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Synopsis Unlike most manmade machines, animals move through their world using flexible bodies and appendages,

which bend due to internal muscle and body forces, and also due to forces from the environment. Fishes in particular

must cope with fluid dynamic forces that not only resist their overall swimming movements but also may have unsteady

flow patterns, vortices, and turbulence, many of which occur more rapidly than what the nervous system can process.

Has natural selection led to mechanical properties of fish bodies and their component tissues that can respond very

quickly to environmental perturbations? Here, we focus on the mechanical properties of isolated muscle tissue and of the

entire intact body in the silver lamprey, Ichthyomyzon unicuspis. We developed two modified work loop protocols to

determine the effect of small perturbations on the whole body and on isolated segments of muscle as a function of

muscle activation and phase within the swimming cycle. First, we examined how the mechanical properties of the whole

lamprey body change depending on the timing of muscle activity. Relative to passive muscle, muscle activation can

modulate the effective stiffness by about two-fold and modulate the effective damping by >10-fold depending on the

activation phase. Next, we performed a standard work loop test on small sections of axial musculature while adding low-

amplitude sinusoidal perturbations at specific frequencies. We modeled the data using a new system identification

technique based on time-periodic system analysis and harmonic transfer functions (HTFs) and used the resulting models

to predict muscle function under novel conditions. We found that the effective stiffness and damping of muscle varies

during the swimming cycle, and that the timing of activation can alter both the magnitude and timing of peak stiffness

and damping. Moreover, the response of the isolated muscle was highly nonlinear and length dependent, but the body’s

response was much more linear. We applied the resulting HTFs from our experiments to explore the effect of pairs of

antagonistic muscles. The results suggest that when muscles work against each other as antagonists, the combined system

has weaker nonlinearities than either muscle segment alone. Together, these results begin to provide an integrative

understanding of how activation timing can tune the mechanical response properties of muscles, enabling fish to swim

effectively in their complex and unpredictable environment.

Introduction

As an animal moves through its environment, unex-

pected forces will cause the animal’s body and

appendages to deform and respond mechanically,

even before the nervous system has time to sense

the effect and respond (Brown and Loeb 2000;

Jindrich and Full 2002). For fishes, these forces often

come from the complex and unpredictable fluid flow
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patterns that occur naturally in rivers, waves, or in

nearly any water flow (Lacey et al. 2012). The bodies

of fishes are composed of muscle, cartilage, bones, ten-

don, skin, and other complicated mechanical elements,

all linked together in an intricate three-dimensional

structure, often with nonlinear mechanical properties

(Summers and Long 2005), making them particularly

well suited for investigating the interplay between pas-

sive body dynamics and feedback control (Tytell et al.

2011; Roth et al. 2014). When a fish swims, the body

bends back and forth, partially due to the internal

muscular forces and partially due to the external fluid

dynamic forces. As it cycles through this pattern, the

body will also respond to any unexpected forces due to

vortices or turbulent flow patterns. Thus, understand-

ing how fish bodies respond mechanically to perturba-

tions is crucial for understanding how they navigate

their complicated and unpredictable environment.

We know that the nervous system responds differ-

ently depending on when a perturbation occurs. This

effect is well known in walking animals, like cats or

humans: if a cat’s foot strikes an obstacle just as it is

beginning a step, it will lift its foot up and over the

obstacle, but if it strikes the obstacle toward the end

of a step, it will just put the foot down (Forssberg

et al. 1975; Rossignol et al. 2006). Similarly, in lamp-

reys, neural circuits in the spinal cord respond differ-

ently to perturbations at different phases within the

swimming cycle (Massarelli et al. 2016).

The body may respond to perturbations differently

at different times (Brown and Loeb 2000; Jindrich and

Full 2002; Holmes et al. 2006; Proctor and Holmes

2010). For example, many body tissues have nonlinear

responses, meaning that they change stiffness at high

strain compared to low strain (Danos and Azizi 2015;

Porter et al. 2016). Similarly, damping, or viscosity,

may change with strain or strain rate (Long et al.

2002). Furthermore, the properties of muscle depend

on its activation. Muscle is stiffer when it is lengthened

while active than when it is shortening while active

(Ettema and Huijing 1994a; Monroy et al. 2017),

and has higher damping at large strain than at small

strain (Lin and Rymer 2000). Even the aponeuroses

around the muscle can change their effective proper-

ties when the muscle is active (Azizi and Roberts

2009). In cockroaches, the timing of muscle activation

relative to movement phase can make two anatomical

extensors in the same joint act like a motor or a brake

(Ahn and Full 2002; Sponberg et al. 2011).

Here we use two different sets of techniques to assess

the mechanical properties of the whole body of lampreys

and of isolated muscle segments. We use large amplitude

oscillatory bending theory (after Porter et al. 2016) to

quantify how the body properties change with muscle

activation. We then quantify the properties of isolated

muscle segments using harmonic transfer functions

(HTFs) (Wereley 1991; Sandberg et al. 2005; Kiemel

et al. 2016), an extension of classic time-invariant transfer

functions (Ogata 2010) that allow us to quantify the re-

sponse of muscle to perturbations as a function of phase.

