
Article
The Mouse Cortical Conne
ctome, Characterized by
an Ultra-Dense Cortical Graph, Maintains Specificity
by Distinct Connectivity Profiles
Highlights
d Retrograde tracer injections are restricted to single areas in

mouse cortex

d Individual areal maps for each brain are used for location of

labeled neurons

d 97% of all possible cortico-cortical connections exist

d Areas are characterized by weight-specific connectivity

profiles
G�am�anut‚ et al., 2018, Neuron 97, 698–715
February 7, 2018 ª 2017 Elsevier Inc.
https://doi.org/10.1016/j.neuron.2017.12.037
Authors

R�azvan G�am�anut‚, Henry Kennedy,

Zoltán Toroczkai,
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SUMMARY

The inter-areal wiring pattern of the mouse cerebral
cortex was analyzed in relation to a refined par-
cellation of cortical areas. Twenty-seven retrograde
tracer injections were made in 19 areas of a 47-area
parcellation of the mouse neocortex. Flat mounts of
the cortex and multiple histological markers enabled
detailed counts of labeled neurons in individual
areas. The observed log-normal distribution of
connection weights to each cortical area spans 5 or-
ders of magnitude and reveals a distinct connectivity
profile for each area, analogous to that observed in
macaques. The cortical network has a density of
97%, considerably higher than the 66% density
reported in macaques. A weighted graph analysis
reveals a similar global efficiency but weaker spatial
clustering comparedwith that reported inmacaques.
The consistency, precision of the connectivity
profile, density, and weighted graph analysis of the
present data differ significantly from those obtained
in earlier studies in the mouse.

INTRODUCTION

The concept of the cortical area is rooted in the notion of locali-

zation of function in the cortex, where individual areas are

posited to have a distinct architecture, connectivity, function,

and/or topographic organization (Felleman and Van Essen,

1991; Van Essen, 2003). The mouse is increasingly used as a

model system for investigating the cortex, where complex

sensory (Ferezou et al., 2007), motor (Li et al., 2016), and cogni-

tive (Carandini and Churchland, 2013; Kim et al., 2016; Manita

et al., 2015) functions have been shown to depend on interac-
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tions among cortical areas via inter-areal connections as well

as on dynamic control involving higher-order thalamic nuclei

(Mease et al., 2016; Sherman, 2016). The highly interactive

nature of cortical processing motivates efforts to investigate

the statistical properties of inter-areal networks (Wang and

Kennedy, 2016) and the development of large-scale models of

the cortex that may provide insights into brain function in health

and disease (Bullmore and Sporns, 2012).

Early evidence for distributed hierarchical processing within

the cortex (Felleman and Van Essen, 1991) drew on collated

tract-tracing data from numerous studies using diverse methods

of generally low sensitivity. This limited the reliability of infer-

ences about statistical features of large-scale cortical networks

(Kennedy et al., 2013) and, notably, led to underestimating the

density of the cortical graph (i.e., the fraction of connections

that can exist that do exist). This, in turn, leads to a failure to

appropriately constrain the range of plausible models of cortical

networks (Markov et al., 2013b). These considerations motivate

the development and use of sensitive tract-tracing methods

along with accurate areal parcellation (Bassett and Bullmore,

2016). The high density and wide range of connection strengths

of the cortical graph (Markov et al., 2011, 2014a) point to the

importance of quantifying the weights of the connections linking

different cortical areas (Ercsey-Ravasz et al., 2013; Oh et al.,

2014; Song et al., 2014; Ypma and Bullmore, 2016).

Recent quantitative retrograde tracer studies in the macaque

(Markov et al., 2011, 2014a) demonstrated that, compared with

previous studies, there were many more inputs to each cortical

area, a wider 5-order magnitude range of connection strengths

to each area, and a much narrower range of variability in the

strength of individual pathways tested with repeat injections.

These findings support the concept of each area having a

distinctive fingerprint or connectivity profile defining its func-

tional specificity (Bressler and Menon, 2010; Markov et al.,

2011; Passingham et al., 2002); they contrast with earlier reports

suggesting that connection weights in cortical pathways are
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highly variable across individuals (MacNeil et al., 1997; Musil and

Olson, 1988a, 1988b; Olson and Musil, 1992; Scannell et al.,

2000). Hence, it is important that the mouse database be

investigated for its statistical variability of connection weights

to estimate the validity of the connectivity profiles.

The weight-distance relations observed in macaque cortical

connectivity data lead to a one-parameter predictive model

that captures multiple features of the cortical network, including

its spatial embedding, wire minimization, frequency distribution

of motifs, global and local efficiencies, and a core-periphery

architecture (Ercsey-Ravasz et al., 2013). Spatial embedding

constrains numerous geometrical features in a similar fashion

in the mouse as well as the macaque cortex (Horvát et al., 2016).

A recent systematic connectivity study obtained brain-wide

weighted data (Oh et al., 2014) using anterograde tracer injec-

tions on a fixed grid of injection sites. Because most of the

reported injection sites (>70%) spanned multiple areas, connec-

tivity at the level of individual areas was inferred using a compu-

tational model involving several theoretical assumptions. Their

probabilistic model of connectivity yielded an estimated density

for the inter-areal cortical graph of 35%–53%, much lower than

the 66% reported for the macaque cortical graph (Markov et al.,

2014a). The lower density reported in the mouse and also in the

rat (Bota et al., 2015) is surprising, given that onemight anticipate

increased graph density with decreasing brain size (Horvát et al.,

2016; Ringo, 1991). Furthermore, an earlier tracer study of the

mouse visual cortex (Wang et al., 2012) reported a considerably

higher subgraph density (99%) than the 77% reported for visual

areas byOh et al. (2014). These findings suggest that the compu-

tational procedure used in the Oh et al. (2014) study to infer the

connectivity of single areas from injections involving multiple

areas might have resulted in significant numbers of false nega-

tives. A re-analysis of the Oh et al. (2014) dataset estimated a

whole-cortex graph density of 73% (Ypma and Bullmore,

2016). Hence, in the present study, we focused on an empirical

approach that is deterministic because it depends on direct

anatomical observations.

Here we investigate mouse cortico-cortical connectivity and

address two key issues: the density of the mouse cortical graph

and the consistency of connectivity profiles across individuals.

We minimized experimental variability by targeting injections of

a retrograde tracer in post hoc-identified areas rather than a
Figure 1. Expression of M2, VGluT2, and CO with Respect to PVtdT in

(A) Tangential section showing tdTomato (tdT) fluorescence in parvalbumin (PV)-c

lines and labeled by black and white letters were positively identified by PVt

somatosensory (SSp) cortex, representing different body parts. Colored letters de

blue, green, pink, and purple) in which PVtdT expression exhibits similar inten

presumptive borders between these areas.

(B) Bright-field image of a tangential section stained with an antibody against the

and black dashed lines and denoted with white and black letters were positively id

red, and purple letters indicate known areas contained within distinct but uniform

(C) Bright-field image of a tangential section stained with an antibody against V

denoted in white and black letters were positively identified as distinct parcels. Are

areas contained within distinct but uniformly VGluT2-labeled parcels.

(D) Bright-field image of a tangential section reacted for cytochrome oxidase (CO

denoted in white and black letters were positively identified as distinct parcels.

known areas contained within distinct but uniformly CO-labeled parcels.

See also Figures S1 and S5.
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fixed grid of anterograde injections (Oh et al., 2014). Our choice

of retrograde tracer provides several advantages for quantifying

connection strengths (see Suitability of DY Tracing in the STAR

Methods for a detailed discussion). We coupled retrograde

tracing with flat-mounting the cortex, which is particularly advan-

tageous when combined with multiple histological stains used

for cortical parcellation (Qi and Kaas, 2004; Sincich et al.,

2003; Wang and Burkhalter, 2007; Wang et al., 2011, 2012).

Our experimental approach allows positive identification of

both injected cortical areas and of 41 areas and 7 sub-areas

where the retrogradely labeled neurons are located.

Our results show that the mouse cortex is ultra-dense, with a

graph density of 97%, significantly higher than the probabilisti-

cally based range of 35%–73% (Oh et al., 2014; Ypma and

Bullmore, 2016). The high density of the mouse cortical graph

suggests that the activity pattern of a given area is interrelated,

via its connectivity profile, to a widespread pattern of influences

across the cortex. It seems implausible that smaller brains

would be associated with greater variability of connection

weights (as reported in Oh et al., 2014) because this, in conjunc-

tion with a high graph density, would entail lower specificity of

the structure and function of the mouse cortical network

compared with the macaque. Our analysis of the present retro-

grade labeling revealed variability of connectivity and connectiv-

ity profiles in the mouse comparable with those observed in the

macaque (Markov et al., 2014a). Likewise, our deterministic

approach leads to a weight-distance relationship that is quanti-

tatively similar in mouse and macaque (Horvát et al., 2016), in

contrast to the modeled data from the Oh et al. (2014) study.

Our results demonstrate that the densely interconnected

network of the mouse cortex contains highly selective area-to-

area connectivity profiles that, in primates, underlie distributed

hierarchical cortical processing (Markov et al., 2011).

RESULTS

High-Resolution Cortical Parcellation
The spatial precision of the alignment of diamidino yellow (DY)

labeling with the areal map is a critical experimental issue, given

the small size of the mouse cortex. PVtdT mice allowed parcel-

lation of the cortex into 25 parcels, excluding the entorhinal,

hippocampal, and piriform cortex (Figure 1A), and provided
Layer 3/4 of the Flat-Mounted Left Mouse Cerebral Cortex

ontaining interneurons (bright white labeling). Parcels outlined by white dashed

dT expression. Black dashed lines indicate subdivisions within the primary

note known areas contained within distinct compound parcels (orange, yellow,

sity and reveals no detectable subdivisions. Colored dashed lines indicate

M2 muscarinic acetylcholine receptor (dark staining). Areas outlined with white

entified as distinct parcels. Areas denoted in orange, yellow, blue, green, pink,

ly M2-labeled parcels.

GluT2 (dark staining). Areas outlined with white and black dashed lines and

as denoted in orange, yellow, blue, green, pink, and red letters indicate known

) activity (dark staining). Areas outlined with white and black dashed lines and

Areas denoted in orange, yellow, blue, green, red, and purple letters indicate



reliable landmarks for aligning matching/complementary

expression patterns of M2, VGluT2, cytochrome oxidase (CO)

(Figures 1, S1C, and S1D), and visuotopically mapped borders

(Wang and Burkhalter, 2007). In each brain, this procedure al-

lowed positive identification of 115 of the 133 borders (86.5%);

the remaining borders were inferred from the known patterns

of CO, M2, and VGlutT2 (Figure S1B). Importantly, because the

brain map is created for each tangentially sectioned individual

brain, it avoids assigning labeled cells to a standard template

and obviates aligning large numbers of adjacent sections. Our

approach largely takes into account the individual differences

in parcellation across subjects (Krubitzer and Seelke, 2012)

and significantly differs from that employed in two recent studies

(Oh et al., 2014; Zingg et al., 2014) that mapped corticocortical

projections onto a standard Allen Reference Atlas (ARA;

Dong, 2008), generated by averaging variations of background

fluorescence across hundreds of cortices. This common coordi-

nate framework (CCF, Allen Institute for Brain Science, http://

brain-map.org) has become a widely used parcellation of the

mouse cerebral cortex (Figure S1A).

Within the 25 parcels, additional areas were identified by

comparing PVtdT with the patterns of M2, VGluT2, and CO

expression (Figures S1C–S1F). These included the postrhinal

area (POR), postrhinal anterior (PORa) (previously referred to

as 36p; Wang et al., 2011), auditory cortex ventral area

(AUDv), auditory cortex posterior area (AUDpo), dorsal poste-

rior area (DP), motor cortex primary area (MOp), motor cortex

secondary area (MOs), retrosplenial area agranular part

(RSPagl), retrosplenial area dorsal part (RSPd), retrosplenial

area ventral part (RSPv), temporal area anterior part (TEa),

and temporal area posterior part (TEp). The borders of the

visuotopically mapped areas (posterior area [P], laterointer-

mediate area [LI], laterolateral anterior area [LLA], rostrolateral

area [RL], anterior area [A], anteromedial area [AM], and poster-

omedial area [PM]; Garrett et al., 2014; Wang and Burkhalter,

2007; Zhuang et al., 2017) were only partially outlined by any

of the molecular markers. Here the missing borders could be

filled in by registering PVtdT maps to instructions based on

the stereotypical size, shape, and relative position of areas

derived by previous visuotopic mapping (Wang and Burkhalter,

2007). Where this procedure differs from template matching is

that areal boundaries are derived from the PVdtT map of each

individual case. The grand total was 41 areas, of which the pri-

mary somatosensory cortex (SSp) was subdivided into 7 sub-

areas (Figure S1B). The variance of areal border assignments

was estimated to be <150 mm (for details, see Parcellation of

the Cortex in the STAR Methods).

Retrograde Tracing with DY

For details about DY, see Suitability of DY Tracing in the STAR

Methods. Representative examples of the DY labeling at low

power are shown in Figures 2A–2F (note that cell counts were

acquired using higher magnification). The area V1 (primary visual

area) injection shown in Figures 2A–2Cwas confined to the lower

peripheral visual field representation near the tip of V1 (Marshel

et al., 2011). As expected from previous axonal tracing and topo-

graphicmapping experiments (Garrett et al., 2014;Marshel et al.,

2011; Wang et al., 2007), retrogradely DY-labeled neurons were

clustered at the junction of the lateromedial area (LM), anterolat-
eral area (AL), LI, and LLA. Additional clusters of labeled neurons

were found at retinotopically corresponding locations within RL,

A, AM, PM, mediomedial area (MM), P, POR, and PORa. In the

temporal cortex, DY labeling was contained in most areas of

the auditory cortex (auditory cortex primary area [AUDp],

AUDpo, AUDd, and DP) and the ventral portion of the posterior

temporal area (TEp). On the medial wall, labeled neurons were

clustered in dorsal retrosplenial cortex (RSPd), the secondary

motor cortex (MOs), the dorsal and ventral anterior cingulate

areas (ACAd and ACAv, respectively,) and in the prelimbic (PL)

and infralimbic (ILA) cortex. At the rostral end of the cortex, label-

ing in the orbitofrontal cortex was confined to the orbitofrontal

area lateral part (ORBl). A complete map of neurons projecting

to V1 is shown in Figure S2. The densest inputs originate from

the occipital, temporal, parahippocampal, retrosplenial, cingu-

late, orbitofrontal, and prefrontal cortex, whereas inputs from

the parietal somatosensory, gustatory, visceral, and insular

cortex are sparse or absent.

Statistical Consideration of Overdispersion

Variability in the retrograde tracer data from the present study

was modeled by analyzing the statistical properties of connec-

tions resulting from repeat injections of tracers across individ-

uals. Scatterplots of the SD versus themean (seeOverdispersion

in the STAR Methods) are shown in Figures 3A and 3B with the

indicated dispersion values. Overall, the results indicate a

negative binomial distribution with dispersion values of 6, which

provides a reasonable estimate of the expected variability for

neural counts obtained with retrograde tracing data in the

mouse. The q estimate of 6.1 for V1 and LM is somewhat smaller

than that obtained in the macaque, 7.9 (Markov et al., 2011),

suggesting marginally greater levels of overdispersion across

animals in the mouse datasets. These findings demonstrate

that overdispersion is a systematic phenomenon of neural

retrograde count data in both the macaque and mouse. Thus,

overdispersion needs to be considered in the statistical evalua-

tion of such data because ignoring it would lead to anti-conser-

vative estimates of the probabilities of significant differences in

connection strengths; i.e., erroneously assigning significance

to small differences.

