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Abstract 

 

Deep learning (DL), a new-generation of artificial neural network research, has transformed 

industries, daily lives and various scientific disciplines in recent years. DL represents 

significant progress in the ability of neural networks to automatically engineer problem-

relevant features and capture highly complex data distributions. I argue that DL can help 

address several major new and old challenges facing research in water sciences such as inter-

disciplinarity, data discoverability, hydrologic scaling, equifinality, and needs for parameter 

regionalization. This review paper is intended to provide water resources scientists and 

hydrologists in particular with a simple technical overview, trans-disciplinary progress update, 

and a source of inspiration about the relevance of DL to water. The review reveals that various 

physical and geoscientific disciplines have utilized DL to address data challenges, improve 

efficiency, and gain scientific insights. DL is especially suited for information extraction from 

image-like data and sequential data. Techniques and experiences presented in other disciplines 

are of high relevance to water research. Meanwhile, less noticed is that DL may also serve as 

a scientific exploratory tool. A new area termed “AI neuroscience,” where scientists interpret 

the decision process of deep networks and derive insights, has been born. This budding sub-

discipline has demonstrated methods including correlation-based analysis, inversion of 

network-extracted features, reduced-order approximations by interpretable models, and 

attribution of network decisions to inputs. Moreover, DL can also use data to condition neurons 
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that mimic problem-specific fundamental organizing units, thus revealing emergent behaviors 

of these units. Vast opportunities exist for DL to propel advances in water sciences. 

 

Main points: 

1. Deep learning (DL) is transforming many scientific disciplines, but its adoption in 

hydrology is gradual 

2. DL can help tackle inter-disciplinarity, data deluge, unrecognized linkages and 

long-standing challenges such as scaling and equifinality 

3. The new field of AI neuroscience opens up many opportunities for scientists to use 

DL as an exploratory tool for scientific advancement 
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1. Motivations 

Across various corners of the scientific world, scientists have come in contact with the term 

“deep learning” (DL). Deep learning consists of a collection of advanced Artificial Neural 

Network research which had gained momentum since 2012, when it started to become winners 

of machine learning contests. While some hype does exist, DL undeniably delivered unrivaled 

performance and solved exciting problems that have been difficult for artificial intelligence 

(AI) for many years (LeCun et al., 2015; Silver et al., 2016). DL algorithms have shown a 

generational leap in predictive capability which some argued as “unreasonable” (Baldassi et 

al., 2016; C. Sun et al., 2017). Since 2012, as an indication of advances, DL emerged as a 

dominant force that breaks records in most machine learning contests where it is applicable 

(Schmidhuber, 2015). While substantial manual effort has been spent on earlier methods such 

as Support Vector Machines and Hidden Markov Models, deep neural networks repeatedly 

show significant advantages over them and other statistical methods. DL models can digest 

large quantities of data and can often generalize successfully to new instances. 

Powered by DL, AI is rapidly reshaping scientific research and our lives. On the scientific 

front, DL is transforming many scientific disciplines (Section 3) and is widely adopted and 

regarded as an indispensable tool of the future. By showing the features and ongoing success 

of DL across various disciplines, this paper demonstrates the potential of DL to propel water 

sciences. On the daily-life level, DL has gained wide adoption by nearly all industrial leaders 

in technology and is proliferating in a “Cambrian explosion” fashion (Leopold, 2017). The 

influence of DL-powered AI in the industry is well summarized by Google’s co-founder Sergey 

Brin, who wrote in their annual Founders’ Letter that “The new spring in artificial intelligence 

is the most significant development in computing in my lifetime. Every month, there are 

stunning new applications and transformative new techniques” (Brin, 2018). Object 

identification and image recognition technologies based on vision DL are being deployed in 

medical image diagnosis (Greenspan et al., 2016; Shin et al., 2016) and autonomous vehicles 

(C. Chen et al., 2015; Mariusz Bojarski et al., 2017). Machines can now understand human-

voice instructions and human emotions thanks to speech recognition (Graves et al., 2013) 

powered by time series DL. Digital assistants, most powered by some forms of time series DL 

(Sak et al., 2015), will soon be able to have human-like situational conversations that are too 

natural to tell it is from a machine (Goode, 2018). Outside of information technology, AIs 

powered by DL are revolutionizing traditional industries like transportation, law, 

pharmaceutical, communication, manufacturing, healthcare, finance, accounting, nature 
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resources, etc. The various industries would not be expected to choose DL models had these 

models not offered a significant boost in performance. 

Although water sciences are not strangers to machine learning, the adoption of DL in water 

resources or hydrology has so far only been gradual (see summary in Section 3.1.3). Water 

sciences, and hydrology in particular, are now facing significant fresh and old challenges along 

with opportunities, for example: 

 The interdisciplinarity and human dynamics challenge: water scientists’ societal 

missions now mandate us to account for not only the movement and 

transformations of the water cycle, but also how it reciprocates and interacts with 

other subsystems such as biogeochemistry, climate, vegetation dynamics, biotic 

and abiotic soil environments, and human dynamics including socioeconomics 

(Sivapalan & Blöschl, 2017; Wood et al., 2011). Many of these systems were 

previously considered exogenous to hydrology, but as the close interconnectedness 

of these systems are uncovered (Cai et al., 2018; Russo & Lall, 2017), we need to 

consider them as endogenous system components. For example, we must now 

combat concepts and processes that may not have been formulated or are difficult 

to be, such as human responses to water shortages, evolving consumptive demands, 

stream health, or freshwater fish biodiversity. For another example, urban water 

infrastructure could be very complicated and time-consuming to model directly. 

Moreover, we have been called on, more than ever, to deliver accurate and socially 

relevant predictions, attributions, and optimizations in a timely manner. 

 The data deluge and the data discoverability challenge: the diversity and volume of 

data that become available are both a blessing and a challenge. Satellites such as 

the Sentinel, Landsat, MODIS, soil moisture missions, and Gravity Recovery and 

Climate Experiment (GRACE) together log a large amount of multifaceted data. 

Emerging data sources such as miniaturized satellites, Interferometric Synthetic 

Aperture Radars, unmanned aerial vehicles, and camera rain gauges (Allamano et 

al., 2015), are presenting valuable data that were not available previously at such 

volumes (McCabe et al., 2017). So are monitoring networks such as pressure 

sensors in water infrastructure. These new sources of information are bound to 

enrich our understanding and empower our modeling capabilities. However, the 

data discoverability is an issue. Extracting comprehensible yet hidden information 

from the unprecedented volume of data or even devising approaches to extract such 
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information can be daunting tasks. Conventional information retrieval approaches 

often require extensive human labor and domain expertise because they often 

require case-by-case calibration and adjustment. More importantly, without 

advanced techniques, we may not even realize what kind of hidden and abstract 

information that can be extracted nor recognize the limits of accuracy of such 

extraction, which results in under-utilization of available data. These practical 

aspects greatly limit their use in providing inputs and constraints to models. 

 Unrecognized/un-represented linkages: models could produce errors if important 

processes and relationships are not included, due to either knowledge or capability 

limitations. For example, in the past decade the rudimentary hydrologic 

representations in Earth System models, especially lateral groundwater flow, have 

limited our capability to simulate land-atmospheric processes and multiscale 

feedbacks (Clark, Fan, et al., 2015). Inadequately represented processes such as 

preferential flows, ecosystem demographics (Moorcroft et al., 2001), rooting depth 

and root hydraulics (Fan et al., 2017) continue to affect model fidelity in relevant 

regions. In some cases, we have a crude idea of what processes/variables might be 

important, and have some data at hand, but implementing the corresponding model 

in an integrated modeling system might be too time-consuming, yet the 

relationships between these variables are complex and do not manifest themselves 

when they are simply plotted against each other. Some data-driven mechanisms to 

explore potential sophisticated linkages between variables would enable rapid 

hypothesis testing. 

 The model scaling and equifinality challenges: These are long-standing modeling 

issues that have recently been shunned rather than addressed. It has long been 

known that process-based models’ results can be scale-dependent, because 

governing equations such as Darcy’s law and the Richards equation were applied 

at spatial scales incongruent with their laboratory or field derivations. When used 

in hydrologic models, they serve as phenomenological behavior laws with effective 

parameters, which adds to the scale dependence (Bloschl & Sivapalan, 1995; Troy 

et al., 2008; Wood, 1998; Wood et al., 2011). Fully resolving hydrologic dynamics 

at hyper-resolution (~O(101 m), which is needed for channel dynamics, is 

prohibitively expensive (Shen et al., 2016). How to effectively and efficiently 

resolve subgrid-scale processes and heterogeneity, e.g., in soil moisture and 
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groundwater flow, remains a challenge in many disciplines including hydrology. 

Equifinality (competing models and parameter sets that can generate similar 

outcomes) (Beven, 2006) is another long-standing issue. Equifinality exists for 

both parameters and model structures. Although methods for testing multiple 

working hypotheses, e.g., Structure for Unifying Multiple Modeling Alternatives 

(SUMMA) (Clark, Nijssen, et al., 2015) are crucial approaches to tackling 

equifinality, they are nonetheless limited to those processes that have already been 

conceived. Again, it can be prohibitively expensive for humans to thoroughly 

explore the possible hypotheses. 

 The need for regionalized parameters and models: with traditional data mining 

methods, data-driven hydrologic studies are often forced to regionalize or bin their 

datasets and create specialized models that fit those particular regions or bins. For 

example, the hydraulic geometry of channels have regionalized curves that apply 

poorly outside of the region from which they are built (NWMC, 2017; Vergara et 

al., 2016); effective hydrologic model parameters need to be regionalized (Beck et 

al., 2016; Troy et al., 2008) to produce good simulation results. This need also 

applies to the calibration of conceptual hydrologic models. Typical reasons for 

regionalization include a lack of knowledge of the underlying process or influential 

latent variable. A result of regionalization is that in each region the available data 

points are reduced and thus have less statistical power to condition the models. 

In this paper I argue that DL can help address the abovementioned challenges: DL can serve as 

water scientists’ operational approach to model interdisciplinary and difficult-to-model 

processes; It will be crucial for helping us handle the increasing volume and diversity of data, 

extracting useful and abstract information out of data; DL can help measure relevance of 

information for a given variable and present possible explanations; DL can help resolve scaling 

issues from a data-driven perspective and help build uniform parameterization schemes; DL 

can help capture high-dimensional, multi-modal data distributions and serve as realistic 

scenario generators; It may be possible to reveal fundamental organizing principles and 

emergent patterns. The new advances in DL interpretation present new opportunities to 

understand the network instead of using it as a blackbox. In Section 4, I describe why DL is 

relevant to these applications. 

So, just what is deep learning and how is it different from previous machine learning methods? 

What type of problems is it suitable for and how can DL help in tackling some of the important 
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challenges mentioned above? Can we use accurate DL models to advance our understanding? 

Because DL diverges significantly from water resources scientists’ typical educational 

background, the community may benefit from clarifications of these concepts, a synthesis of 

the basic technical elements, as well as frontier DL research ideas. 

The purpose of this review paper is not to give thorough technical descriptions or a historical 

recount of deep learning, which have been accomplished elsewhere, e.g., (Bengio et al., 2013; 

Hinton, Deng, et al., 2012; LeCun et al., 2015; Schmidhuber, 2015). Rather, I strive to provide 

a one-step launchpad for water scientists who are interested in exploring DL. This paper (1) 

provides a concise and simple technical overview of DL for water resources scientists (Section 

2);(2) summarizes the progress in varied disciplines to provide a broad perspective of the state 

of deep learning research in sciences and progress relevant to water (Section 3); (3) review 

methods for interpreting DL networks (Section 3.2) and (4) examines potential directions 

where DL can contribute to solving challenges facing water science research (Section 4). 

The interest in DL is rising among water scientists with diverse backgrounds. This review paper 

starts from a basic introduction to DL to its most recent applications in sciences and specifically, 

fields related to water. Therefore, readers are recommended to follow reading priorities as 

summarized in Table 1. 

 

2. Deep learning basics 

Here I attempt to give a self-contained technical background about DL, including some basic 

machine learning terminology (section 2.1), what is deep learning (section 2.2), some popular 

deep learning architectures (section 2.3), and hardware and software support (section 2.6). 

Readers who are familiar with machine learning concepts may skip section 2.1. For the purpose 

of comparison, I have also included brief descriptions of early-generation machine learning 

methods and their applications in hydrology in Appendix A. 

2.1. Basic machine learning terminology 

The machine learning literature is filled with an agonizing amount of jargons and 

terminologies. Unfortunately, knowing some of these terms is necessary for understanding the 

DL literature. Here I only introduce some basic ones relevant to the introduction of DL, while 

some other necessary ones are introduced in different sections. Those already familiar with 

machine learning should skip this section. 
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Machine learning can be broadly categorized into supervised learning and unsupervised 

learning. Supervised learning is trained to predict some observed target variables, either 

categorical or continuous, given some input attributes. The target variable is alternatively called 

dependent variables or labeled data. The algorithm could be configured for classification tasks, 

where we identify to which of a set of categories a new instance belongs, e.g., whether the 

image is a cat or a dog, or regression tasks, where a continuous prediction for the target variable 

is produced. Regression tasks are more often seen for scientific applications. An unsupervised 

learner is not given a target to predict. Unsupervised learning seeks to learn how to represent 

input data instances efficiently and meaningfully by finding hidden structures, e.g., principal 

components, clusters, and parameters of data distributions (Ghahramani, 2004). Principal 

component analysis, for example, seeks to find a few (uncorrelated) linear combinations that 

best represent the variations in the input data. Unsupervised learning is thus often employed 

for dimensional reduction (Redlich, 1993) or feature extraction (Coates et al., 2011; Ranzato 

et al., 2007; Sermanet et al., 2013), because after removing less important details, the remaining 

key bits of information are the most important to characterize the data. 

