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The Value of SMAP for Long-Term Soil Moisture
Estimation With the Help of Deep Learning

Kuai Fang , Ming Pan , and Chaopeng Shen

Abstract— The Soil Moisture Active Passive (SMAP) mis-
sion measures important soil moisture data globally. SMAP’s
products might not always perform better than land surface
models (LSM) when evaluated against in situ measurements.
However, we hypothesize that SMAP presents added value for
long-term soil moisture estimation in a data fusion setting as
evaluated by in situ data. Here, with the help of a time series
deep learning (DL) method, we created a seamlessly extended
SMAP data set to test this hypothesis and, importantly, gauge
whether such benefits extend to years beyond SMAP’s limited
lifespan. We first show that the DL model, called long short-term
memory (LSTM), can extrapolate SMAP for several years and
the results are similar to the training period. We obtained
prolongation results with low-performance degradation where
SMAP itself matches well with in situ data. Interannual trends of
root-zone soil moisture are surprisingly well captured by LSTM.
In some cases, LSTM’s performance is limited by SMAP, whose
main issue appears to be its shallow sensing depth. Despite this
limitation, a simple average between LSTM and an LSM Noah
frequently outperforms Noah alone. Moreover, Noah combined
with LSTM is more skillful than when it is combined with
another LSM. Over sparsely instrumented sites, the Noah–LSTM
combination shows a stronger edge. Our results verified the value
of LSTM-extended SMAP data. Moreover, DL is completely data
driven and does not require structural assumptions. As such,
it has its unique potential for long-term projections and may
be applied synergistically with other model-data integration
techniques.

Index Terms— Deep learning (DL), hindcasting, Soil Moisture
Active Passive (SMAP), soil moisture.

I. INTRODUCTION

SOIL moisture (θ ) critically controls various environmen-
tal and ecosystem processes, such as photosynthesis,

evapotranspiration, runoff, soil respiration [1], flood [2], and
land-atmosphere interactions [3]. For agricultural planning and
other purposes, soil moisture is routinely measured by in situ
monitoring networks. However, these networks have limited
coverage in space and are typically sparsely instrumented.
Soil moisture has a high spatial variability so that the scale of
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these measurements poorly matches the needs of large-scale
modeling and monitoring.
To offer large-scale monitoring of soil moisture, multiple

soil moisture sensing satellite missions have been launched.
Notable missions include the Advanced Microwave Scan-
ning Radiometer for EOS (AMSR-E) [4], the Advanced
Scatterometer [5], the Soil Moisture and Ocean Salin-
ity (SMOS) [6], and the Soil Moisture Active Passive
(SMAP) [7], among others. The data from these missions
have been utilized for a variety of applications in hydrology,
ecology, meteorology, and agriculture [8]. Among these mis-
sions, SMOS was reported to suffer significantly from unex-
pected radio frequency interference (RFI) [9], [10]. Launched
in the year 2015, SMAP mitigates the RFI effects by uti-
lizing the combination of spaceflight instrument hardware
and ground-based science processing algorithms [11]. Initial
evaluations suggest that SMAP’s passive product has reached
its design accuracy (∼0.04) at most validation sites [12]–[14].
In some parts of the world, the quality of SMAP product might
not exceed the modeled soil moisture from state-of-the-art
LSMs forced with high-quality meteorological data [15], [16].
However, SMAP provides an independent source of observa-
tion derived from a different physical mechanism (radiative
transfer). Independent information often helps reducing errors
and uncertainties in a data fusion setting [17].
While SMAP has a global coverage, its uneven revisit

schedule and short timespan significantly limit its utility.
Longer records are needed to study drought trends or relate
soil moisture to past environmental events, e.g., wildfires and
landslides. Satellite data can also improve the current soil
moisture simulations via data assimilation (DA) [18], [19], but
DA has little impact on long-term soil moisture estimation.
Previously, Liu et al. [20] merged multiple satellite products
by matching earlier satellite data’s cumulative distribution
function (CDF) to AMSR-E’s. They also replaced older prod-
uct’s seasonality based on AMSR-E’s when overlaps exist.
Later work further weighed different satellite data based on
their random error variance [8], [21]. While this series of
work provided valuable satellite soil moisture estimates back
to 1979, the data quality is still affected by the retrieval
skills of earlier satellites. The retrieval skills have been much
improved in the more recent, dedicated soil moisture missions
(SMOS and SMAP) [16]. As some earlier satellites have
limited or no overlap with SMOS or SMAP, it is difficult
to apply data fusion techniques such as CDF-matching with
SMOS or SMAP.
In our earlier work, we developed a deep learning