Lampreys are a well-established model system for un-

derstanding the neural control of locomotion (Grillner

2003; Tytell et al. 2011). In particular, they are the only

vertebrate for which we know the cells and their connec-

tivity that make up the central pattern generator, the neural

circuit that generates locomotion (Grillner et al. 1991;

Parker 2006), and the only non-tetrapod vertebrate for

which we know the proprioceptive sensory cells that allow

the animal to sense its own movement (Grillner et al. 1984;

Massarelli et al. 2017). Adult lampreys are active migratory

fishes, capable of high speed swimming (Mesa et al. 2003;

Dauble et al. 2006), though they are not quite as athletic as

some teleost fishes (Quintella et al. 2004). They swim in

typically an anguilliform mode, with a traveling wave of

curvature that moves down the body (Fig. 1). Axial muscles

tend to become active before shortening (Fig. 1A), with

more activity during lengthening close to the tail (Fig. 1B)

(Williams et al. 1989). Unlike teleost fishes, lampreys have

mixed red and white muscle in their axial musculature

(Ter€av€ainen 1971; Kimura et al. 1995), a condition more

similar to tetrapods than more derived fishes. To integrate

these results with what is known about swimming biome-

chanics, we need to understand the structure and mechan-

ics of the lamprey’s muscle and body.

Below, we briefly introduce the theory behind the

two techniques used in this study, and then describe

the results of these tests on the mechanics of lamprey

bodies and muscle.

Whole-body bending mechanics

We quantified the bending mechanics of lamprey

body using the nonlinear large amplitude oscillatory

bending technique (Ewoldt et al. 2008; Porter et al.

2016). Briefly, we bent the body with a sinusoidal

curvature, j ¼ j0 sin xt , where j is curvature (0 is

straight; positive values indicate bending concave to

the animal’s right), j0 is the bending amplitude, and

x is the bending frequency. For a linear material, the

torque s can be represented with a constant elastic

and damping moduli EI and gI

s ¼ j0 EI sin xt þ gI x cos xtð Þ:

For nonlinear materials, EI and gI will vary

depending on curvature or curvature rate.

Following Porter et al. (2016), we estimate three

coefficients: E1I , the average modulus; EM I , the

2 E. D. Tytell et al.
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modulus at zero curvature; and ELI , the modulus at

the largest curvature

EM I ¼ ds
dj

���
j¼0; _j¼xj0

ELI ¼ s
j

���
j¼j0; _j¼0

(1)

and similarly, g1I , gM I , and gLI ,

gM I ¼ ds
d _j

���
_j¼0; j¼j0

gLI ¼ s
_j

���
_j¼xj0; j¼0

(2)

where _j is the rate of change of curvature. All met-

rics assume that the torque response is symmetric for

bending to opposite sides (Ewoldt et al. 2008). For a

material that responds linearly with respect to cur-

vature, all three EI and gI parameters are equal.

HTF approach for isolated muscle
mechanics

The analysis of HTFs makes it straightforward to es-

timate the phase-dependent properties of a system. To

illustrate this approach to data analysis and modeling,

consider a simple system that has a phase dependent

stiffness k /ð Þ ¼ k1cosð/� dÞ, where k1 is the maxi-

mum stiffness, d is the phase of maximum stiffness,

and / is the phase of the system. In this simple ex-

ample, the “stiffness” can be negative. Then the force

that the system produces is

F ¼ k /ð Þx; (3)

where x is the displacement relative to its baseline

length and / ¼ xt , where x is the fundamental fre-

quency of the system.

If we perturb the system at a frequency a differ-

ent from the fundamental frequency x then the

output force will oscillate not only at frequency

x and a, but at xþ a and x� a. We can see

this effect using the trigonometric identity cos h
cos / ¼ 1

2
cos h� /ð Þ þ 1

2
cos hþ /ð Þ: Substituting

x ¼ A1 cos at into Equation (3) yields

F ¼ 1

2
k1A1 cos dþ sin dð Þcos a� x½ �tð Þ

þ cos d� sin dð Þcos aþ x½ �tð Þ

2
64

3
75:

Using the Fourier transform, we can isolate the

output amplitudes of the system at frequency

aþ x and a� x and use them to estimate k1 and d.

Now, consider the phase dependent stiffness and

damping of muscle. We impose a baseline oscillation

in strain x� and activation that produces the baseline

stress F�, add on small perturbations, and measure

their effect on the force

Fd ¼ k /ð Þxd þ b /ð Þ @xd

@t
;

where Fd ¼ F � F�, xd ¼ x � x�, and k /ð Þ and b /ð Þ
are the stiffness and damping, respectively.