Artificial Neural Networks (ANN) is a supervised learning approach to approximate functions 

by connecting units called neurons (Figure 1, often also called cells) across layers. A neuron 

on layer l receives inputs from multiple neurons on layer l-1 and computes a linear or nonlinear 

transformation of the combined input, e.g., sigmoidal, tanh, rectified linear units (ReLU, 

essentially a 1:1 linear function with a minimum set to 0). Its output, called its activations, are 

then sent to layer l+1. The connections are represented by linear weights between neurons, 

e.g., wij denoting the connection between the i-th neuron and the j-th neuron, which are on layer 

l-1 and l, respectively. A multi-layer network as shown in Figure 2a is called “fully connected,” 

as every neuron on one layer is connected to every neuron on an adjacent layer. The input and 

output layers have direct connections to inputs and outputs and thus are called visible layers, 

as opposed to hidden layers in the middle. Prior to the tuning of the network weights, the neural 

network is but an empty vessel. The network weights are found by minimizing a loss function, 

typically the distance between data and predictions. The tuning process is called training 

(Ratsch, 2004) and it is this process that defines the purpose of the network. The most common 

training method is backpropagation (Rumelhart et al., 1986), which is a form of gradient 

descend method that propagates the loss as a signal into the network and updates network 

weights based on the chain rule. Compared to other optimization methods such as evolutionary 

algorithms, backpropagation is highly efficient thanks to the differentiability and linear nature 
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of the network connections. The number of neurons on a layer is called width while the number 

of layers is called the depth of the network. Hence, a “deep network” implies a large depth. 

The testing error refers to errors incurred when the algorithm is applied to data not in the 

training set. The expected testing error for the background population is thus also referred to 

as the generalization error. After a machine learning algorithm is trained, it can be used to make 

inference, meaning forward runs that make a prediction when given new instances. When there 

are multiple prediction targets, e.g., simultaneously predicting groundwater level and soil 

moisture, the network is said to do multi-task learning. It is worth mentioning that while deep 

networks are also artificial neural networks, the term “ANN” now appears to be more often 

reserved for non-deep networks, and such meaning is used in this paper. 

2.2. Deep vs. non-deep machine learning 

Although there is no clear-cut definition for deep learning, it generally refers to large, multi-

layer neural networks working directly on big, raw data. The most distinguishing characteristic 

of deep networks from non-deep ones is the depth of the network, provided by the stacking of 

multiple neuron layers in combinatorial and carefully designed architectures. The advantages 

of carefully designed depth have been described at length in (Schmidhuber, 2015) and are 

excellently summarized in (Goh, Hodas, et al., 2017): (1) it allows the automatic extraction and 

engineering of a cascade of abstract features from raw data (Bengio et al., 2013). These features 

(sometimes also called representations) are the discriminative information about the data. In 

contrast, with non-deep methods, useful input features must be constructed by humans with 

domain expertise, which is often the most labor-intensive step. Non-deep learning methods 

were mostly input-output template matching and in general do not learn advanced 

representations; (2) after the knowledge of how to extract these features is learned and stored 

in the form of trained network weights, these networks can enable “transfer learning” (Yosinski 

et al., 2014): reuse of the model trained on one task to another task. For example, image 

recognition networks trained on ordinary pictures can be transferred to remote sensing tasks 

and even gravitational wave observatory data (see Section 3.1). Transfer learning greatly 

extends the value of available training data; (3) increased network depth allows exponential 

growth of the ability to represent complex functions (Raghu et al., 2016). Given the same 

amount of neurons, networks with larger depth could have much stronger ability to better 

capture abstract spatial or temporal structures hidden in data (Eldan & Shamir, 2016), because 

information can take many more paths when neurons are stacked in a combinatorial fashion. 
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The scientific and practical significance of automatic extraction of features cannot be over-

stated. It is due to this feature engineering that machine learning models can effectively exploit 

the value of data in the absence of extensive domain expertise. It then follows that the automatic 

feature engineering should allow the algorithms to discover new concepts that are perhaps 

beyond what human experts have conceived. However, this is not to say that domain expertise 

is no longer needed. Domain expertise will be needed to frame questions, identify inputs, 

construct suitable model architectures and interpret results. There is also evidence that domain 

expertise of physical principles can improve machine learning outcomes (Ganguly et al., 2014; 

Karpatne et al., 2017). 

To give a concrete example, Tao et al. (2016) compared retrieving precipitation from satellite 

images using an earlier-generation neural network system of theirs called PERSIANN-CCS 

(Hong et al., 2004) and a DL model (stacked denoising autoencoder, SDAE, see more details 

in Section 2.3.1). PERSIANN-CCS is a widely used operational system. Its inputs are a number 

of manually defined features, such as minimum/mean temperature of a cloud patch, cloud-

patch area and shape index, mean and standard deviation of cloud-patch temperature, and 

gradient of cloud-top brightness temperature. These features were manually designed from 

knowledge of precipitation and experience. They were calculated from raw satellite data. With 

the SDAE model, they directly provided the raw satellite image itself without much pre-

processing, and the training target was the difference between PERSIANN-CCS and the ground 

truth. The outcome was that the SDAE model removed 98% of the bias and reduced the 

variance by 31%. For another example, in the 2012 Merck chemical activity prediction 

challenge, a computer scientist team’s deep learning model won first place with no feature 

engineering and minimal pre-processing against models that required expert-defined feature 

(Joyce Noah-Vanhoucke, 2012). Their model also surpassed the Merck Corporation’s internal 

operational model, which was based on extensive expert-extracted features (Goh, Hodas, et al., 

2017). This example again suggests that DL may automatically extract better features than 

experts. In the science application section (3.1), there are many more examples where DL and 

traditional models were contrasted. 

Large-depth network structures provide the ability to model highly complex functions, 

spatiotemporal dependences, and data distributions from big data. For image recognition tasks, 

improvement could still be achieved with DL when the size of the training dataset was 

increased from 100M to 300M, while the performance of simpler methods would have stalled 

at a far lower data size (C. Sun et al., 2017). The ability to digest big data allows us to create a 
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uniform model that assimilates all available data, utilizing commonality while identifying 

differences, as opposed to dividing data into multiple bins and modeling each bin separately. 

Previous remote sensing techniques mostly utilized multi-spectral information to extract 

features, which often need adjustments and calibration from image to image. Deep 

architectures such as convolutional neural networks (CNNs, to be described in Section 2.3) can 

now efficiently and automatically extract features that represent object shapes and textures. 

These features are often more powerful and robust clues than spectral signatures (Section 

3.1.1). 

If the power of DL simply arose from its depth, why has DL not materialized sooner? After all, 

earlier-generation multi-layer networks could also be easily configured with arbitrary depth. 

However, if we simply increase the number of layers in a “vanilla” earlier-generation multi-

layer network, it becomes very difficult to train due to a key issue called “vanishing gradient” 

(Hochreiter et al., 2001) — the training signal becomes exponentially small as it propagates 

into the network, making backpropagation ineffective for deep networks. Similar issues exist 

with vanilla recurrent neural networks for sequence analysis. Advances in DL such as improved 

architectures, unsupervised pre-training, and weights sharing (to be explained in Section 2.3) 

resolved this issue and made the training more computationally efficient and more data 

efficient. 

Contrasting DL to other earlier-generation machine learning algorithms (see their descriptions 

and applications in Appendix A), these earlier methods were mostly not designed with the 

relevant architectural elements to enable automatic extraction of features. Thus, their inputs 

features must be computed from raw data with formulas provided by domain experts. Many 

methods also do not scale well to the large datasets that DL can handle. These methods, like 

DL, face other issues of their own. For classification and regression tree (CART), the number 

of data points decreases exponentially at the lower-level of the classification tree, making it 

easy to overfit at these levels. Support Vector Machines (SVM) can engineer hyperplanes to 

separate instances, but it does not have the combinatorial depth. Therefore, SVM cannot extract 

abstract notions. Gaussian Process Regression (GPR) has elegant mathematical properties, 

works well for smaller datasets and provides uncertainty estimates, but it relies on local kernels. 

As a result, GPR has difficulty capturing highly complex, non-smooth functions, scaling to 

large dataset or generalizing to regions in the attribute space with few data points. For Genetic 

Programming (GP), while its explicit and transparent features are appealing, without artful 

controls the results can nonetheless be unintelligible. The overall idea of GP is very useful and 



 

© 2018 American Geophysical Union. All rights reserved. 

will continue to be, but there is little evidence that GP can directly model big-data and highly-

complex problems. 

2.3. Popular deep learning network architectures 

In this section, I introduce several popular deep network architectures. Two state-of-the-art, 

widely adopted architectures are CNNs for image tasks and long short-term memory (LSTM) 

for sequence learning tasks such as time series modeling, although CNNs are sometimes used 

in language modeling as well. Both architectures work directly on raw data. Before introducing 

their structures, I first discuss earlier-generation multi-layer networks and stacked 

autoencoders, as they are the preliminaries to deep networks. The deep belief network is 

introduced as a representative of Bayesian networks. 

Figure 2a shows a “vanilla” multilayer perceptron (MLP) neural network with one hidden layer 

and two output variables. Although MLPs have been popular in hydrology (Maier et al., 2010), 

they are not the architecture of choice for modern machine learning tasks for several reasons: 

MLPs have a large number of free parameters and thus require very large datasets; they do not 

enforce rules that capture spatial dependences and local patterns; They also do not promote 

feature engineering or dimension reduction by the network, and thus face slow training issues. 

2.3.1. Autoencoders and stacked denoising autoencoders (SDAEs) 

Autoencoders (Ballard, 1987; Hinton & Salakhutdinov, 2006) are important structural elements 

for deep networks. They are called such because they are trained to reproduce their inputs, i.e., 

their success is measured by how close their outputs approximate their inputs after training. 

However, they have to do so while passing information through a layer with far fewer neurons, 

which forms an information bottleneck (Figure 2b). On the output side of the bottleneck, the 

network needs to reconstruct the inputs with condensed information: imagine 28 bits of 

information comes in as inputs, only 26 bits can pass through the bottleneck, but, based on these 

26 bits, the network needs to produce 28 bits of outputs which are as close to the input as 

possible. As a result, the bottleneck layer must learn how to retain only crucial information 

pertaining to the structure of the data and discard non-essential details. The training process is 

really the conditioning of the network by the entire input dataset to perform dimensional 

reduction, somewhat similar to principal component analysis (PCA), but it can work much 

better than PCA (Hinton & Salakhutdinov, 2006). The hidden layers output abstract features 

engineered by the network. The trained weights are the optimized way of generating these 

features. The training of an autoencoder is said to be unsupervised pre-training because, during 
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the process, no target data are provided. Autoencoders are fully connected so that if there are 

M input nodes and N hidden nodes, the weight matrix to be learned between them is of size 

M×N (plus bias parameters). 

Denoising autoencoders (Vincent et al., 2008) extends from autoencoders. Instead of training 

the network to reproduce inputs exactly, we add noise to the target, e.g., by randomly setting 

some inputs to zero before training begins. This noise corruption, contrary to our intuition, 

helps to reduce overfitting (because noise serves to annihilate peculiarities or artifacts in the 

training dataset) and train more robust networks. More discussion related to this point is found 

in Section 2.4. 

The stacked denoising autoencoder (SDAE), as the name suggests, stacks multiple denoising 

autoencoders layers so that the hidden representations from layer k are fed as inputs to layer 

k+1 (Figure 2c). The width of the network shrinks as depth increases, ensuring higher-level, 

increasingly abstract concepts are captured at deeper levels. Each of the autoencoder units is 

trained to reproduce its inputs. They naturally form a cascade of layers that shrink in size going 

from input to output. The network is trained “greedily,” one layer at a time (Bengio et al., 2007; 

Hinton et al., 2006), meaning that the first autoencoder is first trained to reproduce its inputs, 

and then we move to train the next autoencoder to reproduce its inputs, which are outputs from 

the first one. We do this until all autoencoder layers are trained. There is typically a fully 

connected output layer after all autoencoders in SDAE. 

 

2.3.2. Convolutional Neural Network (CNN) 

A CNN is also composed of a cascade of layers that shrink in width from input to output (Figure 

2e). To a hydrologic modeler or a numerical analyst, CNN is reminiscent of a geometric 

multigrid matrix solver. Like SDAE, the shrinking in CNN is to ensure the condensation of 

information into more abstract concepts at deeper layers. Each shrinking stage typically 

consists of one or multiple convolution layers and corresponding “pooling” layers (pooling 

suggests reductive operations) as explained below. First, a convolutional layer uses a local filter 

to convolve with its input. The output typically has the same dimension as input. Each output 

element results from the convolution between the input pixels in a small geometric 

neighborhood of this element and the filter; second, a pooling layer subsamples the output from 

the convolution. For example, a “max-pooling” layer with a stride of 2 for a 2D image will 
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select the maximum value out of each 2×2 neighborhood and produce an output image a 

quarter of its input size. In contrast, the last output layer is typically a fully connected one. 

