Seeing is Believing: A Client-Centric Specification of Database
Isolation

Natacha Crooks
The University of Texas at Austin and Cornell University

Lorenzo Alvisi
The University of Texas at Austin and Cornell University

ABSTRACT

This paper introduces the first state-based formalization of
isolation guarantees. Our approach is premised on a simple
observation: applications view storage systems as black-boxes
that transition through a series of states, a subset of which are
observed by applications. Defining isolation guarantees in terms
of these states frees definitions from implementation-specific
assumptions. It makes immediately clear what anomalies, if any,
applications can expect to observe, thus bridging the gap that
exists today between how isolation guarantees are defined and
how they are perceived. The clarity that results from definitions
based on client-observable states brings forth several benefits.
First, it allows us to easily compare the guarantees of distinct,
but semantically close, isolation guarantees. We find that several
well-known guarantees, previously thought to be distinct, are in
fact equivalent, and that many previously incomparable flavors of
snapshot isolation can be organized in a clean hierarchy. Second,
freeing definitions from implementation-specific artefacts can
suggest more efficient implementations of the same isolation
guarantee. We show how a client-centric implementation of
parallel snapshot isolation can be more resilient to slowdown
cascades, a common phenomenon in large-scale datacenters.

ACM Reference format:

Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. 2017. See-
ing is Believing: A Client-Centric Specification of Database Isolation. In
Proceedings of PODC ’17, Washington, DC, USA, July 25-27, 2017, 30 pages.

http://dx.doiorg/lo.1145/3087801.3087802

1 INTRODUCTION

Large-scale applications such as Facebook [1], or Twitter [56] of-
fload the managing of data at scale to replicated and/or distributed
systems. These systems, which often span multiple regions or
continents, must sustain high-throughput, guarantee low-latency,
and remain available across failures. To meet these demands, com-
mercial databases or distributed storage systems like MySQL [45],
Oracle [46], or SQL Server [42] often give up serializability [47]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

PODC °17, July 25-27, 2017, Washington, DC, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4992-5/17/07...$15.00
http://dx.doi.org/10.1145/3087801.3087802

Youer Pu
Cornell University

Allen Clement
Google, Inc.

(the gold-standard correctness criterion: an interleaved execution
of transactions must be equivalent to a serial schedule) and
instead privilege weaker but more scalable correctness crite-
ria [2, 15, 34, 45, 49, 50, 53, 61] (referred to as weak isolation) such
as snapshot isolation [15] or read committed [15]. In fact, to the
best of our knowledge, almost all SQL databases use read commit-
ted as their default isolation level [39, 42, 45, 46, 50, 51], with some
only supporting read-committed or snapshot isolation [45, 51]'.

This trend poses an additional burden on the application pro-
grammer, as these weaker isolation guarantees allow for counter-
intuitive application behaviors: relaxing the ordering of operations
yields better performance, but introduces schedules and anomalies
that could not arise if transactions executed atomically and se-
quentially. These anomalies may affect application logic: consider
a bank account with a $50 balance and no overdraft allowed. If
the application runs under read-committed [15], the underlying
database may allow two transactions to concurrently withdraw
$45, incorrectly leaving the account with a negative balance [15].

To mitigate this increased programming complexity, many com-
mercial databases and distributed storage systems [14, 28, 29, 39—
41, 45, 46, 50] interact with applications through a front-end
that gives applications the illusion of querying or writing to a
logically centralized, failure-free node that will scale as much as
one’s wallet will allow [28, 29, 39, 40, 46]. In practice, however,
this abstraction is leaky: a careful understanding of the system
that implements a given isolation level is oftentimes necessary to
determine which anomalies the system will admit and how these
will affect application correctness.

Indeed, the guarantees provided by isolation levels are of-
ten dependent on specific and occasionally implicit system
properties—be it properties of storage (e.g., whether it is single
or multiversioned [16]); of the chosen concurrency control (e.g.,
whether it is based on locking or timestamps [15]); or other system
features (e.g., the existence of a centralized timestamp [27]).

