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Abstract—Tight data movement lower bounds are known for
dense matrix-vector multiplication and dense matrix-matrix
multiplication and practical implementations exist on GPUs
that achieve performance quite close to the roofline bounds
based on operational intensity. For large dense matrices,
matrix-vector multiplication is bandwidth-limited and its per-
formance is significantly lower than matrix-matrix multiplica-
tion. However, in contrast, the performance of sparse matrix-
matrix multiplication (SpGEMM) is generally much lower than
that of sparse matrix-vector multiplication (SpMV).

In this paper, we use a combination of lower-bounds and
upper-bounds analysis of data movement requirements, as well
as hardware counter based measurements to gain insights into
the performance limitations of existing implementations for
SpGEMM on GPUs. The analysis enables the development
of an adaptive work distribution strategy among threads and
results in the highest performing SpGEMM code for GPUs.
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I. INTRODUCTION

Sparse matrix computations are at the core of
many compute-intensive applications, both in scien-
tific/engineering modeling/simulation as well as large-scale
data analytics. A large number of graph algorithms can
also be formulated in the language of sparse linear algebra
on semi-rings. The GraphBLAS consortium is defining a
sparse linear algebra API intended for such use in developing
portable implementations of graph algorithms using efficient
implementations of key sparse matrix operations.

The wide ranging uses for sparse matrix operations has
resulted in significant recent interest in developing efficient
GPU implementations for sparse matrix-vector (MV) multi-
plication [18], [7], [15], [17], [20] and sparse general matrix-
matrix (MM) multiplication [14], [16], [1], [9], [5], [7], [13].
We note that several variants of sparse matrix operations
are used, depending on which operands are sparse/dense. In
this paper we only consider the most widely used variants
for sparse MV and MM: i) sparse-matrix times dense-
vector (SpMV), and ii) sparse-matrix times sparse-matrix
(SpGEMM).

A surprising fact is that the performance (in GFLOPs)
of efficient GPU SpMV implementations [15], [17], [20] is
much higher than that achieved by the best current GPU
SpGEMM implementations [13]. This is in stark contrast to
the dense case, where the performance of matrix-matrix mul-
tiplication (a BLAS3 operation) is typically orders of mag-
nitude higher than matrix-vector multiplication (a BLAS2

operation). A primary goal of this work is to attempt to gain
insights into why this is the case. Is the low performance
of SpGEMM because of some inherent fundamental
bottleneck, such as data movement requirements? If not,
is there scope for significant performance improvement?

We begin (Sec. II-B) by first documenting performance
of dense/sparse MV/MM on an Nvidia Kepler K20c GPU,
using a variety of sparse matrices from the Suite Sparse col-
lection [6], [21] drawn from different application domains.
We confirm that SpGEMM performance is consistently
much lower than SpMV performance.

Focusing on data movement requirements for SpMV and
SpGEMM computations, we seek lower bounds as well
as upper bounds based on hypergraph partitioning (Sec.
III). We explicitly enumerate the complete set of arithmetic
operations needed to perform sparse matrix-matrix multipli-
cation as vertices of a hypergraph, with each data element
being modeled as a hyperedge incident on all arithmetic
operations (hypergraph vertices) that use that data element.
By performing hypergraph partitioning, we determine upper
bounds for data movement for SpGEMM computation. We
find that upper bounds are quite close to lower bounds,
while actual data movement in SpGEMM implementations
is orders of magnitude higher.

A challenge to gleaning insights into performance bottle-
necks for SpGEMM is the fact that data elements from three
sparse matrices are used in each elementary operation. Evan
if two of the matrices are kept the same to perform C =
A*A, different rows of A (with different sparsity patterns)
are involved. In order to better control the variability and
gain insights, we devised a set of experiments to perform
SpGEMM on banded matrices, but represented in the CSR
representation used in all SpGEMM implementations (Sec.
V). Further, each banded matrix was also randomized via a
random symmetric permutation of rows/columns.

The experiments with synthetic banded matrices provide
useful insights that insufficient concurrency is likely a factor
contributing to lowered performance. Using this insight, we
devise an adaptive work distribution strategy using virtual
warps (Sec. VI) for SpGEMM. Experimental results demon-
strate that the new SpGEMM implementation achieves better
performance than existing publicly available GPU SpGEMM
codes, including Nvidia’s cuSPARSE [18], [7], bhSPARSE
[14], [16], and HybridSparse [13].

The paper makes the following contributions:
• It undertakes the first systematic exploration, to our

knowledge, of the data movement requirements for
general sparse matrix-matrix multiplication, using a



range of matrices drawn from different application
domains..

• It uses hypergraph partitioning on explicitly enumer-
ated graphs of the computational operations and data
dependences in multiplying various sparse matrices, it
is demonstrated that there is not some inherent lower
bound on data movement that forces SpGEMM to incur
much higher data movement than SpMV.

• It uses experimentation with synthetic banded matrices
to gain insights into SpGEMM using the scatter-vector
approach, and diagnoses inadequate thread-level con-
currency as a likely cause of performance loss.

• It devises an adaptive work distribution strategy among
threads for a scatter-vector based GPU SpGEMM
implementation, resulting in the highest performing
SpGEMM code for GPUs.

II. BACKGROUND: SPARSE MV/MM ON GPUS

In this section, we provide background information on
challenges in achieving high performance sparse matrix-
matrix (SpGEMM) multiplication on GPUs.