CNNs and SDAEs look similar, but they have important differences. While SDAE layers are 

fully connected, the convolutional and pooling layers in CNNs only work on a local 

neighborhood, so a hidden unit is only connected to a small number of input neurons. As a 

result, a hidden unit has a “field of sight” that is smaller than the whole input layer (Figure 2e). 

This hierarchical design helps capture local geometric features, spatial patterns, and extract 

larger-scale representations in deeper layers. It also enables localization of input-output 

relationships, which are exploited in interpretive studies (more on this point in Section 3.2). 

On another note, it is important to note the learnable parameters for the convolutional layer are 

only those filters. The convolution is achieved by repeated applications of the same learnable 

filters, although they can be different for different layers. Because filters (one filter for each 

convolutional layer) have only a small number of elements and all neurons share it in a 

convolutional layer (called weight sharing), it greatly reduces the number of parameters 

compared to a fully connected layer. Therefore, CNNs are much easier to train than a vanilla, 

fully connected MLP. 

2.3.3. Long Short-Term Memory (LSTM) 

LSTM (Greff et al., 2015; Hochreiter & Schmidhuber, 1997) is a type of recurrent neural 

network (RNN) structure that learns directly from time series data. RNNs are called such 

because they work with sequential data and the output of each time step is fed as inputs to the 

next time step. LSTM is “deep-in-time” and can learn when to forget and how long to retain 

the state information. Previously, simple RNNs update only a single past state (Figure 2f). The 

cell state, ht, serves as the memory of the system, somewhat similar to the state in auto-

regressive models. ht is multiplied by learnable weights and then combined with inputs to 

evolve the state to the next time level. RNNs are trained using the backpropagation through 

time algorithm (Mozer, 1989; Werbos, 1990), which applies backpropagation after first 

unrolling the network. As with other backpropagation algorithms, the loss function is 

propagated backward to determine updates to weights. With simple recurrent networks, 

backpropagation encounters the vanishing gradient problem as discussed previously 

(Hochreiter, 1998; Hochreiter et al., 2001). Concisely, for RNNs, because states from earlier 

time steps have undergone multiplication by weights many times before it affects the output, 
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the impacts of backpropagation on them become exponentially small. As a result, simple RNNs 

train extremely slowly. 

The LSTM solution to this problem is the specially designed units called “gates” and memory 

cells (Figure 2f). These gates, which are themselves simply neurons with learnable weights, 

surround the cell memory (St) to control the flow of information. After training, the input gate 

controls what inputs are significant enough to remember. The forget gate decides how long and 

what past state memory should be retained. The output gate determines how much of the 

memory is used to produce the output. Together, they allow the network to remember 

information from the long past while discarding non-essential information. 

2.3.4. Deep Belief Network (DBN) 

DBN (Hinton et al., 2006) is a variant of multiple layer perceptron networks, and it also aims 

at reducing the dimensionality of input data. Similar to the way SDAEs are stacks of 

autoencoders, DBNs are stacks of Restricted Boltzmann Machines (RBMs), which learn how 

to reconstruct input distribution through a bottleneck layer (Figure 2d). An RBM consists of 

two layers of neurons, just like the input and hidden layers of an autoencoder. However, an 

RBM’s connections are undirected (bi-directional). During training, the input layer (or visible 

layer) multiplies the inputs by its weights and applies the nonlinear transformations. During 

reconstruction, the activations are multiplied by the transposed version of the same weights 

and transformed again to obtain activations at the input layer. Then the training process adjusts 

the weights to minimize the differences between the statistical distributions of the reconstructed 

and input data. DBN is probabilistic in that it seeks to reconstruct the distribution of inputs 

rather than exactly the inputs themselves. 

Similar to SDAEs, DBNs are trained “greedily” layer-by-layer. However, there is no 

requirement that upper-level layers must have fewer cells than lower ones. Moreover, DBNs 

are not recurrent networks and were not designed to specifically maintain time dependencies: 

the previous inputs and states of the network do not influence future predictions. Thus DBNs 

do not have system memory that is important for modeling time series. 

2.4. Regularization (model complexity penalization) techniques 

Simply put, “regularization” means adding a penalty to the network to reduce its complexity 

and prevent overfitting. In this section three regularization techniques--namely, norm 

regularization, early stopping, and dropout--are introduced. Overfitting occurs when a model 

so closely fits the available training data that it treats data noise or peculiarities as true data 
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signals, resulting in reduced accuracy when making predictions about unseen instances. A 

frequent concern about deep learning is that deep networks must be prone to overfitting due to 

their enormous degrees of freedom. However, effective regularization techniques have been 

developed to penalize overfitting. Since the incipience of machine learning, regularization has 

always been a core and inherent component. Here I first briefly describe earlier regularization 

techniques and then introduce the newer inventions. 

Given similar performances, conventional statistical wisdom would always prefer a more 

parsimonious model, which is reflected in model selection criteria such as the Akaike 

Information Criterion (AIC) (Akaike, 1974). For those unfamiliar with this concept, AIC and 

its variants allow one to evaluate the quality of alternative models while considering the 

number of parameters in each model: 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛⁡(𝐿̂) (1) 

where k is the number of parameters and 𝐿̂ is the likelihood function of the model. This 

criterion penalizes overfitting and directs the choice to simpler models depending on the 

tradeoff between model complexity and performance. However, discarding predictors entails 

loss of information; that is, we sacrifice information for model robustness. 

Instead of completely discarding information, norm-based regularization techniques apply 

penalization factors depending on how large the norms of the parameters are. For example, for 

a linear regression model 𝑦 = 𝒙𝑇𝜷, where 𝑦 is the predictand, 𝒙 is a vector of predictors, 

and 𝜷 are the linear coefficients (the bias parameter, 𝛽0, is omitted), a regularized linear 

regression approach will seek to reduce the sum of the coefficients: 

𝜷 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜷

(
1

2𝑁
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where 𝑦𝑜  is observation, N is the number of observations, n is the number of coefficients, and 

𝜆 is a regularization parameter that determines how heavily the formulation penalizes large 

coefficients. The first summation sign contains the optimization problem without 

regularization, while the second term directs the choice to models whose parameters are of 

smaller magnitude, imposing the law of parsimony. With a pre-defined 𝜆 , the algorithm 

holistically assigns less weight to less important parameters. However, it retains all the 

predictors instead of completely discarding insignificant ones. Real-world problems are often 
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highly complex, with myriad factors each contributing a small influence on the outcome. 

Assigning proper weights to them appears to be a more appropriate treatment. 

Norm-based regularization has been widely employed in early-generation machine learning 

including ANN. Another commonly used regularization is early stopping (Yao et al., 2007), 

where the training of a learner is stopped before the learner fully achieves its best performance. 

Early stopping criteria are often based on a separate validation dataset and some smoothness 

criteria, e.g., it stops when the error on the validation dataset starts to increase compared to 

earlier epochs (Prechelt, 2012). 

The abovementioned techniques are applicable to deep networks, but DL has several new 

techniques that are especially helpful, including Dropout (Hinton, Srivastava, et al., 2012; 

Srivastava et al., 2014), without which DL could not have made much progress. Dropout 

randomly blocks a fraction (called the dropout rate) of the connections in a network, as 

illustrated in Figure 3. This operation is implemented via a randomly generated mask with the 

same dimension as the connections between two layers. This mask is 0 for the blocked 

connections and 1 for those kept open. One may expect this procedure to introduce noise into 

the optimization process, and it does, but just like the case with SDAE, adding noise, in fact, 

improves robustness. There are several interpretations of dropout: (1) every new dropout mask 

effectively creates a new, reduced-order subnetwork (Figure 3). These subnetworks then form 

an ensemble of small networks. Making inference using a trained deep network is akin to using 

the ensemble mean to make predictions, which is more robust (Baldi & Sadowski, 2014; Hara 

et al., 2016); and (2) because connections are randomly blocked, neuron weights cannot adjust 

at the same time to cancel each other’s effects to fit the target (Hinton, Srivastava, et al., 2012). 

The simultaneous adjustment, termed coadaptation, is a primary reason for overfitting. For 

other interpretations, see Gal & Ghahramani  (2015, 2016). 

In practice, dropout and its variants have been found to be miraculously effective (Smirnov et 

al., 2014). However, standard dropout schemes that work for CNN do not work for recurrent 

networks like LSTM. If dropout is blindly applied to the recurrent connections (between St and 

other cells in Figure 2f) in the network, the recurrence amplifies the introduced noise, leading 

to loss of memory, which hinders LSTM from encoding long-term information. Therefore, 

Zaremba et al. (2015) proposed to avoid dropout for recurrent links and apply dropout only to 

forward connections, i.e., the connections between x and all four gates, and between output 

node and target. Gal and Ghahramani (2016) proposed to also dropout recurrent links, but the 

dropout masks must not change across time steps. Semeniuta et al., (2016) further applied 



 

© 2018 American Geophysical Union. All rights reserved. 

dropout to the recurrent link from the input gate to the cell memory, also with a constant-in-

time mask. Fang et al. (2017) (hereafter termed FSKY17) applied the dropout of both Gal and 

Ghahramani (2016) and Semeniuta et al. (2016). In preliminary studies for FSKY17, if dropout 

were not applied, the network would achieve very small training error, but the testing error 

would be very large. 

2.5. Generative Adversarial Networks (GAN) 

GAN was a progress milestone in deep learning (Goodfellow et al., 2014; Mogren, 2016) 

motivated by the need to model high-dimensional, multi-modal distributions. GAN is 

“generative” in that it can generate, or, quite vividly, “imagine” new instances that resemble 

the training data sometimes to such a remarkable degree that humans can hardly tell they are 

not real. Powered by DL’s ability to automatically extract features, GANs can capture data 

characteristics which are perceivable by humans but difficult to qualitatively describe, such as 

art styles. The generation process is equivalent to implicitly sampling from the modeled 

distributions. When we employ a loss function such as mean sum of squares, we implicitly 

make assumptions that the residuals are from independent Gaussian distributions. Such 

assumptions work poorly for multi-modal data, and Gaussian loss often guides the model to 

generate instances that appear too smooth. Importantly, GANs avoid directly making such 

assumptions, and are able to generate instances that respect the spatiotemporal dependencies 

in data. Before GAN, belief networks, variational autoencoders (Kingma & Welling, 2013), 

Markov Chain Monte Carlo (Brooks et al., 2011), and Boltzmann machines were all designed 

to model the data distributions in different manners, but they each suffer from computational 

inefficiency or complexity issues. The family of models that require explicit, tractable density 

functions is limited, while Markov Chain methods are very computationally expensive and 

their convergence can be very slow and unverifiable for high-dimensional space (Goodfellow, 

2016). 

A few years after its introduction, GAN has become a major driver for advances and is opening 

up a sub-discipline in AI research. GANs have been trained to generate images described by 

an input sentence (Sriram et al., 2017); GANs can transfer Monet’s or painting styles to new 

raw pictures (J.-Y. Zhu et al., 2017); GANs can impressively evolve the age of persons on an 

image (Antipov et al., 2017), predict the next framework of videos (Mathieu et al., 2015), or 

produce super-resolution images from coarse ones (Ledig et al., 2016); they have also helped 

to train deep networks (Ororbia et al., 2016) more robustly. The most attractive feature of GAN 

is that it can capture complex, multi-modal and conditional distributions without having to 
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make explicit assumptions about the distributions. However, training GANs can be tricky and 

involves delicate procedures (Goodfellow, 2016). 

In Geosciences and water sciences, GAN applications also start to emerge in a probabilistic 

inversion of geologic media and urbanization projections (to be reviewed in Sections 3.1.2 and 

3.1.3). 

The main idea of GAN is to simultaneously train two deep networks that are playing a zero-

sum game against each other. The first network generates new instances and the second 

network is trained to find clues to detect whether its input comes from real data or the output 

of the first network. Thus these two networks are placed in competition – the first network tries 

to fool the second with counterfeit data and the second, with access to true data, tries to avoid 

being fooled. Another way to interpret it is that the second network tries to find artifacts 

produced by the first. When the second succeeds, it provides this feedback to the first, helping 

it improve. 

Some equations here can be helpful in linking the concepts to the procedures. In the initial 

version of GAN, let 𝐷(𝑥) denote the detector-predicted probability that an instance x comes 

from the true data generating distribution, ⁡ 𝑝𝑑𝑎𝑡𝑎(𝒙) , while 𝐺(𝒛)  denotes an instance 

produced by the generator given random noise 𝒛  from a noise vector space 𝑝𝒛(𝒛) , the 

following value function (a cross-entropy function) is defined: 

𝑉(𝜃(𝐷), 𝜃(𝐺)) = 𝔼𝒙~𝑝𝑑𝑎𝑡𝑎(𝒙)[log(𝐷(𝑥))] + 𝔼𝒛~𝑝𝒛(𝒛) [log (1 − 𝐷(𝐺(𝒛)))] (3) 

where 𝜃(𝐷) and 𝜃(𝐺) are the network parameters of the detector and generator, respectively. 