Repeat injections make it possible to examine variability in the

raw data of Oh et al. (2014) (Figures 3C and 3D). Although not

based directly on counts, we applied the same framework to

examine the variability in relation to the mean. In contrast to

the retrograde tracer data, the anterograde data of Oh et al.

(2014) show a dispersion of 1.6 for the somatosensory barrel field

and 2.3 for area V1 and, therefore, in both cases indicate a more

overdispersed dataset compared with the retrograde tracing

data in the present study; the higher incidence in overdispersion

in the anterograde data may be related to the difficulties in

estimating projection strength from measurements of fluores-

cence intensity (see Effect of Template Matching on the Weight

Distribution of Connections).

Log-Normal Distribution of Weights
An intriguing aspect of cortical organization is that many physio-

logical and anatomical features are distributed according to a

log-normal distribution (Buzsáki and Mizuseki, 2014). This is a

skewed, heavy-tailed distribution typically characterized by
Neuron 97, 698–715, February 7, 2018 701
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Figure 2. Retrograde DY Labeling in PVtdT Mice

(A) Tangential section (slightly tilted to the lateral side away from the tangential plane) through layers 3–5 of the flat-mounted cortex showing the distribution of

PVtdT-expressing neurons (false-colored white). Parcel boundaries were assigned based on PVtdT expression densities. The false-colored yellow spotmarks the

DY injection site. Black dashed outlines indicate the border of the crystalline DY deposit, which is confined to the lower peripheral visual field representation of V1.

Note that the injection site appears larger because of overexposure of the fluorescence image to visualize the labeled neurons.

(B) Same section as in (A), showing the distribution of retrogradely DY-labeled neurons (false-colored yellow dots). Note that, because of the long exposure time

required to reveal DY-labeled neurons at low magnification, the injection appears larger than the site outlined (black dashed outlines) in (A). Importantly,

DY-labeled neurons are tightly clustered at sites that match the topographic location of the injection site (Garrett et al., 2014; Marshel et al., 2011; Wang and

Burkhalter, 2007).

(C) Overlay of images shown in (A) and (B).

(D–F) Tangential sections through layer 4 of the posterior half of the cortex in PVtdT-expressing mice, showing DY deposits (outlined by dashed black lines) in

areas LM (D), AL (E), and PM (F). Although, under fluorescence illumination, the injection sites appear larger than the DY deposit, it is important to note that they

are confined to individual areas.

See also Figures S2 and S7.
relatively few very strong and very weak values with many inter-

mediate ones. A log-normal distribution was first reported for

synaptic weights (Song et al., 2005) and subsequently as a char-

acteristic of the distribution of input strengths to a cortical area

in the macaque (Markov et al., 2011) and mouse (Oh et al.,

2014; Wang et al., 2012).

Figures 3E and 3F show that, for areas LM and V1, the areas

analyzed in Figures 3A and 3B, the ordered means of log
702 Neuron 97, 698–715, February 7, 2018
(FLNe [extrinsic fraction of labeled neurons]; Markov et al.,

2014a) values follow log-normal distributions. The range of

values spans 4 to 5 orders of magnitude. The fitted curves

(solid lines) do not fall outside of the expected variability,

represented by the gray envelopes, indicating that the differ-

ences from the log-normal prediction are not significant

(see Accordance with the Negative Binomial Model in the

STAR Methods).
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Figure 3. Variance and Log-Normal Distri-

bution of FLNe

(A–D) Repeat injection SD as a function of the

mean. q, dispersion parameter; red curves,

Poisson distribution; blue, geometrical distribu-

tion; green, negative binomial; brackets, 95%

confidence interval.

(A and B) Retrograde DY tracer injections of (A) LM

(n = 3) and (B) V1 (n = 4) (present study) of DY-

labeled neurons.

(C and D) Anterogradely labeled projections

described by Oh et al. (2014) after injections of a

viral tracer into the mouse (C) somatosensory

barrel cortex (SSp-bfd) (n = 5) and (D) primary

visual cortex (VISp) (n = 8). Note the difference in q

values for (A) and (B) versus (C) and (D). To have

the same normalization as in (A) and (B), for each

injection, we divided the strengths of cortico-

cortical projections by the sum of cortico-cortical

projections from the injection.

(E and F) Log-normal distribution of retrograde

tracing data in the present study, observed means

(white dots) ordered bymagnitude, and SEM (error

bars) of logarithms of the FLNe for the cortical

areas projecting to the injected area. (E) LM (n = 3),

(F) V1 (n = 4). Black curves indicate the expected

log-normal distribution for an ordered set of pro-

jections of size n, equal to the number of source

areas. The gray envelopes around each curve

indicate the 95% confidence intervals obtained by

simulating 10,000 sets of count experiments

drawn from a negative binomial distribution, with

means of counts and dispersion parameter as

the data.
Variability of Deterministic Connectivity Maps in Mouse
and Monkey and the Consistency of Weak Connections
The repeatability of connections to a given area across individuals

makes it possible to evaluate the variability in termsof consistency

of individual pathways. By consistency, we refer specifically to

whether a connection is systematically present across injections

(see Variability and Consistency in the STAR Methods).

Figures 4A–4C show violin plots of means of projections for

repeat injections and explores the variability of the set of inputs
to a given cortical area across individuals.

In this figure, connected areas that are

found for all repeat injections in an area

are shown in gray and those that are ab-

sent from a given injection in red. The pre-

sent study shows low variability across

injections. Medium to strongly connected

areas were found systematically after

each injection (Figure 4A). Similar findings

wereobtained in themacaque (Figure 4B).

The macaque data (Markov et al., 2014a)

differed from the present observations in

the mouse in that similar levels of incon-

sistent projections were found in ten of

the 13 repeats compared with only three

of the 13 in the mouse (Figure 4B). The
higher variability in the macaque could be related to the partial

sampling in the macaque study. The relatively low level of vari-

ability in the retrograde tracer studies of mouse and macaque

differs from the high variability observed in the raw data in the

Oh et al. (2014) anterograde data, in which inconsistent projec-

tions were found across nearly all injections and at much larger

weight values (Figure 4C).

In Figure 4D, of the 598 possible connections from repeat in-

jections, 581 (97.2%) were present and 17 (2.81%) were absent.
Neuron 97, 698–715, February 7, 2018 703
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Figure 4. Consistency in Mouse and Macaque as a Function of Mean Weight and Size of Injection for Repeat Injections across Individuals

(A–C) Violin plots of means of projections consistent across repetitions (gray) and of inconsistent projections (red).

(A) Mouse retrograde tracing data from the present study, representing repeat injections in areas AM, LM, RL, SSp-bfd, and V1.

(B) Macaque retrograde tracing data from repeat injections in areas V1, V2, V4, and 10 (Markov et al., 2014a).

(C) Mouse anterograde raw data, where repeat injections were restricted to single areas (VISp and SSp-bfd) (Oh et al., 2014). To have non-normalized data as

in (A) and (B), we multiplied each strength of cortico-cortical connections with the volume of the respective injection taken from the supplemental data

of Oh et al. (2014).

(D and E) Colored dots represent projections that are present; white dots indicate absent projections. On the vertical axis are represented the mean numbers of

neurons per projection; on the horizontal axis is shown injection size in terms of total number of labeled neurons per injection. The solid lines correspond to a linear

classifier from a logistic regression, with the variables of both axes used as features for a probability of the presence of the projection at 95%. The dashed lines

correspond to a similar criterion for which only the ordinate variable was used as a classification feature.

(D) Repeat injections of the retrograde tracer DY in mouse areas V1 (n = 4), LM (3), RL (2), SSp-bfd (2), and AM (2).

(E) Repeats in macaque areas 10 (3), V1 (5), V2 (3), and V4 (2).
Absent connections are concentrated in the lower half of the di-

agram, where low mean numbers of neurons per projection are

found. The continuous line in Figure 4D indicates the estimated

linear classifier for which the probability of a connection being

present is 0.95 for this model. Its negative slope suggests a
704 Neuron 97, 698–715, February 7, 2018
dependence of connectivity on both features so that small injec-

tions would lead to higher probabilities of absence at high mean

connection strengths. However, only the mean of projection was

found to contribute significantly to the linear classifier (log(Mean),

z = 5.57, p = 2.56 3 10�8; log(Total), z = 1.7, p = 9.6 3 10�2),



demonstrating no support for this hypothesis. The 95% classifier

based only on the log(Mean) is indicated by the dashed line and

corresponds to a value of 24 neurons. This indicates that

projections containing more than 24 neurons on average will

be highly consistently identified (but not always perfectly) across

individuals.

In Figure 4E, we performed a similar analysis of the macaque

data reported by Markov et al. (2014a) from repeat injections

in areas V1, V2, V4, and 10. The solid and dashed lines

correspond to the same models as in Figure 4D but fitted to

the macaque data. Again, the influence of the total size of the in-

jection was not found to contribute significantly to the classifier.

The dashed line corresponds to a mean of 18 neurons, slightly

lower than the value found for the mouse data and close to the

value of 10 estimated more informally by Markov et al. (2014a).

Verification of the model of data variability, estimation of

dispersion and consistency, and the generality of the log-normal

distribution of weights and consistency justified the use of a

single cortical injection of retrograde tracer in the macaque to

characterize the projection profile of an area (Markov et al.,

2014a). The present results show that this also holds for the

retrograde labeling of cortical pathways in the mouse.

The Mouse Cortical Connectome Exhibits Distinct
Connectivity Profiles
Armedwith a description of the distribution of the data, we tested

whether there are signatures in the sets of projections to each

area, as is the case in the macaque (Markov et al., 2011). Alter-

natively, every individual might present its own sets of connec-

tions andweights. Specifically, we examined each set of multiply

injected areas to determine the minimum number of factors ac-

counting for the systematic effects on the data (see Evaluating

Akaike Information Criterion in the STAR Methods).

For areas LM and V1, the model without interaction between

the explanatory variables AREA and BRAIN led to a decrease

in Akaike’s information criterion (AIC) (LM, difference in AIC

[dAIC] = 23.8; V1, dAIC = 71.4). Thus, for both areas, this model

yields a better or equivalent balance between complexity and

goodness of fit than the more complex model. The optimal

models were those for which individual differences appeared

as unsystematic variability; i.e., without an interaction between

the areas and the individual animals. The presence of such an

interaction would have signified the presence of individual

differences in connectivity profiles beyond the variability among

animals. Its absence implies that quantitative connectivity pro-

files do not differ sufficiently across cases and, therefore, that

a robust signature (connectivity profile) exists for each area.

Is it possible to observe a connectivity profile when there is

overdispersion? In the hypothetical case of a Poisson distribu-

tion (Figure 5A; see Overdispersion and Connectivity Profiles in

the STAR Methods), the tight distribution of points about the or-

dered log-normal curve indicates that such Poisson data would

show a clear example of a connectivity profile or signature, and

an individual injection would be likely to closely reflect the

average behavior indicated by the red curve. At the other

extreme is the geometric distribution (Figure 5C), where the

high variability (2–3 orders of magnitude range of variation for

each projection) obscures the systematic trend of the expected
curve (blue). As shown in simulations by Scannell et al. (2000),

data distributed in this fashion would require an inordinate num-

ber of repeat injections to establish the average behavior of the

curve with sufficient precision. Note that individual injections

could follow any arbitrary path through the point cloud, so their

value in establishing an areal profile would be of limited informa-

tive value. In this case, statistical analysis of a small number of

injections would likely lead to the conclusion of individual differ-

ences in the profile for a single injection site; that is, the presence

of a statistically significant interaction between area and brain in-

jected. The simulated results from a negative binomial distribu-

tion (Figure 5B) with a dispersion parameter similar to that found

in retrograde labeling in themacaque andmouse falls in between

the Poisson and geometric distributions. However, with the vari-

ation of individual injections being only 1 order of magnitude, far

less than the span of the ordered log-normal curve, single injec-

tions are muchmore representative of the average curve than for

geometrically distributed data. As shown in our data, the varia-

tion among animals is not sufficient to reject the proposition

that projection profiles from different animals are the same.

To illustrate the effects of a geometric distribution (Figure 5C)

of the anterograde data and negative binomial distributions (Fig-

ure 5B) for the retrograde data on connectivity profiles, we show

a boxplot analysis for area V1 for the present data (Figure 5E) and

for the Oh et al. (2014) data (Figure 5F). This shows that the nega-

tive binomial distribution corresponds to a significantly more

demarcated connectivity profile compared with the data with a

geometric distribution in Figure 5F from Oh et al. (2014).

Effect of Template Matching on the Weight Distribution
of Connections
Comparison of raw connection strengths with those obtained

from the computational model in Oh et al. (2014) allows appraisal

of the modeling assumptions used in that study (see Processing

Oh et al. (2014) Data in the STAR Methods). Figure 6A shows the

agreement between the raw and the computed connections,

with only 65% of them being true positives or true negatives,

whereas 33% are false negatives (found in raw, but not in

computed, connections) and 2% false positives (found in

computed, but not in raw, connections). Moreover, the squared

correlation between the true positives is modest, only 0.58.

Comparison of the weight distribution of the raw and computed

data gives further insight into how the computational algorithm of

Oh et al. (2014) transforms the rawdata (Figure 6B). Here the blue

bars are the connections that result from the raw non-mixed in-

jections and red bars the computed set of connections corre-

sponding to the raw connections. The computed data equivalent

to the 14 injected areas return 314 connections, significantly less

than the 478 connections observed in the raw data. The 164 con-

nections that are present in the raw data but are absent in the

computed data (white bars), although predominantly weak, are

nevertheless found throughout the full range of weights. Fig-

ure 6B, using a log scale for connection strength, suggests

that the Oh et al. (2014) raw data do not follow the same log-

normal distribution as the computed data.

In Figure S3, 19 of the 41 cortical areas in an adapted atlas

from thepresent study correspond to areas listed in the Figure 6C

legend in the atlas used by Oh et al. (2014), allowing some direct
Neuron 97, 698–715, February 7, 2018 705



A
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F

Figure 5. Relations of Discrete Probability

Distributions on Log-Normal FLNe Distribu-

tion Variabilities and Connectivity Profiles

(A–C) The hypothetical results of 1,000 injections

were simulated according to Poisson (A), negative

binomial (dispersion parameter q = 7) (B), and

geometric distributions (q = 1) (C).

(D) The SD is plotted as a function of the means

calculated for the simulated injections from

(A)–(C), with the colors indicating the distribution

from which the calculations were made.

