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ABSTRACT

This paper introduces the first state-based formalization of

isolation guarantees. Our approach is premised on a simple

observation: applications view storage systems as black-boxes

that transition through a series of states, a subset of which are

observed by applications. Defining isolation guarantees in terms

of these states frees definitions from implementation-specific

assumptions. It makes immediately clear what anomalies, if any,

applications can expect to observe, thus bridging the gap that

exists today between how isolation guarantees are defined and

how they are perceived. The clarity that results from definitions

based on client-observable states brings forth several benefits.

First, it allows us to easily compare the guarantees of distinct,

but semantically close, isolation guarantees. We find that several

well-known guarantees, previously thought to be distinct, are in

fact equivalent, and that many previously incomparable flavors of

snapshot isolation can be organized in a clean hierarchy. Second,

freeing definitions from implementation-specific artefacts can

suggest more efficient implementations of the same isolation

guarantee. We show how a client-centric implementation of

parallel snapshot isolation can be more resilient to slowdown

cascades, a common phenomenon in large-scale datacenters.
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1 INTRODUCTION

Large-scale applications such as Facebook [1], or Twitter [56] of-

fload the managing of data at scale to replicated and/or distributed

systems. These systems, which often span multiple regions or

continents, must sustain high-throughput, guarantee low-latency,

and remain available across failures. To meet these demands, com-

mercial databases or distributed storage systems like MySQL [45],

Oracle [46], or SQL Server [42] often give up serializability [47]
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(the gold-standard correctness criterion: an interleaved execution

of transactions must be equivalent to a serial schedule) and

instead privilege weaker but more scalable correctness crite-

ria [2, 15, 34, 45, 49, 50, 53, 61] (referred to as weak isolation) such

as snapshot isolation [15] or read committed [15]. In fact, to the

best of our knowledge, almost all SQL databases use read commit-

ted as their default isolation level [39, 42, 45, 46, 50, 51], with some

only supporting read-committed or snapshot isolation [45, 51]1.

This trend poses an additional burden on the application pro-

grammer, as these weaker isolation guarantees allow for counter-

intuitive application behaviors: relaxing the ordering of operations

yields better performance, but introduces schedules and anomalies

that could not arise if transactions executed atomically and se-

quentially. These anomalies may affect application logic: consider

a bank account with a $50 balance and no overdraft allowed. If

the application runs under read-committed [15], the underlying

database may allow two transactions to concurrently withdraw

$45, incorrectly leaving the account with a negative balance [15].

To mitigate this increased programming complexity, many com-

mercial databases and distributed storage systems [14, 28, 29, 39–

41, 45, 46, 50] interact with applications through a front-end

that gives applications the illusion of querying or writing to a

logically centralized, failure-free node that will scale as much as

one’s wallet will allow [28, 29, 39, 40, 46]. In practice, however,

this abstraction is leaky: a careful understanding of the system

that implements a given isolation level is oftentimes necessary to

determine which anomalies the system will admit and how these

will affect application correctness.

Indeed, the guarantees provided by isolation levels are of-

ten dependent on specific and occasionally implicit system

properties—be it properties of storage (e.g., whether it is single

or multiversioned [16]); of the chosen concurrency control (e.g.,

whether it is based on locking or timestamps [15]); or other system

features (e.g., the existence of a centralized timestamp [27]).

Consider for example serializability [47]: the original ANSI SQL

specification states that guaranteeing serializability is equivalent

to preventing four phenomena [15]. This equivalence, however,

only holds for lock-based, single version databases. Such implicit

dependencies continue to have practical consequences: current

multiversioned commercial databases that prevent these four

phenomena, such as Oracle 12c, claim to implement serializability,

when they in fact implement the weaker notion of snapshot

isolation [11, 27, 46]. As such, they accept non-serializable

schedules akin to the schedule in Figure 1(r), which exhibits an

anomaly commonly referred to as write skew [15]. In contrast, a
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Se may be compatible with the value returned by any given op-

eration. We call this subset the operation’s read states. To prevent

operations from reading from the future, we restrict the valid read

states for the operations inT to be no later than sp . Further, once an

operation in T writes v to k , we require all subsequent operations

inT that read k to return v [2]: in this case, their set of read states

by convention includes all states in Se up to and including sp .

Definition 2 Given an execution e for a set of transactions T , let

T ∈ T and let sp denote T ’s parent state. The read states for a read

operation o=r (k,v) ∈ΣT define the set of states

RSe (o)= {s ∈Se |s
∗
−→sp∧

(

(k,v) ∈s∨(∃w(k,v) ∈ΣT :w(k,v)
to
−−→r (k,v))

)

}.