The value of the first expectation will be the highest when all instances from true data is judged 

as true by the detector, while the second will be when all counterfeit instances are judged as 

false. The two networks play a minimax game: 

min
𝜃(𝐺)

max
𝜃(𝐷)

𝑉(𝜃(𝐷), 𝜃(𝐺)) (4) 

which, to put simply, means that the generator attempts to minimize 𝑉 (maximally confuse 

the detector) without knowing the detector’s actions (without access to real data), while the 

detector attempts to maximize V (make the most correct decisions), knowing the generator’s 

actions (having access to ground truths to evaluate V). In the implementation, −𝑉 is the loss 

function for the detector while V (or a non-saturating loss, i.e., −𝔼𝒛~𝑝𝒛(𝒛) [log (𝐷(𝐺(𝒛)))]) is 

the loss function for the generator. In practice, one network is trained a few iterations while 
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holding the parameters of the other network constant, before rotating to train the other network. 

Ideally, at equilibrium, the detector is no longer able to find reliable clues to discern between 

real and generator-produced instances. Then, the generator has successfully learned the data-

generating distributions and the dependence structures of data. 

2.6. Hardware innovations and software support 

The advances in DL are inseparable from hardware innovations. Without drastic advances in 

hardware and, more importantly, the recognition of the use of more efficient parallel-

computation hardware like Graphical Processing Unit (GPU) for the task, DL would not have 

been plausible (Schmidhuber, 2015). Although some concepts of deep learning were decades 

old, their popularity did not grow until 2010, when GPUs were found to be suitable for the task. 

GPUs now offer thousands of times more matrix computing power than central processing 

units (CPUs), and their growth continues (Greengard, 2016) or even surpasses (Hemsoth, 2016) 

Moore’s Law (loosely, the observation that the number of transistors per square inch on 

integrated circuits had doubled every two years since their invention). This trend suggests there 

is significant room for growth for larger and more complex networks. However, the computing 

hardware landscape for DL is evolving rapidly and dynamically. At present, most training tasks 

take place on GPUs or a few AI-specialized hardware, while inferencing tasks may occur on 

CPUs, GPUs, or field-programmable gate arrays (FPGAs). More recently, as some believed 

that the computing requirements appear to have stabilized, application-specific integrated 

circuits (ASICs), which are chips specifically designed for some narrow computing tasks, start 

to emerge for both training and inference DL applications. 

A number of open source software platforms are available for building DL models. Like 

hardware, the software landscape is also evolving rapidly. At the time of this writing, 

Tensorflow is a popular Google-supported DL package based on the Python programming 

language. Torch is based on a scripting language called Lua, but it also has a Python version 

called PyTorch which has enhanced functionalities. Both Tensorflow and PyTorch provide 

access to low-level controls of operators and loss functions. Tensorflow has a longer history 

and a larger user community. PyTorch appears easier to learn and experiment with. It also 

enjoys strong optimization support from the fast GPU deep learning library cudnn. Other 

libraries include Theano, Caffe, MXNet, CNTK, etc. Keras is also a popular framework that 

serves as an easier front-end to Tensorflow and CNTK, but access to modifying low-level 

details can be tricky. Since the number of DL frameworks is large, there are efforts such as the 
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Open Neural Network Exchange that attempts to make networks created under different 

frameworks transferrable to each other. 

2.7. Understanding the generalization power of DL 

Although it was proven decades ago that neural networks can approximate almost any function 

(Hornik et al., 1989), many are intrigued by why deep networks generalize so well despite their 

massive size. Most attribute DL’s power to big data, regularization techniques and advanced 

hierarchical architectures. Another mainstream viewpoint is that DL does not overfit because 

we use a two-step procedure, where a test set is used to constrain the resulting models 

(Kawaguchi et al., 2017). However, there are also significant debates. Zhang et al. (2016a) 

showed empirically that deep network can easily memorize details and even noise, and 

questioned if previous interpretation (regularization) was the true cause of generalization. Arpit 

et al. (2017) presented a rebuttal where they showed deep networks tend to prioritize learning 

simple patterns first and do not just memorize data. Regularization can degrade network 

performance on training data and hinder memorization without compromising generalization 

on test data. DL has also be shown to be related to renormalization group, an important 

theoretical physics technique which also extracts features at different length scales (Mehta & 

Schwab, 2014). 

3. Trans-disciplinary applications of DL and its interpretation 

3.1. DL applications in sciences 

DL is gaining adoption in a wide range of scientific disciplines and, in some areas, has started 

to substantially transform those disciplines. Several physical science disciplines with big data 

sources have embraced DL, customized network structures for their needs, and apparently built 

community software packages. Here the purpose of reviewing these studies is that there could 

be a latecomer advantage for water sciences if we learn from the experiences of other domains: 

we can see what kinds of problems DL is well suited for and the state at which DL is adopted 

in various disciplines. We can also observe how other areas have customized and utilized DL. 

I introduce these applications only with a level of details relevant to water scientists and 

emphases are put on the main messages we can learn. Section 3.2.4 reviews the interpretive 

DL studies in sciences that focused on gaining insights from trained networks. 

3.1.1. In physical sciences 
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In high-energy physics (HEP), DL was used to handle the large volumes of data produced by 

particle colliders for the detection of abnormal particles. Transforming their problems into 

image recognition problems, scientists found that DL was able to increase the statistical power 

of data. Previously, using shallow machine learning, the progress was slow as manual 

extraction of features was involved. Researchers showed that deep learning can learn more 

complex functions that enabled better discrimination between signal and noise (Baldi et al., 

2014). The authors trained autoencoders to predict the existence of abnormal particles based 

on low-level, non-image inputs. They showed that the deep network did not require manual 

extraction of high-level features, yet it attained 8% improvement over earlier approaches. 

Where current analysis techniques lack the statistical power to cross the traditional significance 

barrier, the use of deep networks enhanced statistical power and is equivalent to a 25% increase 

in the experimental dataset (Baldi et al., 2015). Further, organizing collider data as images 

(called jet images), scientists found CNNs to be successful in identifying diverse particles 

(Aurisano et al., 2016; Butter et al., 2017; Komiske et al., 2017; de Oliveira et al., 2016; Racah 

et al., 2016) and classifying physical events (Racah et al., 2016). 

Since telescope data come in great volumes, astronomy is a prime example of how DL helps 

address the data deluge. DL significantly improved data discoverability and reduced labor cost 

in extracting abstract metric information. For example, CNNs allowed automatic extraction of 

galactic model parameters from telescope images (Hezaveh et al., 2017). CNNs can work at an 

accuracy similar to complex approaches but millions of times faster. George et al. (2017) 

obtained promising results with CNN pre-trained by real-world images to detect artifacts in 

data collected in Laser Interferometer Gravitational-wave Observatory (LIGO). This use of 

pre-trained network is the transfer learning concept explained earlier. Tuccillo et al. (2016) 

demonstrated the potential of using CNNs to estimate galaxy morphologic parameters. 

Although mixed results have been observed in some cases, many are optimistic that DL will 

become the method of choice for data processing problems in astrophysics and other fields. 

With large databases of genomes and complicated relationships that are not fully understood, 

the field of computational biology has demonstrated how DL may directly learn from data and 

offer new knowledge (Min et al., 2016; Park & Kellis, 2015). DL can learn directly from 

genomic sequences to predict which genetic sequences exhibit interactions with certain 

proteins (Alipanahi et al., 2015). Having built a domain-specific DL package they call 

DeepBind, the authors further perturbed the trained models to examine how genetic mutations 

may potentially lead to diseases: their models predicted known genetic variations that cause 
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tumor risks, as well as potentially damaging mutations that were previously not known. DL 

can capture nonlinear dependencies that could help span multiple genomic scales, potentially 

generalizing beyond available data (Angermueller et al., 2016). Stacked autoencoders, DBNs, 

and LSTM could predict protein structures directly from their sequences with much better 

accuracy than conventional methods (Heffernan et al., 2015; Lyons et al., 2014; Sønderby et 

al., 2015; Spencer et al., 2015). 

Three trends emerge from computational chemistry literature: (1) DL models working directly 

with (more) raw-level data seemed to perform on par with or better than those working with 

predefined features or descriptors (Goh, Siegel, et al., 2017; Gomes et al., 2017; Lusci et al., 

2013; Mayr et al., 2016; S. L. Yang et al., 2014); (2) multi-task learning may produce stronger 

models as they develop shared feature extraction pipelines and imposing stronger constraints 

(Goh, Hodas, et al., 2017; Ramsundar et al., 2015; Schütt et al., 2018); (3) scientists could 

customize DL to emulate atoms and molecules in order to learn emergent relationships between 

structures and resulting properties. Lusci et al. (2013) used a novel graph structure (Koller & 

Friedman, 2009) to mimic molecular configurations and predict molecular properties. Other 

authors extracted CNN’s hidden layer representation as chemical fingerprints to predict 

different properties (Coley et al., 2017; Schütt et al., 2017) (more discussion in Section 3.2.4). 

Moreover, the community has assembled large datasets and standard benchmarks (Wu et al., 

2017) and a suite of DL packages like deepChem (Subramanian et al., 2016). 

3.1.2. In Geosciences: Remote Sensing, Global Change, and Climate 

In fields close to water such as remote sensing, DL is growing to be the preferred method of 

choice, proving it a crucial tool in discovering information from raw images (L. Zhang et al., 

2016). Since CNNs excel in extracting information from geometric shapes, textures, and spatial 

patterns, they easily outperform earlier methods that only utilize spectral signatures or 

handcrafted features (Makantasis et al., 2015). Main RS applications (X. X. Zhu et al., 2017) 

include using CNN to classify or segment images (assigning classes to each pixel on an image 

for what they are, e.g., land use classes, crops types) (Geng et al., 2015), object recognition 

(finding targets from a series of images) (Wagner, 2016), object localization (Long et al., 2017), 

and terrain attribute extraction, e.g., sea ice concentration (L. Wang et al., 2016). Remote 

sensing applications often started with standard CNN and RNN designs, and then made 

incremental modifications for efficiency and accuracy gains (Long et al., 2017; Mou et al., 

2017; X. X. Zhu et al., 2017). In global change analysis, DL models show advantages in 
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estimating crop yield (Kuwata & Shibasaki, 2015; You et al., 2017). Pryzant et al. (2017) forgo 

the conventional spectral features method in favor of a combined CNN-LSTM model to 

estimate outbreaks of wheat fungus in Ethiopia. Their LSTM is stacked on CNN-extracted 

feature representations to incorporate both spatial structural and temporal change. In addition, 

CNN is used for overall interpretation of images such as scene classification (for an image, 

recognize a theme from a list of possible themes) (Marmanis et al., 2016; Nogueira et al., 2017), 

change detection (Puzhao Zhang et al., 2016), and object detection, e.g., vehicles (X. Chen et 

al., 2014). Such high-level tasks were difficult to achieve using earlier machine learning 

techniques. 

In disaster detection and categorization studies, researchers have started to employ DL to detect 

wildfires (Lee et al., 2017; Sharma et al., 2017; Q. Zhang et al., 2016) and landslides from 

remote sensing images (Ying Liu & Wu, 2016). Liu and Wu (2016) applied pre-processing 

steps including discrete wavelet transformation and noise corruption and trained an SDAE to 

identify landslides on the transformed image. They argued that the transformation is necessary 

because the resolution of remote sensing images is too low. However, they did not directly 

show results to support the claim. 

Furthermore, the remote-sensing community has exploited transfer learning and data 

augmentation and has adapted available architectures to suit their data quantity. For example, 

publicly available trained networks such as GoogLeNet (Szegedy et al., 2015) can be 

transferred for scene classification for satellite images (Hu et al., 2015; Marmanis et al., 2016; 

Nogueira et al., 2017). Transfer learning works because the hidden layers that have been trained 

to distill shape information are also effective even when ported to remotely sensed scenes. 

Transfer learning also means that certain expertise obtained from training on existing datasets 

can be modularized, packaged, and assembled. Data augmentation (Ding et al., 2016; Morgan, 

2015) means increasing the training data by making perturbations to data that should not have 

mattered, such as rotation, translation, interpolation, elastic distortions, and affine 

transformations, etc. 

In climate science, the number of applications of deep learning in climate modeling starts to 

rise quickly, with applications focusing on (1) identification of extreme climate events and (2) 

addressing the resolution challenge. In a study carried out at the Lawrence Berkeley National 

Lab, Liu et al. (2016) trained a CNN with two convolutional layers to detect extreme events 

using thousands of images of tropical cyclones, weather fronts, and atmospheric rivers. This 

new system achieves 89%-99% accuracy in detecting extreme events and is useful for 
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benchmarking climate models. A significant amount of attention has been paid to using deep 

learning for precipitation forecasting, (e.g., Hernández et al., 2016; Shi et al., 2017; Pengcheng 

Zhang et al., 2017). 

The model resolution has been a central challenge for climate modeling. For dynamic 

modeling, researchers trained dynamic convolutional layers, i.e., filters with weights that are 

dynamically updated using inputs during forward runs, in short-range weather predictions 

(Klein et al., 2015). Vandal et al. (2017) proposed a generalized stacked super-resolution CNN 

framework for statistical downscaling of climate variables. Super-resolution means a network 

produces an output image with higher resolution than the input. They argued that a single 

trained model can downscale spatial heterogeneous regions, and the DL method showed 

advantages over others. In a recent self-archived paper, authors have employed an MLP to learn 

fine-resolution dynamics such as convective heating, moistening and cloud-radiative transfer 

feedbacks from high-resolution simulations, to replace existing multiple parameterization 

schemes (Gentine et al., 2018). Moreover, the climate modeling community is putting together 

large datasets to enable big data deep learning on large scales (Racah et al., 2017). 