(E and F) Example of the effect of overdispersion

on the reliability of projections in the present data

(E) and in Oh et al. (2014) (F). In both plots, a single

injection in V1 (VISp) was taken, and the areas

were ordered according to their strengths. The

difference between the log of the maximum and of

the nonzero minimum was then divided into four

intervals (delimited by dashed horizontal lines) and

assigned the log of the FLNe to the corresponding

intervals, forming four groups. Next, the strengths

of the corresponding areas from the other repeats

were used to obtain the boxplots. In all boxplots,

the bold lines represent the medians and the

boxes indicate the 25% and 75% quantiles. The

whiskers extend to the most extreme data points,

which are no more than 1.5 times the interquartile

range from the boxes. The stars represent the

significance levels attained of the p values of

one-sided permutation tests for each pair of

consecutive groups, with the null hypothesis that

the mean of the group on the left is larger than the

mean of the group on the right. Notice that the

present data are all restricted to the initial intervals

(within the limits of the dashed horizontal lines),

whereas the data fromOh et al. (2014) in all but one

case cross these limits.
comparison between the two studies. The present study found

142 connections in this set of common areas, which contrasts

with the 87 connections computed for these areas by Oh et al.

(2014). Figure 6C shows the set of connections shared by the

two studies (the same source area and the same target area).

This shows that the computed data from Oh et al. (2014) exhibit

a log-normal distribution tightly restricted to the top three orders

of magnitude compared with the broad log-normal distribution in

the present study. Figure 6D provides a more direct comparison

by contrasting only connections that are non-zero in both

studies. They differ significantly in their weight range and, more

importantly, show no correlation (inset, Figure 6D). These find-

ings confirm that the algorithm used by Oh et al. (2014) to disen-

tangle connections evidently led to significant transformations

by reducing the number of connections and affecting their distri-

bution of connection strengths. This is further supported by

comparing those connections in the Oh et al. (2014) raw data

with the 19 homologous connections in the present data (Fig-

ure 6E). Although the comparison is limited, this suggests that,

compared with the computed data, the raw data in Oh et al.

(2014) show an improved overlap in the weights and have a

modest correlation with data from the present study (Figure 6E,

inset). However, Figure 6F shows that the raw data of Oh et al.
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(2014) possess a narrower range of weights compared with the

present study.

Elsewhere we have shown that the weight-distance relation-

ship is a cardinal feature of the connectome in both mouse and

monkey and that it accounts for statistical aspects of many

network features, such as the motif distribution, similarity, and

core-periphery (Ercsey-Ravasz et al., 2013; Horvát et al.,

2016). In Figure 6G, we compare the decline of weight with dis-

tance in the computed and raw cortico-cortical connections

from Oh et al. (2014). This shows only a very modest slope for

the computed data; by contrast, the slope in the raw data is com-

parable with that found in the present study (Figure 6H). The

slope of �0.68 mm�1 obtained in the present study is similar to

that obtained in Horvát et al. (2016). Finally, in the Oh et al.

(2014) study, our analysis of their raw data from the 26 unmixed

injections in 14 isocortical areas yields a density of 92%, which is

consistent with the density of 97% observed from our injections

(see Partial Coverage and Global Claims in the STAR Methods).

In anterograde tracing, it is challenging to distinguish between

pre-terminal axons and boutons and to exclude labeled fibers of

passage from the analysis. Further, there is an important differ-

ence in scale explored by the two tracers; anterograde is subcel-

lular because it reveals individual boutons with hundreds to



BA

DC

FE

G

H

I

Figure 6. Comparison of Data in the Present Study with Previous Findings

The reported data in the present study show some similarity to the raw data in Oh et al. (2014), but not to the computed data of that study.

(A) Correlation between the raw and computed data in Oh et al. (2014), with zero values shown in red.

(legend continued on next page)
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thousands per axon (Binzegger et al., 2004). In contrast, retro-

grade tracing is at the single-cell level. These differences are

compounded by the challenge of distinguishing boutons from

interbouton axons when quantifying projection strength by

measuring optical density (Wang et al., 2012), a difficulty that

may contribute to the greater overdispersion in the anterograde

data compared with the retrograde data (Figure 3). Further,

anterograde tracers occasionally label neurons retrogradely

and with them their collaterals both in the injected area and other

areas to which the collaterals project (Reiner et al., 2000).

Estimates of terminal densities from anterograde tracers using

optical density measurements where axons of passage can

introduce a significant bias may be less accurate than counts

of labeled neurons following retrograde tracers. Since the obser-

vations of LeVay and Sherk (1983), anterograde tracers have

been shown to lead to retrograde labeling, and this includes

the viral tracers used in the Oh et al. (2014) study (Wang et al.,

2014). This can lead to labeling of local collaterals of the retro-

gradely labeled cells and could explain the secondary antero-

grade labeling observed in the Oh et al. (2014) study, in which

anterograde injections in the pontine nucleus and superior colli-

culus led to levels of labeling in the cortex comparable with those

reported for cortico-cortical projections (Figure 6I; Table S1).

However, for measuring projection weights, anterograde and

retrograde techniques are, in principle, complementary: retro-

grade labeling for revealing the diversity of source neurons and

anterograde for informing about target specificity.

The Ultra-High Density of the Cortical Graph
Figures 7A and 7B show the weighted connectivity of 19 3 47

and 19 3 19 matrices, in which the color of each entry repre-

sents the log10 (FLNe) value for that pathway. Each column pro-

vides the FLNe profile of inputs observed for a given area and

each row its outputs. The rows and columns were ordered to

maximize the overall similarity between neighbors. Source

areas of the occipital, posterior temporal, and retrosplenial cor-

tex are concentrated in the lower third of the matrix. Somato-

sensory, gustatory, visceral, insular, orbitofrontal, and prefron-

tal source areas are clustered in the upper third. Motor,

cingulate, auditory, and parahippocampal source areas are

mainly in the middle portion. Much to our surprise, we found

connections between nearly all injected areas. Figures 7A and
(B) Distributions of the raw data and the corresponding connections in the comp

Red bars, computed data; blue bars, raw data; white bars, non-zero connection

(C) Distribution of strengths of connections for areas that are homologous in Oh et

follows: anterior cingulate area dorsal part (ACAd), anterior cingulate area ventr

posterior part (AIp), agranular insular area ventral part (AIv), ectorhinal area (ECT

(ORBm), ORBvl, perirhinal area (PERI), prelimbic area (PL), RSPd, RSPv, SSp-bfd

(D) Same as in (C) but considering only projections that are non-zero in both sets

(E) Distribution of strengths of connections for areas that are homologous and

unmixed injections), and the present study (gray). Inset, correlation diagram. Sour

ACAd, GU, ILA, MOp, MOs, RSPd, SSp-bfd, and V1.

(F) Distribution of connection strengths for the full dataset in the present study (g

(G) Distribution of projection lengths in Oh et al. (2014), raw data (blue), and com

(H) Distribution of projection lengths in the present study. Notice that the space

(I) Comparison of cortical labeling in Oh et al. (2014), following anterograde trace

label obtained following cortical injections.

See also Figure S3 and Table S1.
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7B show that the connection weights vary over 5 orders of

magnitude, revealing two dissimilar but highly interconnected

subnetworks. One exhibited strong connections between visual

areas, strong inputs to the occipital cortex from the posterior

parietal, auditory, and retrosplenial cortex, andmoderate inputs

from the somatosensory, motor, and orbital cortex, whereas

projections from the visceral, gustatory, and prefrontal cortex

were sparse. The other subnetwork (Figures 7A and 7B) ex-

hibited strong inputs to the somatosensory cortex from the mo-

tor, visceral, gustatory, and insular areas; moderate input from

the posterior parietal, and orbital cortex; and weak input from

the retrosplenial and prefrontal areas. Inputs to both subnet-

works from the cingulate parahippocampal and higher auditory

cortex were similarly strong.

In the edge-complete 193 19matrix (Figure 7B) (meaning that

the connectivity status of all node pairs are known), most

connections between pairs were reciprocal, except for 2%

(8 of 342 were unidirectional), showing no detectable inputs

from P, LM, AL, and RL to the gustatory area (GU) (Figure 7B)

and from AL and PM to MOp. Note that, in Figure 7B, the distri-

bution of colors is not perfectly symmetrical across the diagonal,

indicating that the connection weights between pairs tended to

be asymmetrical. For example, area MOp received only weak

inputs from visual auditory and posterior parietal areas but

projected back strongly to these areas. Overall, inputs from the

gustatory, visceral, motor, somatosensory, and prefrontal cortex

to visual and auditory areas were stronger than the ascending

inputs from these sensory areas.

The G19x19 graph has M = 334 (binary) directed links from the

maximumpossible ofN(N� 1) = 342, and, therefore, it is strongly

interconnected, with a very high graph density of r = 0.97 (97%)

(see Network Density in the STAR Methods). Because it is an

edge-complete subgraph of the full interareal network (FIN),

the density of G19x19 is expected to be comparable with that of

the FIN.

The in-degrees of the G19x47 graph (i.e., the number of source

areas projecting to each of the 19 target areas) range from 38 to

46 with a mean of < k > in = 44.8 (Figure S4A); their distribution is

asymmetrical and not concentrated around the mean but,

instead, strikingly close to the maximum (Figure S4A, top right).

To estimate the density of the FIN, the expected number of

connections MFIN� < k > in NFIN = 2,107 for the FIN (G47x47) leads
uted data for the 14 areas that received unmixed injections in Oh et al. (2014).

s in the raw data but zero in the computed.

al. (2014): computed data (red) and present study (gray). Source areas were as

al part (ACAv), agranular insular area dorsal part (AId), agranular insular area

), GU, infralimbic area (ILA), MOp, MOs, ORBl, orbitofrontal area medial part

, V1. Target areas were ACAd, GU, ILA, MOp, MOs, RSPd, SSp-bfd, and V1.

. Inset, correlation diagram.

non-zero both in Oh et al. (2014), raw data (blue, the 14 areas that received

ce areas were as follows: MOp, SSp-bfd, and V1. Target areas were as follows:

ray bars) compared with raw data in Oh et al. (2014) shown in (B).

puted data (red).

constant is close to the one in the raw data in (G).

r injections in the superior colliculus, pontine nucleus, and basal ganglia with a



A B

Figure 7. Weighted Connectivity Matrix

The strengths of the projections (FLNe) are color-coded: black, absent connections; green, intrinsic projections where FLN is not indicated. For multiple in-

jections, FLNe indicates the arithmetic mean.

(A) Rows, one of the 47 source areas; columns, one of the 19 injected target areas. Note that the SSp-bfd and SSp-un subfields are listed as separate areas.

The row and column ordering was determined by a clustering algorithm based on input and output profile similarity.

(B) A weighted connectivity matrix for the 19 3 19 subgraph.

See also Figures S4, S6, and S8 and Table S6.
to the prediction that rFIN = MFIN / [NFIN (NFIN – 1)] � < k > in /

(NFIN � 1) �0.97) (see Network Density in the STAR Methods).

A dominating set analysis (Markov et al., 2014a) shows that,

for all sets of two target area combinations from the 19 target

parcels (171 pairs), 92% of them dominate 100% of the 47

parcels (Table S2; see Network Density in the STAR Methods).

Thirteen parcels of 19 (68%) are fully connected.

Because the present study sampled only 19 areas, we may

ask whether it is legitimate to infer the high density of the full

network from these data. To answer this question, we first

examined the coverage of the injected areas across the cortex

(Figure S5). This shows that injected areas are reasonably well

distributed. Nevertheless, could we, by chance, have injected

a subset of areas in the mouse that exhibit unusually high

in-degrees? Our evidence indicates that this is not the case
(see Partial Coverage and Global Claims in the STAR Methods);

the necessary equivalence of in- and out-degrees coupled with

graph theoretic analysis of the different datasets and parcellation

schemes support the conclusion that the mouse cortical con-

nectome is indeed ultra-dense.

Communication Efficiency in the Weighted Cortical
Network
Increasingly, the investigations of weighted networks are

providing deeper insights into large-scale brain networks (Alstott

et al., 2014; Bassett and Bullmore, 2016; Ercsey-Ravasz et al.,

2013; Markov et al., 2013b; Muldoon et al., 2016; Song et al.,

2014). Continued refinement of such approaches will be impor-

tant for understanding the consequences of the ultra-high den-

sity network of the mouse brain relative to the sparser networks
Neuron 97, 698–715, February 7, 2018 709
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Figure 8. Local and Global Communication Efficiency

(A–C) Macaque data (taken from Ercsey-Ravasz et al., 2013).

(A) Effects of graph density, via sequentially deleting weak (blue, green) and strong (red, black) links, on global efficiency (Eg) and local efficiency (El). The black

arrow shows where the graph exhibits onset of unreachability (16% density), indicating the high-efficiency backbone shown in (C).

(B) Weight-based layout, macaque full density (all 536 links). The Kamada-Kawai force-based algorithm for graph drawing reveals optimal layout, with edges

representing springs proportional to the link weights.

(C) High-capacity backbone; blueedges are the 130strongest connections (16%density) afterweak link removal (thin gray edges), indicated by the black arrow in (A).

(D–F) Same analysis as in (A)–(C) but for present mouse data.

(D) The mouse graph exhibits onset of unreachability at 26% density.

(E) Weight-based layout, mouse full density (all 334 links).

(F) High-capacity backbone; blue edges are the 90 strongest connections (26%density) after weak link removal (thin gray edges), indicated by the black arrow in (B).

(G) Same analysis as in (A) but for mouse computed data from Oh et al. (2014).
of larger brains (see Network Communication Efficiency in the

STAR Methods).

When sequentially removing from the macaque network the

weakest (smallest FLNe) links, the global efficiency Eg stays

nearly constant (Figure 8A, green line) until more than 76% of

the links are removed, indicating the existence of a high-band-

width, global efficiency backbone embeddedwithin the network.

This ensures a stable, baseline, high-bandwidth average infor-

mation transfer rate across the cortex, independent of the activ-

ity along the weak, long-range connections. The local efficiency

El, however, shows a fast increase with the sequential removal of

the weak links (Figure 8A, blue line). This happens because, as
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explained in Ercsey-Ravasz et al. (2013) and Markov et al.

(2013b), pruning the interregional shortcuts makes the network

more localized andmodular and decreases interactions between

the diverse functional modalities. As the weak links are removed,

the local pathways between neighbors of a node through the rest

of the network are mostly made of high-bandwidth (large FLNe)

projections, resulting in higher conductance values. The picture

that emerged from this analysis for the macaque was that the

cortical network has a structure that is well adapted to high-

volume local information processing via high-conductance local

pathways and also to a stable, nearly constant efficiency level of

global information processing. It also revealed the relationship



between network modularity and long-distance functional inter-

actions, illustrated by the distribution of network communities

that formwhen weak long-range links are present or absent (Fig-

ures 8B and 8C).

How does the mouse network compare with the macaque?

Figures 8D–8F show the results of the same analysis for the

mouse data. Interestingly, the overall behavior of transmission

efficiency is similar between the two mammals, suggesting

that these features are strongly constraining for the mammalian

brain. Because Eg and El are both captured by the exponential

distance rule (EDR) in the macaque (Ercsey-Ravasz et al.,

2013) and because EDR holds in the mouse as well (Horvát

et al., 2016), this reflects EDR as an organizational principle. In

the mouse, as in the macaque, the areas also cluster into func-

tional regions (compare Figure 8E with Figure 8B). Further, the

high-bandwidth backbone (Figure 8F) presents stronger clus-

tering than the full network (Figure 8E), just like in the macaque

(compare Figure 8C with Figure 8B). However, there are signifi-

cant differences between the two species. From a network point

of view, the clusters in the macaque are stronger, with more

high-bandwidth intra-cluster connections than high-bandwidth

inter-cluster connections, especially for primary areas, whereas

in the mouse the clusters are weaker, with significant inter-clus-

ter high-bandwidth connections. Moreover, although there are

no strong connections between primary areas in the macaque,

those do appear in the mouse, notably with a projection from

V1 to the SSp barrel field (SSp-bfd). When the same analysis is

repeated on the Oh et al. (2014) data (Figure 8G), the local effi-

ciency has a weaker increase relative to the global efficiency

compared with the present mouse data (Figure 8D) and

macaque data (Figure 8A). This presumably happens because

of the inconsistencies discussed in the rest of the article.