A. Dense versus sparse MV
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Figure 1. Dense Matrix Vector vs Sparse Matrix Vector Multiplication

Fig. 1 shows code for dense MV (top) and sparse MV
(bottom) multiplication. The overall loop structure is very
similar, with an outer loop running over rows of the matrix,
and the inner loop performing a dot product of the vector
with one row of the matrix. The main difference is in the
representation and access of the rows of the matrix. The
figure also shows an example of a sparse matrix in the
CSR (Compressed Sparse Row) representation. The non-
zero elements are grouped by row and compacted into a
long 1-D vector (A) and a parallel 1-D vector (col) holds
the column position of the corresponding data element. A
third vector (row) holds indexes that point to the start of
elements corresponding to each row. In the SpMV code,
for processing row i, the inner loop runs over contiguously
located data elements in A, from index row[i] to index
row[i+1]-1. The needed element of the vector is obtained
indirectly using col. Thus, the overall code structure is not
very different between dense and sparse MV, with about
double the data volume being needed in the sparse case
because both the column index and the nonzero element
value must be read in from memory; in contrast with dense
MV, only the matrix elements need to be read in.

Algorithm 1: Dense Matrix-Matrix Multiplication
input : DenseMatrix A[M][N], DenseMatrix B[N][P]
output: DenseMatrix C[M][P]

1 for i = 0 to M-1 do
2 for j = 0 to P-1 do
3 C[i][j] = 0
4 for k = 0 to N-1 do
5 C[i][j] += A[i][k] * B[k][j]

B. Dense versus sparse MM

Next let us consider dense MM. Simple code for it is
shown in Alg. 1 with three nested loops. Two of the three
loop indices directly index the row/column of each of the
three matrices. Each of the N2 result elements Cij is com-
puted by accumulating N partial products Aik ∗Bkj , for k
ranging from 0 to N-1. This code does not show aspects like
multi-level tiling necessary to achieve high performance, but
illustrates a key characteristic that enables high performance:
it is feasible to efficiently index and access the elements
of the three matrices due to the simple direct relationship
between indices of interacting data elements. Alg. 2 shows

Algorithm 2: Sparse-Matrix Sparse-Matrix Multiplica-
tion

input : SparseMatrix A[M][N], SparseMatrix B[N][P]
output: SparseMatrix C[M][P]

1 for each A[i][*] in matrix A do
2 for each non-zero entry A[i][j] in A[i][*] do
3 for each non-zero entry B[j][k] in B[j][*] do
4 value = A[i][j] ∗ B[i][j]
5 if C[i][j] /∈ C[i][*] then
6 Insert C[i][j] in C[i][*]
7 C[i][j] = value

8 else
9 C[i][j] += value

high-level pseudocode for SpGEMM. If the sparse matrices
are represented in CSR format, efficient contiguous access
to elements in any row is possible, but access to the elements
in a column is not efficient. In order to compute the elements
of a row i of C, all nonzero elements Ai,∗ must be accessed,
and for each such nonzero Aik, all elements Bk,∗ need to be
accessed. For each such nonzero element Bkj , the product
Aik*Bkj must be computed and it contributes to a nonzero
element Cij .

A significant challenge in computing the sparse matrix
product is in efficiently gathering together the various ad-
ditive contributions to an element Cij from different rows
of B. Several approaches have been used to address this
“index-matching” problem. One option is to use a hash table
to store non-zero elements of C, and the implementation
in the Nvidia cuSPARSE library [18], [7] and a recent
implementation by Anh et al. [1] use this approach. An
alternate approach has been to implement efficient “row-
merge” functionality to merge contributions from two sparse



rows. This approach has been used by the implementation
of Gremse et al. [9] and the bhSPARSE code from Liu and
Vinter [14], [16]. To form row i of the result matrix C,
the nonzeros Aik first form vectors of partial products by
multiplying with the nonzeros in Bkj , and then these sparse
vectors of partial products are merged to form the result
row Ci,∗. Yet another approach, labeled ESC (Expand-Sort-
Compress), was first developed for the Nvidia CUSP library
[5], [4]. With this approach, all nonzero partial products
Aik*Bkj are first formed in parallel and written out as
key-value pairs (i,j,value). The huge vector of key-value
pairs is then sorted so that key-value pairs with the same
row/column indices become adjacent. This is followed by a
segmented prefix-sum computation to “compress” the key-
value pairs by accumulating the values corresponding to the
same row/column index. Finally, yet another approach is to
use a dense “scatter-vector” of size N to solve the “index-
matching” problem. This approach was first proposed by
Gustavson [10] for the sequential context. Our prior work in
developing the HybridSparse [13] SpGEMM implementation
used a combination of the scatter-vector approach and the
ESC approach. The scatter-vector approach is a focus also
in this paper, and is described in greater detail later on in
Sec. VI. zRectionPerformance of Dense vs. Sparse MV and
MM

In this section, we present experimental data on achieved
performance with state-of-the-art GPU implementations of
dense/sparse matrix-vector (MV) and matrix-matrix (MM)
multiplication. The surprising observation is the consistent
reversal in relative performance of the two operations when
considering the dense versus the sparse case: For dense
matrices, performance of MM is much higher than MV,
while the opposite is true for the sparse case.
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Figure 2. Roofline plot: Dense MV vs Dense MM