To account for the complexity of the muscle’s re-

sponse, the stiffness and damping functions may be

more complicated than a pure cosine. They must be

periodic, which means we can write them as Fourier

series, that is, sums of sines and cosines at frequencies

x; 2x; 3x; . . . ; px. In terms of complex

time (cycles)
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Fig. 1 Schematic of muscle activity and anatomy during swimming in lampreys. (A) Timing of curvature and muscle activity during free

swimming in lampreys. Gray bars represent when the muscle on the left side of the animal is shortening, and solid lines show the

timing of muscle electromyograms (EMG). Modified from Tytell and Cohen (2008). EMG data from Williams et al. (1989). (B) Phase of

muscle activity relative to curvature for the second and fourth channels from A, where thick black lines represent muscle activity. The

labeled bars show the phases of isolated muscle stimulation. (C) Cross-sectional anatomy of a lamprey at 55% of body length. The

dashed square shows the approximate location of isolated muscle samples. m, muscle; g, gut cavity; nc, notochord; sc, spinal cord.
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exponentials, k ¼
P

p2Z kpeipxt and b ¼
P

p2Z bpeipxt ,

where Z is the set of all integers. To ensure that

the values are real, k6p ¼ 1
2

kc
p7iks

p

� �
and b6p ¼ 1

2

bc
p7ibs

p

� �
for p 6¼ 0, where kc

p, ks
p, bc

p, and bs
p are

the real coefficients of cosine and sine terms, re-

spectively. Multiple perturbation frequencies can

be applied at the same time, so that xd ¼
PN

j¼�N aj

eiaj t ; where a0 ¼ 0 and aj ¼ �a�j .

After a tedious but straightforward derivation, we

find that

F ¼
XN

j¼�N

X
p2Z

ajðkp þ iajbpÞei ajþpxð Þt

The HTF Hp aj

� �
comprises the set of ratios of the

output at frequency aj þ px divided by the input at

frequency aj , or

Hp aj

� �
¼ kp þ iajbp

Since the perturbations and output must be real,

we can estimate the real coefficients of stiffness and

damping in terms of the real and imaginary compo-

nents of the HTF

kc
p ¼ Re Hp aj

� �� �
þ Re H�p aj

� �� �

ks
p ¼ �Im Hp aj

� �� �
þ Im H�p aj

� �� �

bc
p ¼

1

aj

ImfHpðajÞg þ ImfH�p aj

� �
g

	 


bs
p ¼

1

aj

Re Hp aj

� �� �
� Re H�p aj

� �� �	 

:

(4)

In principle, for each perturbation frequency aj ,

we can use the equations above to estimate all of

the Hp modes, giving us an estimate of both stiffness

and damping. In practice, the stiffness is most evi-

dent at low frequencies and damping at high fre-

quencies, but the breakpoint between “low” and

“high” depends on the relative magnitude of the

stiffness and damping.

Methods

Animals and preparations

Silver lampreys Ichthyomyzon unicuspis were purchased

from a commercial supplier (Ritter’s Fish Market,

Prarie du Chien, WI) and housed together in a

220 gal tank at 4�C and a 12:12 hr light:dark cycle.

To isolate the muscle or the body, an animal was anes-

thetized in a solution of ethyl 3-aminobenzoate meth-

anesulfonate (MS222; 0.2 g/L; Sigma Aldrich, St. Louis,

MO), buffered to pH 7.4. The animal was than eutha-

nized by rapid decapitation and pithing the brain. The

tail was removed by cutting the body at the anus. The

body was placed in a tray containing cold physiological

saline (NaCl, 124 mM; KCl, 0.5 mM; CaCl2, 1.1 mM;

MgCl2, 0.5 mM; glucose, 5.5 mM; NaHCO3, 10.0 mM)

(Cameron and Tufts 1994). All animal procedures were

approved by the Tufts University Institutional Animal

Care and Use Committee (protocol numbers M2012-

145 and M2015-149).

Estimation of whole body parameters

For whole body tests, we cut a body segment, �10 cm

long, centered 55% of the distance from head to tail

(Fig. 1C). The rostral end was clamped to a force trans-

ducer (Mini-40, ATI Industrial Automation, Apex, NC)

and the caudal end was clamped to a servomotor

(SDK-2310S-ELN, Teknic, Victor, NY). Figure 2A

shows a schematic of the setup. Platinum stimulating

electrodes (Natus Manufacturing F-E2) were implanted,

one pair each on the left and right side, and connected

to stimulators (Model 2200, A-M systems, Sequim,

WA). Stimuli were delivered as pulse trains with 1 ms

pulses at 75 Hz for 30% of the cycle, with the left side

50% out of phase with the right. A custom Python

program was used to record data and control the mo-

tor and the stimulator, using a data acquisition system

(PCI-6221, National Instruments, Austin, TX).

The body was bent back and forth for 14 cycles

(3 initial passive cycles, 10 cycles for analysis, and 1

final cycle) at an amplitude of either 2.5� or 5� and

the resulting torques recorded. The true motor po-

sition was recorded using an encoder. The torque

on the body (sbody) was estimated based on the

torque around the z axis (sz) of the force trans-

ducer as sbody ¼ szdin=dout;vert (Fig. 2A), where din

is the horizontal distance between the center of the

experimental segment and the center of the rostral

clamp and dout;vert is the vertical distance between

the center of the clamp and the center of the trans-

ducer. Curvature j was estimated as h=dclamp, where

h is the angle of the motor in radians and dclamp is

the distance between the clamps. The mean bending

modulus E1I is the axis that runs through the center

of the ðj; sbody) curve, and the mean damping mod-

ulus g1I is the axis of the ð _j; sbodyÞ curve; both

were estimated using a reduced major axis regres-

sion (Matlab’s PCA function). We directly esti-

mated EM I , ELI , gM I , and gLI by evaluating the

appropriate points on the curve (Equations (1)

and (2)).