(DL)-based dynamical modeling system, which predicts the
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SMAP surface soil moisture product with high fidelity [22].
DL refers to large-sized neural networks with the abil-
ity to automatically extract features using its intermediate
layers [23]. DL is rapidly transforming various industries and
scientific disciplines (see a review in [24]). The inputs to our
model include atmospheric forcing data, static physiographic
attributes, and (optionally) simulated fluxes and states from
LSMs. The model was built on a form of deep recurrent neural
network (RNN) called the LSTM architecture, which is typ-
ically employed for natural language processing. We showed
that, when trained with a year of data, this system was capable
of predicting SMAP level 3 passive data product in another
year. LSTM can extend SMAP to spatiotemporally seamless
coverage of continental US (CONUS) with high fidelity to
SMAP. Despite its large parameter space, the system had
higher accuracy and better robustness than simpler statistical
methods. We called our method a prolongation of SMAP
via DL. However, it must be noted that DL only captures
the systematic soil moisture response pattern as observed
by SMAP. It cannot extend the stochastic signal in satellite
observations that could be used to correct forcing errors.
Our main hypothesis is that LSTM-prolonged SMAP data

presents added value beyond LSMs and combining it with
LSMs will help improve the long-term soil moisture predic-
tions, as verified by in situ data. In addition, we seek to answer
several important technical questions. First, we study whether
the DL model can perform well in a multiyear scale projection
setting. We check if it can avoid performance degradation over
time like DA would. When the training data only contain two
or three years of records, it is unclear whether multiyear trends
can be learned and predicted in case they exist. Second, all the
previous evaluation metrics of LSTM were calculated against
SMAP data. The DL system has yet to show that it is reason-
ably close to the in situ data. If SMAP data have significant
noise, the extent to which such errors would misinform the
training process and amplify during long-term simulation has
not been explored. Finally, SMAP also offers a root-zone soil
moisture (RZSM, 0–100 cm depth) product via assimilating
surface brightness temperature into model simulations [25].
Past evaluations show that the RZSM product has achieved
the design accuracy of 0.04 cm3/cm3 [14]. We ask whether
LSTM can also reproduce RZSM, which has a much longer
system memory.
This paper uses LSTM to hindcast SMAP surface and

root-zone the soil moisture products. In contrast to [22], here
we:
1) prolonged the SMAP data to several years beyond the

available data to test the model’s ability to maintain good
performance in long-term estimation;

2) additionally evaluated the RZSM hindcast product;
3) combined LSTM with Noah to test our main hypothesis

above;
4) evaluated different products against in situ data instead

of against SMAP;
5) removed Noah simulation from the list of inputs.

The in situ soil moisture data include both SMAP core
validation sites [26], where dense measurements provide a
means of upscaling, and a network of sparsely instrumented

Fig. 1. Information flow diagram for the models compared in this paper. Both
Noah and LSTM use forcing data from North American Land DA System
(NLDAS). LSTM uses SMAP as the main training target along with land
surface characteristic masks from the SMAP mission among the inputs. The
static input attributes to LSTM are described in Section II-A.

sites. We examined whether some important characteristics of
data, e.g., interannual trends, are reproduced in the hindcasts.
Here, we chose to test the hindcast product because it can
be evaluated using in situ data for its long-term behaviors.
Given the future climate projections, a similar system can be
similarly employed to make future soil moisture projections.

II. METHODS AND DATA SETS

The surface and root-zone LSTM models were both trained
from April 2015 (SMAP launch) to April 2018. Inputs to the
DL models include atmospheric forcings and constant geo-
physical attributes (Fig. 1). We then ran the trained models in
forward mode using atmospheric forcings from 2010 to 2018.
The hindcast products are validated over SMAP core validation
sites (from 2012) and sparse networks (using available data
since 2010) over CONUS.

A. Data Sets: Targets and Predictors

We used the SMAP level 3 radiometer product (L3SMP,
version 4) as the target of surface soil moisture. This product
is based on L-band passive observations of surface brightness
temperature and was designed to represents top 5 cm soil mois-
ture on a 36 km Equal-Area Scalable Earth Grid (EASE-Grid).
As the RZSM cannot be directly sensed by satellite, SMAP
level 4 soil moisture product (L4SM, version 3) integrates
SMAP L-band brightness temperature observations into the
catchment land model in Goddard Earth Observing System
(GEOS-5) [27], [28] through DA. The model outputs column
soil moisture of roughly 0–100 cm depth on a 9 km EASE-
Grid, which is used as the target of our root-zone LSTM
model.
LSTM receives three kinds of inputs, which have been

selected from the list of inputs used in [22] via sensitivity
analysis. First, atmospheric forcings, including precipitation,
temperature, long-wave and short-wave radiation, specific
humidity, and wind speed, were obtained from NLDAS phase
II (NLDAS-2) [29]. Second, for static physiographic attributes,
we obtained soil properties such as sand, silt, and clay per-
centages, bulk density, and soil water capacity from World
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Fig. 2. Comparing an LSTM unit with simple RNN. The transformations
from inputs to i , f , and o are sigmoidal functions. From inputs to g and
from s to h, the transformation is tanh. ⊗ means multiplication by weights.
The figure is reproduced from [22] with reprint permission.