DISCUSSION

We find that mouse interareal connectivity is comparable with

the macaque in showing relatively high consistency and well-

defined connectivity profiles but differs in possessing a much

higher graph density. Our findings, using a deterministic meth-

odology, give significantly different results from the computa-

tional data reported by Oh et al. (2014), and we explored the

effect of these differences via an analysis of the high-efficiency

backbone. Finally, this weighted graph analysis reveals marked

differences in the cortical connectomes of the mouse and

macaque.

Technical Considerations
PVtdT-expressing mice allowed accurate areal parcellation in

each brain used for tracer injections, as reflected in the spatial

map of labeled projection neurons shown in Figure S2. The utili-

zation of quantitative retrograde tracing in these flat maps was

an important part of our experimental design, aimed at mini-

mizing inter-animal sampling errors. The experimental design

of the present study made it possible to verify that the uptake

zone of the injection site (see Suitability of DY Tracing in the

STAR Methods) was entirely confined to the intended area for

the 27 cases fully analyzed (of 102 injections). Modeling of

FLNe variance in repeat injections across animals allowed
exclusion of a geometric distribution in favor of a negative

binomial distribution (Figure 3). Ranking FLNe values revealed

log-normal distributions spanning 5 orders of magnitude with

estimated 95% confidence intervals that satisfactorily contained

the mean values (Figure 3). In addition, the consistency analysis

of repeat injections showed that means in excess of twenty-four

labeled neurons showed high consistency across injections

(Figure 4). Finally, the dominating set analysis of the cortical sub-

graph studied here suggests that the full matrix may indeed have

a density of 97% (Figure 7).

This density is considerably higher than the maximum 53%

reported in the probabilistic mouse connectivity matrix

(Oh et al., 2014) and in a meta-analysis of rat intracortical con-

nections (Bota et al., 2015). High connection density might be

caused by spillage of DY beyond the borders of areas or gray

matter and/or uptake by fibers of passage and damaged axons

(Keizer et al., 1983). Although such concerns are difficult to rule

out entirely, examination of image stacks (Figure 2) revealed the

location and 3D extent of the injection sites, allowing us to

eliminate cases with spillage across areal and gray/white

matter borders. Another potential concern involves labeling of

area-to-area-projecting neurons via tracer uptake by inadver-

tently injured axons running through layers 5 and 6 (Coogan

and Burkhalter, 1993). Control experiments (not reported

here) indicate that injuring callosal fibers is necessary for retro-

grade DY labeling of interhemispheric projecting neurons,

whereas application of DY to uninjured fibers of passage is

ineffective. Thus, judged by the tight and topographically

precise distribution of DY-labeled cells (Figures 2 and S2), we

consider labeling via interareal deep-layer axons likely to be

negligible.

Our experimental design involved implementing a procedure

to parcellate the mouse cortex that was applicable in each

experimental case and therefore avoided registration to a tem-

plate, aswas done in the study of Oh et al. (2014). By using PVtdT

mice, we were able to generate such an areal map for each

mouse (Figure S1C). Although the parcellation by Oh et al.

(2014) relied on different, presumably structural features in back-

ground fluorescence, the overall layout of the CCF and the

parcellation used in the present study are notably similar (Figures

S1A and S1B). Nevertheless, because we found a different

connection density than Oh et al. (2014), it is important to

consider whether this may be attributable to differences in par-

cellation schemes. Comparing the density observed in the two

parcellation schemes gives an estimation of the relative accu-

racy of the density measure and its sensitivity to small changes

in parcellation. Analysis of the present data using the parcellation

of Oh et al. (2014) yielded a density of 95.7%, nearly identical to

that of the present study (97.4%) (Figure S6). Further, our anal-

ysis of the raw anterograde data generated by Oh et al. (2014) re-

vealed an ultra-dense network of 90.1% (see Partial Coverage

and Global Claims in the STAR Methods). Hence, the minor par-

cellation differences did not have a significant effect on connec-

tion density, regardless of whether it was derived by anterograde

studies (Oh et al., 2014) or retrograde tracing (this study). Never-

theless, referencing connections to the individually derived map

rather than a template may account for the higher consistency of

connectivity profiles in the present study.
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A second aim of our study was to compare the cortical graph

density of mouse and macaque. Given the large differences in

brain size, one possible concern is that themouse injectionsmight

occupya larger fractionof eacharea, encompassing local connec-

tional heterogeneities (Falchier et al., 2002; Malach, 1989) and,

hence, labeling a larger proportion of the total afferents to the in-

jected area. We consider this unlikely to be amajor factor, howev-

er, because measurements of injection sites showed that, relative

to brain size (Sincich et al., 2003; Stevens, 1989), the volumes of

DY injections in mouse and macaque were similar (Figure S7).

Another concern is that the longer distances in the largermacaque

brain may lead to suboptimal labeling of widely separated areas.

Elsewhere, we have argued that this is unlikely, given that survival

times exceed the active retrograde transport times required and

that the intensity of individual cell labeling does not decline

discernibly with increases in distance (Markov et al., 2014a).

Functional Implications of the Present Results
Graph density is an important measure of the level of connectiv-

ity in a network. Although many networks are sparse (e.g., social

networks, technological/information technology [IT] networks,

infrastructure networks, gene regulatory networks, metabolic

networks, and protein interaction networks), cortical interareal

networks, surprisingly, form high-density graphs. A graph is

considered sparse when the number of links is of the same order

as the number of nodes; for example, a network of 19 nodes

would be sparse when it has 20�50 directed links, not the 334

reported here. The high-density character of the cortical

network was first reported in the macaque, with a graph density

of 66% (Markov et al., 2011). The current data, obtained with the

same deterministic approach, reveal an ultra-dense mouse in-

terareal network (97% density, nearly a complete graph). It is

consistent with a predicted decrease in density with increasing

brain size (Ringo, 1991). Themuch-expanded human cortex has

a reported 180 areas per hemisphere (Glasser et al., 2016),

about 4-fold greater than the 41 reported here for the mouse

and more than the �130 areas reported for the macaque (Van

Essen et al., 2012). An intriguing but unresolved question is

whether the human cortex might exhibit network sparsity, re-

sulting in specific structural and functional consequences as

well as an increased susceptibility to disconnection syndromes

(Bullmore and Sporns, 2012; Friston and Frith, 1995; Horvát

et al., 2016).

The high cortical density implies that almost all area pairs in the

mouse have direct connectivity, both ways, suggesting high inte-

gration of information across the entire cortical network.

Although, at such high densities, specificity is lacking for the

purely binary graph, it is restored when we take into account

the weights of the connections. Inspection of the weighted con-

nectivity matrix in Figure 7B demonstrates striking asymmetries

in many bidirectional connectivity strengths, showing thatG19x19

is a directed graph with strong weight specificity. This is also

evident from a comparison of individual tracer injections; for

example, V1 injections show sparse labeling of somatosensory

sub-areas, whereas somatosensory injections show much

stronger labeling in V1. To decipher processing and information

flow in such networks, one must use methods that exploit the

weighted nature of connections (Barrat et al., 2004; Newman,
712 Neuron 97, 698–715, February 7, 2018
2004) and the geometrical and morphological features of the

areas within the cortical plate.

Despite its small size (0.4 g in weight), the mouse brain has

become an increasingly important model for investigating higher

functions of the cortex using sophisticated methods that enable

unprecedented progress in neuroscience. The fact that the

mouse cortex has a graph density of 97% strongly affects how

we understand the relationship between the structure and func-

tion of the cortex. The mouse cortical graph can achieve a high

functional specificity despite its high density because each

area has distinct connectivity profiles (Bressler and Menon,

2010; Markov et al., 2013a; Passingham et al., 2002). Compari-

son of the present results with findings in the macaque (Markov

et al., 2011, 2014a) shows specificity of the connectivity profiles,

reflecting similar levels of variability in both species.

There are multiple origins of variability of cortical connectivity.

The number of cortical areas in an ancestral mammal common

to rodents and primates is not known, but evolution evidently led

to an increase in the number of cortical areas in the primate lineage

(especially humans) compared with the rodent/mouse lineage

(Kaas, 2000; Striedter, 2005). Evolutionary changes include a rela-

tive increase in theextent of the corticalmantle that is referred toas

the association cortex in primates (i.e., the cortex outside of the

early sensory/motor areas) (Sousa et al., 2017). Cortical develop-

ment is known tobeunderboth intrinsic andextrinsic factors. Envi-

ronmental factors that are known to influence the development of

the cortex (Kennedy and Dehay, 1993; O’Leary et al., 2007) could

potentially have a differential effect on arealization and variability in

cortical connectivity in mouse and macaque (Buckner and Krie-

nen, 2013). Further, the laboratory mouse is a highly inbred strain

that may exhibit less phenotypic variability than the macaque.

Many of the connections linking cortical areas show very low

weights. Nevertheless, weak projections showgood consistency

both inmouse (present study) andmacaque (Markov et al., 2011,

2013a, 2013b). Although the role of weak connections in brain

networks is unknown, in social and aging biological networks,

the loss of weak connections may render the system unstable

(Csermely, 2006; Granovetter, 1973). A similar hypothesis was

used in theoretical analysis of the macaque cortical connectome

(Goulas et al., 2015) and in recent imaging data in humans (Bas-

sett and Bullmore, 2016). Our confirmation that weak connec-

tions are consistent in the mouse highlights the importance of

considering them in large-scale models of brain networks.

What does all this tell us about neural function? The combina-

tion of a high-density and marked connectivity profiles affirms

the specificity of the mouse cortical graph but nevertheless sug-

gests a comparatively high redundancy in the mouse cortex

compared with larger brains, which are predicted to be sparse

(Horvát et al., 2016). Future analysis of the weighted features of

high- and low-density cortical graphsmay suggestwhich features

are invariant and which have adaptive value. These lines of

research, exploring the network properties of the small and large

brain and informed by differences in scaling rules across rodents

and primates (Ventura-Antunes et al., 2013), are part of the

emerging field of comparative connectomics (Horvát et al.,

2016; van den Heuvel et al., 2016; Wang and Kennedy, 2016).

The present study provides aweighted, edge-complete subgraph

of the mouse cortex that will facilitate the development of



comparative models across species. To the extent that such

graphs are based on a uniform coverage of the cortex, the results

computed on them should be representative of the expected

values for the full connectome. They also serve as templates on

which models of the cortex can be implemented and the results

compared among them and with those from the data (Ercsey-

Ravasz et al., 2013; Horvát et al., 2016; Noori et al., 2017; Song

et al., 2014). This will be important for assessing the limitations

of the rodent model for understanding the human brain. For

example, the dense network linking the primary sensory areas in

the mouse have only a limited anatomical counterpart in primates

and might dictate a rodent-specific multimodal sensory integra-

tion process (Lee and Whitt, 2015; Olcese et al., 2013; Teichert

and Bolz, 2017). Finally, these data will also facilitate the applica-

tion of network control frameworks to help predict the neural func-

tion of diverse network modules (Yan et al., 2017).
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

M2 Millipore Cat# MAB367, RRID:AB_94952

VGluT2 Millipore Cat# AB2251-I, RRID:AB_2665454

Deposited Data

FLNe data This paper http://www.core-nets.org/

Experimental Models: Organisms/Strains

Mouse C57BL/6J The Jackson Laboratory Cat# JAX:000664, RRID: IMSR_JAX:000664

Mouse B6.129P2-Pvalbtm1(cre)Arbr/J The Jackson Laboratory Cat# JAX:008069, RRID: IMSR_JAX:008069

Mouse B6;129S6-

Gt(ROSA)26Sortm9(CAG)tdTomato)Hze/J

The Jackson Laboratory Cat# JAX:007905, RRID: IMSR_JAX:007905

Mouse Slc17a6tm2(cre)Low//J The Jackson Laboratory Cat# JAX:016963, RRID: IMSR_JAX:016963

Mouse B6;Cg-Chrm2tm1.Hze/J The Jackson Laboratory Cat# JAX:030330, RRID: IMSR_JAX:030330

Software and Algorithms

Mercator Explora Nova http://www.exploranova.com

MorphoStrider Explora Nova http://www.exploranova.com

Adobe Illustrator CS5 Adobe Systems http://www.adobe.com

Python 2.7 Python Software Foundation http://www.python.org/

R R core team http://ww1.r-project.com

Pajek Vladimir Batagelj, Andrej Mrvar http://mrvar.fdv.uni-lj.si/pajek/

Akaike’s Information Criterion Akaike, 1974 https://stat.ethz.ch/R-manual/R-devel/library/

stats/html/AIC.html

Generalized linear model McCullagh and Nelder, 1989 https://stat.ethz.ch/R-manual/R-devel/library/

stats/html/glm.html

Kamada-Kawai force-based algorithm Kamada and Kawai, 1989 http://mrvar.fdv.uni-lj.si/pajek/

Other

Diamidino Yellow EMS-Chemie, Gross-Umstadt, Germany http://www.ems-group.de

Mouse anterograde projections raw data Allen Brain Institute Oh et al., 2014

Mouse anterograde projections

computed data

Allen Brain Institute Oh et al., 2014
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents and resource may be directed to the Lead Contact, Henry Kennedy (henry.kennedy@

inserm.fr).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Retrograde tracing experiments with Diamidino Yellow (DY), immunostaining for M2 muscarinic acetylcholine receptor (M2),

vesicular glutamate transporter 2 (VGluT2) and cytochrome oxidase (CO) histochemistry were performed in 141 male and female

mice. 33 C57BL/6J (Jackon Lab) (of which 14 injected with DY, 3 of which successful for this study; 19 used for immunostaining

and histochemistry); 88 PV-Cre (B6.129P2-Pvalbtm1(cre)Arbr/J, Jackson Lab) x Ai9 (B6;129S6-Gt(ROSA)26Sortm9(CAG-tdTomatoHze/J,

Jackson Lab) of which 24 successful for DY labeling in this study; 8 for fluorescence imaging of VGluT2 (Slc17a6tm2(cre)Lowl/J, Jackson

Lab); and 12 for fluorescence imaging of M2 (B6;Cg-Chrm2tm1.Hze/J, Jackson Lab). All experimental procedures were approved by

the institutional Animal Care and Use Committee at Washington University.
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For the 27 mice which were successfully injected, the age span is 8-30 weeks, and sex is known for only 2 cases, both females

(Table S6). The others are mostly males, for technical reasons – females being retained for breeding. Sex was not registered because

there are no known sex differences in cortical connectivity.