C. Performance of Dense MV vs. MM
Fig. 2 shows a roofline plot [22] for an Nvidia Ke-

pler K20c GPU, with data-points for single-precision dense
matrix-vector and dense matrix-matrix multiplication using
Nvidia’s cuBLAS library. A roofline plot provides insightful
visual illustration of the extent to which algorithms are
constrained by the data-movement bandwidth limits of a
system. It contains two asymptotic lines that represent upper
bounds on performance: i) the maximum computational rate
of processor cores and, ii) the bandwidth from main memory
to cores. The horizontal line represents peak computational
performance (in GFLOPS), and the inclined line has a slope
corresponding to the memory bandwidth (in Gbytes/sec).
The y-axis of the roofline plot represents performance (in

GFLOPs), while the x-axis represents the “operational inten-
sity” (OI) of a computation, defined as the ratio of number of
computational operations performed per byte of data moved
between main memory and the processor cores. A code will
be memory-bandwidth limited unless OI is sufficiently high,
greater than a “critical intensity” corresponding to the point
of intersection of the two rooflines. This is because the
product of the OI and the peak memory-bandwidth (slope
of the inclined roofline) imposes an upper-bound on the
number of computational operations that can be performed
per second due to the amount of data moved from/to main-
memory.

Hardware counters were profiled using the Nvprof pro-
filer for execution of dense MV and MM computations
with cuBLAS library calls. For each problem size, the
achieved performance in GFLOPS and OI (ratio of number
of floating-point operations and measured data volume) were
computed. The displayed points on the roofline plot show
two clusters, one for the MV instances and another for the
MM instances. For MV, since two floating point operations
are performed per matrix element, the upper-bound on OI
is 2 operations for 4 bytes transferred for single-precision
computation, i.e., 0.5. The achieved OI is 0.43, very close
to the theoretical limit.

Two clear conclusions that can be drawn from the roofline
plot:

• Dense MV is bandwidth-bound, with achieved per-
formance being quite close to the asymptotic sloping
roofline representing the memory-bandwidth-based per-
formance limit.

• Dense MM achieves over 30x performance than dense
MV for large matrices, and the computation is clearly
compute-bound – for large enough problem sizes, the
plotted points are far to the right of the balance point
where the rooflines intersect.

D. SpMV vs. SpGEMM Performance
We next present similar roofline data for sparse matrix-

vector (SpMV) and sparse matrix-matrix (SpGEMM) mul-
tiplication using a collection of 25 sparse matrices from the
Suite Sparse Matrix Collection [6], [21]. These matrices are
drawn from a range of application domains and have been
used in recent publications on optimizing SpGEMM [14],
[16], [1], [13]. Characteristics of these matrices are provided
in Table I. For SpMV, a state-of-the-art implementation
using the CSR5 variant [15] of the compressed sparse row
(CSR) data structure was used. For SpGEMM, we used the
HybridSparse [13] code was used – it has been shown to
achieve higher performance than any other publicly available
GPU SpGEMM code. The matrix product C = A*A was
performed using each of the 25 test matrices.

Since plotting the achieved performance at the measured
OI for these 25 matrices on a roofline plot like Fig. 2
would make it very cluttered, we instead present the same
information in a different form in Fig. 3. In the upper portion
of the figure, the achieved performance for SpMV and
SpGEMM are shown for all the sparse matrices. In contrast
to the dense case, it may be seen that for every matrix the
performance (in GFLOPS) achieved by SpMV is higher than
that achieved by SpGEMM, with SpMV performance often
being over an order of magnitude higher. The lower portion



Table I
CHARACTERISTICS OF SPARSE MATRICES: C=A*A

Matrix Name NZ A
(K)

NZ C
(K)

#ops
(M) OI UB

2cubes sphere 1647 8975 55 2.237
cage12 2033 15232 69 1.794
cant 4007 17440 539 10.587
cit-HepPh 422 3713 13 1.468
com-amazon.ungraph 926 2531 6 0.816
com-dblp.ungraph 1050 4909 14 1.066
com-youtube.ungraph 2988 154931 373 1.166
cop20k A 2624 18705 160 3.335
email-Enron 368 30492 103 1.649
facebook combined 88 338 5 5.277
filter3D 2707 20162 172 3.361
m133-b3 801 3183 6 0.670
mac econ fwd500 1273 6705 15 0.817
majorbasis 1750 8243 38 1.633
mario002 2101 6450 26 1.204
mc2depi 2100 5246 17 0.888
offshore 4243 23356 143 2.241
patents main 561 2281 5 0.813
poisson3Da 353 2958 24 3.213
rma10 2374 7901 313 12.371
scircuit 959 5223 17 1.215
web-BerkStan 7601 78351 445 1.213
web-Google 5105 29710 121 2.404
web-NotreDame 1497 16801 129 1.563
webbase-1M 3106 51112 139 3.311

of Fig. 3 displays the achieved OI by SpMV and SpGEMM
for each matrix. Again, the trend is the opposite of that seen
for the dense case: the achieved OI is always significantly
higher for SpMV than than SpGEMM. This indicates that
many more words of data are moved between main-memory
and the cores for each FLOP with the SpGEMM code than
the SpMV code. This is so although the ratio of operations
to the data footprint is larger for SpGEMM than SpMV, as
seen in Table I.

The following conclusions can be drawn regarding SpMV
versus SpGEMM:

• In contrast to the dense case, performance of SpGEMM
is considerably lower than performance of SpMV
across all tested sparse matrices.