Figure 2 illustrates the notion of read states for the operations

executed by transaction Tb . Since r2 returns y1, its only possible

read state is s2, i.e., the only state containing y1. When it comes

to r3, however, z0 could have been read from any of s0, s1, or s2:

from the perspective of the client executing Tb , these read states

are indistinguishable. By convention, write operations have read

states too: for a write operation in T , they include all states in Se
up to and including T ’s parent state. It is easy to prove that the

read states of any operation o define a subsequence of contiguous

states in the total order that e defines on Se . We refer to the

first state in that sequence as sfo and to the last state as slo . For

instance, in Figure 2, sfr3 is s0 (the first state that contains z0) and

slr3 is s2 (z0 is overwritten in s3). When the predicate PREREADe (T )

holds, then such states exist for all transactions in T :

Definition 3 Let PREREADe (T )≡∀o ∈ΣT :RSe (o),∅.

Then PREREADe (T )≡∀T ∈T : PREREADe (T ).

We say that a state s is complete for T in e if every operation in

T can read from s . We write:

Definition 4 COMPLETEe,T (s)≡s ∈
∩

o∈ΣT

RSe (o).

Looking again at Figure 2, s2 is a complete state for transaction

Tb , as it is in the set of candidate read states of both r2(y,y1) ({s2})

and r3(z, z0) ({s0, s1, s2}). A complete state is not guaranteed to

exist: no such state exists for Te , as the sole candidate read states

of r4 and r5 (respectively, s0 and s3) are distinct. As we will see in

§4, complete states are key to determining whether transactions

read from a consistent snapshot.

4 ISOLATION

Isolation guarantees specify the valid set of executions for a

given set of transactions T . We show that it is possible to

formalize these guarantees solely in terms of each transaction’s

read and commit states, without relying on histories of low-level

operations or on implementation details such as timestamps. The

underlying reason is simple: ultimately, it is through the visible

states produced during an execution that the storage system can

prove to its users that a given isolation guarantee holds. Histories

are just the mechanism that generates those probatory states;

indeed, multiple histories can map to the same execution.

In a state-based model, isolation guarantees constrain each

transaction T ∈ T in two ways. First, they limit which states,

among those in the candidate read sets of the operations in T , are

admissible. Second, they restrict which states can serve as parent

states for T . We express these constraints by means of a commit

test: for an execution e of a set T of transactions to be valid under

a given isolation level I, each transaction T in e must satisfy the

commit test CTI (T,e) for I.

Definition 5 Given a set of transactions T and their read states, a

storage system satisfies an isolation level I iff ∃e :∀T ∈T :CTI (T,e).

Table 1 summarizes the commit tests that define the isolation

guarantees most commonly-used in research and industry: the

ANSI SQL isolation levels (serializability, read committed, read

uncommitted, and snapshot isolation) as well as parallel snapshot

isolation [20, 53], strict serializability [47], and the recently

proposed read atomic [13] isolation level. Though our state-based

definitions make no reference to histories, we prove that they

are equivalent to those in Adya’s classic treatment. As the proofs

follow a similar structure, we provide an informal proof sketch

only for serializability and snapshot isolation, deferring a more

complete and formal treatment to Appendices A, B and E.

Serializability Serializability requires the values observed

by the operations in each transactionT to be consistent with those

that would have been observed in a sequential execution. The

commit test enforces this requirement through two complemen-

tary conditions on observable states. First, all of T ’s operations

must read from the same state s (i.e., s must be a complete state

for T ). Second, s must be the parent state of T , i.e., the state that T

transitions from. These two conditions suffice to guarantee that T

will observe the effects of all transactions that committed before

it. This definition is equivalent to Adya’s cycle-based definition.

Specifically, we prove that (a more formal proof can be found in

Appendix A.2):

Theorem 1 ∃e :∀T ∈T :CTSER (T,e)≡¬G1∧¬G2.

Proof sketch. (∃e : ∀T ∈ T : CTSER (T,e) ⇒ ¬G1∧¬G2). By

definition, e is a totally-ordered execution where the parent state

of every transaction T is a complete state for T . Considering the

order of transactions in e , we make three observations. First, all

write-write edges in the DSG point in the same direction, as they

map to state transitions in the totally-ordered execution e . Second,

all write-read edges point in the same direction as write-write

edges: given any transactionT , since all operations inT read from

T ’s parent state, all write-read edges that end in T must originate

from a transaction that precedes T in e’s total order. Finally,

all read-write dependency edges point in the same direction as

write-write and write-read edges: as all read operations in T

read from T ’s parent state, the value they return cannot be later

overwritten by a transaction T ′ ordered before T in e . Since all

edges point in the same direction, no cycle can form in the DSG.