METHOD DETAILS

Abbreviations
A - Anterior area

ABI – Allen Institute for Brain Science

ACAd, ACAv - Anterior cingulate area dorsal part, ventral part

AIC – Akaike Information Criterion

AId, AIv, AIp - Agranular insular area dorsal part, ventral part, posterior part

AL – Anterolateral area

AM - Anteromedial area

AMY - Amygdala

AOB - Accessory olfactory bulb

AON - Anterior olfactory nucleus

ARA – Allen Reference Atlas

AUDp, AUDpo, AUDv - Auditory cortex primary area, posterior area, ventral area

CCF – Common Reference Frame

CoA – Cortical amygdala

DP - Dorsal posterior area (also known as PD; Kimura et al., 2004)

DY – Diamidino Yellow

ECT - Ectorhinal area (also referred to as area 36; Beaudin et al., 2013)

EDR – Exponential distance rule, which is the negative exponential dependence of weights on distance (Ercsey-Ravasz

et al., 2013)

ENTl, ENTm - Entorhinal area lateral part, medial part

FIN - Full interareal network (G47x47)

FLNe – extrinsic Fraction of Labeled Neurons

FRP - Frontal pole

GU - Gustatory area

G19x19, G47x47, G19x47 – Cortical graphs (number of target areas X number of source areas)

HPF - Hippocampal formation

ILA - Infralimbic area

IT – Information technology

< k > in – Average in-degree (average number of source areas projecting to a target area)

LI - Laterointermediate area

LLA - Laterolateral anterior area

LM - Lateromedial area

M, MFIN – The number of directed links in G19x19 and G47x47, respectively

MDS – Minimum Dominating Set

MM - Mediomedial area

MOp, MOs - Motor cortex primary, secondary

N, NFIN - The number of nodes in G19x19 and G47x47, respectively

NLOT – Nucleus lateral olfactory tract

OB - Olfactory bulb

OT - Olfactory tubercle

ORBl, ORBm - Orbitofrontal area lateral part, medial part

P - Posterior area

ParS - Parasubiculum

PERI - Perirhinal area (also referred to as area 35; Beaudin et al., 2013)

Pir - Piriform cortex

PL - Prelimbic area

PM - Posteromedial area

POR - Postrhinal area

PORa – Postrhinal anterior (previously annotated as 36p; Wang et al., 2011)

PreS – Presubiculum

PV - Parvalbumin
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rf – Rhinal sulcus

RL - Rostrolateral area

RSPagl, RSPd, RSPv - Retrosplenial area agranular part, dorsal part, ventral part

r, rFIN - The densities of the directed graphs G19x19 and G47x47, respectively

SBRI – Stem Cell and Brain Research Institute

SSp - Somatosensory cortex primary (barrel field [SSp-bfd], lower jaw [SSp-lj], lower limb [SSp-ll], upper limb [SSp-ul],

trunk [SSp-tr], nose and mouth [SSp-nm])

SSs - Somatosensory cortex secondary

SUB – Subiculum

tdT - tdTomato

TEa, TEp -Temporal area anterior part, posterior part

TR - Postpiriform transition area

V1 – Primary visual area

VISC - Visceral area

VISa - Visual anterior

VISal - Visual anterolateral

VISam - Visual anteromedial

VISli - Visual intermediolateral

VISlm - Visual lateromedial

VISp - Visual primary

VISpl - Visual posterolateral

VISpm - Visual posteromedial

VISpost - Visual postrhinal
Tracer injections
Prior to tracer injection, mice were anesthetized with a mixture of Ketamine (86 mg $ kg �1) and Xylazine (13 mg $ kg-1, i.p) and

secured in a headholder. Body temperature was maintained at 37�C. Left-hemisphere tracer injections were made by inserting a

glass pipette (20 mm tip diameter) through the dura into the brain and injecting DY (50 nl, 2% in H2O; EMS-Chemie, Gross-Umstadt,

Germany) by pressure (Picospritzer, Parker-Hannafin). Injections were aimed stereotaxically 0.35 mm below the pial surface and

often required pulling back the pipette to correct proportionally for dimpling of the dura and confining potential injury to layers

1-4. Cases in which injected DY spilled into the white matter or across areal borders were excluded from the study. From a total

of 102 DY injections, 27 were successfully confined to 17 distinct areas and two subareas of SSp (Figures 2A–2F). The origin of

the coordinate system was the intersection between the midline and a perpendicular line drawn from the anterior border of the trans-

verse sinus at the posterior pole of the occipital cortex. The injection sites identified as 120-280 mm-wide crystalline deposits of DY

(Figures 2A, 2D, and 2F) of occipital, temporal, insular, parietal, restrosplenial, motor, cingulate and prefrontal cortex. Their details are

the following, specifying the injected area, the anterior/lateral position in mm, and the number of successfully injected animals: ACAd

(6/0.1, n = 1), AL (2.4/3.7, n = 1) (Figure 2E), AM (3/1.7, n = 2), AUDpo (2.3/5, n = 1), DP (4.5/2, n = 1), GU (6/4, n = 1), LM (1.4/4.2, n = 3)

(Figure 2D), MM (1.9/1.6, n = 1), MOp (6.45/2, n = 1), P (0.7/4.1, n = 1), PL (6.8/0.1, n = 1), PM (1.9/1.6, n = 1) (Figure 2F), RL (2.8/3.3,

n = 2), RSPd (2.1/0.4, n = 1), SSp-bfd (3.4/3.25, n = 2), SSp-un (3.4/2.4, n = 1), SSs (3.75/3.25, n = 1), V1 (1.1/2.4-2.9, n = 4) (Figures

2A–2C), VISC (4.2/4.5, n = 1). Note that under fluorescence illumination, injection sites appeared larger, but nevertheless showed no

apparent spread to neighboring areas. In all cases, retrograde DY labeling was very bright and labeled large numbers of neurons in

multiple areas distributed across the cortex.

Suitability of DY Tracing
The choice of a highly sensitive retrograde tracer was crucial. In contrast to tracers such as FluoroGold and Cholera Toxin B, DY is

predominantly a nuclear stain, whichmeans that labeling is dense and spot-like (Figure S2B) and lacks the ambiguities introduced by

the often fragmented appearance of cytoplasmically labeled neurons. Hence, high-density labeling, such as found in the present

project, can be accurately mapped out and the full range of labeling density successfully captured (Figure S2B).

How reliable is DY tracing with respect to sensitivity, restriction of pick-up zone and minimization of false positives?

First, the reason for using DY was to enable direct comparison of cortical connectivity in mouse and monkey. The identification of

projections that were previously unknown (Markov et al., 2014b) has shown that DY is a non-selective tracer which preferentially

labels nuclei of projection neurons (Condé, 1987) with superior efficiency.

Second, importantly, DY has a highly restricted and identifiable pick-up zone making it possible to identify the area effectively

injected with great precision. DY was taken up from a crystalline bolus deposited in the cortex, which in the present study was

120-280 mm in diameter (Figure 2). Such injections were small enough to be confined to the tiny areas of the mouse cortex, but

sufficiently large to overcome possible connectional heterogeneities within an area that may cause between-injection

variability (MacNeil et al., 1997; Scannell et al., 2000). Because experiments in monkey have shown that the bolus diameter roughly
Neuron 97, 698–715.e1–e10, February 7, 2018



corresponds to the DY-uptake zone (Bullier et al., 1984a; Condé, 1987; Kennedy and Bullier, 1985; Perkel et al., 1986), we are confi-

dent that in all the reported cases here DY was captured from within a given area. To exclude DY-uptake through injured fibers we

have further confined injections to layer 1-4 and thus, minimized labeling through damaged fibers of passage between different

cortical areas (Yamashita et al., 2003), but allowing uptake of spreading tracer by terminals projecting to layers 5 and 6. Uptake

by intact fibers of passage is rare and inefficient (Payne, 1987).

Thirdly, the problem of false positives is well defined with DY. Leakage of DY from backlabeled neurons in vivo is negligible (Keizer

et al., 1983) andwe have argued elsewherewith respect to published results that there is no evidence that secondary pick-up leads to

false positives with this tracer (Markov et al., 2011, 2014a). For instance the lack of secondary uptake in cortex (Bullier et al., 1990,

1984, 1984a; Markov et al., 2014b) wasmost convincingly shown by the failure of labeling transcallosal projection neurons inmonkey

V1 after injection of DY in contralateral V2, which failed to label cells in the unconnected region of V1, away from the heavily connected

strip along the V1/V2 border (Dehay et al., 1986, 1988). Release and secondary pick-up is rare for fixed, floating sections, but as a

precaution of secondary labeling sections were immediately mounted on glass slides, air-dried and stored at �20�C until analysis

under fluorescence optics. Taken together it seems highly unlikely that, following retrograde transport to the source area, DY was

released and picked up by neurons in quantities sufficient to produce secondary labeling.

Fourthly, for comparison, anterograde labeling with viral (Oh et al., 2014) and non-viral tracers (Zingg et al., 2014) can lead to a

category of false positives that do not occur in retrograde DY tracing and complicate the interpretation of results. These include

retrograde labeling of neurons and their local axon collaterals in the projection target (LeVay and Sherk, 1983; Wang et al., 2014).

Such contamination may explain false positive cortical inputs from the superior colliculus and pontine nucleus observed

by Oh et al. (2014).

Histology
Four days after tracer injection, mice were euthanized with Ketamine/Xylazine and perfused through the heart with phosphate buff-

ered saline, followed by 1% paraformaldehyde (PFA) in 0.1M phosphate buffer (PB, pH 7.4). The cortex was immediately separated

from the rest of the brain. To unfold and flatten the cortex, the tissue was placed on a glass surface, pial surface down. Using micro-

surgical knives, the hippocampus was disconnected from neocortex along the seam between alveus and cingulate bundle, and flip-

ped outward while still attached to the entorhinal cortex. A small incision was made to separate medial from lateral orbital cortex.

Proceeding in a posterior direction the white matter was split between the corpus callosum and the cingulate bundle, enabling

the unfolding of the medial wall containing medial orbital, prefrontal, cingulate, and retrosplenial cortex. The tissue was then

transferred white matter down onto a filter paper covering a sponge and weighed down by a glass slide placed on top. The assembly

was postfixed in a Petri dish filled with 4% PFA and stored overnight at 4�C. After postfixation the tissue was cryoprotected

in 30% sucrose and 40 mm thick sections were cut on a freezing microtome in the tangential plane.

In order to assign in each mouse the injection site and DY labeled neurons to individual cortical areas, we developed a parcellation

scheme based on the distinctive distribution of PVtdT expression (see Parcellation of theCortex below). This eliminated counterstain-

ing for additional areal markers, thereby avoiding loss of signal and the associated risk of secondary labeling by leakage from retro-

gradely DY labeled cells (see Suitability of DY Tracing above). To determine the reliability of PVtdT in distinguishing distinct parcels,

we compared PVtdT borders to borders observed with M2, VGluT2 and CO reactivity, all of which have been employed previously to

parcellate rodent cortex (Ichinohe et al., 2003; Wang et al., 2011, 2012). In order to compare all four patterns we used flatmounted

PVtdT-expressing sections reacted with antibodies against M2 (MAB367, Millipore) or VGluT2 (AB2251, Millipore) using fluorescent

secondary antibodies for visualization. Alternatively, we used tdT fluorescence or non-fluorescent immunohistochemical ABC stain-

ing methods to visualize M2 or VGluT2 expression, with histochemistry to reveal CO reactivity. In each case, alternate sections were

stained for Nissl substance to reveal the cytoarchitectonic landmarks annotated in the Allen Brain Atlas. The expression patterns

were imaged under a microscope equipped for brightfield and fluorescence illumination.

Processing of labeled neurons
Sections were mounted onto glass slides and DY labeling was analyzed under UV fluorescence (excitation: 355-425 nm, emission:

470 nm) at 20 3, with a microscope controlled through a computer using the Mercator software package, running on ExploraNova

technology. This software enables the observer to manually tag individual neurons at high magnification, extensively using the Z axis

to focus on individual labeled cells (Figure S2B). High-fidelity digital charts of the coordinates of labeled neuronsweremade for all 12–

24 sections per hemisphere and digitally stored (Figure S2A). Once charting was complete, sections were imaged for PVtdT

(excitation 520-600 nm, emission 570-720 nm) (Figure 2), stained for Nissl substance with Cresyl Violet, and imaged under bright field

illumination. The images of the sections were acquired using MorphoStrider software (ExploraNova). We have extensive experience

with DY as a retrograde tracer (see Suitability of DY Tracing above). Themanual charting of neurons as described above (Figure S2B)

minimizes false positives.

The digitized charts of labeled neurons and the images of the corresponding sections were aligned in Adobe Illustrator. The sets of

images from each brain were parcellated using the regional patterns in PVtdT expression and Nissl stained cell bodies. This allowed

the creation of an individual template at layer 4 for each brain, which was then aligned via adjacent section to superficial and deep

layers by matching blood vessels.
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Parcellation of the cortex
Our choice of PVtdT expression for areal identification was inspired by the work of Saleem and Logothetis (2012), who successfully

used PV immunostaining to delineate cortical areas in rhesusmonkey. However, there is no a priori reason to assume that the expres-

sion pattern of PVtdT outlines areal boundaries in the mouse. As this is of course true for any individual architectonic marker, we

compared the pattern of PVtdT expression with those of immunolabeling for M2, VGluT2, histochemical reactivity for CO, and Nissl

staining. Based on previous observations (Wang et al., 2011), our expectation was that comparing different markers would reveal

overlapping or complementary spatial expression gradients reflecting areal borders across individuals. The excellent alignment of

markers in, for example layer 4 of V1 and SSp (Figure 1) affirms the utility of the PVtdT borders for delimiting areas.

What follows explains how, in tangential sections through layer 2-5, overlapping or complementary patterns of M2, VGluT2 and CO

labeling, and overlaying visuotopically mapped areas (Wang and Burkhalter, 2007) to stained landmarks were used to further sub-

divide the 25 parcels identified by PVtdT expression (Figure 1A, white dashed outlines). Although the PVtdT map was less detailed

than the 36 areas annotated in the CCF (Figures S1A and S1C), the overall layout, shapes and sizes of multiple parcels of our atlas is

notably similar (Figure S1B). Moreover 19 of the parcels shown in the PVtdTmapwere simple (i.e., showed no additional subdivisions

except for subfields of body parts in SSp) (Figure 1A, black dashed lines), and closely matched those marked positively or negatively

by M2, VGluT2 and CO (Figures 1B–1D and S1C–S1F). These included: V1, SSp, SSs, AUDp, GU (Chen et al., 2011; previously

annotated as the tooth/tongue representation of SSp; Remple et al., 2003; Wang et al., 2012), VISC (previously referred to as poster-

oventral area; Fabri and Burton, 1991; Wang et al., 2012; also known as insular auditory field or insular somatosensory field; Rodgers

et al., 2008; Sawatari et al., 2011). Further, areas identified by PVtdT-expression alone included the posterior (AIp), ventral (AIv)

and dorsal (AId) agranular insular areas (Van De Werd et al., 2010), ACAd, ACAv (Tanahira et al., 2009; Van De Werd et al., 2010),

PL and ILA (Van De Werd et al., 2010), FRP (ARA), ORBm and ORBl (Van De Werd et al., 2010), as well as MM (Wang et al.,

2012), ECT and PERI (Beaudin et al., 2013).