We also estimated the whole-body work by inte-

grating torque relative to curvature over the entire

4 E. D. Tytell et al.
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cycle, W ¼
Ð

sbody dj. We have defined the signs of

sbody and j so that a counter-clockwise work loop

corresponds to positive net muscle mechanical

work.

Isolated muscle segments

For isolated muscle segments, the body was skinned

and segments of muscle were dissected from the

body wall while it was submerged in cold, aerated

saline. Figure 1C shows the approximate size and

location of the muscle segments. Individual muscle

segments were secured using Kevlar thread between a

fixed attachment site and an ergometer arm so that

two intact myomeres were between the Kevlar knots

in the apparatus (Fig. 2B). During the experiment,

muscle segments were secured in a recirculating sa-

line bath kept at 10�C. We stimulated the muscle

with two platinum plate electrodes using 80 V pulses

at 35 pulses per second for 35% of the cycle. A

custom Igor Pro (WaveMetrics, Lake Oswego, OR)

program was used to record data and control the

ergometer and the stimulator using a data acquisi-

tion system (National Instruments USB-6216,

Austin, TX).

We first measured a muscle length–tension curve

using twitch stimuli. Length–tension curves were

measured regularly during the experiment to ensure

that the muscle was not fatiguing too rapidly or slip-

ping out of the knots. Experiments were ended in

the rare case that the optimal force dropped to less

than 85% of the initial value (following Peplowski

and Marsh 1997) indicating that the muscle was

fatiguing.

During the work loop experiments, we tested

muscle segments with and without stimulation and

with and without perturbations. We started each

trial at a length where the force produced was 85%

of the optimal force from the length–tension curves.

During unperturbed trials the muscle segment cycled

through sinusoidal length changes of 6% of resting

length at frequency of 1 Hz. Perturbed trials were

done at the same baseline amplitude and frequency,

adding on 11 or 15 sinusoidal perturbation signals

with frequencies between 0.3 and 75.1 Hz, chosen so

that they did not overlap harmonics of the funda-

mental oscillation and so that their sums and differ-

ences did not overlap (following the procedure in

Ankarali and Cowan 2014). The maximum pertur-

bation amplitude was 8% of the baseline amplitude,

and we reduced the amplitude at higher frequencies

proportional to a0:5 so that perturbation velocities

did not become too large. Four phases of activation

were used, with stimulation beginning at a phase of

0.15, 0.38, 0.65, or 0.85.

We estimated the muscle work by integrating

stress relative to strain, W ¼ �
Ð

F dx, over the en-

tire lengthening and shortening cycle. Net positive

work is thus done when the magnitude of the

work done by the muscle during shortening is larger

than the magnitude of the work done on the muscle

during lengthening.

Estimation of HTFs

The HTF HpðaÞ is the output amplitude at a frequency

aþ px divided by the input amplitude at frequency a.

Fig. 2 Schematics of the mechanical testing setups. (A) Whole

body setup. (B) Isolated muscle setup.
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To calculate these quantities, we directly evaluated the

complex Fourier integrals, X að Þ ¼
Ð

xðtÞ e2piat dt and

F aþ pxð Þ ¼
Ð

f tð Þ e2piðaþpxÞt dt so that

Hp að Þ ¼ F aþ pxð ÞF� aþ pxð Þh i
X að ÞX�ðaÞh i

where xðtÞ is the strain, f ðtÞ is the stress, �h i denotes

a mean, and F� denotes the complex conjugate of F .

We averaged three intervals with a 50% overlap

spanning the time when perturbations were applied.

Stiffness and damping were estimated from the HTFs

according to Equation (4). We also estimated the

stiffness at maximum length and at mean length

for both single muscles and pairs of antagonists.

To estimate the effect of a pair of antagonistic

muscles, we shifted one transfer function by 180�

and then added it to the original. Shifting the phase

requires multiplying by eipd, where d is the phase offset

and p is the order of the HTF, so that the transfer

function for the pair of antagonists is Hant
p að Þ ¼

Hp að Þ þ Hp að Þeipp ¼ Hp að Þ þ �1ð ÞpHpðaÞ, which

means doubling the even modes and cancelling out

the odd ones.

Results

Whole body mechanics

We measured the body torque as a function of cur-

vature and muscle activation phase. Figure 3 shows

examples of the raw recordings at two stimulation

phases (0.041 and 0.390), and Fig. 4A shows example

of the resulting whole body work loops from the

same individual. For all procedures, phase was de-

fined relative to the center position, so that muscle

shortening started at a phase of 0.25 and ended at

0.75, and the stimulation duration was always 30%

of a cycle, enabling us to isolate the effect of muscle

activation timing on mechanical response properties.

We collected data from five silver lampreys I. uni-

cuspis, of total length 260 6 33 mm (mean 6 stan-

dard deviation). The mechanical testing was centered

on 55% of the body length, where animals had a

mean cross section width of 13.6 6 1.9 mm and

height of 24.3 6 4.3 mm, corresponding to a second

moment of area I of 3300 6 1700 mm4.