Soil Information (ISRIC-WISE) database [30]. The third type
of inputs are SMAP masks that indicate mountainous terrain,
ice, surface roughness, urban areas, water bodies, land cover
classes, and vegetation density. Incorporating these masks as
inputs is hypothesized to enable LSTM to implicitly assign less
importance to high-uncertainty regions. LSTM is thought to
automatically analyze, based on the data, which mask is useful
and discards the unimportant masks. In [22], we included
time-averaged SMAP data quality mask as an input. However,
since our preliminary sensitivity test suggests this field was not
influential, we did not include it in the model reported here. Its
information has already been encompassed in the other inputs.
NLDAS-2 provides several LSM which simulate land sur-

face states and fluxes. We selected Noah for comparison and
model fusion purposes [31]. Since here one of our objectives
is to measure the value of the independent information from
LSTM, we did not include the Noah-simulated variables as
LSTM inputs.

B. Time-Series Deep Learning Model

LSTM is an RNN that underlies the sequence learning
applications, such as handwriting recognition [32], and speech
recognition in digital assistant, such as Google Voice [33].
As a type of RNN, LSTM makes use of sequential information
by updating states based on both inputs of the current time
step (xt ) and network states of previous time steps. However,
the distinguishing architectural difference from a “vanilla”
RNN is that LSTM has “memory states” units and “gates”
that are trained to decide when to forget some information,
when and what to output, and what inputs are used (Fig. 2).
These gates are also responsible for learning to engineer
features that are important for soil moisture memory. Follow-
ing the notation in [34], we can write an LSTM as LSTM:
x (t)
0 , h(t−1), s(t−1) → h(t), s(t). The sequential update formulas

are given as follows.

1) Input Transf

x = ReLU
(
Wxxx

(t)
0 + bxx

)
. (1)

2) Input Node

g(t) = tanh(WgxD(x (t))+WghD(h(t−1))+bg). (2)

3) Input Gate

i (t) = σ(WixD(x (t)) + WihD(h(t−1)) + bi ). (3)

4) Forget Gate

f (t) = σ(W f xD(x (t)) + W f hD(h(t−1)) + b f ). (4)

5) Output Gate

o(t) = σ(WoxD(x (t)) + WohD(h(t−1)) + bo). (5)

6) Cell State

s(t) = D(g(t)) � i (t) + s(t−1) � f (t). (6)

7) Hidden Gate

h(t) = tanh(s(t)) � o(t). (7)

8) Output Layer

y(t) = Whyh
(t) + by (8)

where x (t)
0 is the vector of raw inputs for the time step t ,

ReLU is the rectified linear units, σ is the activation function,
D is the dropout operator that is explained in the following,
� refers to the point-wise multiplication, W ’s are connection
weights in the network, b’s are constant parameters, y is the
output and will be compared to soil moisture observations,
h is the hidden cells, and s is memory cells, which is
designed to hold long-term memory. To reduce overfitting,
we employed dropout regularization [35], which stochastically
sets some of the network connections to zero. Instead of
introducing uncontrollable noise into the training process, this
procedure induces robustness, as connections are randomly
broken, weights cannot coadapt with others during training to
fit the results [36]. Coadaptation, in which multiple weights
are changed together to fit the target, is a primary culprit of
overfitting. D applies dropout with constant dropout masks to
recurrent connections [37], i.e., the connections that are set
to 0 stay the same throughout each training instance. As com-
pared to the default LSTM algorithm, we added the ReLU
transformation and a dropout on part of the memory cells [the
D(g(t)] term), following [38]. However, different from [38],
we applied a constant mask for this dropout operation as well.
While not a focus of this paper, we found that dropout of the
memory cell reduced test errors.
The network outputs one scalar value (y(t)) after each time

step and computes a loss function by comparing it to the
SMAP product y∗(t), which is stated in the following:

L = 1

ρ

ρ∑

t=1

1o(t)[y(t) − y∗(t)]2 (9)

where 1o(t) is an indicator function (1 when time step t has
SMAP observation and 0 otherwise) and ρ is the length of each
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training instance. We added the indicator function because
SMAP data have uneven revisit schedules. This network
was implemented by adapting from the FastLSTM package
based on Torch7 in the Lua programming language [39]. The
network parameter updates were controlled by ADADELTA,
which is an adaptive learning rate scheme [40].
For the surface moisture product, we trained a network

with the SMAP data over CONUS at the 36 km resolution
on SMAP EASE-Grid, forming a training set of 6321 pixels.
The time series for each SMAP pixel was split into multiple
training instances for the network. For the 9-km resolution
root-zone product, we took one pixel out of every 4 × 4
pixels to obtain a training set of 7365 pixels. Such spatial
downsampling was performed for the sake of computational
efficiency. The training was conducted on NVidia 1080 Ti
Graphical Processing Units.