Consider for example serializability [47]: the original ANSI SQL
specification states that guaranteeing serializability is equivalent
to preventing four phenomena [15]. This equivalence, however,
only holds for lock-based, single version databases. Such implicit
dependencies continue to have practical consequences: current
multiversioned commercial databases that prevent these four
phenomena, such as Oracle 12c, claim to implement serializability,
when they in fact implement the weaker notion of snapshot
isolation [11, 27, 46]. As such, they accept non-serializable
schedules akin to the schedule in Figure 1(r), which exhibits an
anomaly commonly referred to as write skew [15]. In contrast, a

1As of June 2017

Start No Conflict Serializability (S) No St?rt
Start e .
g) ') Yes | Multiversion Serializability (MS) | No Start r(y,y,)
W(X,X
B wixx,) ? No Anomaly Serializable (AS) | Yes (x.xg)
w(yy,) N o)
o Oracle 12¢ (0) Yes
Commit
gﬁmﬁ No | MySQL Community Edition (M) | No w(y.y,)
Commit Commit
Yes Rococo (R) No

Execution | Execution r

Figure 1: Serializability. Abbreviations refer to: S[47], MS[17],
AS[15] O[46], M[45], R[43].

majority reject the (serializable) schedule of Figure 1(l) because,
for performance reasons, these systems choose not reorder writes.

We submit that the root of this complexity is a fundamental
semantic gap between how application programmers experience
isolation guarantees and how they are currently formally defined.
From a programmer’s perspective, isolation guarantees are
contracts between the storage systems and its clients, specifying
the set of behaviors that clients can expect to observe—i.e., the set
of admissible values that each read is allowed to return. When it
comes to formally defining these guarantees, however, the current
practice is to focus, rather than on the values that the clients can
observe, on the mechanisms that can produce those values—i.e.,
histories capturing the relative ordering of low-level read and
write operations.

Expressing isolation at such a low level of abstraction has
significant drawbacks. First, it requires application programmers
to reason about the ordering of operations that they cannot
directly observe. Second, it makes it easy, as we have seen, to
inadvertently contaminate what should be system-independent
guarantees with system-specific assumptions. Third, by relying
on operations that are only meaningful within one of the layers
in the system’s stack, it makes it hard to reason end-to-end about
the system’s guarantees.

To address these issues, we propose a new model that, for the
first time, expresses isolation guarantees exclusively as properties
of states that applications can observe, without relying on tradi-
tional notions—such as dependency graphs, histories, or version
orders— that are instead invisible to applications. This new foun-
dation comes at no cost in terms of generality or expressiveness:
we offer below state-based and client-centric definitions of most
modern isolation definitions, and prove that they are equivalent
to their existing counterparts. It does, however, result in greater
clarity, which yields significant benefits.

First, this model makes clear to developers what anomalies, if
any, their applications can expect to observe, thus bridging the
semantic gap between how isolation is experienced and how it is
formalized. For example, we show (§5.1) how a state-based and
client-centric definition brings immediately into focus the root
cause of the write-skew anomaly, which distinguishes snapshot
isolation from serializability.

Second, by removing the distorting effects of implementation
artefacts, our approach makes it easy to compare the guarantees of
distinct, but semantically close, isolation guarantees. The results
are sometimes surprising. We prove (§5.2) that several well-known
flavors of isolation in fact provide the same guarantees: parallel

snapshot isolation (PSI) [20, 53] is equivalent to lazy consistency
(PL-2+) [2, 3]; similarly, generalized snapshot isolation (GSI) [48]
is actually equivalent to ANSI snapshot isolation (ANSI SI) [15],
though GSI was proposed as a more scalable alternative to ANSI SI.
Likewise, we also show that the lesser known strong session SI [24]
and prefix-consistent SI [48] are also equivalent. Ultimately, the
insights offered by state-based definitions enable us to organize
in a clean hierarchy (§5.2) what used to be incomparable flavors
of snapshot isolation [2, 9, 15, 24, 37, 48, 53].