• The measured OI for SpGEMM is much lower than the
measured OI for SpMV, which already is more memory
bandwidth bound than dense MV. This is very different
from the relative operational intensities achieved by
dense MM versus MV.

The above observations raise the following important
question: Is SpGEMM inherently much more constrained
than SpMV due to fundamental data movement requirements,
or is it the case that even the best existing SpGEMM
implementations on GPUs are very far from optimal in terms
of data movement? We begin to address this question in the
next section.

III. DATA MOVEMENT BOUNDS FOR SPMV AND
SPGEMM

For any computation, such as dense matrix-matrix multi-
plication of a given pair of input matrices, there are many

  

0.1

1.0

10.0

100.0

A
ch

ie
ve

d 
G

FL
O

PS

SPMV SPMM

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

O
I

SPMV SPMM

Figure 3. SpMM vs SpMV: Performance and Operational Intensity

valid schedules for the elementary arithmetic operations that
collectively achieve the matrix multiplication. All equivalent
schedules perform exactly the same number of arithmetic
operations, but can differ very significantly in the number
of cache misses incurred. Cache misses cause data to be
moved across the levels of the cache/memory hierarchy. For
very large problems that cannot fit even in the last level
cache (LLC) in the memory hierarchy, the overheads for
data movement between main memory and the last-level
cache tend to be the most significant for sparse matrix
computations. We therefore focus our attention on the data
movement between a GPUs global memory and the L2
cache, which is the last-level cache in current Nvidia GPUs.

A. Data Movement Lower Bounds for SpMV and SpGEMM
Consider the execution of an algorithm for matrix-matrix

multiplication of a pair of sparse matrices A and B to
produce a resulting matrix C. The execution can be viewed
in terms of a collection of elementary floating-point addi-
tions and multiplications. There will generally be many valid
execution schedules corresponding to temporal reordering
of the elementary operations. Each non-zero element Cij

of the result matrix requires additive accumulation of a
number of contributions of the form Aik×Bkj for matching
non-zero elements in A and B. These operations can be
interleaved in many ways to produce the same final result.
All such valid schedules require exactly the same number of
arithmetic operations, but can differ greatly in the number of
data movements between the large but slow main memory
and the fast but small cache/scratchpad store. It is of great
interest to efficiently find valid schedules that minimize the
total movement of data between the slow large memory and
fast small cache. However, this is in general an open and
unsolved problem for most algorithms.

Techniques have been developed to find data movement
lower bounds for dense matrix-matrix multiplication [8],
which generalizes to sparse matrix-matrix multiplication:
1.72 × NOps/

√
C, where NOps is the number of update

(multiply-add) operations executed. However, this bound



turns out to be extremely loose compared to a simple
data-footprint lower bound - total number of words needed
to represent the input and output matrices. Since a CSR
representation of a sparse matrix uses two words per nonzero
(one for the column index and another for the value of
the nonzero element), a lower bound on data volume for
C = A×B is 2 ∗ (nnzA + nnzB + nnzC).

For SpMV, the data footprint is 2 ∗ nnz for the sparse
matrix, and 2 ∗N for the two vectors . This data footprint
is a lower bound on the minimum possible data movement
between main-memory and cache for execution of SpMV.

B. Upper Bounds for SpGEMM
In this section we describe our approach for determining

a data movement upper bound for matrix multiplication
C = A×B, for specific matrices A and B. The main idea
is to “tile” an explicitly enumerated large graph with one
vertex for each elementary multiply-add operation needed
for the matrix multiplication, and a hyperedge corresponding
to each data element in A, B, and C, incident upon all
operations using that data element. Loop tiling (also called
loop blocking) is a well known optimization for nested
loop computations, which changes the order of execution
of the instances of the statements from the natural order
specified by the iterators of the nested loops to a different
one that groups contiguous blocks of statement instances
in the multidimensional iteration space. The rationale for
tiling is that often statement instances close to each other
in the multidimensional iteration space exhibit data reuse.
By performing the reordering to execute multidimensional
blocks together, data reuse in a limited cache/scratchpad
store is enhanced.

In the case of sparse matrices, simply tiling the 3D
iteration space for sparse matrix-matrix multiplication with
uniform sized tiles is not expected to be effective since dif-
ferent tiles will have highly varied operation counts. Instead,
a hypergraph is formed that captures data reuse character-
istics and operation reordering is achieved by performing
hypergraph partitioning [3]. A hypergraph partitioner such
as PaToH [3] places each graph vertex into a partition, with
roughly equal number of vertices in each partition and a
minimization of the number of inter-partition hyperedges.
Thus, wherever possible a hyperedge is fully “internalized”
to avoid an edge cut by placing all operations involving the
corresponding data element within a single vertex-partition.
The hypergraph partition is used to reorder the operations for
sparse matrix multiplication to be executed in partition order:
first execute all operations in the first partition, followed by
all operation in the second partition, and so on. All multiply-
add operations for the entire sparse matrix multiplication can
be arbitrarily reordered. This is because i) the result elements
in C can be formed completely independently of each other,
allowing arbitrary interleaving in the multiply-add operations
for different Cij , and ii) associativity of addition means that
the various multiply-add operations for a specific Cij can
also be arbitrarily reordered. Hence, the reordered execution
after hypergraph partitioning is a valid execution order for
the matrix multiplication.

Ballard et al. [2] used a form of “optimal” hypergraph
partitioning of a graph comprised of the elementary arith-
metic operations for sparse matrix-matrix multiplication to

model data movement lower bounds. In this paper, we use
a similar hypergraph partitioning approach, but we use it
instead to form data movement upper bounds.