In an interesting application, authors have employed GAN to model urban expansion, which is 

relevant to water consumption (Albert et al., 2018). Trained on images of 30,000 cities, GAN 

was able to reproduce realistic concentrations and spreads of urban masses in the absence of 

externally-imposed constraints, e.g., rules that say cities cannot be built on water. GAN learned 

these rules by itself. 

3.1.3. In hydrology 

Compared to some other disciplines, hydrology has not witnessed the wide use of deep 

learning. Application of DL have been few, especially in a big data setting, and the list of papers 

reviewed in this sub-section is exhaustive to the author’s best compilation effort. There are 

three types of DL applications in hydrology so far: (i) extracting hydrometeorological and 

hydrologic information from images; (ii) dynamic modeling of hydrologic variables or data 

collected by sensor networks; (iii) learning and generating complex data distributions. A 

common theme reported from these studies is that, unsurprisingly, DL models have surpassed 

traditional statistical methods. However, there has not been any effort to interpret the DL 

models. 

In the first category, DL has shown strong promise of success for several hydrologic variables, 

the main one being precipitation. Previously, while satellite-based precipitation retrieval was 
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very useful, its accuracy was still insufficient (Boushaki et al., 2009). As discussed previously 

in Section 2.2, Tao et al. (2016) utilized an SDAE with four layers and 1,000 hidden nodes to 

extract precipitation from 15 x 15 pixels2 satellite cloud images. They achieved 33%-43% 

corrections on false alarm pixels compared to PERSIANN-CCS. The authors further improved 

the results by including water vapor as another channel (Tao et al., 2017). Previously, water 

vapor was not included in PERSIANN-CCS. To include it in an earlier system like 

PERSIANN-CCS, significant expertise would have been needed for deriving new features. 

However, with DL, the authors did not have to specify any formula to realize gains in 

performance. One could also surmise that a modified CNN will perform even better than 

SDAE, as CNN is better at capturing spatial texture. In another study, DBN was used to predict 

field-measured soil moisture, with observed land surface temperature (LST) and leaf area index 

(LAI) among the inputs from one experiment site (Song et al., 2016). Recall that DBN is an 

earlier-generation DL method that does not automatically exploit time-dependencies, which is 

perhaps why real-time data are needed in the inputs. Overall, for information retrieval 

applications, the use of DL can deliver the most tangible outcomes. 

Within the second category, a distinction can be made depending on whether big data are 

involved. While one of DL’s main strengths is to be able to digest big data, it turned out the 

network architecture can also be trained with data from a single or a few sites. Bai et al. (2016) 

applied non-recurrent DBN to predict single-site time series of inflow to the Three Gorges 

reservoir. They obtained a good match with observed inflows and concluded that DL was able 

to engineer multi-scale features. It’s worth noting this work learns from the trend, period, and 

random elements that were extracted from historical inflow time series using Fourier 

transforms, rather than directly from raw data. Since the sole information used was historical 

time series, this method should be applied to cases with strong and stable annual cycles and 

where historical data are sufficient. In an Irish study, a CNN was trained to predict urban water 

flow given weather forcings and runoff simulated by a hydrologic model as inputs (Assem et 

al., 2017). This problem would otherwise be difficult to model. Even if one had detailed 

information about the city’s drainage piping system, it could be very time-consuming and error-

prone to model. They found CNN to effectively capture urban outflow rate and level in the 

downstream river. Zhang et al., (2018) built different neural network models, including LSTM 

and gated recurrent network (GRU, a simpler version of time series DL model), to predict the 

water level of the Combined Sewage Outflow (CSO) structure. They showed advantages of 

LSTM over simpler methods. It seems GRU is slightly superior in their case perhaps due to 
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small dataset size. However, the training of these networks with data from one or a few sites 

would limit the applicability of the network to the training sites. For studies where the dataset 

size is small, comparisons are necessary to bring out the necessity of DL. 

FSKY17 were the first to exploit LSTM’s ability to build dynamical hydrologic models with 

forcings and memory. Their application is relevant to long-term hydrologic hindcast or 

forecast. They trained LSTM to reproduce surface soil moisture product from the Soil Moisture 

Active Passive (SMAP) mission (Entekhabi, 2010) over the continental United States 

(CONUS) using forcing data and outputs from land surface models. The motivation for this 

work is a data-driven model that faithfully reproduces SMAP data, so that SMAP data can be 

related to other historical events. In addition, via their approach, the independent information 

from SMAP sensors can be combined with other land surface models for future projections. 

However, earlier data-driven methods cannot achieve this goal because they lack the ability to 

model multi-scale time-dependence while at the same time considering the influences of 

landcover and soils. In this case, there are thousands of training instances and they built a 

continental-scale model that benefits from integrating a diversity of data found over CONUS. 

FSKY17 showed that with 2 years of data, LSTM successfully reproduces SMAP-observed 

soil moisture dynamics with high fidelity (Figure 4). The deep network is more robust and 

accurate than traditional statistical methods including regularized linear regression, auto-

regressive functions, and a simple feedforward neural network. Their model can be migrated 

spatially to generate predictions in regions without observations. The prediction results are 

acceptable as long as the training dataset covers a representative subset of the data. Moreover, 

in a proof-of-concept test, they found decadal-scale hindcast of simulated soil moisture was as 

good as annual-scale hindcast (Figure 4a-c). FSKY17 suggests DL is a strong dynamical 

modeler to unify all available data as opposed to requiring parameter regionalization. The DL 

model can find commonality among them and identify differences. Another study, currently 

under open discussion, exploited LSTM in rainfall-runoff modeling (Kratzert et al., 2018). In 

this work, authors trained LSTM models to predict streamflows for hundreds of basins over 

CONUS and compared the results to the Sacramento Soil Moisture Accounting Model. They 

trained models for a single basin or for a group of basins in a region. They did not provide 

differentiating physical factors for these models, and instead relied on model regionalization to 

represent spatial heterogeneity. In this sense, LSTM cannot learn how different physical factors 

play roles in the hydrologic dynamics. Nevertheless, their results suggest that single-basin data 
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was not sufficient to constrain the DL model, as the performance was not as good as the 

Sacramento soil moisture accounting model, but after fine tuning, DL showed advantages. 

In the third category, DL and GAN demonstrated their strengths for the problem of geological 

media simulation and inversion, which helps the modeling of pollutant transport in 

groundwater. In this application, the goal is to generate subsurface structures that resemble 

observed spatial patterns from field samples of porous media. Some traditional methods assume 

multi-Gaussian distributions and suitable variograms, while some others use multiple-point 

statistical simulations to exploit higher-order statistics found in data. However, they can be 

both slow and incomplete for the exploration of the posterior density. In particular, similar to 

what motivated GAN, these earlier methods tend to be concentrated near a single global 

minimum and are thus not ideal for multi-modal data distributions. The outcome is unrealistic-

looking simulations. Laloy et al. (2017) first attempted to use variation autoencoder (Kingma 

& Welling, 2013) to extract a low-dimensional representation of the training image, and then 

produced realizations from it. Recall that autoencoders can store condensed essential features 

of data (Section 2.3.1). Then, the same authors switched to a spatial GAN to capture the 

complex spatial data distributions (Laloy et al., 2018). The GAN was notably faster at exploring 

the posterior model distribution and, because it can capture multi-modal data, it was able to 

generate images that visually resemble the training images much better. The GAN was trained 

with much less data than needed for the variational autoencoder. This study is potentially 

disruptive in that it opens up a more realistic and more uniform road toward geologic inversion 

and uncertainty quantification, requiring less human interventions. 

3.2. The budding area of AI interpretation and its application in sciences 

The biggest criticism against scientific use of DL networks has perhaps been that they are black 

boxes that do no help us improve our understanding of the system. When we do not understand 

the inner workings of a tool, we tend to have lower confidence in its use. However, as DL 

research progresses, it becomes increasingly possible to use DL as a knowledge discovery tool. 

Deep networks are not black but gray boxes that can be probed, interrogated and visualized to 

reveal insights on what is learned by the network. A vibrant sub-field that focuses on DL 

interpretation and understanding, dubbed by some researchers as “AI neuroscience” (Voosen, 

2017), has been born. This sub-field is rapidly accumulating a voluminous literature. 

Systematic and theoretically well-founded methods have begun to emerge. By seeing and 

understanding the reason why networks make a decision, users of their predictions can become 

more confident. On the other hand, the gray-box nature of deep networks may in fact be an 
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advantage for scientific research: because they are not bound to humans’ pre-conceived notions 

about how systems function, they might present an opportunity to correct our errors or identify 

potentially useful linkages that we have not yet noticed. 

Most of these AI interrogative procedures conduct posterior analysis, i.e., they seek to obtain 

insights after the network has been trained. As a summary, interrogative methods originated 

from the computer science literature can be classified as: (i) backpropagation of decisions or 

learned features: identifying the part of inputs (or features of input) that are responsible for 

network decisions or hidden layer representations; (ii) reduced-order approximation: construct 

simpler, interpretable models to reproduce the response from the full network; (iii) 

visualization: building prototypes or plotting response functions. In the following subsections, 

a small, representative list of such studies is covered to introduce the technical ideas. After 

these methods are described (Sections 3.2.1 to 3.2.3), I review scientific DL interrogative 

studies in Section 3.2.4. 

3.2.1. Local approximation by interpretable reduced-order models 

One simple and uniform way of interpreting DL networks is to transfer their knowledge to 

interpretable models, e.g., regularized linear regression that has only a few predictors. Because 

these reduced-order models cannot fully describe the complex representations in the deep 

network, the method is only applied to a region in the input space surrounding the instance to 

be explained (thus this method is “local”). Ribeiro et al. (2016) proposed an explanation system 

that transfers knowledge from a CNN to a linear regression model. They first broke an input 

instance down to interpretable components, e.g., patches of an image. Then they perturbed 

around an instance and selected other instances that are close to the first one, in the feature 

space. With these samples and their class annotations from the deep network, they then build a 

lasso-regression model to find approximate outputs from the deep network. In the end, they 

find patches that explain concepts produced by CNN. 

This general concept is also applicable to hydrologic problems. For example, if we have trained 

a DL network to predict soil moisture given meteorological forcings, we can use this deep 

network to systematically generate outputs for synthetic cases. The outputs from the network 

are then used to train a simple model like linear regression, which also predicts soil moisture 

based on physiographic attributes like soil, slope and landcover. Through this simpler model, 

we can then understand which physiographic factors have contributed to different response 

behaviors. 



 

© 2018 American Geophysical Union. All rights reserved. 

3.2.2. Attributing decisions and features to input features 

An “explanation” of model choice can be made by attributing the network’s decisions or 

features engineered by hidden layers to a certain fraction of inputs. If these methods were 

migrated to hydrology, they might, for example, help visualize what cloud patterns or which 

cloud patch have contributed to the accurate estimation of precipitation extremes. 

I. Backpropagation of decisions 

When AI is trained to choose a word that describes the theme of an image, we can understand 

its decision by looking at the region on the image that is responsible for this choice. For 

example, if the algorithm tags as image as having “boat” as a theme, methods exist to find the 

patch of pixels that most decisively distinguish it as a boat as compared to other possible themes 

(Bach et al., 2015; Montavon et al., 2017). 

Samek et al. (2017) developed a simple scheme for CNNs to backpropagate a model decision 

from the output to the inputs, layer by layer. In this scheme, the network first runs through a 

forward pass, when the activations for each neuron are recorded. Recall that the activations are 

weighted and combined to become the input to the neurons on the next level. By recording the 

activations, we have a way to backtrack which source neurons have contributed to the 

activation of a neuron on the network, and by how much. Then, the activation at the output 

layer is backpropagated throughout the network using the recorded contributions. In the end, 

the procedure generates a heatmap that highlights the importance of each pixel on the input 

image with respect to the decision of the network (Figure 5). 

The decision backpropagation schemes are most relevant to CNNs, because CNNs maintain 

spatial locality information even at intermediate hidden layers, as explained earlier. It will be 

more difficult for recurrent neural networks, which are discussed in Section 3.2.3. 

II. Reverse-engineering representations stored in hidden cells. 

Recall that when the DL model is making an inference, inputs propagate from the input layer 

through the hidden layer to the output layer and the activations from the hidden layers are 

problem-relevant features engineered by the network (explained in Section 2.3.1). We can gain 

insights by “reverse-engineering” these features and examining which inputs are used in 

creating certain engineered features, e.g., edges, color, texture, object parts, etc. The earliest of 

such work is a deconvolutional network which runs a CNN in reverse order to disaggregate 
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extracted features to the input space (Zeiler & Fergus, 2014). The reverse engineering consists 

of applying inverse operations to the network calculations. However, recall that there are some 

non-invertible operations in a CNN: during a forward CNN run, multiple pixels are convolved 

by a filter, and then the network performs a subsampling, e.g., max-pooling (Section 2.3.2). 

Therefore, Zeiler & Fergus (2014) recorded the position of the maximum value in the lower 

layer. During their deconvolution, the cell with the recorded location gets assigned the 

maximum value and other cells get zero. Although simple, the method was able to highlight 

the pixels responsible for constructing certain features. 