Finally, by focusing on how clients perceive a given isolation
guarantee, rather than on the mechanisms currently used to
implement it, a state-based formalization can lead to a fresh,
end-to-end perspective on how that guarantee should be imple-
mented. Specifically, a state-based definition of parallel snapshot
isolation (PSI) makes clear that the requirement of totally ordering
transactions at each datacenter, which is baked into its current
definition [53], is only an implementation artefact. Removing it
offers the opportunity of an alternative implementation of PSI
that makes it resilient to slowdown cascades [37], a common failure
scenario in large-scale datacenters that has inhibited the adoption
of stronger isolation models in industry [5].

After quickly reviewing in Section 2 the current approach to
formalizing isolation guarantees, we introduce our state-based
model in Section 3, and use it in Section 4 to define several
isolation guarantees. We highlight the benefits of our approach
in Section 5 and summarize related work in Section 6, before
outlining our work’s limitations and concluding in Section 7.

2 BACKGROUND

Isolation guarantees have been formalized in many different ways:
initial specifications of serializability [47] define correctness as a
function of schedule equivalence, while weaker isolation guaran-
tees have been defined using implementation-oriented operational
specifications [13, 15, 53] or by relating the order in which trans-
actions commit with the values that they observe [20, 21, 52]. The
most prevalent approach, however, has been to formulate isolation
guarantees as dependency graphs, with edges denoting conflicts
between transactions: this method was introduced by Bernstein
et al. to formalize serializability for both single-version [16] and
multiversioned databases [17], and subsequently refined by Adya
to specify weak isolation guarantees [2]. Adya’s specification
has since been adopted as the de-facto language for specifying
isolation [25, 37, 54, 58]. We select Adya’s model as a baseline and
prove our definitions equivalent to his in §4.

Adya’s formalism We summarize below some of the key
definitions and results from Adya’s treatment of isolation [2]; a
more complete description can be found in Appendix A.

Adya’s model is expressed in terms of histories, which consist
of two parts: a partial order of events that reflect the operations of
a set of transactions, and a version order that imposes a total order
on committed object versions. Every history is associated with
a directed serialization graph DSG(H) [17], whose nodes consist
of committed transactions and whose edges mark the conflicts
(read-write, write-write, or write-read) that occur between them.
For specific isolation levels, Adya further augments the model
with logical start and commit timestamps for transactions, leading

T, wyxx,) Execution e Reasdf S=te'15t|es=o;r2(y,y1)
T, vy, r(z2zy) Sp s, SN .
T wylyy,)

Ty Wy.y,) W,(zZ,)
T

o TxXxg) ri(z,z,)

. sf,=s, =
2 0
ransactions " Read States of ry(z,z)) "2 ™2 State

sl,=s @© Complete

Figure 2: Read States and execution.

to start-ordered serialization graphs (SSG(H)) that add start-
dependency edges to the nodes and edges of the corresponding
DSG(H) (two transactions T, T’ are start-ordered if the commit
timestamp of one precedes the start timestamp of the other).

An execution satisfies a given isolation level if it disallows
aborted reads, intermediate reads, and circularity. The first two
conditions prevent a transaction T; from reading, respectively, (i)
values produced by an aborted transaction T, and (ii) a version of
an object x written by a transaction T that T> subsequently over-
writes. The third condition is more complex. Disallowing circular-
ity prevents cycles in the serialization graph; the specific edges that
compose the cycle, however, depend on the particular isolation
level: read-uncommitted disallows cycles consisting only of write-
write edges in the DSG(H) (referred to by Adya as phenomenon
G0)?, while all remaining ANSI SQL isolation levels disallow cy-
cles consisting of write-write/write-read edges (phenomenon G1).
Serializability also disallows cycles that include read-write edges
(G2). In contrast, snapshot isolation disallows write-write/write-
read edges without corresponding start edges (G-SI(a)) as well as
cycles containing a single read-write edge in the SSG(H) (G-SI(b)).