C. Validation: SMAP Core Validation Sites, Sparse Network,
and Evaluation Metrics
Due to high spatial heterogeneity inherent with soil

moisture [41], the point-scale measurements cannot be directly
compared to the SMAP data. SMAP partnered with in situ
networks that have sufficiently dense soil moisture sensors
to be reliably aggregated to a larger spatial scale. These
sites are called core validation sites [26]. Nine core sites are
distributed over CONUS and each of them contains multiple
pixels matching the SMAP footprint. Consistent with past
calibration and validation procedures, we created Thiessen
polygons for measurement sensors on validation pixels, and
in situ observations are the average of all the sensors using
weights determined by the fraction of area covered by their
Thiessen polygons. As sensors may stop working temporarily,
especially under cold weather, we only retain the in situ
records when at least half of the pixel is covered by the
Thiessen polygons of the operational sensors. We also removed
the records when the measured in situ soil temperatures were
lower than 4 ◦C, as sensors’ measurements are not reliable
under cold weather.
We also employed the U.S. Climate Reference Network

(CRN) [42], which are sparser, to validate the models. CRN
sites were first deployed in 2000 and completed full deploy-
ment of 114 sites in 2011. We removed 10 coastal sites
because they are not covered by SMAP footprint or the
SMAP signals are missing for more than 75% days on the
corresponding pixel. Out of 104 CRN sites employed in
validation, 82 installed soil moisture probes at standard levels
suggested by World Meteorological Organization (5, 10, 20,
50, and 100 cm), whereas 22 of them were instrumented only
at the top two layers. Both types of sites were used for the
evaluation of surface soil moisture, while only those with
deeper sensors were used for evaluating RZSM. At each CRN
site and every point of depth, three probes were planted 1.5 m
away from the base at 0◦, 120◦, and 240◦ compass direction,
and the soil moisture measurement employed was the average
of those three sensors.
We evaluated three products: LSTM, Noah, and a simple

average of LSTM and Noah, denoted by “Comb.” Ideally,
to fuse the two data sets, we can obtain both of their variances.

We can weigh their values using the inverse of these variances
during averaging, i.e., using an Bayesian model averaging
scheme [43] or instrumental variable regression [44]. How-
ever, at this stage, the uncertainty estimation methods for the
DL model are not developed enough for such an application.
The simple average here only represents an initial evaluation
of the value of LSTM-extended SMAP data. Better schemes
can certainly be evaluated in the future.
For each site, we calculated several metrics for two pairs

of data: LSTM-predicted versus in situ data and SMAP
versus in situ data. The metrics included the root-mean-
square error (RMSE), bias (the difference between the means),
the Pearson’s correlation coefficient, R, and the unbiased
RMSE (ubRMSE), which is RMSE calculated for two time
series after means have been subtracted. The latter two metrics
were unaffected by model bias. We calculated the metrics for
the training period (April 1, 2015-April 1, 2017) and test
period (site’s operation start time-April 4, 2015) separately.
When added, the AL superscript denotes the after-launch
(AL) training period, while the PL superscript denotes the
prelaunch (PL) test period. Also, �ubRMSE denotes the
difference in ubRMSE between training and hindcast periods,
i.e., ubRMSEPL(LSTM, in situ)-ubRMSEAL(LSTM, in situ).
It must be noted here again that the RZSM product results from
assimilating SMAP brightness temperature into the Catchment
land model with GEOS-5 FP forcing data [45]. Therefore, it is
not as independent from model dynamics as the L3 product.
Simultaneously, the innovations still take into account the
actual SMAP observations.
We examined how interannual trends observed in in situ

networks were captured by LSTM. We focused our trends
analysis on the root-zone product, as it has longer memory
than the surface soil moisture. The trend comparison was
calculated for the maximum period of available data since
2005, which varies from site to site. We removed sites whose
operational period is shorter than three years, or more than
10% of records are missing. To include more data for the
trend analysis, we treated sensor readings when measured soil
temperatures were lower than 0 ◦C as missing. For RZSM,
we performed the nonparametric Mann-Kendall test [46] and
computed the Sen’s slopes using the longest available data.
The starting date of the data occurs between 2000 and 2011.
The Mann-Kendall test examines the null hypothesis that there
is no trend in the data.
For RZSM, the SMAP root-zone product represents the

accumulated water content in 0–100 cm, while in situ probes
are located only at several depths. Following the guidelines
mentioned in [14], we extrapolated the in situ measurements
using weights that were proportional to sensor depths within
the root-zone layer. Soil moisture was discretized using the
moisture probes as layer centers, and the probe-measured
moisture was used as the mean value for the correspond-
ing layer. For example, if a station has sensors at depth
d1, d2, . . . , dn cm, the weight of those sensors will be pro-
portional to (d1+d2)/2, (d2 +d3)/2− (d1+d2)/2, . . . , 100−
(dn−1 + dn)/2. There are only five core sites that have soil
moisture measurements at multiple depths. For the CRN
network, we selected sites that had soil moisture sensors at
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Fig. 3. Bias, ubRMSE, and Pearson correlation of (a) surface and (b) RZSM as evaluated by SMAP core-site in situ data for the AL training period and the
PL validation periods. Comb means the simple average of LSTM and Noah. In general, ubRMSE between in situ data and SMAP (black) is slightly smaller
than that between LSTM and in situ during the training period (yellow), which is in turn smaller than that between LSTM and in situ during the hindcast
period (red). At sites where RAL(SMAP, in situ) is higher than RAL(Noah, in situ) (yellow higher than cyan), LSTM or Comb can have a higher R than
Noah during hindcast, with Fort Cobb being an exception. At other sites, Noah is stronger than SMAP and LSTM, but Comb might still be better.

all design depths (5, 10, 20, 50, and 100 cm). The 72 sites
remained after removing the ones with more than 50% of
missing measurements or less than one year of records before
the SMAP launch.