The body produced net positive mechanical work

when the muscles were activated at a starting phase as

early as 0.95 up until shortly after the beginning of short-

ening (Fig. 4B). The largest net negative work was pro-

duced when the muscles started activation at a phase

between 0.55 and 0.75, ending between 0.85 and 1.05.

We estimated three stiffness parameters: E1I , the

mean overall bending modulus; EM I , the bending

modulus at maximum curvature; and ELI , the bending

modulus at low curvature (Equations (1) and (2))

(Porter et al. 2016). We then estimated the equivalent

material properties, E1, EM , and EL, by dividing by the

second moment of area I . The passive stiffness E1 of

the lamprey body for five preparations is shown in

Fig. 4C and varies more than two-fold among animals.

Effective body mechanics depends on muscle

activation phase

When muscles are active, stiffness can be nearly dou-

ble or less than half the passive stiffness, depending

on the activation phase. The effective stiffness is

greatest (1.57 6 0.3 times passive) when muscle

begins activation at the beginning of lengthening

(phase 0.76), although the largest net negative work

is produced when the muscle begins activity earlier.

Similarly, the effective stiffness is lowest (0.45 6 0.3

times passive) when the muscle begins activation at

the beginning of shortening (phase 0.38), but the

largest net positive work is produced when muscle

activation starts before shortening.

Although stiffness changes with activation phase, a

nonlinear property, the stiffness is fairly linear with

curvature (Fig. 4D). The stiffness at minimum cur-

vature is usually close to the stiffness at large curva-

ture (Fig. 4C). For most phases, EL=EM , an index of

nonlinear elastic material properties (Porter et al.

2016), ranges between 0.65 and 2.8. At phase 0.4,

EM , the stiffness at zero curvature, is small and

highly variable across preparations (Fig. 4C), which

means that some preparations are much more non-

linear at this phase than others, with one preparation

reaching a nonlinearity of 7.9.

Active body damping can be substantially larger or

smaller than passive damping, depending on the
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Fig. 3 Example recordings from the whole body setup.

Stimulation is shown with gray bars, labeled ‘L’ or ‘R’ for left or

right side stimulation, respectively, with arrows to indicate the

direction of muscle torque on that side. Stimulation phase is

shown above, defined relative to the left side stimulation.
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timing of activation, and is always nonlinear (Fig. 5).

In particular, the damping gM at zero curvature rate

can be as much as 22 times larger or �13 times

smaller than passive damping. Mean damping g1 is

highest (6.9 6 4 times passive) when muscle is acti-

vated starting at phase 0.55 and lowest (�4 6 2 times

passive) at phase 0. Figure 5C shows the viscous

nonlinearity parameter gL=gM . Unlike stiffness,

damping is always nonlinear; the damping at large

curvature rates (gL) is always substantially lower than

the damping at zero curvature rate (gM ). When the

body is producing net positive mechanical work, the

damping parameters are negative, indicating that it

takes less torque to move faster.

Mechanical properties of isolated muscle segments

We used a standard work loop procedure to quantify

the work done by muscle segments as a function of

activation phase (Fig. 6). Muscle produces positive

work when activated shortly before lengthening, at a

phase of 0.15, the phase normally used during steady

swimming at this location on the body (Fig. 1B)

(Williams et al. 1989). The most negative work is pro-

duced at phase 0.65, half of a cycle later. Although

these patterns were very consistent across preparations,

the total amount of work at any phase varied substan-

tially (see the symbols in Fig. 6B) and was not corre-

lated with the passive properties of that preparation.

The passive muscle and body stress–strain curves

are comparable to one another, but isolated muscle

has a much more nonlinear response (Fig. 7).

Figure 7A and B show example passive work loops.

Figure 7C shows passive body and muscle stiffness at

low and high strain. The body stiffness does not vary

substantially as strain changes, but muscle is much

stiffer at high strain. However, the range of the val-

ues overlap.
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Local stiffness and damping of isolated muscle

segments

To quantify the local stiffness and damping of the

muscle segments as a function of length, we used

HTFs (Sandberg et al. 2005; Ankarali and Cowan

2014; Kiemel et al. 2016). The local stiffness quanti-

fies the response to a small perturbation at a partic-

ular phase in the strain cycle, which is not necessarily

the same as the slope of the unperturbed work loop.

Figure 8A shows an example of the stress and strain

during a perturbed and a baseline trial. Note that

there are two phases in these analyses: the strain

phase, or the time in the shortening and lengthening

cycle; and the activation phase, or the time when the

muscle is stimulated. In the above whole-body anal-

ysis, we were able to assess the overall stiffness and

damping as a function of activation phase; in the

isolated muscle analysis, we could quantify both

parameters as a function of both phases.

The stress in the muscle depends strongly on the

strain phase. This effect can be seen clearly in Fig. 8A;

although the strain perturbations are the same at all

times, the change in stress is larger when the muscle is

longer. In Fig. 8A, the high stiffness period also corre-

sponds with muscle activation, but this pattern is not

always true. The phase dependency is reflected in the

Fourier power spectrum (Fig. 8B). For example, one

perturbation is at 10.3 Hz, seen as a peak in the gray

input trace. In a phase-independent system, this would

only cause output at 10.3 Hz, but in the black output

trace, several smaller peaks at 8.3 Hz, 9.3 Hz, 11.3 Hz,

and 12.3 Hz can be seen on either side of the peak at

10.3 Hz; these are the higher order HTF modes. Note

that Fig. 8B has a logarithmic frequency axis, which

means that the higher order mode peaks appear closer

to the zeroth order peak at higher frequencies.

