaborations should focus on the following questions: (1) how and where is multimodal sensory feedback integrated, (2) do different sensory modalities provide complementary feedback and what modalities are necessary, sufficient, or require complementary input to produce a given behavior, and (3) how can the number and distribution of sensors for a given modality in an animal inform the placement of sensors across the surface of a robot?

The symposium

The symposium was focused on addressing the questions above (among others) through presentations focused on novel techniques to study sensorimotor integration from the perspectives of both biology and engineering. The broad goals of the symposium were to (1) identify mechanisms of stability that rely solely on the passive mechanics of the musculoskeletal system of animals, (2) identify general principles of sensory feedback and their roles in animal locomotion, (3) identify how sensory feedback and locomotion can be studied from an engineering perspective, and (4) explore how sensory feedback can be incorporated into the development of sensors and control algorithms to be used in the design of bioinspired autonomous robotic vehicles. To reach these goals, the symposium included a broad range

of speakers explaining how sensation is encoded, how and where multimodal feedback is integrated, and how feedback impacts the activity of other sensory modalities as well as motor output in diverse modes of locomotion (aerial, aquatic, and terrestrial) across a diverse range of taxa that include insects (Loveless and Webb 2018; Rauscher and Fox 2018; Sponberg 2018), lamprey (Tytell et al. 2018), fishes (Aiello et al. 2018; Haehnel-Taguchi et al. 2018), tetrapods (Cox et al. 2018; Daley 2018; Hartmann 2018; Quinn et al. 2018), and robots (Carryon et al. 2018; Haehnel-Taguchi et al. 2018; Loveless and Webb 2018). Further, stabilization mechanisms that rely solely on the musculoskeletal system (not neurally mediated) and can operate on very short time scales (Daley 2018; Tytell et al. 2018) were also highlighted.

The study of the animal stability mechanisms from both a biological and engineering perspective provides reciprocal insights into sensorimotor integration. Engineers often look to biology for inspiration on how animals have evolved solutions to problems similar to those experienced in robotic movement, and biologists too must proactively engage with engineers to apply computer and robotic models to help answer questions on the capacity of animal sensory systems as well as the role(s) different variables play in generating effective movement. We hope this symposium catalyzed new interactions between biologists, computer scientists, and engineers, stimulated productive discussions on the development of bioinspired sensory control systems and algorithms, and helped identify future directions for research collaborations.

Acknowledgments

The organizers thank all of the participants of the 2018 SICB symposium entitled “Sensory Feedback and Animal Locomotion: Perspectives from Biology and Biorobotics.” The organizers also thank Jake Socha (DCB-PO), Manny Azizi (DVM-PO), and Charles Derby (DNB-PO) for their help throughout the proposal process, Brett Burke, Lori Strong, and Tiffany Binnix for their administrative assistance with the symposium and obtaining funding, Suzanne Miller for making this issue of ICB possible, Sharlene Santana (University of Washington and the Burke Museum), Paul Gignac (Oklahoma State University), and Kent Smith (Oklahoma State University) for their help in organizing the symposium and reinstating the Scientific Conference Opportunities Program, which they started in 2016, and finally Richard Blob (SICB-wide program officer) for the consistent help over the last 2 years, without this symposium would not be possible.

Funding

This symposium was supported by Photron (<https://photon.com>), the Company of Biologists, the Society for Comparative and Integrative Biology (Divisions of Comparative Biomechanics, Vertebrate Morphology, Animal Behavior, and NNSB), the Air Force Office of Scientific Research (FA9550-16-1-0165), and the National Science Foundation (IOS-1747859).

References

Aiello BR, Hardy AR, Westneat MW, Hale ME. 2018. Fins as sensors: exploring the roles of fin mechanosensation in movement, posture and touch. *Integr Comp Biol* published online (doi: 10.1093/icb/icy065).

Bosco G, Poppele RE. 2001. Proprioception from a spinocerebellar perspective. *Physiol Rev* 81:539–68.

Carryon GC, Kahn JC, Tangorra JL. 2018. Sensory mediated control and touch in biorobotic fins. *Integr Comp Biol* 58:E30.