Towards a new formalism Adya’s formalism, like its other
existing counterparts, specifies isolation guarantees as constraints
on the ordering of the read and write operations that the storage
system performs, and relies on low-level implementation details
like timestamps or version order. Unfortunately, applications
cannot directly observe this ordering: to them, the storage system
is a black box. All they can observe are the values returned
by the read operations they issue: they experience the storage
system as if it were going through a sequence of atomic state
transitions, of which they observe a subset. To make it easier for
applications to reason about different levels of isolation, we adopt
the viewpoint of the applications that must ultimately use their
guarantees and introduce a new formalization of isolation based
on application-observable states.

3 A STATE-BASED MODEL

To the best of our knowledge, our model is the first to specify
isolation without relying on some notion of history. Instead, it
associates with each transaction the set of candidate states (called
read states) from which the transaction may have retrieved the
values it read during its execution. Read states perform a role
similar to Kripke structures [35]: they inform the application
of the set of possible worlds (i.e., states) consistent with what a
transaction observed during its execution.

Intuitively, a storage system guarantees a specific isolation
level I if it can produce an execution (a sequence of atomic state

2We will use Adya’s shorthand for this and other phenomena in §4, when we prove
that our new state-based definitions of isolation guarantees are equivalent to his.

transitions) that satisfies two conditions. First, the execution must
be consistent with the values observed by each transaction T; in
our model, this requirement is expressed by associating every
transaction T with a set of read states, representing the states that
the storage could have been in when the application executed T’s
operations. Second, the execution must be valid, in that it must
satisfy the constraints imposed by I; I effectively narrows down
which transactions’ read states can be used to build an acceptable
execution. If no read state proves suitable for some transaction,
then I does not hold.

More formally, we define a storage system S with respect to a
set K of keys and V of values; a system state s is a unique map-
ping from keys to values produced by writes from aborted or com-
mitted transactions. For simplicity, we assume that each value is
uniquely identifiable, as is common practice both in existing for-
malisms [2, 17] and in practical systems (ETags in Azure [40] and
S3 [7], timestamps in Cassandra [8]). There can thus be no ambigu-
ity, when reading an object, as to which transaction wrote its con-
tent. In the initial system state, all keys have value _L; later states
similarly include every key, possibly mapped to L. As is common
in database systems, we assume that applications modify the stor-
age system’s state using transactions. A transaction T is a tuple

(ZT,i), where X7 is the set of operationsin T, and o, is a total
order on X7. Operations can be either reads or writes. Read op-
eration r(k,v) retrieves value v by reading key k; write operation
w(k,v) updates k to its new value v. The read set of T comprises
the keys read by T: Rt ={k|r(k,v) €Z1}. Similarly, the write set of
T comprises the keys that T updates: ‘Wr = {k|w(k,v) € Z1}. For
simplicity of exposition, we assume that a transaction only writes
akey once. Finally, we assume the existence of a time oracle O that
assigns distinct real-time start and commit timestamps (T.start
and T.commit) to every transaction T € 7. A transaction T; time-
precedes Tz (we write Ty <g Tp) if T1.commit < Ty.start. Applying a
transaction T to a state s transitions the system to a state s’ that is
identical to s in every key except those written by T. Formally,

Definition 15 — s’ = (([k,v) € s A (ko) ¢ s] = k €
Wr) A (w(k,v) ST = (kv)€s’)).

We refer to s as the parent state of T (denoted as sp, 1) 3. to the
transaction that generated s as Ts; and to the set of keys in which
s and s’ differ as A(s,s”). An execution e for a set of transactions

T
7 is a totally ordered set defined by the pair (Se, i), where
Se is the set of states generated by applying, starting from the
system’s initial state, a permutation of all the transactions in 7.

We write s— s’ (respectively, s B) to denote a sequence of zero
(respectively, one) or more state transitions from s to s’ in e. For
example, in Figure 2, 7~ comprises five transactions, operating on
a state that consists of the current version of keys x, y, and z.
Note that while e identifies the state transitions produced by
each transaction T € 77, it does not specify from which states in S,
each operation in T reads. In particular, reading a key in replicated
distributed systems will not necessarily return the value produced
by the latest write to that key, as writes may become visible in
different orders at different replicas. In general, multiple states in

3Henceforth, we will drop the subscripted T unless there is ambiguity.