III. RESULTS AND DISCUSSION

A. Evaluation at the Core Sites

1) Statistical Comparison Between Training and Hindcast
Periods: We first focus on the comparison of LSTM error
statistics between the training period (yellow bars in Fig. 3)
and the hindcast period (red bars) for the surface product. For
most of the sites, we found only a small increase in ubRMSE
from the training to the hindcast period [Fig. 3(b)]. Five sites
showed ubRMSEAL(SMAP, in situ) values that are ≤0.04,
and for all of these sites, ubRMSEPL(LSTM, in situ) are also
≤0.04. For more than half of the sites, �ubRMSE is less
than 0.006. At Little River and TxSON, the LSTM-to-in situ
error actually reduces from training to test period, which is
attributed to randomness and some missing data. Four sites
have �ubRMSE of more than 0.006: ubRMSE increases from
0.028–0.035 at Walnut Gulch, from 0.059–0.069 at Carman,
from 0.038–0.048 at St. Josephs, and from 0.054–0.061 at
South Fork.
As it is normal for the test error to be larger than the training

error, a small and positive �ubRMSE is to be expected.
We note that when SMAP itself has a relatively large disagree-
ment with the in situ data (>0.04), as in Carman, St. Josephs,
and South Fork, �ubRMSE also tends to be larger. Presum-
ably, when SMAP has a large difference from the in situ data,
there might be some systematic deviations at those sites, e.g.,
the cold season behaviors do not match the in situ data as well,

which is discussed in the following. When such discrepancies
exist, there are less detectable patterns to learn and more noise
to interfere with the training. As a result, the effectiveness
of learning weakens. The SMAP-in situ discrepancies mostly
affect the temporal fluctuations, as witnessed by the degrading
ubRMSE and anomaly correlation during the training, and it
has little impact on the hindcast bias. In contrast, the bias
between SMAP and LSTM appears to have little impact on
�ubRMSE. If we examine Little River, which has a large
positive bias, the ubRMSE and Pearson anomaly correlation
in the hindcast period are as good as the training period.
Despite the mismatch between SMAP and in situ and a mild
amplification of error, none of the increase in ubRMSE is
greater than 0.011.
LSTM hindcast of RZSM also shows similar error sta-

tistics to SMAP level 4 root-zone product. ubRMSEs for
RZSM are generally smaller than the surface product due to
smaller soil moisture temporal variability in the root zone.
Hindcast ubRMSEs at all the five sites are smaller than
0.04. For three sites (Little Washita, Little River, and South
Fork), the ubRMSEPL(LSTM, in situ) is almost identical to
ubRMSEAL(SMAP, in situ), but the correlation degraded at
Little Washita and TxSon (Fig. 3).
2) Statistical Comparison of Performances Between LSTM,

Noah, and Comb: We now switch our attention to the com-
parison between LSTM, Noah, and their averages. It should
be recalled by the following.
1) LSTM learns from SMAP. Thus, in theory, SMAP is the

“performance ceiling” of LSTM when evaluated against
in situ data.

2) SMAP senses a moisture-dependent depth that is shal-
lower than 5 cm.
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For the surface soil moisture, we found that for four of
the nine core sites, SMAP has a higher R than Noah during
the training period (Carman, Fort Cobb, Little River, and St.
Josephs) (compare black to cyan bars). Outside of these sites,
LSTM has little chance of outperforming Noah. However,
SMAP might still bring in new information to help improve
the Comb. For the RZSM, SMAP has advantages for only two
of the sites (Little River and South Fork).
With the above information in mind, we found that while

LSTM has limited chance to surpass Noah for some sites,
Comb shows noticeable advantages over Noah. During the
training period, Comb has a higher R than Noah at six out of
nine core sites for the surface soil moisture. For the remaining
three sites, Comb and Noah are also quite close. In contrast,
LSTM only outperforms Noah at two sites (Little River and St.
Josephs), where SMAP shows noticeable advantage (Fig. 3).
For the hindcast period, Comb is higher at five of nine sites.
For the other four sites, Comb is similar to Noah. Comb’s
advantage is more clear with the RZSM. During the training
period, Comb outperforms Noah at four of the five sites during
the training period, even though LSTM only surpasses Noah
at South Fork, which is the only site where SMAP’s root-zone
product has a higher R. However, during the hindcast period,
Comb is more skillful at all of the five sites, while LSTM is
higher than Noah at three of the five sites.
It perhaps is not surprising that the ensemble model average

works better than each of the individual models. However,
we tested the average of Noah and the variable infiltration
capacity (VIC) model, which showed lower R than that of
LSTM+Noah for six of the nine sites (Fig. 4). Therefore,
simply combining the models together does not guarantee
better skills. Since LSTM not only helps reduce bias but also
improves the temporal dynamics as reflected in R, the results
suggest SMAP and LSTM have brought in unique and valuable
information. In time series analysis (Section III-A3), we exam-
ine how LSTM, despite being generally lower than R, offers
this unique contribution.
The mixed comparison is in contrast to our previous analysis