A parallel idea is to reconstruct the image using only information stored in the hidden layers 

(Mahendran & Vedaldi, 2015). The proposed reconstruction (or inversion) procedure solves 

minimization problems to synthesize input images whose hidden-layer representations best 

matches the ones to be reconstructed. Then, these generated input images are called the 

reconstructed images or inversions of the hidden-layer representations. By viewing and 

comparing these reconstructed images, one can draw insights about what is common and 

invariant across different instances of the same class. This inversion process is unsurprisingly 

non-unique, as the same abstract information can be inverted into many different images. As a 

result, the reconstructed images may also be difficult to understand. The authors’ solution was 

to use a new input image as a “guide” for the inversion, which helps us more concretely 

understand what transformation has been achieved by hidden layers. The problem is formulated 

as an activation maximization problem with a new input image as a regularization term: given 

the class, a new regularization instance, and a hidden-cell representation to be inverted, what 

is an image that maximizes the output layer’s activation value for that class? Gradient ascent 

was used to solve the maximization problem. Through this approach, Mahendran and Vedaldi 

(2015) showed that some network layers extract photographically accurate information, with 

different degrees of geometric and photometric invariance, i.e., some variations in these 

attributes do not influence the network’s decision about the class of an image, much like 

humans can recognize the image of a building even if the picture is slightly distorted. 

3.2.3. Visualization tools 

It has been increasingly recognized that the weights and activations of neural networks offer 

clues as to how deep networks function and what they have learned. Therefore, many 

visualization tools have been created to help users pry into this gray box. Visualization 
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techniques could be the first choice for interpreting DL models created for hydrology, and they 

are naturally related to correlation-based analysis (Section 3.2.4). 

I. Building prototypes through activation maximization. 

“Interpretation” can be gained by synthesizing prototypes: a prototype is an input pattern that 

is the “most typical” or “most preferred” for a class. For example, for a network that can 

recognize dog and cat images, synthesizing the prototype instances amounts to answering 

“what do the most typical/standard dogs and cats look like?” By examining these prototypes, 

we can either diagnose errors in the model or study the key differences between classes. 

Borrowing ideas from neuroscientists, the prototype problem was formulated as a 

maximization problem for the activations at the output layer (Simonyan et al., 2013). The idea 

is that if an input pattern maximizes the output activation for a class, it can be considered the 

most standard pattern for that class. Later, some other works extended this framework and 

added a regularization term which is another input image, called the “expert” (Mahendran & 

Vedaldi, 2015; Nguyen et al., 2016). Because there are a vast number of input patterns that can 

generate close-to-maximum activations, the regularization term helps to constrain the 

maximization such that it is hinged to a real-world input instance, the expert. Metaphorically, 

the essential features of the class are transplanted to the expert to make the prototype look more 

realistic. Finally, Yosinski et al. (2015) presented an interactive software that integrates the 

visualization of activations, deconvolved images (Zeiler & Fergus, 2014), and prototype 

images generated by activation maximization. Using this tool, they demonstrated that feature 

representations on some CNN layers are local. For example, there are layers in the network 

that track the positions of faces, text, and flowers, etc., even though the network was not trained 

with the objective to recognize faces. It means that the network implicitly learned that these 

objects represent information useful for later classification decisions. 

The prototype approach seems quite alien to hydrology. However, if we build DL models to 

identify plant diseases that result from drought, a prototype might help humans understand the 

most typical patterns fond on an image that contains infected plants, or the most typical plant 

and soil moisture conditions that lead to diseases. 

II. Visualization tools for RNNs 

The visualization of RNNs is more complicated than CNNs, as an input may arouse a response 

from every neuron, and a hidden neuron may be highly responsive to a number of sequences, 
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forming many-to-many relationships (Ming et al., 2017). The visualization tools detailed here 

can be highly relevant to dynamical models such as ones built in FSKY17. For example, one 

could examine what kinds of forcing inputs, e.g., increase in vegetation leaf area index, could 

have triggered certain responses, e.g., the faster-than-normal decline in groundwater levels. 

Karpathy et al. (2015) were the first to visualize neuron activation functions from a trained 

LSTM language model and showed how their values respond to text inputs. Their visualization 

method revealed that there are interpretable neurons: some neurons act as a length counter (on 

the plot, they increase in color depth as a sentence gets longer, and when it is ended with a 

period); some respond to opening and closing of quotations, parentheses or punctuations (on 

the plot, their color turns on inside quotes or parentheses). The neurons are likely to alter other 

calculations and allow LSTM to “understand” abstract concepts like quotes, which modify the 

meaning of texts and retain long-range information. LSTM has a large number of neurons. 

Karpathy et al.’s work has mainly focused on how the network internally represents certain 

functionalities and concepts. This type of analysis is mainly useful from methodological, 

performance diagnosis, and network design points of view. 

Strobelt et al. (2016) developed a more generic visual analysis tool for LSTM-language models. 

The tool, based on parallel-coordinate plots, enables users to select a time window where the 

phenomenon of interest occurs. Users can then search for hidden states that have high 

activations within this period but low activation in some other specified periods. Because the 

selected hidden states can relate to multiple words, the users can then match their input range 

with other words that could also activate the same highlight hidden states, and by doing so, 

they can interpret what common patterns have been learned between them. Although this tool 

was originally designed for language models, it has been adopted to analyze business process 

intelligence and genomic data. It can be similarly useful for DL in water sciences. 

The above studies examined how some neurons respond to certain inputs. However, a neuron’s 

responses can vary based on different contexts. To give an example in  hydrology: the same 

amount of rainfall will produce different runoff amounts when modulated by different 

antecedent soil moisture. Considering these complications, Ming et al. (2017) designed a more 

advanced visualization system composed of three parts: (1) they calculated expected memory 

neuron responses to each input word, which is the average of responses to all occurrences of 

that word from a training database; (2) they conducted co-clustering between neuron responses 

and inputs. Co-clustering is a technique to consider two dimensions while doing clustering 
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(Hartigan, 1972; Pontes et al., 2015). It allows one instance to appear in multiple clusters; (3) 

they designed a sequence visualization technique to examine information flows across words. 

Through these steps, one can observe how a word plays a different role when used in different 

contexts. While technique (3) is specific to language modeling, type (1) and (2) can be helpful 

in water-related dynamical modeling because they can reveal possible causal relationships. 

3.2.4. Interpretative DL studies in sciences 

This section reviews interpretive DL work in sciences in an effort to inspire such work in water. 

Taking cues from the interpretive work in AI, scientists have started using deep networks as a 

knowledge extraction tool. However, domain scientists have been creative and have proposed 

different ways to gain knowledge from DL models. As a summary, scientists have mostly 

explored (i) direct visualization of cell activation patterns, (ii) correlation-based analysis 

between cell activations and input features; (iii) domain-specific network design for explaining 

emergent patterns, and (iv) relevance backpropagation techniques. They have also utilized 

physics of the problem to expose features learned by the network. 

In brain imaging, researchers developed a system that calculates the Pearson’s correlations 

between neuron activations and inputs signals separated into different frequencies 

(Schirrmeister, Springenberg, et al., 2017). This analysis differs from input-observation 

correlations. The correlation between inputs and neuron activations reflects what the model has 

learned as important sources of information. Sometimes input-observation correlations are not 

reliable due to various reasons such as interfering factors, noise, or discontinuous observations 

(e.g., pathologic vs. normal). Input-activation correlation alleviates these problems. The 

correlations reflect to which frequency of the input signal the trained network is most sensitive. 

Via this approach, they showed that the network has learned to apply operations akin to 

frequency separation when detecting pathology (Schirrmeister, Gemein, et al., 2017). Here the 

lesson is that we can subset the inputs in different ways and look for high correlations between 

input subsets and activations. It then informs us what parts of the inputs are the most important. 

For example, if we hypothetically are to build DL models for human water consumptive 

demand, we can examine which type of time series signal, e.g., temperature or short-term 

precipitation, is the most influential for generating changes in water demand, per the trained 

model. 

Back to high energy physics, de Oliveira et al. (2016) visualized the convolutional layer 

activations to understand what unique information from jet images was learned by the network 
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to distinguish different particles. They calculated the correlation coefficient between neuron 

activations and pixels on the image, which revealed the locations with the most discriminating 

information on the image. The most creative part of their work is that they devised a 

transformation scheme to remove all discriminating features predicted by known physical laws, 

and by doing so, they measured what CNN has learned beyond standard physics features. They 

showed that CNN has uniquely learned features beyond those predicted by physical laws, and 

located where these features on a phase space plot. They discovered that some information 

utilized by the CNN was previously unknown to physicists. Schwartzman et al. (2016) 

calculated the correlation coefficient between jet image intensity and activations of hidden 

states in a trained CNN network. These correlations highlight the pixels on the images with the 

largest discrimination power. Via this visualization, they found particular radiation patterns 

that are not exploited in present state-of-the-art physics models. The lesson here is that we can 

use physically-based mass-conservative hydrologic models to back-out signals that we already 

know and examine the residuals. 

In diagnosing with X-ray images, Kumar and Menkovski (2016) employed the deconvolution 

network approach introduced earlier (Zeiler & Fergus, 2014) (Section 3.2.2) to highlight pixels 

on images that are most critically responsible for anatomy classifications. They showed that 

the trained network relied on similar medical landmarks for the classification as human experts, 

even though the training targets do not explicitly prescribe these features. Ziletti et al. (2017) 

used the same approach to learn about crystal structures that are used by the network to classify 

crystals. They also found the network identified similar structures of interest as human experts. 

Scientists have shown how deep networks can be designed as physics emulators for the 

phenomena of interest. Trained networks of this kind have the potential to capture emergent 

behaviors of the system and provide explanations. For example, Schütt et al. (2017) developed 

a deep network with neurons that structurally mimic atoms in the molecule and their 

interactions. This carefully designed network acquired the high predictive power of molecular 

properties, with the added advantage that the trained network weights can be interpreted. They 

showed the network grasped chemical concepts, even though it is solely trained to predict total 

energy of molecules. In a more recent high-profile neuroscience study, Banino et al. (2018) 

trained an LSTM connected to a 2D linear layer to predict mammalian navigation. They found 

that the activations of that 2D linear layer automatically exhibited grid-like spatial response 

patterns that resemble those cells found in the mammalian cortex. Previously, via brain activity 

mapping, a Nobel-winning study (Nobelförsamligen, 2014) found that grid-like cells in the 
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brain constitute a positioning system. However, the theory that grid-like cells support 

computational tasks to achieve navigation goals has not be proven. In Banino et al.’s research, 

because the AI agent was specifically trained only to perform navigation tasks, it provided 

strong support for the hypothesis. 

The two examples above can be inspiring, as their use of elemental neurons resembles land 

gridcells in a gridded hydrologic model. If migrated to hydrology, it suggests the elemental 

hydrologic functioning of an area on land could potentially be derived from data, which could 

be compared to other process-based understanding. Hydrologists have long paid attention to 

emergent system behaviors such as river network structure, hydraulic geometry, soil catena, 

and vegetation patterns (Wagener et al., 2010), but the AI research work mentioned above 

differs substantially in principle: hydrologists have taken a “Darwinian approach,” where they 

observe emergent behaviors or phenomenological laws. These laws were then used as targets 

to elicit proposals of organizing principles; or, they have taken a “Newtonian approach,” where 

they put together numerical models, starting from fundamental physical laws, to study whether 

a given behavior emerges (given a principle, what outcome could have emerged?). In the AI 

research mentioned above, however, researchers started with some elementary neuron 

functions and constraints about their connectivity. They trained the networks with 

observational data in an attempt to constrain the functioning of neurons, and then they 

examined the emergent properties and functions of the trained network at intermediate layers 

(given observed outcomes, what fundamental structure could have induced it and what 

emergent properties does this structure exhibit?). Therefore, this approach can perhaps be 

called “inverse emergence.” While it is not entirely unlike the calibration of conceptual 

hydrologic models, DL conditions massive amounts of units at the elementary unit level with 

big data and few assumptions. Model calibration can only condition the parameters but 

backpropagation also condition the processes: DL networks can be trained to approximate very 

complex functions and are not constrained to those explicitly prescribed. Hydrologic model 

calibration cannot modify the mathematical formulations. The interpretive DL approach is thus 

more similar to SUMMA (Clark, Nijssen, et al., 2015), but it works on a more fundamental 

level and at a larger scale. 

4. Tackling water resources challenges with the help of DL 

In this section I present some ideas about research applications where DL can help tackle water 

science challenges presented in the Introduction. I also discuss some potential challenges and 

possible solutions. First, DL can be water scientists’ operational approach to modeling 
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interdisciplinary processes for which mathematical formulations are not well defined but 

sufficient data exist, especially those related to human dynamics. Some potential applications 

include modeling land management decisions in response to water constraint or flooding risks, 

irrigation and consumptive water demands, water saving strategies, ecosystem responses and 

interactions with landscapes, and urban water flows. For these problems, a process-based 

model could involve too many inter-dependent processes and parameters without clear ways 

of obtaining reliable values. The mathematical structure and boundary conditions of these 

problems and the relationships between model-internal variables could also be too complex 

and intertwined to fully resolve. For one example, the co-evolution of biome, regolith, climate 

and terrain may have major controls on catchment hydrologic responses (Troch et al., 2015). 