Se may be compatible with the value returned by any given op-
eration. We call this subset the operation’s read states. To prevent
operations from reading from the future, we restrict the valid read
states for the operations in T to be no later than s;,. Further, once an
operation in T writes v to k, we require all subsequent operations
in T that read k to return v [2]: in this case, their set of read states
by convention includes all states in S, up to and including s,,.

Definition 2 Given an execution e for a set of transactions T, let
T €7 and let s, denote T’s parent state. The read states for a read
operation o=r(k,v) € X1 define the set of states
RSe(0)={sE€Sels—5p A

((k,v)esv(@w(k,v) €T :w(k,v) o, r(k,v)))}.

Figure 2 illustrates the notion of read states for the operations
executed by transaction Tp. Since ry returns y, its only possible
read state is sp, i.e., the only state containing y;. When it comes
to r3, however, zg could have been read from any of s, si, or s:
from the perspective of the client executing Tj, these read states
are indistinguishable. By convention, write operations have read
states too: for a write operation in T, they include all states in S,
up to and including T’s parent state. It is easy to prove that the
read states of any operation o define a subsequence of contiguous
states in the total order that e defines on S.. We refer to the
first state in that sequence as sf, and to the last state as sl,. For
instance, in Figure 2, sfy, is so (the first state that contains zg) and
sly, is s3 (2o is overwritten in s3). When the predicate PREREAD, (77)
holds, then such states exist for all transactions in 7

Definition 3 Let prereane (T)=Vo € X1 : RS (0) 0.
Then PREREADe (T) =VT € T : PREREAD (T).

We say that a state s is complete for T in e if every operation in
T can read from s. We write:

Definition 4 compretee T(s)=s€ () RSe(0).
oEeXT

Looking again at Figure 2, s is a complete state for transaction
Tp, as it is in the set of candidate read states of both ra2(y,y1) ({s2})
and r3(z, z9) ({s0,51,52}). A complete state is not guaranteed to
exist: no such state exists for T, as the sole candidate read states
of r4 and r5 (respectively, sp and s3) are distinct. As we will see in
§4, complete states are key to determining whether transactions
read from a consistent snapshot.

4 ISOLATION

Isolation guarantees specify the valid set of executions for a
given set of transactions 7. We show that it is possible to
formalize these guarantees solely in terms of each transaction’s
read and commit states, without relying on histories of low-level
operations or on implementation details such as timestamps. The
underlying reason is simple: ultimately, it is through the visible
states produced during an execution that the storage system can
prove to its users that a given isolation guarantee holds. Histories
are just the mechanism that generates those probatory states;
indeed, multiple histories can map to the same execution.

In a state-based model, isolation guarantees constrain each
transaction T € 7 in two ways. First, they limit which states,
among those in the candidate read sets of the operations in T, are

admissible. Second, they restrict which states can serve as parent
states for T. We express these constraints by means of a commit
test: for an execution e of a set 7~ of transactions to be valid under
a given isolation level 7, each transaction T in e must satisfy the
commit test CT 7 (T,e) for 1.

Definition 5 Given a set of transactions 7 and their read states, a
storage system satisfies an isolation level I iff 3e:VT €T :CTy(Te).

Table 1 summarizes the commit tests that define the isolation
guarantees most commonly-used in research and industry: the
ANSI SQL isolation levels (serializability, read committed, read
uncommitted, and snapshot isolation) as well as parallel snapshot
isolation [20, 53], strict serializability [47], and the recently
proposed read atomic [13] isolation level. Though our state-based
definitions make no reference to histories, we prove that they
are equivalent to those in Adya’s classic treatment. As the proofs
follow a similar structure, we provide an informal proof sketch
only for serializability and snapshot isolation, deferring a more
complete and formal treatment to Appendices A, B and E.