For the 6 remaining PVtdT-expressing parcels, at least one of M2, VGluT2 and CO markers revealed additional subdivisions,

indicated by colored labels and dashed lines in Figure 1A, while 7 borders had to be inferred from their stereotypical position relative

to PVtdT-labeled landmarks. Such compound parcels were found in retrosplenial (RSPagl, RSPd, RSPv), motor (MOp, MOs),

temporal (TEa, TEp), auditory (AUDv, AUDpo, DP, AUDd) and visual extrastriate (one parcel containing AL, LLA, RL, A, AM and

PM, and another with LM, LI, P, POR and PORa) cortex, denoted in Figure S1C by red and pink shading. These compound parcels

were sub-divided as follows:

Retrosplenial cortex, here we observed intensive expression of M2 in its 0.5 mm wide agranular part (RSPagl) and moderate

VGluT2 and M2 expression in its �0.25 mm dorsal part (RSPd).

Motor cortex, showed intense, uniform PVtdT expression without an obvious boundary between MOp and MOs (Tanahira et al.,

2009) (Figures 1A and S1C). However, a clear border between both motor areas was apparent in the transition from strong to

weak CO reactivity (Figures 1D and S1F). On PVtdT maps we therefore marked MOp as 1-2mm-wide curved strip along the medial

border of SSp and MOs as a 1mm-wide strip adjoining MOp on the medial side.

Temporal cortex, TE, was identified as a U-shaped belt of extremely weak and uniform PVtdT expression at the ventral border of

auditory cortex (Figures 1A and S1C), which was further subdivided by VGluT2 into a more darkly labeled anterior half (TEa) and a

weakly expressing posterior portion (TEp) (Figures 1C and S1E).

In auditory cortex, the primary area (AUDp) was surrounded by aweakly labeled, uniform belt (Figure 1A, orange labels; Figure S1C;

pink shading). On theM2map, the belt was further subdivided into themore darkly labeled AUDv, AUDpo andAUDd and the intensely

labeled posterior dorsal auditory area, DP (also known as PD; Kimura et al., 2004) (Figure 1B, orange labels; Figure S1D). On the

PVtdT map AUDv and AUDpo were identified as the anterior and posterior half of the weakly-expressing parcel lateral to AUDp (Fig-

ures 1A and S1C). DPwas identified in the M2map as a separate rectangular parcel anterior to TEp, lateral to LI, posterior to SSs and

posterior to AUDd (Figures 1B and S1D). In the VGluT2 and CO maps DP stood out as a medially-facing nose of a uniformly labeled

auditory cortex (Figures 1C, 1D, S1E, and S1F, dark red shading). The overall partitioning of auditory cortex closely resembled the five

separate tonotopic maps (Issa et al., 2014; Tsukano et al., 2016).

In extrastriate visual cortex, PVtdT expression was more intense in a boot-shaped compound parcel (Figure S1C, red shading) at

the lateralposterior side of V1 (Figure 1A, yellow labels), surrounded by ECT, TEp, DP and AL. PVtdT expression in the parcel

continuing forward and around the tip to the medial side of V1 (Figure S1C, pink shading) was weaker (Figure 1A, blue labels).

Both of these extrastriate visual PVtdT parcels overlapped with similar parcels found in M2 and CO maps (Figures 1B, 1D, S1D,

and S1F). Although bipartite by all of these markers, previous topographic mapping of extrastriate visual cortex has shown that

the anteromedial parcel contained AL, RL, A, AM and PM, whereas the lateralposterior comprised LM, LI, P, POR and PORa

(previously denoted 36p) (Wang and Burkhalter, 2007; Wang et al., 2011). Of all these areas only POR and PORa stood out as a

VGluT2-expressing sub-parcel located at the foot of the lateral PVtdT-expressing boot (Figures 1C and S1E, red shading). Further-

more, the toe wasmore darkly stained withM2 andmarked area PORa (Figures 1B and S1D, dark red shading), which was previously

known as 36p and identified by its low abundance of the non-phosphorylated intermediate filament protein, SMI32 (Wang et al.,

2011). Although PVtdT revealed few details of this organization, labeling in layer 4 provided readily identifiable landmarks

(V1, SSp, RSP, AUDp) and unambiguous reference points (tip of V1, barrels of SSp, rhinal fissure [rf], TEp) for accurately positioning

all of the extrastriate areas and complete their borders based on the size and shape determined previously by mapping visuotopic

connections (Wang and Burkhalter, 2007; Wang et al., 2011). For example in the lateral parcel, POR was centered on the foot of the
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PVtdT expressing boot lateral to V1 (> 0.75/ < 1.5 mm lateral/medial of V1 and 0.75 mm anterior to the rf), PORa occupied the toe

(> 1.5mm lateral of V1) and P the heel (< 0.75 mm lateral of V1, < 0.6 mm anterior to the rf) (Figure S1C). LM and LI occupied medial

and lateral parts of the boot shaft, respectively (LM: < 0.8 mm lateral of V1, > 1.25mm anterior to POR/P; LI: > 0.8/ < 1.1 mm lateral of

V1, < 1.2 mm anterior to POR).

In the weakly PVtdT-expressing parcel around the tip and the medial side of V1, M2- and CO-expression was distinctly sparser

(Figures 1A, 1B, and 1D, blue labels; Figures S1C, S1D, and S1F, pink shading). Although uniform by these markers, topographic

and callosal mapping has identified six areas, AL, LLA, RL, A, AM and PM within this belt (Garrett et al., 2014; Wang and Burkhalter,

2007), which were not revealed by PVtdT, M2, VGluT2 or CO. Nevertheless, we have annotated these areas based on their stereo-

typical position relative to PVtdT-labeled landmarks. Specifically, ALwas a triangular areawith its vertex at the lateral posterior corner

of SSp, its base at the border with LM (2 mm anterior to the rf) marked by a sharp decrease in PVtdT expression (Figure 1A; Wang

et al., 2011). Of the two remaining sides onewas parallel to V1 (1mm lateral of V1) and the other ran parallel to the lateral border of SSp

from its posterolateral corner to intersect V1 at an approximately right angle (Wang and Burkhalter, 2007). LLA was the rectangle

enclosed by DP, SSs and AL and a line parallel to the V1 border, intersecting the lateral posterior corner of SSs. RL occupied a

0.7 3 1.2 mm wide rectangle between AL, V1 and SSp with the medial border aligned with the E-row of the barrel field (Figure 1A).

Area Awas a 0.653 0.75mmwide rhomboid between the tip of V1 and SSp, bordering RL and AM (Figure 1A). AM extended between

the tip of V1 to the medial corner of SSp and was bordered laterally by A (Figure 1A). Its medial border was a narrow longitudinal strip

of low PVtdT-, M2-, VGluT2- and CO-expression in MM (Figure 1A). The posterior border of AMwas a line through the tip of V1 angled

backward by 35� from the coronal axis. PM was the triangle behind AM between MM and V1 (Figure 1A). MMwas a narrow strip with

sparse PVtdT, M2, VGluT2 and CO expressions, which separates PM/AM from the strongly VGluT2-expressing agranular retrosple-

nial area (RSPagl) (Figures 1A–1D and S1C–S1F).

The accuracy of parcellation was estimated by comparing maps drawn independently by 3 investigators. This involved a zeroing

procedure by which stacks of sections were aligned to the pattern of PVtdT expression in layer 4 of V1 and SSp, the borders of 25

uniformly PVtdT-expressing parcels were outlined (Figure 1A), and the parcels were further subdivided into 41 areas based on po-

sition relative to readily identifiable PVtdT-positive or -negative landmarks (i.e., tip of V1, SSp, RSP, AUDp, TE, rhinal fissure), shape,

and size revealed by previous mapping of connections, expression patterns of M2, VGluT2 and CO (Wang and Burkhalter, 2007;

Wang et al., 2011, 2012). The spread in the location of areal borders between visual areas (LM/LI, LM/AL, LM/P, LM/POR, AL/RL,

A/AM) measured in 5 animals was 87-142 mm. Our estimate of a < 150 mm-wide transition zone between neighboring areas differs

from the sharp borders annotated in the Allen Brain Atlas (ARA; Zingg et al., 2014) and the crisp boundaries derived from averaging of

background fluorescence in sections from 1231 mice (Oh et al., 2014). It is important to note that this large sample size reduced the

variance over that seen in single cases, suggesting that our maps are not only highly accurate but as shown in Figures S1A and S1B,

remarkably similar to those of the Common Coordinate Framework. Thus the important difference to Oh et al. (2014) and Zingg et al.

(2014) is not the parcellation per se but the precise registration of DY injection sites and labeled neurons with parcellations derived in

each individual case.

QUANTIFICATION AND STATISTICAL ANALYSIS

Computation of FLNe
The assignment of the labeled neurons to their respective cortical areas resulting from the parcellation was done with in-house soft-

ware, written in Python 2.7. The fraction of labeled neurons per area (FLNe) was computed by dividing the number of labeled neurons

expressed within the area by the total number of labeled neurons, extrinsic to the injected area, from the ipsilateral cortical

hemisphere.

FLNe data is available in Table S6.

Overdispersion
Quantifying variance of weights (FLNe) allows accurate statistical inferences based on the data and estimation of the uncertainties

associated with observed weight values. This allows evaluation of connectivity profiles and provides useful constraints on how well

single injections can be used to estimate connectivity profiles (Markov et al., 2011, 2014a).

Count data are intrinsically heteroscedastic, meaning that their variability depends on the mean (Hilbe, 2007). The simplest case

occurs when counts are well-described by a Poisson distribution, and the variance equals the mean. It is usually easier to reason in

terms of the standard deviation, the square root of the variance, rather than the variance. The standard deviation (SD) of Poisson

distributed data increases as the square root of the mean. This implies that the coefficient of determination, defined as the ratio

of the SD to the mean, decreases rapidly with increase in the mean. Hence for counts of 100, 1000, 10000, and 100000 neurons,

the expected SDs would correspond to 10%, 3%, 1% and 0.3%, respectively, of the means. For the large counts involved in neural

projections, such low variability is unlikely. Previous retrograde labeling data have, in fact, demonstrated that cortical connectivity

datasets display significant overdispersion (Markov et al., 2011, 2014b; Scannell et al., 2000).

Overdispersion occurs in count data when the variance increases faster than the mean and is displayed in many datasets

(Hilbe, 2007). If overdispersion is ignored, then variance is underestimated and statistical tests become anti-conservative,

i.e., significance is attributed to differences that are within the normal variation of the dataset. This underlines the importance of
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characterizing the mean-variance relations in the data and using appropriate statistical models that incorporate terms that correctly

characterize the dispersion of the data.

Overdispersion can be characterized in a variety of ways. Previous retrograde labeling studies in macaque indicate that a negative

binomial distribution provides a reasonable description of the data. The negative binomial distribution can be derived as amixture of a

Poisson and a Gamma distribution. In effect, the Poisson mean is no longer considered to be a fixed parameter, but instead follows a

Gamma distribution. This yields a 2-parameter distribution that is specified by its mean and a dispersion parameter, q (Hilbe, 2007).

The variance of the negative binomial distribution is given by s2 =m+m2=q. As q becomes large, the mean-variance relation

approaches that of a Poisson distribution. Thus, the Poisson distribution can be seen as a special case of the negative binomial.

For q= 1, the distribution becomes a geometric distribution that is quite overdispersed. Higher values of this parameter signal less

overdispersion. Studies in macaque found an overdispersion parameter of about 7-8 (Markov et al., 2011, 2014b). Importantly, while

this reflects considerable variation in counts across injections for a given area, the variability was not sufficient to obscure the 5 orders

of magnitude range in the projection strengths obtained from a given injection.

Transformation of the raw counts to FLNe changes their statistical distribution. For example, in the case of the Poisson distribution,

normalization of counts results in a variable distributed according to binomial law (Chung and AitSahlia, 2006). The relation of the SD

to the mean of a binomial distribution is given by: s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1� mÞ=np

, where the mean is now constrained to be a value in the interval (0,

1) and n is the size of the count. Note that this is an inverted U-shaped function of the mean, but on a double-logarithmic plot, the

rising portion continues to follow a square-root law and would be expected to have a slope of 0.5. In Figure 3 this is shown by the

red curve in each graph. The curve turns down for values greater than 0.5, but no FLNe values this large are observed, so that

the initial portion of the curve can be compared with the data. Importantly, the curve provides a poor description of the data, rising

less steeply and predicting values of SD that are systematically below those in the data. This leads to rejecting a simple Poisson

model of the variability of the data, as is the case in the macaque (Markov et al., 2011, 2014b) and demonstrates evidence of sub-

stantial overdispersion.

How much overdispersion is required to model the data was assessed informally by plotting curves for different values of the

dispersion parameter and evaluating what value describes the data best. There is no simple expression for relating the normalized

counts, i.e., FLNe, to the SD for a negative binomial distribution. We estimated such a curve, however, by simulating samples from a

negative binomial distribution with a fixed dispersion and a range of mean values spanning those obtained in the data and then

normalizing the counts as if we were computing FLNe. We repeated this simulation many times and obtained an average curve

with which to compare the data. For example, the blue curve in each of the plots of Figure 3 is obtained for simulations with the

dispersion equal to 1, generating the prediction for a geometric distribution. Importantly, the data points tend to fall systematically

below this curve, providing evidence that the data are not as dispersed as a geometric distribution would predict. We rejected the

geometric case more formally by fitting a negative binomial model to the data by maximum likelihood under the constraint that the

dispersion was equal to 1 and by letting the dispersion be a free parameter. Nested likelihood ratio tests rejected the geometric dis-

tribution for the 2 injection sites shown in Figures 3A and 3B in our mouse data (LM: c2 (90) = 57.3, p = 3.8 10�14; V1: c2 ((180) = 76.8,

p = 1.9 10�18).

Given that the geometric distribution could be rejected, we repeated the simulations as described above for a wide range of disper-

sion values to estimate the expected relation between SD and mean FLNe as a function of the dispersion. We then compared these

curves with the values in Figure 3 and estimated a dispersion value that minimized the error between the simulation and the data,

which constitutes the green curves for each plot with the dispersion parameter and the 95% confidence interval (indicated in

brackets).

Accordance with the negative binomial model
In Figures 3E and 3F the error bars are twice the standard errors of the means from repeat injections.

The solid curves are the predicted values for ordered Gaussian variables with the same mean and SD as the dataset. Specifically,

we took the means of log (FLNe) represented by white dots and we computed the parameters of the Gaussian that would best fit

these points.

To evaluate whether differences between the predicted values and the data were significant, we simulated 10,000 count datasets

from a negative binomial distributionwith the samemeans as the data andwith the dispersion parameters obtained from the analyses

displayed in Figures 3A and 3B. For each dataset, we normalized the counts by the total to obtain simulated FLNe values. From these

distributions, we estimated the 2.5% and 97.5% quantiles to obtain a confidence interval (the gray envelopes in Figures 3E and 3F).

Variability and consistency
In Figures 4D and 4E we addressed specifically if it is possible in the retrograde studies in mouse and macaque to define a threshold

above which all projections can be expected to be consistent. For discrete distributions, it is expected that there is a non-zero prob-

ability of observing no neurons, even if the projection exists, simply based on sampling variability. The probability of observing such

cases would be expected to increase as the mean size of the projection decreased. In fact, the probability distributions predict the

expected incidence of such missing connections. For Poisson distributed data, the probability of observing zero neurons is e�m,

where m is the mean number of neurons in the projection. For a negative binomial distribution, the probability of observing zero
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neurons is

�
q

q+m

�q

. Deviations from such predictions in the direction of too many observations of zero labeled neurons (leading to

zero-inflation) or too few (leading to zero-deflation) constitute evidence against the statistical model used for the data. An alternative

is to explain such deviations as evidence that the connections are actually absent in some animals, providing evidence of individual

differences in the connectivity pattern. The overdispersion of the count data might be taken as evidence of individual differences in

connectivity strength, which could be due to genetic or environmental influences. However, without detailed knowledge of what

factor(s) are responsible for the overdispersion, such a hypothesis cannot be confirmed.