Chapman TP. 2001. Morphological and neural modelling of the orthopteran escape response [thesis]. University of Stirling.

Cox SM, Ekstrom LJ, Gillis GB. 2018. The influence of visual, vestibular, and hindlimb proprioceptive ablations on landing preparation in Cane toads. *Integr Comp Biol* published online (doi: 10.1093/icb/icy059).

Daley MA. 2018. Understanding the agility of running birds: sensorimotor and mechanical factors in avian bipedal locomotion. *Integr Comp Biol* published online (doi: 10.1093/icb/icy058).

Damper RI, French RLB, Scutt TW. 2000. ARBIB: an autonomous robot based on inspirations from biology. *Rob Auton Syst* 31:247–74.

Dijkgraaf S. 1963. The functioning and significance of the lateral-line organs. *Biol Rev Camb Philos Soc* 38:51–105.

Eberle AL, Dickerson BH, Reinhard PG, Daniel TL. 2015. A new twist on gyroscopic sensing: body rotations lead to torsion in flapping, flexing insect wings. *J R Soc Interface* 12:20141088.

Gettrup E, Wilson DM. 1964. Lift-control reaction of flying locusts. *J Exp Biol* 41:183–90.

Giuliani CA, Smith JL. 1987. Stepping behaviors in chronic spinal cats with one hindlimb deafferented. *J Neurosci* 7:2537–46.

Grillner S. 1975. Locomotion in vertebrates: central mechanisms and reflex interaction. *Physiol Rev* 55:247–304.

Grillner S, Zanger P. 1984. The effect of dorsal root transection on the efferent motor pattern in the cat's hindlimb during locomotion. *Acta Physiol Scand* 120:393–405.

Haehnel-Taguchi M, Akanyeti O, Liao JC. 2018. Behavior, electrophysiology and robotics experiments to study lateral line sensing in fishes. *Integr Comp Biol* published online (doi: 10.1093/icb/icy066).

Hartmann MJZ. 2018. Sensory feedback from the vibrissal system during exploratory behaviors of the rat. *Integr Comp Biol* 58:E89.

Hinterwirth AJ, Daniel TL. 2010. Antennae in the hawkmoth *Manduca sexta* (Lepidoptera, Sphingidae) mediate abdominal flexion in response to mechanical stimuli. *J Comp Physiol A Neuroethol Sens Neural Behav Physiol* 196:947–56.

Hoshino K, Mura F, Shimoyama I. 2000. Design and performance of a micro-sized biomimetic compound eye with a scanning retina. *J Microelectromechan Syst* 9:32–7.

Kung C. 2005. A possible unifying principle for mechanosensation. *Nature* 436:647–54.

Liao JC. 2010. Organization and physiology of posterior lateral line afferent neurons in larval zebrafish. *Biol Lett* 6:402–5.

Loveless J, Webb B. 2018. A neuromechanical model of larval chemotaxis. *Integr Comp Biol*.

Lund HH, Webb B, Hallam J. 1998. Physical and temporal scaling considerations in a robot model of cricket calling song preference. *Artif Life* 4:95–107.

Mongeau JM, Sponberg SN, Miller JP, Full RJ. 2015. Sensory processing within cockroach antenna enables rapid implementation of feedback control for high-speed running maneuvers. *J Exp Biol* 218:2344–54.

Nathan PW, Smith MC, Cook AW. 1986. Sensory effects in man of lesions of the posterior columns and of some other afferent pathways. *Brain* 109:1003–41.

Pearson KG, Wolf H. 1987. Comparison of motor patterns in the intact and deafferented flight system of the locust. I. Electromyographic analysis. *J Comp Physiol A* 160:259–68.

Phelan C, Tangorra J, Lauder G, Hale M. 2010. A biorobotic model of the sunfish pectoral fin for investigations of fin sensorimotor control. *Bioinspir Biomim* 5:035003.

Polit A, Bizzi E. 1978. Processes controlling arm movements in monkeys. *Science* 201:1235–7.