Based on these data, we computed HTFs, which

also show that muscle exhibits phase-dependent stiff-

ness and damping (Fig. 8C). The relatively constant

gain at frequencies below 0.8 Hz indicates an elastic

response (labeled “stiffness” on Fig. 8C), while the

increase in gain at higher frequencies indicates a

damping response (“damping” on Fig. 8C). At very

high frequencies, however, the gain is lower than

would be expected from a simple damper.

Local stiffness increases when the muscles are ac-

tivated and depends on activation phase (Fig. 9). At

C

η1 ηM ηL

L

R L

R

L

R

L

RL

R

50 rad m-1 s-1

1 
m

N
 m

(passive) (0.263) (0.390) (0.539) (0.740)(0.041)

Curvature
rate

Torque

η1I

ηLI

ηMIA

passive
100

200

300

400
η 1 

(P
a 

s)

0 0.2 0.4 0.6 0.8 1

Activation phase

0

20

40

R
el

at
iv

e 
et

a

B

0

-1

0

1

N
on

lin
ea

rit
y

η L/
η M

0 0.2 0.4 0.6 0.8 1

-1

0

1

Fig. 5 Effective body damping varies depending on muscle activation phase and is strongly nonlinear. (A) Body torque against curvature

rate. Dark lines on the loop indicate the time of muscle stimulation (phase shown in parentheses below each loop), and ‘R’ and ‘L’

indicate whether the stimulation is on the right or the left. The three damping moduli are indicated on each curve (g1I, the mean

overall modulus, solid line; gMI, the modulus at maximum curvature, dashed line; and gLI, the modulus at zero curvature, dashed line,

displaced upward for clarity). (B) Damping coefficients g1, gM, and gL, relative to the passive g1 modulus. Error bars are standard

deviation and points have been jittered to avoid overlap. (C) Nonlinearity gL=gM. Means are shown as shaded bars relative to 1, which

represents a linear response, and points are individual preparations.

8 E. D. Tytell et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/advance-article-abstract/doi/10.1093/icb/icy042/5032876 by M

ount H
olyoke C

ollege user on 19 O
ctober 2018



any phase, stiffness is highest at high strain and in

most cases is larger during lengthening than during

shortening (Fig. 9A). Average local stiffness is lowest

when muscles are generating positive work, and

higher at other points in the cycle (Fig. 9B). The

ratio of maximum local stiffness and mean local

stiffness gives a nonlinearity metric comparable to

the one used for the whole-body data. The nonli-

nearity is 3.5 6 0.6 in the passive case and 2.9 6 0.7

in the active case, but does not vary substantially

with activation phase.

Local damping shows a similar pattern: it is higher

in active muscle and changes with activation phase

(Fig. 10). However, the damping is higher when the

muscle is producing positive work and lower at other

phases (Fig. 10C). Damping nonlinearity is 13 6 9 in

the passive case and 10 6 8 in the active case, again

with no substantial change due to activation phase.

By combining the muscle’s HTF with itself shifted

by a phase of 180�, we were able to mathematically

estimate the response of two antagonistic muscles. In

this case, the mean stiffness and damping is larger

and the variation in maximum stiffness is lower,

resulting in a less phase-dependent response, which

in our data is a measure of the length-dependent

nonlinearity. Nonlinearity in the stiffness of passive

and active muscle both decreased by 41% to

2.1 6 0.2 and 1.7 6 0.2, respectively. Nonlinearity in

the damping of passive and active muscle decreased

by 46% and 42% to 7.1 6 5 and 6 6 5, respectively.

Discussion

In this study, we demonstrate two techniques for

measuring the stiffness and damping of fish bodies.

In the first, a whole-body preparation after Long

(1998), we quantified stiffness and damping and

the large-amplitude nonlinear responses (Porter

et al. 2016) of whole fish bodies as they bend from

side to side and activate their muscles (Figs. 2 to 5).

In the second, a perturbed work loop preparation,

we quantified HTFs (Sandberg et al. 2005; Ankarali

and Cowan 2014; Kiemel et al. 2016) for isolated

muscle segments (Fig. 8). These transfer functions

enabled us to predict the response of the muscle to

small perturbations at any phase in the strain cycle

(Figs. 9 and 10). We found that the stiffness values

were in the same range from both techniques. At low

strains (<1%) whole body stiffness is higher than

muscle stiffness, while at high strains (>5%) muscle

is stiffer than the body (Fig. 7C).

The two major results of this work are that (1)

muscle stiffness and damping vary depending on

phase within the cycle, which is equivalent to muscle

length, and (2) these mechanical parameters also
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change substantially depending on the phase of

activation.