(∃e :∀T ∈T :CTSER (T,e)⇐¬G1∧¬G2). If no cycle exists in the

DSG, we can construct an execution e ′ such that the parent state sp
of each transaction T is a complete state for T . We construct e ′ by

topologically sorting the DSG (it is acyclic) and by applying every

transaction in the resulting order. Thus, if a transactionT ′ writes a

value thatT subsequently reads (write-read edge), the state associ-

ated withT ′ is guaranteed to precedeT ’s state in the execution e ′.

Moreover, as there are no backpointing read-write edges, no other



Serializability (CTSER (T,e)) COMPLETEe,T (sp )

Snapshot Isolation (CTSI (T,e)) ∃s ∈Se .COMPLETEe,T (s)∧NO-CONFT (s)

Read Committed (CTRC (T,e)) PREREADe (T )

Read Uncommitted (CTRU (T,e)) True

Parallel Snapshot Isolation (CTPSI (e,T )) PREREADe (T )∧∀T
′
▷T :∀o ∈ΣT :o .k ∈WT ′ ⇒sT ′

∗
−→slo

Strict Serializability (CTSSER (e,T )) COMPLETEe,T (sp )∧∀T
′ ∈ T :T ′

<s T ⇒sT ′
∗
−→sT

Read Atomic (CTRA(e,T )) ∀r1(k1,v1),r2(k2,v2) ∈ΣT ∧k2 ∈WTsfr1
⇒sfr1

∗
−→sfr2

Table 1: Commit Tests

transaction in e ′ will update an object read byT between the state

produced by T ′ and sp . sp is therefore a valid read state for every

operation in T and, consequently, a complete state for T . □

Snapshot isolation (SI) Like serializability, SI prevents

transaction T from seeing the effects of concurrently running

transactions. The commit test enforces this requirement by having

all operations inT read from the same state s , produced by a trans-

action that precedes T in the execution e . However, SI no longer

insists on that state s being T ’s parent state sp : other transactions,

whose operations T will not observe, may commit in between s

and sp . The commit test only forbids T from modifying any of the

keys that changed value as the system’s state progressed from s

to sp . Denoting the set of keys in which s and s ′ differ as ∆(s,s ′),

we express this as NO-CONFT (s) ≡ ∆(s,sp )∩WT = ∅. We prove that

this definition is equivalent to Adya’s (a more formal proof can be

found Appendix A.3):

Theorem 2 ∃e :∀T ∈T :CTSI (T,e)≡¬G1∧¬G-SI.

Proof sketch. (∃e : ∀T ∈ T : CTSI (T,e) ⇐ ¬G1∧¬G-SI). We

construct a valid execution for any history satisfying ¬G1∧¬G-SI

using the time-precedes partial order introduced by Adya. First,

we topologically sort transactions according to their commit point,

and apply them in the resulting order to generate an execution e .

Next, we prove that every transaction T satisfies the commit test:

we first show that the state created by the last transaction Tr s on

which T start-depends is a complete state. As T start-depends on

Tr s , it must also start-depend on all transactions that precede Tr s ,

since, by construction, these transactions have a commit times-

tamp smaller thanTr s . Moreover, asTr s is the last transaction that

T starts-depend on, all subsequent transactions will either be con-

current with T , or start-depend on T . Adya’s (¬G-SI) requirement

(formally, that there cann be neither a write-read /write-write edge

without also a start dependency edge nor a cycle including a single

read-write edge) implies thatT can only read or overwrite a value

written by a transaction T ′ if T start-depends on T ′. Any such T ′

must either be Tr s or precede Tr s in e . Similarly, if another trans-

action T ′′ overwrites a value that T reads, T cannot start-depend

on T ′′ as it would otherwise create a cycle with a start-edge and

a single read-write edge. T ′′ is therefore ordered after Tr s in e .

We conclude that sTr s necessarily contains all the values that T

reads: it is a complete state. Next, we show that ∆(sTr s ,sT ) = ∅.

By construction, T cannot start-depend on any transaction T ′

that follows Tr s in the execution but precedes T . By G-SI, there

cannot be a write-write dependency edge from T ′ to T , and their

write-sets must therefore be distinct. Consequently: ∆(sTr s ,sT )=∅.