Polit A, Bizzi E. 1979. Characteristics of motor programs underlying arm movements in monkeys. *J Neurophysiol* 42:183–94.

Quinn DB, Kress D, Stein A, Wegrzynski M, Hamzah L, Lentink D. 2018. How birds negate gusts and maintain heading by crabbing into the wind. *Integr Comp Biol* 58:E182.

Raguso RA, Willis MA. 2005. Synergy between visual and olfactory cues in nectar feeding by wild hawkmoths, *Manduca sexta*. *Anim Behav* 69:407–18.

Rauscher M, Fox JL. 2018. Inertial sensing and encoding of self-motion: structural and functional similarities across metazoan taxa. *Integr Comp Biol* published online (<https://doi.org/10.1093/icb/icy041>).

Roth E, Hall RW, Daniel TL, Sponberg S. 2016. Integration of parallel mechanosensory and visual pathways resolved through sensory conflict. *Proc Natl Acad Sci U S A* 113:12832–7.

Sainburg RL, Ghilardi MF, Poizner H, Ghez C. 1995. Control of limb dynamics in normal subjects and patients without proprioception. *J Neurophysiol* 73:820–35.

Sainburg RL, Poizner H, Ghez C. 1993. Loss of proprioception produces deficits in interjoint coordination. *J Neurophysiol* 70:2136–47.

Sane SP, Dieudonne A, Willis MA, Daniel TL. 2007. Antennal mechanosensors mediate flight control in moths. *Science* 315:863–6.

Sanes JN, Mauritz KH, Dalakas MC, Evarts EV. 1985. Motor control in humans with large-fiber sensory neuropathy. *Hum Neurobiol* 4:101–14.

Sherman A, Dickinson MH. 2003. A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly *Drosophila melanogaster*. *J Exp Biol* 206:295–302.

Sherman A, Dickinson MH. 2004. Summation of visual and mechanosensory feedback in *Drosophila* flight control. *J Exp Biol* 207:133–42.

Soares D, Niemiller ML. 2013. Sensory adaptations of fishes to subterranean environments. *Bioscience* 63:274–83.

Sober SJ, Sabes PN. 2005. Flexible strategies for sensory integration during motor planning. *Nat Neurosci* 8:490–7.

Sponberg S. 2018. Robustness, sensitivity, and necessity in “template” sensing strategies of the hawkmoth. *Integr Comp Biol* 58:E218.

Sponberg S, Dyhr JP, Hall RW, Daniel TL. 2015. Luminance-dependent visual processing enables moth flight in low light. *Science* 348:1245–8.

Taylor GK, Krapp HG. 2007. Sensory systems and flight stability: what to insects measure and why? *Adv Insect Physiol* 34:231–316.

Theobald JC, Warrant EJ, O’Carroll DC. 2010. Wide-field motion tuning in nocturnal hawkmoths. *Proc Biol Sci* 277:853–60.

Tytell ED, Carr JA, Danos N, Wagenbach C, Sullivan CM, Kiemel T, Cowan NJ, Ankarali MM. 2018. Body stiffness and damping depend sensitively on the timing of muscle activation in lampreys. *Integr Comp Biol* published online (doi: 10.1093/icb/icy042).

van Breugel F, Riffell J, Fairhall A, Dickinson MH. 2015. Mosquitoes use vision to associate odor plumes with thermal targets. *Curr Biol* 25:2123–9.

Warzecha A, Egelhaaf M. 2000. Response latency of a motion-sensitive neuron in the fly visual system: dependence on stimulus parameters and physiological conditions. *Vision Res* 40:2973–83.

Webb B. 2002. Robots in invertebrate neuroscience. *Nature* 417:359–63.

Webb B, Scutt T. 2000. A simple latency-dependent spiking-neuron model of cricket phonotaxis. *Biol Cybern* 82:247–69.

Williams R, Hale ME. 2015. Fin ray sensation participates in the generation of normal fin movement in the hovering behavior of the bluegill sunfish (*Lepomis macrochirus*). *J Exp Biol* 218:3435–47.