We first define the hypergraph for sparse matrix-matrix
multiplication C = A×B. The hypergraph construction is a
modified version of the hypergraph construction of Ballard
et al. [2]. Let A and B be I × K and K × J matrices,
respectively. Let SA and SB be the sets containing the data
elements of matrices A and B. The data elements of SC are
defined as the set containing elements:

SC = {(i, j) : (i, k) ∈ SA ∧ (k, j) ∈ SB)}
Vertices V and Nets N of the hypergraph are defined as
follows:

V = {vikj : (i, k) ∈ SA ∧ (k, j) ∈ SB}
N = NA ∪NB ∪NC

NA = {nA
ik : (i, k) ∈ SA} nA

ik = {vikj : (k, j) ∈ SB}
NB = {nB

kj : (k, j) ∈ SB} nB
kj = {vikj : (i, k) ∈ SA}

NC = {nC
ij : (i, j) ∈ SC} nC

ij = {vikj : (i, k) ∈ SA∧(k, j) ∈ SB}

Figure 4. Hypergraph H(A,B) for C = A × B where SA =
{(1,1),(1,2),(2,3)} and SB={(1,1),(1,4),(2,1),(2,2),(3,1),(3,3)}

Figure 4 shows an example of a hypergraph for SpGEMM.
Each vertex in the hypergraph represents a multiply-add
operation in C = A × B and each net represents a data
element, either in A, B or C, and connects together all
elementary operations that use that data element.

A key parameter to a hypergraph partitioner is the number
of partitions. Our goal is to perform a partition such that the
number of data elements touched i a partition (the number of
incident hyperedges) does not exceed the cache capacity. We
use an iterative strategy of performing repeated hypergraph
partitions with increasing partition counts until this condition
is satisfied.

A data-movement upper bound is computed by adding
necessary store and load operations for each partition. With
a CSR representation, for each element of A or B, we need
to load 2 elements for it (1 load for column index and 1
load for element value). Similarly, for each element of C we
associate 3 memory transactions for it (1 load for column
index, 1 load for previous element value and 1 store for
write-out of final value.

Alg 3 presents the algorithm for upper-bound computa-
tion. It partitions the hypergraph H(A,B) into P partitions.
The minimum possible number of partitions satisfying the
cache-size limit for their data footprint is unknown. So we



start with P = 2 partitions, and successively double the
number of partitions until the cache capacity constraint is
met. The loop at line 8 runs through each of the partitions
to check for violations of the cache-capacity constraint. The
loops at line 9, 12, and 15 accumulate data-footprint counts
cuts for each partition, for array A, B, and C, respectively.
Two words are accounted for each accessed data element
(column index and element value).

Algorithm 3: Find Upper Bound SpGEMM

input : Hypergraph H(A,B), size of fast memory M
output: Data movement upper bound UB

1 V = H(A,B).getV ertices()
2 numPar = 2
3 pass = false
4 while ¬pass do
5 pass = true
6 Wa[∗] = Wb[∗] = Wc[∗] = 0
7 par = Partition(H(A,B),numPar)
8 for 0 < p ≤ numPar do
9 for (i, k) ∈ SA do

10 if ∃j, par(vikj) = p then
11 Wa[p] = Wa[p] + 2

12 for (k, j) ∈ SB do
13 if ∃i, par(vikj) = p then
14 Wb[p] = Wb[p] + 2

15 for (i, j) ∈ SC do
16 if ∃k, par(vikj) = p then
17 Wc[p] = Wc[p] + 2

18 if ∃p,Wa[p] +Wb[p] +Wc[p] > M then
19 pass = false
20 numPar = 2× numPar

21 for 0 < i ≤ numPar do
22 UB = UB + 2×Wa[i] + 2×Wb[i] + 3×Wc[i]

23 UB = UB − |SC |

A similar hypergraph partitioning was also performed for
the SpMV computation to determine data movement upper
bounds.

Fig. 5 presents data-movement upper-bound (UB) data
from hypergraph partitioning, for SpGEMM and SpMV. In-
stead of absolute data-movement volume, ratios with respect
to lower-bounds on data volume are presented. In addition
to the UB/LB ratio, the ratio of actual measured data volume
(presented previously in Sec. II-B in the form of operatonal
intensity) to LB.

For SpMV (lower portion of Fig. 5), the UB/LB ratio is
very close to 1.0 for all matrices. The measured-volume/LB
ratio is also close to 1 for the majority of matrices, indi-
cating that close to the minimal possible data movement
is being achieved by the CSR5 SpMV implementation. For
a few matrices drawn from social-network domains (e.g.,
com.amazon-ungraph and web-Google), the measured/LB
ratio is very high. This is likely due to multiple uncoalesced
accessed to the input vector elements during SpMV.

For SpGEMM too, surprisingly the UB/LB ratio is very
close to 1.0 for the majority of matrices. This suggests that

Figure 5. Ratios of Upper Bound and Measured Data Movement to Lower
Bound for SpGEMM and SpMV

the capacity of L2 cache (around 1.5 Mbytes) in the Kepler
GPU is sufficient to almost fully reuse data elements in
cache, if a suitable reordering of the operations is performed.
However, as observed previously, the ratio of measured/LB
data volume is very high for most matrices for SpGEMM.