Isolated muscle has phase-dependent
stiffness and damping

Muscle can be approximated as having a stiffness

and damping that depend on the phase within the

shortening and lengthening cycle. A system with lin-

ear elasticity and damping would have a constant

gain relative to frequency at low frequencies and a

gain that increases proportional to frequency at high

frequencies. This is the pattern we observe in the

zeroth-order HTF and higher order modes

(Fig. 8C), indicating a phase-dependent stiffness

and damping. The response magnitude rolls off at

high frequencies, a decline that is characteristic of

inertial effects, although inertia is not usually

thought to contribute to the dynamics of muscle

contraction (e.g., Telley et al. 2006).

To our knowledge, no one has estimated the

phase-dependent properties of muscle in this way

before, but some have used similar techniques to

examine the phase-independent properties. Palmer

et al (2007) and Tanner et al. (2011) used sinusoidal

oscillations and white noise perturbations,
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respectively, to examine the phase-independent me-

chanical properties of cardiac muscle from mice.

They found a similar relationship: the stiffness in

relatively constant at frequencies below 10 Hz and

then rises, but falls off at high frequencies (Palmer

et al. 2007; Tanner et al. 2011). Ettema and Huijing

(1994b), in contrast, found that the stiffness of active

rat gastrocnemius muscles was relatively constant at

low frequencies, declined at intermediate frequencies,

and increased again at higher frequencies. None of

these studies quantified damping coefficients.

Muscle stiffness is strongly nonlinear

Muscle has a very low stiffness at low strain and a

much higher stiffness at high strain. This effect can

be seen clearly in Fig. 8A, in which the perturbations

are of the same size at all strains, but the change in

stress is much higher at high strain. This finding is

consistent with many other previous studies of muscle,

which have characterized the passive stiffness as an

exponential spring (Glantz 1974; Brown et al. 1996;

Lappin et al. 2006; Monroy et al. 2017). If muscle force

increases exponentially with strain, then we can remove

the effect of strain by dividing by the baseline force,

because stiffness depends on force (Ettema and Huijing

1994a). Indeed, in Fig. 8D, we see that the relative

force for a perturbed trial divided by its baseline

does not vary consistently over time.

In the HTFs, the length dependence of muscle stiff-

ness can be seen as a phase dependence, because length

and force change with phase. The H61 modes have

gains that are comparable to the gain of H0, which

shows a phase dependent response (Fig. 8C).

The local stiffness that we measured is different

from short-range stiffness (Campbell 2010). Short-

range stiffness is an effect that results from stretching

myosin cross-bridges over very short lengths, and

can be observed at the very beginning of a length-

ening perturbation (Campbell 2010). Because our

approach is phase-dependent, it should account for

the activation-dependent change in short-range stiff-

ness (Campbell and Moss 2002), but our perturba-

tions are larger than those typically used to examine

the short-range stiffness effects.

Nishikawa et al. (2012), Herzog (2014) and

Powers et al. (2017) have recently been developing

the “winding-filament” model of muscle, in which

the muscle stiffness due to the titin molecule

increases when the muscle produces force. This

model can account for force enhancement after ac-

tive stretch, in which muscle produces extra force

after a short stretch (Herzog and Leonard 2002).

Our approach also shows that muscle has a higher

local stiffness during active lengthening. The HTF

approach also has the potential to address the

long-lasting force enhancement that occurs after

the stretch is completed. To estimate force enhance-

ment, we would need to compute a phase-dependent

impulse response function, the equivalent of an in-

verse Fourier transform for an HTF, which describes

the time course of the response due to a small per-

turbation at any phase (Kiemel et al. 2016).

However, to estimate the impulse response function

accurately, the HTF must become small at high fre-

quencies (Kiemel et al. 2016), which is not true for

our data (Fig. 8C). In further work, higher frequen-

cies will be examined in order to estimate the phase-

dependent impulse response.

Lamprey bodies are extremely flexible,
but can change their effective stiffness
and damping

Lamprey bodies are extremely flexible, with an aver-

age passive stiffness of 73 6 26 kPa. For comparison,

this is about the same as one of the most flexible

artificial elastomers available for purchase (Ecoflex

00-10), which has a stiffness of 55 kPa. There are

few measurements from other species with which

to compare, but Long and colleagues have measured

stiffness of �390 kPa for eels (Long 1998) and

240 kPa for hagfishes (Long et al. 2002), based on

their published figures. Our measured stiffness is

much lower even than what they found for the hag-

fish, a related and very flexible species. The differ-

ence may be because the bending amplitudes used

here (65 rad m�1), even though they are character-

istic of swimming adult lampreys (Hultmark et al.

2007), are substantially lower than those used by

Long (2002).

Effective body stiffness can change depending on

activation, increasing to as much as 160 6 30% over

passive at a muscle activation phase of 0.76 and de-

creasing to 45 6 30% of passive at an activation phase

of 0.38 (Fig. 5). This is a similar, but slightly smaller,

range than what Long (1998) found for eels, where

stiffness reached a maximum of 235% of passive at a

phase of 0.85 and a minimum of 35% at phase 0.35.