Serializability requires the values observed
by the operations in each transaction T to be consistent with those
that would have been observed in a sequential execution. The
commit test enforces this requirement through two complemen-
tary conditions on observable states. First, all of T’s operations
must read from the same state s (i.e., s must be a complete state
for T). Second, s must be the parent state of T, i.e., the state that T
transitions from. These two conditions suffice to guarantee that T
will observe the effects of all transactions that committed before
it. This definition is equivalent to Adya’s cycle-based definition.
Specifically, we prove that (a more formal proof can be found in
Appendix A.2):

Theorem 1 Fe:VT €T :CTsgr(T.e)=-GIA-G2.

ProorF skeTcH. (Je: VT € 7 : CTsgr(T.e) = -G1 A =G2). By
definition, e is a totally-ordered execution where the parent state
of every transaction T is a complete state for T. Considering the
order of transactions in e, we make three observations. First, all
write-write edges in the DSG point in the same direction, as they
map to state transitions in the totally-ordered execution e. Second,
all write-read edges point in the same direction as write-write
edges: given any transaction T, since all operations in T read from
T’s parent state, all write-read edges that end in T must originate
from a transaction that precedes T in e’s total order. Finally,
all read-write dependency edges point in the same direction as
write-write and write-read edges: as all read operations in T
read from T’s parent state, the value they return cannot be later
overwritten by a transaction T” ordered before T in e. Since all
edges point in the same direction, no cycle can form in the DSG.

(Fe:VT €T :CTsgr(Te) &=—-G1A-G2). If no cycle exists in the
DSG, we can construct an execution e’ such that the parent state s,
of each transaction T is a complete state for T. We construct e’ by
topologically sorting the DSG (it is acyclic) and by applying every
transaction in the resulting order. Thus, if a transaction T’ writes a
value that T subsequently reads (write-read edge), the state associ-
ated with T’ is guaranteed to precede T°s state in the execution e’.
Moreover, as there are no backpointing read-write edges, no other

Serializability (CTsgr(T, e))

COMPLETE,, 7(Sp)

Snapshot Isolation (CTs(T, e))

Js €S .COMPLETE,, 7(s) ANO-CONFT(s)

Read Committed (CTrc(T, e))

PREREAD(T)

Read Uncommitted (CTry (T, €))

True

Parallel Snapshot Isolation (CTpsy(e, T))

PREREAD(T)AVT’ »T:Yo€Zr:0.k € Wy =~s-pi>slo

Strict Serializability (CTssgr(e, T))

COMPLETEe, 7(sp) AVT’ € T: T’ < T=> 577~ 51

Read Atomic (CTra(e,T))

Vri(ki,v1), ra(ks, v2) €7 Aky € WTSfrl = sfr, 5 fry

Table 1: Commit Tests

transaction in e’ will update an object read by T between the state
produced by T” and s,. sp is therefore a valid read state for every
operation in T and, consequently, a complete state for T. m}

Snapshot isolation (SI)‘ Like serializability, SI prevents

transaction T from seeing the effects of concurrently running
transactions. The commit test enforces this requirement by having
all operations in T read from the same state s, produced by a trans-
action that precedes T in the execution e. However, SI no longer
insists on that state s being T’s parent state sp: other transactions,
whose operations T will not observe, may commit in between s
and sp. The commit test only forbids T from modifying any of the
keys that changed value as the system’s state progressed from s
to sp. Denoting the set of keys in which s and s” differ as A(s,s”),
we express this as No-conr7(s) = A(s,sp) N Wr = 0. We prove that
this definition is equivalent to Adya’s (a more formal proof can be
found Appendix A.3):