(∃e :∀T ∈T :CTSI (T,e)⇒¬G1∧¬G-SI). We show that the serial-

ization graph SSG(H ) corresponding to e does not exhibit phenom-

ena G1 or G-SI. Every transaction in e reads from some previous

state and commits in the total order defined by e . It follows that all

write-write and write-read edges follow the total order introduced

by e: there can be no cycle consisting of write-write/write-read

dependencies. ¬G1 is thus satisfied. To show that SSG(H ) does

not exhibit G-SI, we first select the start and commit point of each

transaction. We assign commit points to transactions according to

their order in e . We assign the start point of each transaction T to

be directly after the commit point of the first transaction Tr s in e

whose generated state satisfies COMPLETEe,T (s)∧(∆(s,sp )∩WT = ∅).

It follows that Tr s (and all the transactions that precede it in e)

start-precedeT . Proving ¬G-SIa is then straightforward: any trans-

actionT ′ thatT write-read/write-write depends on precedesTr s in

the execution, and consequently start-precedesT . Proving ¬G-SIb

requires a little more care. By ¬G-SIa, there necessarily exists a

corresponding start-depend edge for any write-read or write-write

edge between two transactions T and T ′: if there exists a cycle

with exactly one read-write edge in the SSG(H ), there must exist

a cycle with exactly one read-write edge and only start-depend

edges in SSG(H ). Assuming by contradiction that G-SIb holds and

that there exists a cycle with one read-write edge and multiple

start-depend edges (we reduce this cycle to a single start-depend

edge as start-edges are transitive). Let T read-write depend on

T ′: sT ′ is ordered after sTr s in e (otherwise sTr s cannot be a valid

read state for T ). However, as previously mentioned, T only has

start-depend edges with transactions that precede Tr s (included)

in e . T ′ thus does not start-depend on T , a contradiction. □

Unlike Adya’s, however, the correctness of our state-based def-

inition does not rely on using start and commit timestamps. This

is a crucial difference. Including these low-level attributes in the

definition has encouraged the development of variations of SI that

differ in their use of timestamps, whose fundamental guarantees

are, as a result, ydifficult to compare. In §5.2 we show that, when

expressed in terms of application-observable states, several of

these variations, thought to be distinct, are actually equivalent!4

Read committed Read committed allowsT to see the effects

of concurrent transactions, as long as they are committed. The

commit test therefore no longer constrains all operations in T to

read from the same state; instead, it only requires each of them to

read from a state that precedes T in the execution e . We prove in

Appendix A.4 that:

Theorem 3 ∃e :∀T ∈T :CTRC (T,e)≡¬G1.

4As proofs follow a similar structure, we defer all subsequent proofs to Appendices







Strong SI (CTStronд SI (T,e)) C-ORD(Tsp ,T )∧∃s ∈Se :COMPLETEe,T (s)∧NO-CONFT (s)∧(Ts <s T )∧(∀T
′
<s T :sT ′

∗
−→s)

Strong Session SI/PC-SI (CTSession SI (T,e)) C-ORD(Tsp ,T )∧∃s ∈Se :COMPLETEe,T (s)∧NO-CONFT (s)∧(Ts <s T )∧(∀T
′ se−−→T :sT ′

∗
−→s)

ANSI SI /GSI (CTANSI S I (T,e)) C-ORD(Tsp ,T )∧∃s ∈Se :COMPLETEe,T (s)∧NO-CONFT (s)∧(Ts <s T )

Adya SI (CTSI (T,e)) ∃s ∈Se :COMPLETEe,T (s)∧NO-CONFT (s)

PSI/PL-2+ (CTPSI (T,e)) PREREADe (T )∧∀T
′
▷T :CAUS-VIS(e,T )

Table 2: Commit tests for snapshot-based protocols

This is not an isolated case: we find that the two less popular

notions of isolation that occupy the level of the hierarchy between

Strong SI and ANSI SI (Strong Session SI (SSessSI) [48] and Prefix-

Consistent SI (PC-SI) [24]) are also equivalent These guarantees

seek to prevent transaction inversions [24] (a client c1 executes a

transaction T1 followed, in real-time by T2 without T2 observing

the effects ofT1) that can arise when transactions read from a stale

snapshot—but without requiring all transactions to read from the

most recent snapshot. To this effect, they strike a balance between

ANSI SI and Strong SI: they introduce the notion of sessions and re-

quire a transactionT to read from a snapshot more recent than the

commit timestamp of all transactions that precede T in a session

(formally: a session se is a tuple (Tse ,
se
−−→)where

se
−−→ is a total order

over the transactions in Tse such that T
se
−−→ T ′ ⇒ T <s T

′). Our

model straightforwardly captures this definition (Table 2, second

row) by requiring that the complete state fromwhich a transaction

reads follow the commit state of all transactions in a session. We

prove the following theorem in Appendices C.3 and D.3:

Theorem 9 ∃e :∀t ∈T :CTSession SI (t,e)≡SSessSI ≡PC-SI .