IV. REORDERING MATRICES

We can see from Figure 5 that the data-movement upper-
bounds are significantly lower than the measured data move-
ment for SpGEMM. This suggests that a reordered sched-
ule of execution of the elementary operations (operations
within a partition performed contiguously) has the potential
to greatly reduce the total data movement between main-
memory and cache. However, this would require the gener-
ation of an explicit schedule of all operations, i.e., a com-
pletely unrolled program with as many statements as the total
number of arithmetic operations to perform the SpGEMM
computation. Instead, we take the following approach: 1)
Use the results of the hypergraph partitioning to assign each
row/columns of the input matrix A to one of the hypergraph
partitions, based on maximum affinity, i.e., the partition
containing the most arithmetic operations associated with
that row/column; 2) Renumber the rows/columns of A based
on the partition mapping, so that row/columns mapped to a
partition are contiguously numbered in the new numbering;
3) Perform a symmetric row/column permutation of A based
on the renumbering in the previous step and execute the
SpGEMM code to perform the sparse matrix product of the
reordered matrix.

Thus, we use the results of the hypergraph partitioning to
reorder the original matrix, in the expectation that it could
lead to better data locality and improved performance.

Alg. 4 shows pseudocode for the symmetric row/column
reordering of a matrix based on hypergraph partitioning.
After partitioning of hypergraph H(A,A), each vertex is
assigned to a partition. Majority-voting is then performed
for each row/column of the matrix to assign it to a partition.



For row/column u, this is done by tallying total counts
for each hypergraph partition, of the number of multiply-
add operations associated with row/column u (lines 3-7),
and assigning it to the partition with the highest tally. The
renumbering of row/column indexes is performed by con-
tiguously numbering row/columns assigned to each partition,
and ordering across the partitions in order of partition id. A
permutation vector is formed by The number of row/columns
assigned to each partition is first accumulated into vector
ptr (lines 9-10), prefix-sum computed (lines 11-12), the
permutation vector reorder populated (lines 13-15), and the
permuted matrix AR generated (lines 16-17).

Similarly, matrix reordering was also performed for
SpMV, based hypergraph on partitioning of the correspond-
ing hypergraph.

Algorithm 4: Reorder Matrix For SpGEMM
input : Hypergraph H(A,A′),// A′ is deep copy of A

Num. Partitions numPar, SparseMatrix A[N][N]
output: SparseMatrix AR[N][N]

1 par = Partition(H(A,A),numPar)
2 for 1 ≤ u ≤ N do
3 for (u, k) ∈ SA ∧ (k, j) ∈ SA do
4 vote[par[vukj]] = vote[par[vukj]] + 1

5 for (k, u) ∈ SA ∧ (i, k) ∈ SA do
6 vote[par[viku]] = vote[par[viku]] + 1

7 index[u] = s such that ∀p, vote[p] ≤ vote[s]

8 ptr[*] = 0
9 for 1 ≤ u ≤ N do

10 ptr[index[u] + 1] = ptr[index[u] + 1] + 1

11 for 1 < u ≤ P do
12 ptr[u] = ptr[u] + ptr[u-1]

13 for 1 ≤ u ≤ N do
14 reorder[u] = ptr[index[u]]
15 ptr[index[u]] = ptr[index[u]] +1

16 for ∀(i, j) ∈ SA do
17 AR[reorder[i]][reorder[j]] = A[i][j]

Fig. 6 presents experimental results comparing achieved
performance and measured data volume to/from global
memory, for both SpMV and SpGEMM. For most matrices,
the reordering produces a slight improvement in data volume
and performance, with significant changes in a few cases.
It is interesting to note that the cases of significant im-
provement are usually not the same matrices for SpMV and
SpGEMM. Overall, these experiments suggest that matrix
reordering may potentially have a significant performance
impact and exploration of alternate matrix reordering ap-
proaches is planned in ongoing/future work.

V. EXPERIMENTS WITH SYNTHETIC BANDED MATRICES

With all previous experiments, with or without matrix
reordering, we can make the following observations:

• The actual measured data movement volume for
SpGEMM is much higher than the upper bound de-
termined via hypergraph partitioning.

• Even considering the actual measured data movement
volume for SpGEMM, the achieved performance in
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Figure 6. GFLOPS and data volume comparison for SPMM/SPMV on
original/reordered matrices

GFLOPs is far from the roofline based on the achieved
OI.

The latter observation suggests that inadequate overall
concurrency may be a significant factor in low SpGEMM
performance. A challenge to gleaning insights into per-
formance bottlenecks for SpGEMM is the fact that data
elements from three sparse matrices are used in each el-
ementary operation. Evan if two of the matrices are kept
the same to perform C = A*A, different rows of A (with
different sparsity patterns) are involved. In order to better
control the variability and gain insights, we devised a set of
experiments to perform SpGEMM on banded matrices, but
represented using a CSR representation. Further, a random
symmetric row/column permutation was performed for each
tested banded matrix, and the randomized variant was also
tested.
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Figure 7. Banded Original vs Randomized
Fig. 7 presents the results of these experiments. The set of

matrices had half-band sizes of 15, 31, 47, 63, 79, 95, and
111. For each matrix and its randomized variant, the stacked
bar-chart shows actual achieved performance (blue) as well
as the roofline performance bound based on measured data



volume to/from global memory. The main observations are
as follows:

• The randomized variants achieve significantly lower
performance than the contiguously represented banded
matrices. This is a consequence of the significantly
worse temporal locality in accessing rows of B for the
randomized variant, as well as worse data coalescing
for accesses to elements of C with the scatter-vector
approach.