Such co-evolution may manifest itself in landscape patterns but its representation is missing in 

most large-scale land surface models. Myriad interactions exist between these different 

variables but reliable quantitative theories exposing individual relationships between them 

remain elusive. For another example, human decisions related to water consumption are 

affected by their memories of recent extreme events, yet these influences may depend on 

climate, human development levels and political contexts, etc. (Elshafei et al., 2014). The 

quantification of these relationships are poor and highly challenging. Ultimately, a better 

predictive performance may be attained by a holistic and flexible DL model that capture 

system-wide response patterns. In addition, with the ability to model temporal dependence, DL 

can readily learn and approximate the effects of collective memory (Di Baldassarre et al., 2013; 

Viglione et al., 2014) and pendulum swings (Kandasamy et al., 2014) observed in human-water 

systems, should relevant data exist. It has been shown in health studies that a DL model can 

predict, with 90% accuracy, whether a person would increase or decrease exercises given their 

situation in the previous week (Phan et al., 2016). It is reasonable to expect that DL can extract 

or model collective human behaviors related to water. Experiences from HEP, biology, 

chemistry, and remote sensing showed that DL can often engineer features on par with or better 

than human experts (Section 3.1). 

DL will prove to be the vital tool to harness the power of big data amidst the emergence of new 

data sources. With relatively little human intervention, DL can automatically turn raw data into 

readily useful information, alleviating the stress from the deluge of data. DL can help generate 

fresh new datasets. Going thought its scientific applications in physical sciences and 

geosciences, we note that mature DL methods like CNN and LSTM are readily available for 

the extraction of abstract, high-level information or metrics from images or sequential data. For 
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water sciences, from remote sensing images, DL should be able to identify hydrologic and 

ecosystem states such as flood inundation, water levels, irrigation amounts, precipitation, 

vegetation stress, and other observable events. While previously algorithms have been 

developed for some of these variables, the advantage of DL is improved accuracy (as it extracts 

high-order features such as textures), more uniform training procedures (without the need for 

expert-guided case-by-case corrections), and the possibility for transfer learning (making use 

of massive data from generic sources). Monitoring data collected from smart water 

infrastructure can be mined to model otherwise unwieldy problems for improved controls of 

safety, resilience, and quality. Optimal controls of smart water infrastructure can also be 

implemented via DL. Sensor data can also help farmers gauge crop conditions and DL can 

perhaps better predict crop productivity. There are many other sorts of big water data, some 

arising from unconventional sensors, to be harnessed. 

DL-based data-driven models can measure whether a new source of information could help 

model a phenomenon of interest. Scientists may even use DL to gauge the possibility that two 

seemingly unrelated variables are in fact related, to discover unrecognized linkages. Along this 

line of thinking, DL can help inexpensively uncover relationships between landcover, climate, 

soil, and geomorphology. For an example, DL can detect if Karst geology or bedrock outcrops 

significantly alter hydrologic responses, and what those influences could be. While data mining 

methods have long existed, based on experiences from HEP and chemistry, DL offers the 

unique expressive power to integrate big data, engineer features, and work with lower statistical 

thresholds. 

In both of the aspects mentioned above, the “off-the-shelf” DL algorithms or some existing 

variants could suffice, and the most significant challenge may be to obtain the needed 

supervising datasets. For standard AI work, the industry has relied on human labelers, e.g., 

Mechanical Turk to create large volumes of labeled data. For water scientific applications, in 

most scenarios, there already are some existing observations and methods of identification. 

Borrowing experiences from other domains, to reduce the amount of workload, research work 

should carefully examine possibilities for transfer learning, where they can start with publicly 

available networks such as GoogLeNet (Szegedy et al., 2015). Then the researchers need to 

modify the structure of the output nodes to fine-tune the network to their applications. How to 

organically integrate these available resources presents some research opportunities apart from 

the main research questions. 
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DL may offer a fresh opportunity at hydrologic modelers’ greatest “nemeses,” including 

scaling and equifinality. DL has already shown promise in facilitating climate model 

downscaling (Section 3.1.2). By learning from high-resolution simulations, DL can help 

capture the effects of resolution on outcomes. Research work is further needed to customize 

networks for hydrologic modeling, which differ greatly from climate modeling in that it 

involves multi-scale processes constrained by highly heterogeneous physical geology, 

topography, vegetation, and humans, etc. As these heterogeneities are not the standard for DL 

networks, research is needed to efficiently incorporate them into the network structures. 

Because DL inference can execute rapidly on either on CPU or specialized hardware like GPU, 

it can greatly reduce the computational burden of high-resolution simulations. Given its ability 

to create a uniform model that digests all data, DL can help predict effective model parameters, 

e.g., runoff coefficient or variable infiltration curve parameters, from raw data. We can use DL 

to uniformly parameterize large-scale models, without regionalized customizations. This kind 

of global (or continental-scale) parameterization is constrained by large-scale and diverse 

datasets and could thus be less prone to overfitting to regional patterns. Because regionalization 

is avoided, there are far more data to train the global-scope network. Therefore, it may also 

help address the equifinality challenge as well as the regionalized parameter challenge. 

At first glance, the GAN may seem like an alien and irrelevant concept to water scientists, but 

in fact, hydrologists have long used stochastic generators for variables ranging from weather 

to the hydraulic conductivity field. Given experiences from those described in Sections 3.1.2 

and 3.1.3, GANs are especially suited as generators for weather, vegetation, and soil features, 

because they not only learn relationship with covariates but also respect the spatial structure to 

high orders. It also does not require an extensive mathematical specification for the error model. 

There are significant research opportunities in terms of using GANs that respect observed 

constraints. As discussed earlier, realizations generated by GANs are typically more realistic-

looking and sharper to the human eye, even if the difference may not manifest in statistical 

metrics. In addition, hydrologists have long pursued the idea of “doing hydrology backward” 

(Acharya et al., 2017; Kirchner, 2009); that is, inferring the driving forces from the outcomes. 

There are many other water problems where we can observe consequences but not the forcings, 

e.g., surface water and groundwater contamination. Realizations from such inversions can aid 

uncertainty quantification. Hydrologic variables such as soil moisture, precipitation and 

groundwater residence times exhibits multi-modal spatial distributions (McCallum et al., 2014; 
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Ryu & Famiglietti, 2005). GANs provide a new and invigorating way to systematically explore 

this inversion. 

In addition to helping address these challenges, quantitative changes in predictive accuracy 

sometimes bring forth qualitative change in our understanding. For example, after observing 

how a complex chaos (predicated by a dynamical system equation called the Kuramoto-

Sivashinsky equation) evolves for a period of time, machine learning can accurately predict 

chaotic attractors and Lyapunov exponents out to 8 Lyapunov times (8 times further than 

previous methods), purely in a model-free, purely data-driven fashion (Pathak et al., 2018). 

Previously data-driven methods were not deemed plausible for complex chaos like this. In 

hydrology, if we came across better-than-expected predictive accuracy, it may lead us to refresh 

our understanding of limits. 

Echoing the discussion in Section 3.2.4, in terms of explaining emergent behaviors, the 

backpropagation procedure can directly and efficiently exploit the value of big data in 

conditioning parameters as well as physical processes, an advantage not shared by hydrologists’ 

traditional approaches. Therefore, it could offer a novel and constructive way of finding 

hydrologic principles. It is possible that we can borrow this approach to train networks or 

models to approximate hydrologic and human-hydrology systems, to shed light on fundamental 

functioning of its elementary units. One might also design emulator networks that resemble 

real-world subsystems, but with minimal constraints on formulations, to infer system functions 

that lead to certain emergent dynamics. This network could be built on an elementary 

representative unit level, e.g., a land gridcell, or an organizational unit level, e.g., a water 

consumption community. 

5. Limitations and potential issues of DL 

The training of GANs can be quite challenging (Radford et al., 2016) and can sometimes be 

unstable: It can be difficult to get the generator and the discriminator to converge; the 

generative model may collapse and generate very similar results; the discriminator may become 

too strong, its loss approaching zero too rapidly so that it leaves little gradient information for 

the generator to learn from, etc. (Creswell et al., 2017). The training of GANs may require 

tricks and significant experimentation. Computer science expertise should be sought for the 

application of GANs. 

Related to GANs, deep networks can sometimes be fooled when they are under “adversarial 

attack,” that is, small, unperceivable perturbations to inputs sometimes cause large changes in 
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predictions, leading to incorrect outcomes (Szegedy et al., 2013). Adversarial attacks pose a 

significant security threat to AI applications, especially in computer vision problems. A rapidly 

rising number of studies focused on how to systematically generate these malicious 

perturbations, and this sub-area is at the front of AI research (Akhtar & Mian, 2018). While 

RNNs are not immune to adversarial attacks (Papernot et al., 2016), most of these studies are 

for classification tasks. Little research has examined the extent of the issue for regression tasks, 

and it is almost blank for scientific applications. It would be reasonable to surmise that 

adversarial attacks are a smaller issue for continuous predictions. Some have argued that the 

existence of adversarial examples is due to model overfitting and nonlinearity, while others 

argued, surprisingly, that they are due to the linear nature of deep network predictions 

(Goodfellow et al., 2015). Nevertheless, once we are able to seek out ways of generating these 

adversarial examples, they can be included in the training instances to train DL models more 

robustly, so they are resistant to such challenges (Ororbia et al., 2016). 

DL models require large sample sizes. While some studies introduced in Section 3.1.3 used 

data from single sites, they are only exploiting the usefulness of network architecture, and are 

underutilizing the model’s ability to build complex models for large datasets. It is clear from 

previous experiences that when data are limited, simpler models with stronger assumptions 

about the structure of the problem are better constrained (Kratzert et al., 2018). DL’s 

advantages increase as data size scales up. 

Despite the comparisons between DL and non-deep machine learning, this author would 

strongly advise against applying DL non-discriminatively. The earlier-generation methods can 

be highly valuable for their respective problems and situations, especially when there are 

limited data or relatively homogeneous data. As shown in studies, for small dataset, DL could 

be at a disadvantage compared to models with stronger structural assumptions. Methods like 

random forest and Gaussian processes can be powerful and robust for many inference problems 

and have additional benefits such as uncertainty estimates. Non-deep machine learning 

methods are also appealing for well-defined problems where there are significant 

accumulations of expertise or features. In addition, some of these methods, e.g., CART and 

SVM, are easy to interpret and could be used to approximate full-complexity models in a 

certain region of the input space (Section 3.2.1). 

6. Concluding remarks 
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Deep learning represents a potentially disruptive force for many scientific disciplines. Its ability 

to engineer features by itself and capture high-dimensional, multi-modal data distributions 

stand out as its defining strengths, in terms of not only practical benefits (efficiency and not 

requiring significant expertise) but also uncovering features beyond current knowledge. The 

clearing of key roadblocks such as multiple-scale representations, overfitting, and efficient 

computing platforms enabled exponential growth in DL-powered applications. For water 

sciences, DL could help tackle several major challenges, old or new. Vast opportunities exist 

for DL to propel advances in water sciences. 

Indeed, from the literature we can see that DL serves roughly two functionalities: (A) to build 

models with more accurate predictions, far-greater processing capability, and reduced demand 

for human involvement and expertise; and (B) as an exploratory data mining tool to support 

discoveries that expand present knowledge and capabilities. The astronomy, remote-sensing, 

and climate studies primarily utilized aspect (A) of DL. In this regard, the supervised learning 

aims at reducing human effort and improving data discoverability. One can notice emerging 

aspects of (B) in applications from HEP, computational biology and chemistry because there 

the “supervision” arises from observations of nature. For example, if DL models make 

predictions about new binding sequences of proteins, new compounds, or particles that humans 

do not know yet, it may prompt the reexamination of theories and new experiments. 

Synthesizing experiences from many disciplines, if the objective is retrieving information from 

images or sequential data, the default architecture of CNN and LSTM should be good starting 

points for research. When data organization is unlike 2D or 3D images, SDAEs are useful 

elements to have in the network design. When the aim is to uncover “inverse emergence,” 

network architectures need to be designed from the ground up. Multi-task learning, in general, 

can provide some incremental gains. If transfer learning is applicable, it can generally lead to 

substantial boosts in performance because it implicitly makes use of massive datasets. 

Therefore, new water research should investigate these approaches if applicable. 

While DL interpretive research appears to be a blank thus far for water resources applications, 

one easily witnesses the fast growth in the young and energetic field of AI neuroscience. As 

these studies arise from AI research, they generally set their focus on understanding how deep 

networks function. On one hand, computer scientists are paying more and more attention to the 

explaining of network decisions and are developing “standard” methodologies. On the other 

hand, domain scientists have been creative in devising original methods that suit their particular 

situations, such as specialized architecture and the use of governing equations to remove known 
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signals. There are extensive research opportunities in terms of incorporating either 

methodology in understanding network decisions. Many scientific investigations visualize the 

correlations between hidden activations and inputs. This approach is the most achievable and 

should be valid as a first-order screening for locating potentially important features. However, 

as the units in a hidden layer store the representation in a distributed way, only the combined 

effects of activation cause the correct outputs. Interpreting the effects of particular cell 

activations in isolation can provide incomplete and inconclusive analysis. Therefore, the 

holistic interpretive tools, e.g., reduced order models, may better reflect the inner workings of 

the DL model than correlation-based analysis. However, this argument should not prevent us 

from using the latter as early exploratory and visualization tools. Relevance backpropagation 

methods can point to inputs that explain the cause of events, and would typically be more 

applicable for problems with spatial dimensions and those similar to image recognition, e.g., 

precipitation retrieval. It will perhaps be difficult to implement for recurrent networks. 

Developing emulator network structures will help solve fundamental mechanisms leading to 

emergence, but it will require substantial expertise in computer science to construct viable and 

efficient models. Therefore, strong collaboration with computer scientists will be needed. 