in [22], where LSTM was always found to outperform Noah
when SMAP was used as the benchmark. Indeed, when we
trained LSTM in one year and test it in another, the 1-year test
R(SMAP, LSTM), which describes the match between LSTM
and SMAP in prolongation period, is mostly 0.05–0.1 higher
than R (SMAP, in situ), making it the highest among all the
bars for most of the sites (Fig. 3). This comparison suggests
while LSTM is sufficiently close to SMAP, there are some
significant differences between SMAP and in situ data, which
limited the LSTM’s performance. These results show that the
LSM is a powerful simulator for the temporal dynamics of soil
moisture, which confirms the earlier findings [47]. Currently,
it is difficult for a remote-sensing product to completely
surpass Noah where high-quality meteorological forcings are
available.
3) Time Series Comparisons: To gain further insights

beyond the statistical comparisons, Fig. 5 shows the time
series comparisons of surface soil moisture at five core sites.
In general, LSTM mimics the well-performing characteristics
of SMAP as well as some systematic discrepancies concerning

the in situ data. For example, at Carman, LSTM inherits
the high-frequency, high-amplitude fluctuations from SMAP.
These fluctuations appear unphysical because much smaller
fluctuations can be observed with Noah and in situ data.
Another example is, at Walnut Gulch, both the peaks and
troughs are well captured by LSTM, but both the drydowns of
SMAP/LSTM tend to be faster than the in situ data (Fig. 5).
Similar faster drydowns can also be clearly observed with
LSTM at Little Washita, Fort Cobb, and Little River. As noted
previously, SMAP senses’ moisture between the surface and
a moisture-dependent depth is often 5 cm or less, whereas
the probes are often centered at 5 cm and measure soil water
between 3.5 and 6.5 cm [48]. Moisture near the surface dries
faster. Thus the lower sensing depths of SMAP could explain
lower R with SMAP and LSTM.
In contrast, the drydown in the Noah-simulated moisture is

more in line with the in situ data. This is most obvious at
Walnut Gulch and Little Washita, where Noah has higher R
than than LSTM. It seems Noah’s simulation better matches
the depths of the in situ probes. However, at Walnut Gulch,
we noted that Noah tends to predict too much drydown toward
the end of the dry spell, while LSTM and in situ both
have a flatter bottom. It is possible that soil water holding
parameters in Noah were not correctly specified here. SMAP
data were better able to capture such trends. This pattern is
also why, at this site, averaging Noah with LSTM helps Comb
outperform Noah.
When there are fewer reliable data points for winter in

the North, LSTM is not well trained like the other periods.
At St. Josephs, we witnessed the periods of missing SMAP
data during the winter freeze. During this period, LSTM
shows high oscillations. During hindcast, in situ data could
be missing in the winter as well. When there is snow on the
ground, SMAP’s retrieval quality flag would indicate that a
retrieval was attempted, but the quality cannot be guaranteed.
The data quality might not be reliable during when snow is
present. Also, the mission does not report soil moisture when
it suspects that the ground is frozen.
Similar to the surface soil moisture hindcast, root-zone

moisture hindcast also inherits the systematic discrepancies
between SMAP and in situ. At Little Washita, the soil moisture
lows of in situ data are lower than that of the SMAP’s.
We see a similar pattern for the hindcast period (Fig. 6).
At Little River, LSTM and SMAP tend to overestimate the
peaks. At South Fork, both the LSTM and SMAP tend to
underestimate soil moisture peaks. In contrast, Noah could
dry down too much as well as overestimate the peaks, in fact,
more prominently than the surface soil moisture.

B. Evaluation Over the Sparse Network

We evaluated LSTM and SMAP against CRN in situ net-
work over CONUS. As there is a scale disparity between a
SMAP pixel and point-scale CRN measurements, we expect
their differences to be significantly larger than those between
SMAP and core sites. Indeed, the median ubRMSE between
SMAP and surface in situ (CRN) data as well as between
LSTM hindcast and in situ are now around 0.05, which is
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Fig. 4. Same as Figure 3, but here we compare the LSTM+Noah (called Comb in Figure 3) with Noah+VIC, which seems weaker than Noah+LSTM. We
also show the test metrics between LSTM and SMAP when it is trained in one year and tested in another (AL 1 Yr Test).

notably higher than that at the core sites [Fig. 7(a)]. The
correlation with the surface soil moisture is slightly lower than
that at the core sites. At some sites, where LSTM has high
correlations, during the training period, R decreased during
the test period, as evidenced by the lower 75-percentile box
edge for the hindcast period. Despite this decrease, the median
LSTM R values for all the CRN sites is above 0.72 for
the surface hindcast, which is comparable to the median of
SMAP. For the root-zone data, LSTM only declines slightly
from training to hindcast period, and they are both limited by
SMAP’s relatively low R.
Noah, in general, compares more favorably with CRN than