The mean passive body damping g1 of lampreys is

also quite low, 0.22 6 0.13 kPa s at a frequency of

1 Hz. In the passive case, the minimum strain damp-

ing gM is higher, up to 0.63 kPa s for the most

damped individual. However, based on Long’s meas-

urements, eels have a passive damping that is about

50 times higher, 11 kPa s, at 3 Hz, and hagfish have a

damping of about 5.7 kPa s at 1 Hz. Hagfish had

lower damping at higher frequencies, dropping to
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about 2 kPa s at 3 Hz. It is possible that the differ-

ences in these estimates is related to the different

methods for estimating the parameters. We used

the large amplitude bending method developed by

Ewoldt (Ewoldt et al. 2008; Porter et al. 2016), while

Long used classic linear bending mechanics (Den

Hartog 1985; Long 1998). However, Porter et al

(2016) estimated the damping of the vertebral col-

umns of sharks using the same method, and found

that g1 was about 22 kPa s at 1 Hz and curvature of

5 rad m�1. In our analysis, the damping measure-

ments were consistently low across the five individ-

uals; further tests will be needed to determine if this

very low damping is a characteristic of lampreys.

Damping changes dramatically as muscle activa-

tion changes. We also find consistent negative damp-

ing at some phases. Long (1998) found both of these

effects in eels, with damping increasing or decreasing

between about 65 times the passive damping, and

the largest damping occurring at a phase of 0.4.

Negative damping may indicate that the muscle is

aiding the movement, so that the torque required

becomes lower as the velocity increases, but it can

also happen at high curvature rates in passive tissues.

Whole-body body stiffness is linear

Although lampreys can alter their effective body stiff-

ness depending on muscle activation, the body stiff-

ness at a particular activation phase behaves mostly

linearly with respect to curvature, with roughly the

same stiffness at low and high curvature (Fig. 4D).

Unlike stiffness, damping was highly nonlinear, with

substantially different minimum strain and large

strain damping. On average, damping is about 40%

lower at high curvature rates, which is similar to that

in hagfish (Long et al. 2002).

Antagonistic muscles decrease
nonlinearity

The linearity of the whole-body response may seem

somewhat surprising, given that the muscles are

so nonlinear, particularly in their passive state.

One explanation is that the strains in the whole-

body preparation were quite low, and muscle non-

linearities are particularly strong at high strain.

However, multiple factors may be important in de-

creasing the overall nonlinearity.

The body has a complex internal structure (Vogel

and Gemballa 2001; Danos et al. 2008). It might

seem that this complex structure would lead to a

nonlinear response. However, strain in the muscle

can be predicted accurately by assuming that the

body is a homogenous elastic beam (Coughlin

et al. 1996; Long et al. 2002). This suggests that

this complex morphology helps to increase the line-

arity of the response (Long et al. 2002).

Here, we also showed that, in the active state, an-

tagonistic muscles may help to cancel out some of the

nonlinearities of their individual responses. Specifically,

pairs of antagonist muscles respond in a less phase-

dependent way than either one individually.

Mathematically, this result comes from the way HTFs

combine with one another. Shifting phase by 180�

means flipping the sign of the odd modes of the trans-

fer functions (H61; H63; . . .). Combining this with

the original transfer function means that the even

modes double and the odd modes go to zero. In our

data, the average magnitude of higher order modes

decreases as the order of the mode increases

(Fig. 9C), such that the modes with the largest gain

at most frequencies are H0 and H61. For an antago-

nistic pair of muscles, the large nonlinear effects of

H61 cancel each other out, leaving the linear behavior

of 2H0 and some relatively smaller nonlinear effects

from 2H62; 2H64, and higher-order even modes. In

contrast, if the modes with the largest gain were H0

and H62, one would expect only a minor reduction in

nonlinearity for a pair of antagonistic muscles, but this

case corresponds to stiffness having two peaks within

the strain cycle, which is not consistent with our results

or previous (Ettema and Huijing 1994a; Monroy et al.

2017). Therefore, we suggest that antagonistic pairs of

muscles are always less phase-dependent than single

muscles. In our analysis, the phase dependence seems

to result from a nonlinear stiffness that changes with

length or force. Therefore, if phase dependence is re-

duced in antagonistic muscle pairs, the overall nonli-

nearity of the system is also reduced.

Implications for motor control

Using a computational model, we previously showed

that stiffer fish with higher muscle forces accelerate

faster than more flexible fish with lower muscle

forces, but that the more flexible fish use less

energy when swimming steadily (Miller et al. 2012).

We suggested that fish might increase their effective

stiffness in order to accelerate more rapidly. By activat-

ing muscle before the beginning of shortening, the

effective body stiffness increases, even as the muscle

continues to produce positive mechanical work (com-

pare phase 0.25 and 0 in Fig. 4). Indeed, Johnson et al.

(1994) found that largemouth bass Micropterus sal-

moides activate their muscles earlier in the tailbeat cycle

during burst and glide swimming.

Activating muscles near a phase of zero may also

help acceleration performance because of the change
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in damping. At a phase of zero, effective stiffness is

high but damping is low and negative (Fig. 5). This

means that the body will tend to aid rapid body

movements, because damping decreases as speed

increases. Finally, when activated at this phase, the

local stiffness and damping of muscle is high, which

may help to reject perturbations.

Data

All data and processing algorithms from this study

are available online at doi: 10.6070/H4765CX7.
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