• As the band size increases (going from right to left in
the chart), the ratio of roofline to actual performance
decreases noticeably. This is more prominent for the
randomized variants, which have a much higher data
volume than the corresponding contiguous variants.
This trend is suggestive that inadequate thread-level
concurrency is a factor in the low performance of the
SpGEMM implementation. As the band size increases,
the average degree of concurrency with the scatter-
vector approach increases, proportionally with the band
size. At high band sizes, the execution is moving closer
to a bandwidth-limited regime, as indicated by the
lower ration of roofline performance bound to actual
achieved performance.

The latter observation suggests the development of an
adaptive work distribution scheme across virtual warps of
a thread block, as developed in the next section.

VI. ENHANCING CONCURRENCY FOR SPGEMM
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Figure 8. Performance variation wrt. virtual warp size
Scatter Vector Approach: Scatter vector is one approach

to solve the index matching problem in SPGEMM. In Scatter
vector approach, a vector of size n, where n is the number
of columns in B is used to store the pointers to compacted
elements in a row of resultant matrix “C”. The rows of “A”
matrix is processed sequentially. Before processing each row
of A, the entire scatter vector is initialized to NULL value.
For each “A” element in the current row, the corresponding
“B” elements are identified and partial products are formed.
For each such partial product, the corresponding column in
the scatter vector is accessed. If the scatter vector contains
a Non-NULL value, then the current partial contribution is
added to the location pointed by the scatter vector. If the
value is NULL, then a unique location is obtained from
a memory pool and is initialized with the current partial
product. The address of the obtained unique location is
written to the corresponding column of the scatter vector.

In the rest of this section, we describe our contributions to
the scatter vector approach.

As shown in Figure 8, for many matrices our SpGEMM
approach is far from the roofline limit which indicates
that our approach is latency limited. Latency effects can
be reduced by exposing more parallelism. The amount of
available parallelism in GPUs is limited by the total num-
ber of warps that can be simultaneously active. “Achieved
occupancy” metric from “Nvprof” indicate that our ker-
nels achieve near optimal occupancy. This suggests that
even with high occupancy, the effective parallelism is less.
We observed that in Figure 8, the gap between achieved
GFLOPS and theoretical GFLOPS is smaller for larger
bands. Reasoning for the latter effect is as follows. In our
approach, for each element in a row of “A” matrix, we assign
all the threads in a thread block to process the corresponding
“B” elements. The number of threads assigned to process
each element in a given row of “A” depends on the total
number of operations corresponding to that row (bin id).
For example, bin 12 is assigned 128 threads. It may happen
that even though the number of ops is high the number
B elements is small. Since we process the elements in
“A” matrix sequentially, if the number of elements in the
corresponding rows in “B” matrix is less, then many threads
will be idle. Note that even though the threads are idle,
they have not exited the kernel. Hence, when measuring
achieved occupancy, Nvprof considers these threads as active
and reports a high occupancy. When compared to smaller
bands, higher bands have higher number of non-zeros in
“B”. Hence, most of the threads are not idle/waiting which
results in higher performance.

In order to improve effective concurrency, we imple-
mented virtual warping. Each thread block processes mul-
tiple rows of “A” simultaneously and the entire threads in
a thread block are equally divided and assigned to process
each row of “A”. For example, for a thread block of size 128,
and virtual warp of size 4, each thread block will process 4
rows of “A” simultaneously. For each row of “A”, 32 (128/4)
threads are assigned to cyclically process the corresponding
elements in “B”. Virtual warping improved the performance
of our approach.

Figure 8 compares the performance of our approach when
virtual warp size is 1 and 4. Note that virtual warping is not
beneficial for all bands sizes, which motivates an adaptive
scheme. If the virtual warp size is greater than 4, then
accesses to “B” elements may be partially uncoalesed. For
eg. if the virtual warp size is 8, then 16 (128/8) threads
will work on each row of A. The 32 elements of “B”
(corresponding to two rows of “A”) that are simultaneously
required by a warp may not be contiguous which results
in uncoalesed accesses. If the average number of non zeros
in “B” is greater than 32, then the latter choice may not
be beneficial. Consider another example when the average
number of non-zeros in “B” is 128. In the latter case, a
virtual warp size of 4 or 1 can achieve fully coalesed access;
however the performance of virtual warp of size 1 can be
better due to the following reason. When the virtual warp
size is 1, each thread block is processing one row of “A”
at a time. In contrast, when the virtual warp size is 4, four
rows of “A” are processed at the same time, which increases



  

Figure 9. Performance Comparision between HybridSparse dvw, Bhsparse and CUSparse

the cache pressure and reduces the cache hit rate.
Our adaptive virtual warping scheme, decides the virtual

warp size depending on the average number of non-zeros in
“B” for a given row of “A”. For a given “C” row, the average
number of non-zeros in “B” is determined by dividing the
total ops by the number of elements in corresponding row
of “A”.

Fig. 9 presents performance data for the new SpGEMM
implementation using the adaptive virtual warp scheme.
Performance with two existing SpGEMM implementations,
bhSPARSE and cuSPARSE are also presented. The data is
presented as a mirrored set of bar charts, with the upright
bars representing the original matrix, and the inverted bars
representing performance after reordering using hypergraph
partitioning (in a few cases, the PaToH hypergraph parti-
tioner was unable to execute within the availablememory on
our CPU system and no inverted bars are shown). It can be
seen that the new HyprisSparse dvw scheme consistently
outperforms bhSPARSE and cuSPARSE on all the test
matrices.