LSTM and SMAP, again attesting to its good performance.
However, Comb’s R is higher than that of Noah’s alone for
the surface sites during both the training or the hindcast
period. CRN probes are installed in triplicate redundancy
at 5, 10, 20, 50, and 100 cm depths (sometimes only 5 and
10 cm are available). Thus, CRN sites have the same sensing
depth discrepancy from SMAP and in turn LSTM. However,
integrating information from SMAP data may nonetheless
help correct the model errors. For the RZSM, it seems
Noah has more better-performing sites, as it has a higher
75-percentile R.
The CRN sites can demonstrate spatial patterns of LSTM

and SMAP performances and help us understand where the
correlations have dropped from the training to the test periods
[Fig. 8(a)]. LSTM surface hindcast resembles the spatial
pattern as SMAP. However, we found several pockets of sites
where LSTM is noticeably lower than that of SMAP’s. Test R
for some northeastern sites [eastern ellipsoid in Fig. 8(b)]
have decreased significantly, i.e., below 0.5. These sites are
located in cold and heavily vegetated regions, where SMAP
does not work properly due to large vegetation water content

and snow. Thus, LSTM could not find useful relationships in
this region. Another pocket of notable decrease as compared
to SMAP lies at the boundaries between Utah, Colorado,
and Wyoming (the western ellipsoid). Of these three, the two
western sites are located on the Rocky mountains, while the
easternmost site is on a plain east to the mountains. We think
the large discrepancy here might be due to the poor quality of
forcings in this region. For CONUS, NLDAS-2 precipitation
integrates Climate Prediction Center gauge data and hourly
radar data [49]. This region has the lowest weather station
density and yet a large spatial variability in rainfall due to
orographic effects. All of these factors also challenge the radar
precipitation sensing. Therefore, hindcast quality here is likely
adversely impacted by lower forcing quality.

C. Evaluation of Interannual Trends

Because SMAP has only three years of data, we employed
both the CRN and the core sites to investigate the extent
to which LSTM can reproduce the interannual trends with
RZSM. While we expect large differences between hindcast
and CRN data due to scale disparity, their interannual trends
should be more comparable. Many of these sites showed
only small trends (with an absolute value of less than 0.5%
per year), and LSTM mostly predicts similarly small trend
magnitudes (Fig. 9). When the trend magnitudes are this
small in value, the statistical significance of the slopes are
low. For the sites that have larger interannual trends, LSTM
also predicts larger trends. R between LSTM hindcast and
in situ (both CRN and core sites) trends is 0.88 for the
sites that have large trends (>0.5% annually), indicating that
SMAP prolongation by LSTM is a promising approach that
can capture the interannual variability in RZSM. It should be
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Fig. 5. Time series comparison of LSTM hindcast, SMAP, and in situ soil moisture anomalies at six different sites. The means were subtracted from all
the series. LSTM hindcast inherits the patterns of discrepancies between SMAP and in situ data, e.g., faster drydowns for SMAP. At Carman, SMAP shows
high-frequency oscillations, which disagree significantly with the in situ data. LSTM shows the same oscillations. At St. Josephs, we note some periods of
missing SMAP and in situ data due to frozen ground or snow. (a) Carman 09013601. (b) Walnut Gulch 16013604. (c) Little Washita 16023603. (d) Fort Cobb
16033603. (e) Little River 16043604. (f) St. Josephs 16063603.

recalled that the model was only trained using three years
of data. The increase in hindcast length does not appear to
strongly influence the results.

D. Further Discussion and Future Research

Although we noted some issues, such as winter soil mois-
ture, the LSTM results are presented “as is” (without any
further corrections) for the sake of thoroughly exploring the
strengths and limitations of the LSTM-based long-term predic-
tions. When SMAP itself poorly matches the in situ dynamics,
the LSTM hindcast also degrades. The inaccuracies in SMAP
might amplify, which were found to be mild. As per other
studies, a main difference between SMAP and in situ data
appears to be related to the different sensing depths. SMAP
appears to be capturing shallower soil moisture than the in
situ probes. In contrast, the process-based model Noah seems

to simulate similar depths concerning the in situ data, which
has led to Noah’s better performance at some sites. It also
raises the question as to how SMAP data should be calibrated
against the core site data. A corrective step accounting for the
variable sensing depths seems necessary for the incremental
improvement of SMAP’s retrieval algorithm.
In contrast to other model-data integration methods, such

as DA and calibration, the power of LSTM is to learn the
relationship between inputs and soil moisture without explicit
assumptions concerning the underlying process. Thus, LSTM
can largely avoid systematic (parametric or model structural)
errors due to such assumptions. Our results show the learned
knowledge is permanent and does not decay with time, when
judged by the learning target. As previously mentioned, LSTM
cannot correct stochastic forcing errors as DA could. For
example, if a rainfall event was missing in the forcing,
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Fig. 6. Time series comparison of LSTM hindcast, SMAP, and in situ RZSM on five core validation sites. (a) Little Washita 16020917. (b) Fort Cobb
16030911. (c) Little River 16040904. (d) South Fork 16070905. (e) TxSON 48010911.