Appendix A. Some early machine learning methods and their hydrologic applications 

This section briefly reviews hydrologic applications of several machine learning algorithms. 

The concise outline here cannot possibly do justice, and readers are referred to multiple review 

papers for more details, (e.g., Dawson & Wilby, 2001; Fallah-Mehdipour et al., 2013; Jha & 

Sahoo, 2015; Raghavendra & Deka, 2014; Tsai et al., 2017; W.-C. Wang et al., 2009; Yaseen 

et al., 2015). 

Earlier-generation machine learning methods such as Support Vector Machine (SVM) (Cortes 

& Vapnik, 1995; Vapnik, 1992), Classification and Regression Tree (CART) (Breiman et al., 

1984), and ANNs have been applied extensively in hydrologic and land surface predictions to 

moderate success. Among these, Classification and Regression Tree is an effective data-driven 

strategy to split data points into a hierarchy of bins by thresholds in the predictors to reduce 

variance within bins (Loh, 2011). CART is not always highly accurate, but it has the advantage 

of presenting interpretable hypotheses in the form of the hierarchy of decision criteria: by 

examining the split criteria, one can form hypotheses about major driving forces that result in 

different outcomes. In hydrology, Sawicz et al. (2014) used CART to present a coherent 

classification for the catchments based on their hydrologic signatures; White et al. (2005) used 

regression tree to identify the controls of inter-annual vegetation variability, and found that 
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vegetation responses to climate oscillations depend on a variety of topographic attributes such 

as elevation, slope, aspect, and proximity to groundwater convergence zones; Fang and Shen 

(2017) used CART to form hypotheses about possible physical causes that impact the 

correlations between streamflow and satellite-measured water storage. The CART criterion led 

them to hypothesize that groundwater controls the full range of streamflows in the southeastern 

CONUS because of the thick soils, and thin soils along the Appalachian Plateau impose limits 

on water storage. However, one should not attempt to interpret lower-level splits because they 

often have few data points and are thus unstable. For this reason, CART is also said to be 

statistically inefficient (Frosst & Hinton, 2017). To improve predictive power, one can combine 

the prediction from an ensemble of classification trees, which is called random forest (Ho, 

1995; Zhou & Jiang, 2004). Chaney et al. (2016) used random forest and environmental co-

variates to estimate soil properties at 30-m resolution for CONUS. This is a well-suited 

application of the random forest. However, random forests are usually very hard to interpret. 

SVM attempts to create optimal separating hyperplanes in the input space between classes to 

maximize the margin between classes. A version of SVM, called support vector regression 

(Drucker et al., 1996), builds regression models using only a subset of the training data and 

ignores these too far from the model predictions so that the model becomes more robust. SVM 

is built from elegant statistical theory and hydrologists have compared SVM with simple 

ANNs, multiple linear regressions, and other methods and found it to be robust (Raghavendra 

& Deka, 2014). SVM performed comparatively well in predictions of reservoir inflow (Lin et 

al., 2006), soil moisture retrieval using vegetation indices and precipitation (Ahmad et al., 

2010), streamflow (Asefa et al., 2006), evapotranspiration (Tabari et al., 2012), lake level 

(Khan & Coulibaly, 2006), groundwater level (Yoon et al., 2011), flood stage (Yu et al., 2006), 

and sediment yield (Çimen, 2008), among others. SVM was also shown to be useful in 

statistical downscaling of atmospheric forcings (H. Chen et al., 2010; Tripathi et al., 2006). 

Researchers have coupled SVM with spectral analysis to predict runoff, where spectral analysis 

decomposes frequency components while SVM helps in generalization performance 

(Sivapragasam et al., 2001). On the topic of model correction, Xu and Valocchi (2015) 

proposed an uncertainty quantification system, where they built a data-driven model (either 

random forest or SVM) to capture the bias of a calibrated groundwater model. They then 

applied the bias correction to separate out the epistemic (bias) and aleatory (variance) part of 

the uncertainty. Most of these studies built models using data from one or a few sites. 
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Genetic Programming (GP) (Koza, 1992) is a special data-driven technique that aims at 

prescribing explicit mathematical formulas. Just as SVM or ANN, GP also models the mapping 

relationship between inputs and outputs, but it centers around building “programs,” which are 

symbolic formulas that are executable and are represented internally as a graph. Starting from 

a small number of parent programs, GP evolves many offspring programs via genetic or 

evolutionary operations such as cross-overs, selections, and mutations, with each offspring 

program’s performance evaluated with respect to the training objective. To avoid generating 

formulas with large complexity (an issue called bloating), bloat control methods that penalize 

complexity could be employed (Silva & Costa, 2004). Savic et al. (1999) used GP to create a 

rainfall-runoff model whose formula only relied on rainfall from previous days. Researchers 

used GP to create models for monthly groundwater levels from several wells, where GP showed 

good performance but prescribed complex functions of rainfall forcing and groundwater level 

in past time steps (Kasiviswanathan et al., 2016). When GP was used to predict saturated 

hydraulic conductivity (Ks), it generated a simple, regression-like equation (Fallah-Mehdipour 

et al., 2013). Another similar study found that Ks is larger when there is a higher sand 

percentage, but bulk density has a negative impact (Parasuraman et al., 2007). Similar 

regression-like equations were given for modeling evapotranspiration (Izadifar & Elshorbagy, 

2010). However, when GP was used to predict the soil water retention formula, it generated a 

very complex formula, perhaps as a result of insufficient bloat control (Garg et al., 2014). GP 

was also used in flood routing (Sivapragasam et al., 2008), and streamflow forecasting (Guven, 

2009; Makkeasorn et al., 2008). GP can be computationally intensive, and recently it appears 

it has not been a focus of machine learning research, especially for complex problems in the 

big data domain. 

A large body of hydrologic literature is devoted to ANNs, attesting to the long history 

hydrology has had with neural networks. Its applications extend to rainfall-runoff modeling, 

streamflow, groundwater management, water quality, stream salinity, rainfall estimation, ocean 

wave heights, and real-time forecasting (Bowden et al., 2005; Dawson & Wilby, 2001; Deo & 

Naidu, 1998; Govindaraju & Rao, 2000; Gupta et al., 2000; Maier et al., 2010; Maier & Dandy, 

1996; Sorooshian et al., 2000). Also see the collection of articles in (Govindaraju & Rao, 2000). 

ANN is suitable for preparing inputs for models. Schaap et al. (2001) trained ANNs to store 

soil pedo-transfer functions, which are widely used in hydrologic models, e.g., (Clark, Fan, et 

al., 2015; Fatichi et al., 2016; Ji & Shen, 2018; Maxwell et al., 2014; Shen et al., 2016). Hsu et 

al. (2002), proposed a self-organizing linear output map for hydrologic modeling and analysis. 



 

© 2018 American Geophysical Union. All rights reserved. 

Abramowitz et al. (2006) used ANN to predict the error of a land surface model and reduced 

annual error by 95%. An ANN trained to work at one biome completely corrects the error for 

another in a large temperature range (Abramowitz et al., 2007). Multiple studies have used 

ANNs to retrieve variables from satellite images (Aires et al., 2001; Kolassa et al., 2017; 

Rodriguez-Fernandez et al., 2014; Tapiador et al., 2004). Hydrologists have often not paid 

enough attention to network geometry and transfer (or activation) functions, but these 

configurations have important impacts on training speed and generalization impact (Maier & 

Dandy, 1998). Nevertheless, there seem to be few studies that have attempted to interpret the 

knowledge extracted in ANNs. 

Gaussian Process Regression (GPR), related to Kriging in Geostatistics, relies on modeling a 

covariance function, or a kernel, which describes a notion of smoothness between near data 

points (Rasmussen & Williams, 2006). The hyper-parameters of the kernel function can be 

learned during the fitting (or training) procedure. A nice feature of GPR is that it naturally 

yields estimates of posterior uncertainty, which may manifest as larger prediction bands for 

instances or time periods that are far from known data points. In hydrology, researchers have 

employed GPR to make predictions for streamflow (A. Y. Sun et al., 2014; J. Yang et al., 2018), 

precipitation (Kleiber et al., 2012), and soil moisture (Andugula et al., 2017), etc. Challenges 

facing GPR include computational efficiency, expressive power, the use of non-Gaussian 

likehoods, and the scaling to large datasets. There are now developments in deep Gaussian 

Process, which is a deep belief network where input variables are mapped to the output through 

a cascade of hidden layers, where transformations between layers are modeled with Gaussian 

Processes (Damianou & Lawrence, 2013). In a unique series of studies, Gong et al. (2013) 

proposed a quantitative method, grounded in information theory, to separate out uncertainties 

due to inputs and model structural error. The main idea is to estimate the best achievable 

performance (BAP) of any model given forcing and benchmark observations, using a model-

independent statistical method, in their case the Sparse Gaussian Processes (Snelson & 

Ghahramani, 2006). Nearing et al. (2016) further separated out the uncertainty due to 

parameters by including models that are trained locally. The information resolvable by the BAP 

is measured by the mutual information (MI, with the same unit as entropy) (Cover & Thomas, 

1991) between forcing data and observed diagnostic variables. 
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Table 1. Recommended reading priorities for different audiences 
For water researchers who… Reading Priorities (Sections) 
have an initial interest in DL but do not have much 
background in machine learning  

2 (with focus on 2.3.1- 2.3.3) 
& 4, A  

want to simply use DL for extracting information from 
remote sensing images or time series data 

2.2, 2.3.2, 2.3.3 & 4  

want to use DL for capturing data distributions and 
generating scenarios 

2.2, 2.3, 2.5 & 4  

would like to know what DL has helped achieve in other 
scientific disciplines  

3.1 & 6 

are interested in using DL as a knowledge extraction tool 
or interpreting its results 

3.2 & 6 
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Figure 1. Illustration of the functioning of a standard neuron in a feedforward network. The j-th 

neuron receives inputs from neurons (1, 2, … , i) on the upstream layer multiplied by their 

respective weights, applies a nonlinear transformation (f). The result of the computation is called 

the activation of this neuron, and is sent to downstream cells. Note this the standard neuron and 

there could be other designs for more specific purposes. 𝒘𝒊𝒋 and 𝒃𝒊𝒋 are the weights and the 

bias parameters, respectively, and they are adjusted during training. 
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Figure 2. The architecture of components of several neural network structures. Layers are 

visualized as 1-dimensional arrays, but they can be 2D or 3D. (a) A “vanilla” multilayer 

perceptron network (MLP). Here, each circle represents a neuron (explained in Figure 1). The 

layer in the middle is not connected to input or output and is thus called the “hidden” layer. The 

layers are “fully connected”, meaning that a neuron in a layer is connected to all cells in the 

adjacent layers. (b) Autoencoder: note the hidden layer has fewer neurons than input and output 

layers, which have the same number of neurons. This autoencoder is trained to reproduce its 

inputs through the bottleneck layer in the middle, which is forced to apply information 

compression; (c) Stacked denoising autoencoder (SDAE), formed by stacking autoencoders: each 

hidden layer is first trained to reproduce its inputs, then activations from this layer is sent to the 

next hidden layer, which has fewer neurons, as the “input data” to be reproduced. The layers are 

fully connected. (d) Deep Belief Net (DBN) stacks layers of Restricted Boltzmann Machines 

(RBMs) with a specific order in the number of their elements. Each RBM is trained to 

stochastically reproduce its input distributions after going through a forward and reconstruction 

step. (e) Convolutional Neural Network (CNN): although it structural resembles SDAE, each 

coarsening stage (reduction in the number of neurons) forward contains multiple convolutional 

layers and pooling layers (here only one set is illustrated). The convolutional layer convolves a 

layer-shared filter with the inputs, while the pooling layer employs a reduction operator, e.g., max, 

to coarsen the layers. There can be many such coarsening stages. Thus a neuron in the upper-
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level layers has a “field of view” indicated by the dashed black lines. (f) Comparing Long Short-

Term Memory (LSTM) and simple recurrent neural networks (reprinted from with permission). 

⨂ means multiplication by weights. In this plot alone, activation functions are explicitly shown 

as transformations. The design of gates allows LSTM to learn when to forget past states, and 

when to output. 
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Figure 3. An illustration of the dropout regularization. During training, some of the connections 

to neurons in the dropout operand layer are stochastically set to 0 (indicated by orange color and 

dashed arrows). A, B, C are three realizations of dropout masks and can be regarded as sub-

networks. The dropout mask changes of the dropout operator, e.g., for training with each batch 

of instances. All weights are employed during testing, which is equivalent to the ensemble 

predictions of the subnetworks. 
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Figure 4. Upper panels: Comparisons between SMAP observations and soil moisture predicted 

by LSTM, the land surface model Noah, and Auto-regressive model at five locations. We chose 

sites around 10th, 25th, 50th, 75th, and 90th percentiles as ranked by the correlation coefficient 

between LSTM and SMAP; Lower panels (a-c) proof-of-concept long-term hindcasting 

experiments using noise-contaminated Noah solution as the target. The results indicate long-term 

hindcasting of soil moisture using LSTM is very promising. Figures were recreated from FSKY17 

with permission. 
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Figure 5. Using (windowed) layer-wise relevant propagation to identify pixels that contribute to 

the identification of an image as the class “horse.” Reprinted from (Montavon et al., 2017) under 

Creative Commons Attribution License. 

 