Though ANSI SI or Strong Session SI are both more scalable

than Strong SI, their definitions still include several red flags for

efficient large-scale implementations. First, they require a total or-

der on transactions (C-ORD(s,sp )), forcing developers to implement

expensive coordination mechanisms, even as transactions may ac-

cess different objects. Second, they limit a transactionT to reading

only from complete states that do not include transactions that

committed in real time afterT ’s start timestamp. This implementa-

tion choice often forces transactions to read further in the past than

necessary, making them more prone to write-write conflicts with

concurrent transactions. Moreover, it prevents transactions from

reading uncommitted operations, precluding efficient implementa-

tions for high-contentionworkloads [26, 60]. Adya’s reformulation

of SI [2] side-steps many of these baked-in implementation deci-

sions by removing the dependence on real-time, instead allocating

logical timestamps consistent with the transactions’ observations.

Our model can capture this distinction by simply removing the

two aforementioned clauses from the commit test (Table 2, fourth

row), allowing for maximum flexibility for how snapshot isolation

can be implemented without affecting client-side guarantees.
The lowest level of the hierarchy covers snapshot-based

isolation guarantees intended for large-scale geo-replicated

systems. When transactions may be asynchronously replicated

for performance and availability, it is challenging to require that

transactions read a database snapshot that corresponds to a single

moment in time (and hence read from a complete state) as it would

require transactions to become visible atomically across all (possi-

bly distant) datacenters. PSI [53] (introduced in §4) and PL-2+ [2, 3]

consequently weaken Adya’s SI to address these new challenges:

PSI requires that transactions read from a committed snapshot

but allows concurrent transactions to commit in a different order

at different sites, while PL-2+ disallows cycles consisting of either

write-write/write-read dependencies, or containing a single anti-

dependency edge. Unlike what these widely different low-level def-

initions suggest, taking a client-centric view of these guarantees

indicates that PSI and PL-2+ in fact weaken Adya’s snapshot iso-

lation in an identical fashion: they no longer require transactions

to read from a complete state, and instead require that operations

read from a (possibly different) state that includes the effects of all

previously observed transactions. Our model cleanly captures the

shared guarantee provided by PL-2+/PSI: that a transactionT must

observe the effects of all transactions that it is not concurrent with

(Table 2, fifth line). We write: for every transactionT ′ that a trans-

action T depends on: ∀o ∈ΣT :o.k ∈WT ′ ⇒sT ′
∗
−→slo ≡CAUS-VIS(e,T ).

From this client-centric formulation, we prove the following

theorem in Appendix E:

Theorem 10 ∃e :∀T ∈T :CTPSI (T,e)≡PSI≡PL-2+.

5.3 Identifying performance opportunities

Beyond improving clients’ understanding, defining isolation

guarantees in terms of client-observable states helps prevent

them from subjecting transactions to stronger requirements than

what these guarantees require end-to-end. Indeed, by removing

all implementation-specific details (timestamps, replicas) present

in system-centric formulations, our model gives full flexibility

to how these guarantees can be implemented. We illustrate this

danger, and highlight the benefits of our approach, using the

specific example of PSI/PL-2+.

In its original specification, the definition of parallel snapshot

isolation [53] requires datacenters to enforce snapshot isolation,

even as it globally only offers (as we prove in Theorem 10) the

guarantees of lazy consistency/PL-2+. This baked-in implemen-

tation decision makes the very definition of PSI unsuitable for

large-scale partitioned datacenters as it makes the definition

(and therefore any system that implements it) susceptible to

slowdown cascades. Slowdown cascades (common in large-scale

systems [5]) arise when a slow or failed node/partition delays

operations that do not access that node itself, and have been

identified by industry [5] as the primary barrier to adoption of

stronger consistency guarantees. By enforcing SI on every site,

the history-based definition of PSI creates a total commit order

across all transactions within a datacenter, even as they may

access different keys. Transactions thus become dependent on all

previously committed transactions on that datacenter, and cannot

be replicated to other sites until all these transactions have been

applied. If a single partition is slow, all transactions that artificially

depend on transactions on that node will be unnecessarily delayed,

creating a cascading slowdown.
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