Fig. 7. RMSE, bias, unbiased-RMSE, and Pearson correlation of (a) surface and (b) RZSM between CRN sites, LSTM, and SMAP.

LSTM would be unable to predict the corresponding soil
moisture rise. However, while DA can correct for stochastic
forcing errors, its effects wane with time, leading to little

impact on long-term projections. The model states would
drift away from the corrected states some time after data
ingestion [50]. On the other hand, calibration only addresses
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Fig. 8. Map of unbiased-RMSE and Pearson correlation of (a) surface and (b) RZSM between in situ, LSTM, and SMAP for periods before and after SMAP
launch, on CRN in situ network. LSTM generally has the same spatial pattern as CRN, but there are a few instances of a notable decline in R, as annotated
on the figure.

parametric errors. Too much calibration might in fact distort
the parameters’ values and model dynamics to compensate
for the structural inadequacies. Therefore, all these techniques
have their respective advantages and disadvantages, and might
be applied synergistically to address different sources of errors.
As discussed in Section I, extending SMAP records back

in time (hindcast) with high fidelity to SMAP observations
might provide considerable value to myriad applications. For
example, a high-fidelity data-driven historical reconstruction
of SMAP can help benchmarking or calibrating the SMAP
retrieval algorithms. For another example, future research
may examine combining data merging techniques [20] with
DL to exploit stochastic signal measured by older satellites.
In Liu et al.’s [20] work, we cannot merge SMAP and older
satellites because they had no overlaps. However, the LSTM
hindcast may help create that overlap to enable CDF matching
and separation of seasonality and random errors, among other
outcomes.
Here, we only showed a simple average between LSTM and

Noah to demonstrate the value of integrating information from

SMAP via a DL model. This simple approach is obviously not
the optimal way to exploit the value of SMAP data. Currently,
uncertainty estimation methods for DL models are still in the
developing stage. As these methods become more matured,
we can more adaptively combine the models, given our
knowledge about their location-dependent and time-dependent
accuracy. Further, the LSTM-extended data can be injected
into LSM through either DA or model calibration to improve
the model’s internal dynamics other than soil moisture. On the
other hand, we can construct more informative training data
for winter periods, perhaps by combining observations with
simulations by process-based models, to fill the gaps due to
frozen soil. We envision the process-based model will continue
to be a valuable constraint for temporal extrapolation as well.
The good performance of LSTM suggests that it learns

the soil moisture evolution dynamics, as modulated by the
land surface characteristics rather than a simple relationship
between climate forcings and soil moisture. For forecast
purposes, we have the additional information from present and
near-past observations, which are expected to help improve
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Fig. 9. Comparison of long-term RZSM trends between core validation sites, CRN sites, and LSTM hindcast. The correlation between the slopes of core
site and LSTM is 0.89. The correlation between CRN and LSTM is 0.53 for all sites and 0.82 for sites with trends greater than 0.5% per year. (Right) Time
series of several selected sites. (Left) Slopes are annotated on the legend with a unit of percent change per year.

forecast skills. The forecast model will require a slight refor-
mulation of our network training procedure, where the current
and past soil moisture observations are included as inputs.
It must be noted that forecasting skills will depend heavily on
the skill of the weather forecasts. We saw that the hindcast
quality appears to deteriorate for sites that are surrounded by
lower weather station density.

IV. CONCLUSION

Our results indicate that the long-term LSTM predictions
have mostly retained the quality of the SMAP data. LSTM
has a solid performance in regions where SMAP has good
skills. For the root-zone product, the hindcast is able to capture
and reproduce multiyear trends correctly, even if there are only
three years of training data. LSTM’s performance is limited by
SMAP as a performance ceiling and is outperformed by Noah
at some sites. A major factor is that SMAP has a different
sensing depth in comparison to the probes measuring at 5 cm
depth.
More importantly, despite the limitations, averaging LSTM

and LSM predictions often produces better predictions. Even
at sites where this is not true, Comb’s performance is typically
very close to Noah’s. As a comparison, we have also shown
that randomly combining models, e.g., Noah+VIC, do not
always produce better results. Thus, SMAP extended by LSTM
has added value and helped correct errors in Noah. There could
be many novel uses of this approach, as described in the further
discussion section.
In this application, the LSTM model aimed at reproducing

a model-free, seamless replica for the information contained
in SMAP. LSTM predictions are entirely data driven. As such,
we expect that as SMAP data accrue and better retrieval
algorithms are implemented, the DL models will also improve.
Therefore, there is substantial value in the LSTM model as an

ensemble model member for the reconstruction of the past
or the prediction of future trends. Meanwhile, we confirm
the LSM Noah as a valuable contributor of information in
ensemble predictions.
As LSTM was trained with SMAP as the target, it inherited

systematic discrepancies between SMAP and in situ data.
When the discrepancy is large, the error seems to be mildly
amplified, leading to an increase in ubRMSE, which is around
0.01. This amplification is attributed to less detectable patterns
to learn and more noise in the SMAP data, which can
contaminate the learning process. Hindcasts have larger errors
during winter for cold regions. SMAP data can be missing
and less reliable under snow and frozen soil conditions, which
reduces the available training data.
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