VII. RELATED WORK

A. Bounds on Data Movement

Techniques have been developed to find schedule-
independent lower bounds on the minimal amount of data
movement between slow and fast memory [11] for compu-
tations abstracted as computational directed acyclic graphs
(CDAGs). For a few regular algorithms, such as dense
matrix-matrix and matrix-vector multiplication, FFT, and
odd-even transposition sort, the lower-bounding technique
based on a formalization using a red-blue pebble game [11]
was used to derive tight parametric asymptotic lower bounds
expressions for data movement complexity. For example, for
dense matrix-matrix multiplication of N ×N matrices on a
processor with a cache capacity of C words, a tight lower
bound for data movement between main-memory and cache
was shown to be O(N3/

√
C). Scaling constants for the

lower bounds on matrix-matrix multiplication were provided
by Irony et al. [12] and later improved by Dongarra et al.
[8] to 1.72N3/

√
C. This lower bound is also generalizable

for sparse matrix-matrix multiplication: 1.72 × NOps/
√
C,

where NOps is the number of update (multiply-add) opera-
tions executed. However this bound is much lower than the
simple data-footprint lower bound that we use, as discussed
in Sec. III.

Ballard et al. [2] modeled data movement requirements for
SpGEMM using a hypergraph, as we do in this paper. How-
ever they model data movement lower bounds for SpGEMM
in terms of a minimal-partition hypergraph partitioning that
satisfies some constraints, while we use a heuristic-based hy-
pergraph partitioner (PaToH [3]) to determine upper bounds
on data movement for SpGEMM, as elaborated in Sec. III.

B. SpMV and SpGEMM on GPUs
Over the last few years, there has been significant interest

in developing efficient SpMV and SpGEMM implementa-
tions for GPUs, in part because they are key kernels for
data analytics.

Nvidia’s cuSPARSE library [18], [7] implements multiple
SpMV implementations, for a number of sparse matrix
formats, including CSR, COO (coordinate format), ELL
(ELLPAck format), HYB (hybrid of ELL and COO). The
multiplicity of formats is due to the fact that none of CSR,
COO, ELL, HYB is uniformly superior in performance;
the best format is dependent on the sparsity structure of
the sparse matrix [19]. Recent developments have resulted
in SpMV implementations that are quite consistently better
than all variants in cuSPARSE, including CSR5 [15], Merge-
CSR [17], and Hola [20]. In this paper, we use the CSR5
SpMV implementation for our experiments.

As discussed in Sec. II, a significant challenge with
SpGEMM relative to SpMV is that of efficient load-balanced
“index-matching” and accumulation of multiple additive
contributions from products Aik∗Bkj to form Cij . Different
approaches have been devised for this. The earliest efficient
SpGEMM implementation was by Gustavson [10], who
proposed the use of a scatter-vector for it. Our recent imple-
mentation of HybridSparse [13] is based on a combination
of the scatter-vector approach and the ESC (Expand-Sort-
Compress) approach. Nvidia’s open-source CUSP library
[5], [4] also uses the ESC approach. Nvidia’s closed-source



library cuSPARSE uses hashing to address index-combining
[18], [7]. A more recent GPU SpGEMM implementation
by Anh rt al. [1] also uses hashing. Another approach to
index-combining is “row-merging” (discussed in Sec. II),
used by an implementation by Gremse et al. [9] and by
Liu and Vinter for their bhSPARSE implementation [14],
[16]. In this paper, we improve upon the HybridSparse
implementation to create the HybridSparse-DVW variant
with improved performance. Its performance is compared
with cuSPARSE and bhSPARSE, whose implementations are
publicly available. We did not compare with CUSP since
previous studies have shown that it bhSPARSE achieves
consistently higher performance [14], [16], [13].

A significant difference between the work presented in
this paper from the above discussed efforts is that a primary
motivation here has been to understand fundamental per-
formance bottlenecks for SpGEMM, while previous efforts
have had the primary goal of enhancing performance. A
critical question of interest is to understand why SpGEMM
performance is so far below roofline limits, in comparison
to SpMV. While we were able to use insights from analysis
to improve SpGEMM performance, the analysis indicates
that there may be much further room for improvement,
suggesting that continued research is warranted.

VIII. CONCLUSION

This paper has attempted to gain insights into the cause
of relatively low performance of GPU implementations of
general sparse matrix-matrix multiplication relative to sparse
matrix-vector multiplication. A significant challenge with the
former in comparison to the latter is the challenge of effi-
ciently combining the various additive contributions to result
data elements. All devised approaches to this problem cause
additional data movement and/or introduce other sources of
performance loss, such as hashing/sorting/merging opera-
tions, atomics, uncoalesced data access, thread divergence,
etc.

In this paper, a systematic study was undertaken to iden-
tify any fundamental inherent data-movement bottlenecks for
sparse matrix-matrix multiplication. A main conclusion are
that the current low performance of SpGEMM implementa-
tions is not a consequence of any fundamental data move-
ment requirements (as is the case for sparse matrix-vector
multiplication). Inadequate operation-level concurrency was
identified as a cause of performance loss for a scatter-vector
based SpGEMM implementation and an improved imple-
mentation was devised that currently represents the highest
performing GPU SpGEMM implementation available.
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