Figure 4D displays mouse data from 13 repeat injections in target areas, where the mean number of neurons for a given projection

across the multiple injections is plotted as a function of the total number of neurons counted for each injection. Thus, points are indi-

vidual projections. Those resulting fromdifferent injections but for the same target areas are at identical ordinate values, as they all have

the samemean and different abscissa values as injections differ only in the total number of neurons labeled in the brain. When no neu-

rons from a given source area were observed in an injection but were observed in at least one other repeat injection, the point is plotted

as a white disk but is otherwise colored. We analyzed the distribution of inconsistent projections by determining whether the features

log(Mean) and log(Total) could be used to linearly classify the presence and absence of connections. This can be implemented as a

logistic regression in which the expected value of the binary variable (Presence/Absence) is predicted by the two features.

Figure 4E displays the same analysis for the 13 repeat injections in macaque.

Evaluating Akaike Information Criterion
For every group of repeat injections in V1 and LM (Figures 3A and 3B), we modeled the number of labeled cells in the source areas as

a function of two explanatory variables: AREA (a factor with a level for each source area) and BRAIN (the individual from which the

counts were obtained). We fitted the data with generalized linear models (McCullagh and Nelder, 1989), with a negative binomial

family. We chose the link function to be logarithmic and we used the log of the total number of cells counted from each injection

as an offset or constant component, added to the model, so that in fact the FLNe was modeled.

The selection of the factors and interactions that best described the data was based on Akaike’s Information Criterion (AIC) that

evaluates what terms lead to a model with the best predictive power for new data (Akaike, 1974). AIC is defined as minus twice the

log likelihood for the best fitting model plus twice the number of parameters estimated in the model. The second term is a penalty

for complexity. Including more factors and interactions will improve the fit to the data. The AIC introduces a penalty for additional

parameters, so that in comparing several models, lower AIC values correspond to better models in the sense of balancing a trade-

off betweenmodel complexity (number of parameters) and goodness of fit.We report the difference in AIC (dAIC) between themodels

with and without the interaction between factors, so a positive value supports the model without an interaction. For example, when

AREA is considered as an explanatory variable then it is treated as a factor with as many levels as source areas that contain retro-

gradely labeled cells from the injections in the target areas. A model fit to the data containing only this factor provides estimates of

the average FLNe and its variability for each level of AREA. If, on the other hand, the best model fit to the data requires that the

FLNe values be described by the interaction of explanatory variables AREA and BRAIN, i.e., that the values for a particular area

vary significantly across individuals, then there is no basis for describing an average profile of connectivity as a signature.

Overdispersion and connectivity profiles
In Figures 5A and 5C, to illustrate the relationship between the different levels of the statistical modeling, we performed a simulation of

the expected experimental results under three different scenarios for the sampling distribution of the data: Poisson, negative binomial

with q= 7, and geometric (i.e., negative binomial with q= 1). In each case, we first simulated a log-normal distribution of FLNe with

mean and standard deviation based on the average mean and standard deviation of the log FLNe values from all of our mouse in-

jections (red, green and blue curves in Figures 5A–5C). Then we simulated 1000 repeats with dispersion specified according to

each of the models. The results of these repeats are plotted as gray, semi-transparent points in Figures 5A–5C. Figure 5D shows

the SDs of the FLNe in the source areas plotted against the mean FLNe values, from the 1000 simulations, replicating the relation

that we observed in Figures 3A and 3B.

We considered 30 hypothetical source areaswith fixedmean FLNe spanning 5 orders ofmagnitude and evenly distributed along an

average log-normal curve with the same mean and SD as one of our injections (red, green and blue, respectively, for the three

distributions). Each mean FLNe was multiplied by 106 to give the expected mean numbers of neurons in the source areas. These

values were used for generating random counts from each of the distributions (Poisson, negative binomial and geometric), as

indicated in the insets of Figures 5A–5C. The set of random counts from every simulation were then normalized by their sum to

transform them to simulated values of FLNe. This procedure was repeated 1000 times, thus revealing the expected spread of results

from 1000 injections under each of the hypotheses.

Processing Oh et al. (2014) data
The Oh et al. (2014) study reports densities from data derived computationally from mixed injections involving multiple areas, which

we call ‘‘computed data,’’ but the Supplementary Information from that study provides results obtained from a small number of

unmixed injections, which we refer to as ‘‘raw data.’’ We calculate the density of the network that we derived from those unmixed
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injections and show that it differs markedly from that reported byOh et al. (2014) for the computed data and that they aremuch closer

to our results in the present study (see Partial Coverage and Global Claims below).

In the study by Oh et al. (2014), the location of injection sites was inferred from a template. With this computational approach 86%

of the 469 injection sites in the brain were reported to involve 2-18 different structures. There were 105 injections restricted to iso-

cortex, of which 76% involved 2-9 different structures. The connections labeled by mixed injections were disentangled, and the

strengths of connections between individual areas estimated algorithmically using both mixed and injections restricted to single

structures (non-mixed injections). For the computed data, the authors derived from 452 out of 469 experiments across the whole

brain a full matrix of interareal connections, from which we extracted the ipsilateral cortico-cortical connections. In contrast, the

raw data contains connections from 26 injections confined to 14 single areas (non-mixed injections) in the isocortex.

Network density
The density of a directed graph is given by the ratio r =M/[N(N-1)] between the number of directed edges (links)M of the graph and

the maximum possible number of directed links, N(N-1), where N is the number of nodes in the graph.

Thegraphdensity of the full interareal network (FIN,which contains thewhole information about the connectionsbetween areas) is a

fundamentalmeasureof thegraph’s overall connectedness, extensively used in network science andalso in earlier analysesof cortical

connectivity (Markov et al., 2013b, 2014a; Sporns andZwi, 2004). Referring to theweighted connectivitymatrix in Figure 7A (for the full

FLNeweights data see Table S6), but employing the corresponding binary connectivitymatrix, we can infer the density of the FIN (Jan-

son et al., 2000; Markov et al., 2014a; Newman, 2010). Consequently,MFINwill be the product between the average indegrees < k > in

and thenumber of areasNFIN. Thedensity of FINwill be the ratio between this number and the total possible connectionsNFIN (NFIN – 1).

Based on an atlas of 47 areas (41 areas with SSp divided into 7 subareas; Figure S1B), the mouse FIN contains NFIN = 47 cortical

areas that represent the nodes of the G47x47 graph. The directed edges of the FIN correspond to directed connections between

nodes, with weights given by the fraction of labeled neurons. Our analysis of the FIN makes use of the G19x47 directed subgraph

of projections within FIN, which reveals all the in-degrees of the injected 19 nodes. It also makes use of the G19x19 edge-complete

subgraph of FIN, corresponding to the connections among just the 19 injected areas. BothG19x47 andG19x19 subgraphs contain com-

plete information about the status of their edges and their statistical properties would not be expected to be influenced by injections

into additional areas elsewhere in the cortex (see Partial Coverage and Global Claims below). Given that the 19 injected areas are

widely distributed across the cortex (Figures S1B and S5), the G19x19 subgraph is likely to reflect major characteristics of the FIN.

We performed a dominating set analysis onG19x47 (Table S2) for further evidence that the FIN is indeed dense (Figure S4B). In graph

theory, a subsetDof nodesof agraphGwithnodesetV is said tobedominatingG, if all elementsofVhavea link to at least onenode inD

(Kulli andSigarkanti, 1991). Herewemodify this definition slightly by saying thatDdominates x% of the nodes ofG, if an x%of all nodes

in V are linked to one ormore nodes inD. The x%=100%corresponds to ‘‘full’’ domination. This definition includes also nodes fromD.

The Minimum Dominating Set (MDS) Dmin is defined as the one that fully dominatesG and it has the smallest size (number of nodes).

Partial coverage and global claims
For the following analysis, for simplification, we’ll name ABI the data from Oh et al. (2014) and SBRI (Stem cell and Brain Research

Institute) the data obtained in the present study.

Density calculation: The density of square 1-0matrices NxN is calculated the standard way by dividing the number of 1-entries with

the number of matrix elements minus the number of intrinsic connections (A/A type entries), i.e., by N(N-1). The density of rectan-

gular 1-0 matrices NxM with N denoting the number of injected areas and N <M, is calculated by dividing the number of 1-entries by

the number of matrix elements less the number of intrinsic connections, i.e., by NM-N.

Dataset #1: The ABI anterograde (Oh et al., 2014) raw data is based on anterograde injections in 14 areas and identifies labels in a

40-area atlas. Accordingly, the 14x14 edge-complete square matrix/graph has a density of 90.11% and the 14x40 matrix has a den-

sity of 92.12%.

Dataset #2, ABI parcellation: For our retrograde data with the Oh et al., 2014 (ABI) parcellation, the matrix is 21x45 (Figure S6A),

with a density of 95.71% for the 21x21 edge-complete (injected) subgraph (Figure S6B), and a density of 96.1% for the 21x45 matrix.

Dataset #3, present parcellation: For our retrograde SBRI data with our present parcellation, the matrix is 19x47 (Figure 7A), with a

density of 97.37% for the edge-complete 19x19 matrix (Figure 7A) and the same density of 97.37% for the full 19x47 matrix.

This shows that across different parcellations and different datasets from different experiments, and different methods

(anterograde versus retrograde), the mouse matrix connectivity density is consistently above 90%.

The connectome is not uniform; as shown previously, both in the macaque and mouse, the connectome is organized into a core-

periphery structure with the cortical network core (primarily of high degree nodes) mostly comprised of associative areas. Selecting

target areas only from the core, would, indeed generate an edge-complete subgraph that is very dense. However, all datasets include

both primary and associative injected areas. In particular, ABI injected 6 primary areas, representing 43%of the 14 injected areas. SBRI

with ABI parcellation has 5 primary areas injected, representing 24% of the 21 areas injected, while SBRI with present parcellation has

the same5 primary areas injected,which forms 26%of all injected areas. Additionally, the choices of the locations of injections between

the two sets of experiments (ABI and SBRI) differ considerably. As we have shown above, all densities are consistently above 90%.

Next, we investigate the possibility that the non-injected areas contribute only with a low connectivity so that the full graph would

have a lower final density. Recall that retrograde tract tracing reveals all the incoming connections to the injected node, from both
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injected and non-injected nodes. If the non-injected nodes contributed a lower connectivity to the connectome, then we should

observe lower out-degrees from the non-injected nodes to the injected set, when compared to the out-degrees of the injected nodes

to injected set. Table S4 shows the values of the out degrees for nodes separated into the injected and non-injected groups respec-

tively. To be able to compare similar quantities, we normalize by the number of injected nodes. For example, for our data with the ABI

parcellation, there are 21 injected nodes, but an injected node can send out-links only to 20 other nodes from the injected set (no out-

links to self), whereas a non-injected node can send outlinks in principle to all the 21 injected. Thus, if we divide the outdegree of an

injected node by their number minus one (20) and the outdegree of a non-injected node by 21, we get the fraction of injected nodes

towardwhich a specific node has an outlink to.We then repeat thiswith the SBRI data and present parcellation (with 19 injected nodes),

shown in Table S5. For the ABI parcellation (Table S4), the outlink average fraction for an injected node is 95.7%, with a standard de-

viation of 5.7%, whereas for a non-injected node the same quantity is 96.4%with a standard deviation of 7.3%. Thus, from an out-de-

gree point of view, toward the same set of nodes, there is virtually no difference between an injected node or a non-injected node. For

the SBRI dataset with the present parcellation (Table S5), the average out-degree fraction of an injected node is 97.4%with a standard

deviation of 3.9%, whereas the same quantity for non-injected nodes is an average of 97.4% and standard deviation of 4.4%.

For anterograde tract tracing, the roles of out-links and in-links are reversed, as in this case all the outlinks are revealed for an

injected area. Repeating the same analysis as above with the anterograde ABI (raw) data, we find a similar pattern, as shown in

Table S3. The average in-degree fraction of an injected node is 90.1%with a standard deviation of 8.8%, whereas the same quantity

for non-injected nodes is an average of 93.1% and standard deviation of 8.7%. Here as well, from an in-degree point of view, we see

no significant difference between an injected node or a non-injected node.

The above data all show very similar numbers with small deviations and they indicate that there is nothing special in terms of out-

degrees between injected and non-injected nodes, and across different parcellations.

In-degree analysis for retrograde data
Since retrograde injection in an area reveals all its incoming connections, the in-degrees into the injected areas will not change with

additional injections, they are final. Figures S8A and S8B show the in-degree distribution for the SBRI dataset for both parcellations

(ABI and present). In both cases the in-degrees are very high, near the maximum. For the Oh et al. (2014) parcellation (21x45 matrix),

among the 21 injected areas, 10 receive in-links from all the rest (45-1 = 44), five from 43, two from 42 and the lowest is one area

receiving in-links from 33 others. More than 85% of the nodes, each, receive at least 93% of all possible incoming connections.

For the present parcellation (19x47 matrix), among the 19 areas 13 receive from maximum possible (46) one from 45, two from 44

and the lowest receives 38 in-links. More than 84% of the nodes, each, receive at least 95% of all possible incoming connections!

Clearly, other injections would bring new edges into the network. Assuming that the average in-degree of the non-injected nodes is

the lowest value found among the injected nodes (although the previous analysis shows that it should be higher than this assumption),

even this brings the full network density down to only (33x24+888)/(45x44) = 85% for the ABI parcellation and to (38x28+851)/

(47x46) = 89% for the SBRI parcellation, both still very high.

Network communication efficiency
The five order of magnitude variability in the interareal projection weights indicates strong specificity, and has important conse-

quences, in particular on the capacity, or bandwidth of information transfer between cortical areas. This is best illustrated via network

communication efficiency measures, first introduced in network science applications by Latora and Marchiori (2003) and expanded

upon by Vragovi�c et al. (2005). There are two such measures, the global efficiency measure Eg (Latora and Marchiori, 2003) and the

local efficiency El (Vragovi�c et al., 2005). Eg is the average conductance between all source-target pairs in the network, whereas El

measures the conductance between the neighbors of an area X through the network that does not include X, averaged over all

neighbor pairs and for all X. Conductance from a source node to a target node is a weighted measure and it’s given by the conduc-

tance of the path of minimal total resistance through the network from source to target. As explained in Markov et al. (2013b), resis-

tance for information transfer along a projection can be modeled as the negative logarithm of the FLN edge weight of that projection

and therefore resistances are additive along paths. Accordingly, a directed path from source to target that contains only high FLN

edges will have a very low resistance and thus high conductance, or high information transfer bandwidth and vice-versa.

In Ercsey-Ravasz et al. (2013) and Markov et al. (2013b), both the global and local efficiency measures revealed an optimal organi-

zation for information transfer in macaque cortex. The same studies showed that this optimal organization was well captured by the

exponential distance rule (EDR) model, which describes the negative exponential dependence of weights on distance.

The clustering analysis and plotting from Figures 8D–8G was done with Pajek, and it uses the Kamada-Kawai force-based

algorithm (Kamada and Kawai, 1989), which draws areas that share stronger connections closer to one another than otherwise.

DATA AND SOFTWARE AVAILABILITY

The FLNe data is available at http://.core-nets.org/.

Requests for additional data and software should be directed to the Lead Contact, Henry Kennedy (henry.kennedy@inserm.fr) and

to the Corresponding Author, Andreas Burkhalter (burkhala@wustl.edu), and will be made available upon reasonable request.
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Figure S1. Partitioning schemes revealed by different markers expressed in tangential 
sections through layer 3-5 of flatmounted left mouse cerebral cortex (Related to Figure 1) 

 (A) Flatmap showing areal borders observed in average background fluorescence intensity 
imaged by serial two-photon tomography. Adapted from version 3 of the Allen Mouse Common 
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Coordinate Framework (CCF) (brain-map.org). (B) Atlas of 41 areas used in this study, derived 
from a combination of PVtdT, M2, VGluT2 and CO expression. Positively identified areas are 
delineated with black lines and denoted in black letters. Red lines and letters indicate borders 
and areas, known from topographic mapping (Garrett et al., 2014; Wang and Burkhalter, 2007) 
or identified by location relative to landmarks observed in the PVtdT map. Black crosses 
indicate the 19 DY-injected areas. Note that SSp is injected into subareas SSp-bfd and SSp-un. 
(C) Parcellation scheme based on the expression of PVtdT. Black solid contour lines delineate 
positively identified ‘simple parcels’ (i.e. which could not be further subdivided) based on 
intensity of PVtdT expression (arbitrary shades of gray). PVtdT expression in the red-shaded 
‘compound parcels’ (i.e. which contained additional sub-parcels) was uniform and revealed no 
detectable borders (red lines) between presumptive areas. Note that PVtdT expression in lateral 
extrastriate visual cortex was more intense (dark red) posterior to the LM/LI-AL border, 
marking a parcel that contained P, POR, PORa, LI and LM. TE stood out by undetectable PVtdT 
expression, which failed to reveal a border between TEa, TEp and ECT. Dashed black lines 
denote subareas within SSp, representing different body parts. (D) Parcellation scheme based 
on M2-expression. Black solid contour lines delineate positively identified parcels denoted in 
black letters. M2 expression in red-colored parcels was relatively uniform, but differed in 
intensity between parcels (note different shading) this allowed the detection of borders between 
parcels (black lines) but not within parcels (red lines). Names indicate presumptive areas, which 
could not be positively identified. (E) Parcellation scheme based on VGluT2 expression. All 
conventions are the same as in (B-D). (F) Parcellation scheme based on cytochrome oxidase 
reactivity (CO). All conventions are the same as in (C-E). 
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Figure S2. Charting the labeled neurons (Related to Figure 2)  

(A) Single-neurons are clustered to show how density varies with respect to areal borders.        
(B) Single microscope field imaged at three different focal depths. Each labeled neuron is 
tagged with a red or green triangle. Red triangles, labeled neurons that are not in the focal plane; 
green triangles, labeled neurons in the focal plane. This figure illustrates that extensive use has 
to be made of the Z-axis to accurately identify labeled neurons. 

A 

B 

50 µm 
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Figure S3. Atlases allowing comparisons of present labeling with that of the Oh et al. 
(2014). (Related to Figure 6 and Partial coverage and global claims in STAR Methods) 

Left, a parcellation of the present material adapted to resemble that used by Oh et al. (2014). 
This parcellation is used in Figure 6, as well as to support the claim that changes in the 
parcellation do not change the density significantly (Partial coverage and global claims in 
STAR Methods). Right, parcellation used by Oh et al. (2014) adapted to the flattened brain.  

  

Parcellation adapted to resemble 
as close as possible the one used 
by Oh et al. (2014) 

Oh et al. (2014) 
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Figure S4. Analysis of in-degree distribution and dominating sets (Related to Figure 7) 

(A) In-degree sequence (big graph), with the in-degree distribution of injected areas (small 
barplot on right y-axis).  (B) Red bars, number of subgraphs that dominate 100% the G19x47. 
Gray bars, total possible number of subgraphs corresponding to the red bars. The ratios of the 
two sets, expressed in percentages, is shown by the black dots, which have the y axis on the 
right.   
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Figure S5. Spatial coverage of injections across the cortex (Related to Figure 1, Network 
density in STAR Methods and Figure S1) 

(A) Comparison in mouse of the distances between all cortical areas (black) and those between 
injected areas (gray). The two means are not far from each other and there is no strong skewness 
for the distances between injected areas, suggesting that this set of areas comes close to a 
random sample. (B) The mean of distances between the injected areas is statistically 
indistinguishable from the mean of distances between all areas. The white bars form the 
distribution of means of 20, 000 random samples of size 19, without replacement, from the set 
of 47 areas. The z score of the mean distance between the injected areas (black dashed line) is 
0.98, less than one standard error from the mean of all distances (red dashed line). This gives a 
p-value of 0.32 for the two-sided test, which demonstrates that the two are not statistically 
different.  
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Figure S6. Weighted connectivity matrix generated with FLNe data from the present 
study using parcellation of the Oh et al. (2014) study (Related to Figure 7) 
Strength of the projection (FLNe) are color coded; black, absent connections; green, intrinsic 
projections where FLNe is not indicated. (A) Rows, one of the 45 source areas; column, one of 
the 19 injected target areas. Note that the SSp-bfd and SSp-un subfields are listed as separate 
areas. The row and column ordering was determined by a clustering algorithm based on input 
and output profile similarity. (B) A weighted connectivity matrix for the 19x19 subgraph. For 
multiple injections, FLNe indicates the arithmetic mean. 
 

Comparison of this figure with Figure 7 of the main text shows many similarities in the 
connectivity matrix composed with the parcellation of the present study or that of the Oh et al. 
(2014) study. 
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Figure S7 Distributions of volumes (mm3) of uptake zones for mouse (red, current study) 
and macaque (blue, Markov et al. [2011]), on a logarithmic scale (Related to Figure 2) 

The vertical dashed lines are the averages of each distribution. Notice that there are more than 
two log units between the two, meaning that injections in macaque are more than 100 times 
bigger on average than in mouse, which follows the increase in the volume of the cortex. The 
flattened mouse neocortex has a surface of little less than 100 mm2 (current measurements), 
while the flattened macaque neocortex has about 10 000 mm2 (Sincich et al., 2003). It is known 
that the width of the cortex varies very slowly with increase in brain size (Stevens, 1989), 
therefore the width contributes very little at the difference in volumes. The result is a two fold 
increase in the volume of the macaque neocortex with respect to mouse, the same as for the 
volumes of injections. Therefore, the ratio between the injection volume and the volume of the 
cortex stays largely constant and we can consider the experiments equivalent in the two species. 
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Figure S8. In-degree distributions (Related to Figure 7 and In-degree analysis for 
retrograde data in STAR Methods) 

 (A, B). In-degree distributions for retrograde tracing data in the present study using different 
parcellations. The in-degree on the x axis is expressed as a percentage of the maximum possible 
degree: (A) for the ABI parcellation it is 44 and (B) for the present is 46. Vertical dashed lines 
represent the mean values. 
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Table S1 Weights of cortical labeling in Oh et al. (2014) following injections in pontine nucleus, superior colliculus and basal ganglia 
(Related to Figure 6I) 

image‐series‐id specimen‐name primary‐injection‐structure secondary‐injection‐structures injection volume (mm^3) FRP MOp MOs SSp‐n SSp‐bfd SSp‐ll SSp‐m SSp‐ul SSp‐tr SSp‐un SSs GU VISC AUDd AUDp AUDpo AUDv VISal VISam VISl

100142580 378‐824 Caudoputamen (CP) 0,085084188 0,00127526 0,000503595 0,00383692 0,000528003 0,00144933 0 0,000335368 0,000352128 0 0 0,00199202 0,00041749 0 0 0,000423471 0 0 0 0 0

112307754 378‐931 Caudoputamen (CP) 0,1045426 0 0,0138555 0,0125699 0,000847282 0,0538486 0,00465863 0,000794236 0,0330389 0,0532484 0,000985946 0,00471056 0,00111423 0,000437193 0,00521289 0,00436139 0 0,00834458 0,000833825 0 0

112458831 378‐962 Caudoputamen (CP) 0,080538097 0,00134468 0,0355772 0,0537975 0,000483111 0,0127749 0,0119877 0,0020463 0,00168645 0,00102551 0,00305528 0,00680754 0,00228708 0,000754743 0,000931177 0,00114052 0 0,00125435 0 0,000939198 0

127255254 378‐1292 Nucleus accumbens (ACB) 0,090176233 0 0,000503595 0,00383692 0,000528003 0,00144933 0 0,000335368 0,000352128 0 0 0,00199202 0,00041749 0 0 0,000423471 0 0 0 0 0

272917631 378‐1883 Lateral septal nucleus (LS) 0,068583257 0 0 0,0386105 0 0,00216066 0 0 0 0 0 0,00189567 0,000400633 0 0 0 0 0 0 0 0
112827164 378‐1071 Superior colliculus sensory (SCs) SCm 0,050616994 0 0,0012334 0,00172016 0,00150936 0,0082655 0 0,00614061 0,00200369 0,000329847 0,00258415 0,0181737 0,0013985 0,00200896 0 0,000898533 0 0,000431339 0 0 0
126646502 378‐1285 Superior colliculus motor (SCm) SCs 0,246750378 0 0 0 0 0 0 0 0 0 0,00119541 0 0 0 0 0 0 0 0 0 0,00127055
152995635 378‐1579 Pontine reticular nucleus (PRNr) 0,007105834 0,00231736 0,0690465 0,0345537 0,000805553 0,0624673 0,00528963 0,00187069 0,0166336 0,0032152 0,00586405 0,0794251 0,026267 0,0156547 0,00168575 0,00884681 0,0015789 0,0131545 0 0,0013132 0

ACAd ACAv AId AIp AIv AUDd AUDp AUDv ECT FRP GU ILA MOp MOs ORBl ORBm ORBvl PERI PL PTLp RSPagl RSPd RSPv SSp‐bfd

ACB 0 0 0 0 0,009048853 0 0 0 0 0 0 0,011187649 0,002927303 0,003885731 0 0,016581259 0 0 0,00137311 0 0 0 0 0

CP 0 0 0,009178084 0,068206782 0 0 0,001554416 0 0 0 0,02561963 0 0 0 0 0 0 0 0 0 0 0 0 0

LS 0 0 0,000477062 0 0,000906904 0 0 0 0 0 0 0 0 0 0,001357445 0,014484476 0 0,000535786 0 0 0 0 0 0,000203737

SCm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PRNr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6,19102E‐05 0 0 0 0 0 0 0 0 0,000148034

image‐series‐id specimen‐name primary‐injection‐structure secondary‐injection‐structures injection volume (mm^3) VISp VISpl VISpm ACAd ACAv PL ILA ORBl ORBm ORBvl AId AIp AIv RSPagl RSPd RSPv PTLp TEa PERI ECT

100142580 378‐824 Caudoputamen (CP) 0,085084188 0 0 0 0,00211072 0,00192592 0 0,00171659 0 0 0,000664638 0,000453821 0 0,000370864 0 0,00122094 0,000950514 0 0,000785599 0 0,000975304

112307754 378‐931 Caudoputamen (CP) 0,1045426 0,00115925 0 0 0,00392942 0,000535188 0,00193402 0 0,00103934 0,000431478 0 0,00123998 0,000425783 0,000598723 0 0,000783414 0 0,00198714 0,0116743 0,00211835 0,00507643

112458831 378‐962 Caudoputamen (CP) 0,080538097 0,00219828 0 0,00171559 0,0292216 0,0394707 0,00990807 0,00390229 0,00624332 0,000913278 0,0116665 0,00157906 0,000826815 0,0015563 0 0,00354012 0,00352136 0,00125042 0,00146875 0,000573271 0,00130182

127255254 378‐1292 Nucleus accumbens (ACB) 0,090176233 0 0 0 0,00211072 0,00192592 0 0,00171659 0 0 0,000664638 0,000453821 0 0,000370864 0 0,00122094 0,000950514 0 0,000785599 0 0,000975304

272917631 378‐1883 Lateral septal nucleus (LS) 0,068583257 0,00036321 0 0 0,00244548 0,0139422 0 0,000630129 0 0 0 0 0 0 0 0,000424096 0,000917427 0 0 0 0

112827164 378‐1071 Superior colliculus sensory (SCs) SCm 0,050616994 0,00032723 0 0 0,000719301 0,00580215 0 0,00151113 0 0 0,00110777 0,00262209 0,000646187 0,0028012 0 0,007847 0,0821071 0 0,000608526 0,0009246 0,00077626

126646502 378‐1285 Superior colliculus motor (SCm) SCs 0,246750378 0,00128854 0,000512247 0,00151457 0,000322857 0,000638905 0 0 0 0 0 0 0 0 0 0,00446402 0,106554 0,000420818 0,000745227 0 0

152995635 378‐1579 Pontine reticular nucleus (PRNr) 0,007105834 0,00661345 0,00152444 0,00364719 0,00532867 0,02144 0 0,00690107 0 0,000889636 0,00360121 0,0246485 0,0159319 0,0168589 0,00184076 0,123002 0,107153 0,0027982 0,0265975 0,0337612 0,038383

ACAd ACAv AId AIp SSp‐ll SSp‐m SSp‐n SSp‐tr SSp‐ul SSs TEa VISC VISal VISam VISl VISp VISpl VISpm

ACB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CP 0 0 0,009178084 0,068206782 0 0 0 0 0 0 0,01312712 0,063223559 0 0 0 0 0 0

LS 0 0 0,000477062 0 0 0 0 0 0 0,00169977 0 0 0 0 0 0 0 0

SCm 0 0 0 0 0 0,000188504 0 0 0 0 0 0 0 0,00176801 0 0 0 0

SCs 0 0 0 0 0 0 5,08018E‐05 0 2,06238E‐05 0,000231227 0 0 0 0 0 0 0 0

PRNr 0 0 0 0 0 0,000173743 0,000471434 0 9,41226E‐05 0,001097865 0 0 0 0 0 0 0 0

Supplementary Table 2

Raw Data

Computed Data

ISOCORTEX

ISOCORTEX

Isocortex

Isocortex

Raw Data

Computed Data



 

    11 

 

Table S2 Results obtained in the analysis of dominating sets (Related to Network density in 
STAR Methods) 

 

  

Targets 1 2 3 4

Nr of sets 19 171 969 3876
Dominated 

Size Percentage of sets

0-10 0 0 0 0

10-20 0 0 0 0

20-30 0 0 0 0

30-40 0 0 0 0

40-50 0 0 0 0

50-60 0 0 0 0

60-70 0 0 0 0

70-80 0 0 0 0

80-90 10,53 0 0 0

90-100 21,05 8,77 0,41 0

100 68,42 91,23 99,59 100,00
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Table S3. ABI (anterograde), separated by injected vs. non-injected areas (Related to 
Partial coverage and global claims in STAR Methods) 
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Table S4. SBRI outdegrees, ABI parcellation, separated by injected vs. non-injected areas 
(Related to Partial coverage and global claims in STAR Methods and Figure S3) 
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Table S5. SBRI outdegrees, present parcellation, separated by injected vs. non-injected 
areas (Related to Partial coverage and global claims in STAR Methods) 
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