Theorem 2 Je:VTeT :CTs;(T,e)=-GIA-G-SL

PrOOF SKETCH. (Je: VT € 7 : CTg(T,e) = -G1 A =G-SI). We
construct a valid execution for any history satisfying =G1A-G-SI
using the time-precedes partial order introduced by Adya. First,
we topologically sort transactions according to their commit point,
and apply them in the resulting order to generate an execution e.
Next, we prove that every transaction T satisfies the commit test:
we first show that the state created by the last transaction T,s on
which T start-depends is a complete state. As T start-depends on
Ty, it must also start-depend on all transactions that precede Ty,
since, by construction, these transactions have a commit times-
tamp smaller than T,s. Moreover, as Ty is the last transaction that
T starts-depend on, all subsequent transactions will either be con-
current with T, or start-depend on T. Adya’s (=G-SI) requirement
(formally, that there cann be neither a write-read /write-write edge
without also a start dependency edge nor a cycle including a single
read-write edge) implies that T can only read or overwrite a value
written by a transaction T” if T start-depends on T’. Any such T’
must either be T, or precede Ty in e. Similarly, if another trans-
action T”” overwrites a value that T reads, T cannot start-depend
on T” as it would otherwise create a cycle with a start-edge and
a single read-write edge. T" is therefore ordered after Ty in e.
We conclude that s7, necessarily contains all the values that T
reads: it is a complete state. Next, we show that A(st, ,s7) = 0.
By construction, T cannot start-depend on any transaction T’
that follows T, in the execution but precedes T. By G-SI, there
cannot be a write-write dependency edge from T’ to T, and their
write-sets must therefore be distinct. Consequently: A(st, . ,s7)=0.

(Fe:VYT €T :CTsy(T,e) = ~G1A—G-SI). We show that the serial-
ization graph SSG(H) corresponding to e does not exhibit phenom-
ena G1 or G-SI. Every transaction in e reads from some previous
state and commits in the total order defined by e. It follows that all
write-write and write-read edges follow the total order introduced
by e: there can be no cycle consisting of write-write/write-read
dependencies. =G1 is thus satisfied. To show that SSG(H) does
not exhibit G-SI, we first select the start and commit point of each
transaction. We assign commit points to transactions according to
their order in e. We assign the start point of each transaction T to
be directly after the commit point of the first transaction T in e
whose generated state satisfies comPLETE,, T(s) A (A(s,5p) N Wr =0).
It follows that T, (and all the transactions that precede it in e)
start-precede T. Proving —G-Sla is then straightforward: any trans-
action T’ that T write-read/write-write depends on precedes T in
the execution, and consequently start-precedes T. Proving ~G-SIb
requires a little more care. By =G-Sla, there necessarily exists a
corresponding start-depend edge for any write-read or write-write
edge between two transactions T and T”: if there exists a cycle
with exactly one read-write edge in the SSG(H), there must exist
a cycle with exactly one read-write edge and only start-depend
edges in SSG(H). Assuming by contradiction that G-SIb holds and
that there exists a cycle with one read-write edge and multiple
start-depend edges (we reduce this cycle to a single start-depend
edge as start-edges are transitive). Let T read-write depend on
T’: s7 is ordered after s7,_ in e (otherwise s7, cannot be a valid
read state for T). However, as previously mentioned, T only has
start-depend edges with transactions that precede T, (included)
in e. T’ thus does not start-depend on T, a contradiction. O

Unlike Adya’s, however, the correctness of our state-based def-
inition does not rely on using start and commit timestamps. This
is a crucial difference. Including these low-level attributes in the
definition has encouraged the development of variations of SI that
differ in their use of timestamps, whose fundamental guarantees
are, as a result, ydifficult to compare. In §5.2 we show that, when
expressed in terms of application-observable states, several of
these variations, thought to be distinct, are actually equivalent!*

Read committed |Read committed allows T to see the effects
of concurrent transactions, as long as they are committed. The
commit test therefore no longer constrains all operations in T to
read from the same state; instead, it only requires each of them to
read from a state that precedes T in the execution e. We prove in
Appendix A.4 that:

Theorem 3 Fe:VT €T :CTrc(T,e)=-Gl.

4 As proofs follow a similar structure, we defer all subsequent proofs to Appendices

Read uncommitted | Read uncommitted allows T to see the
effects of concurrent transactions, whether they have committed
or not. The commit test reflects this permissiveness, to the point
of allowing transactions to read arbitrary values. Still, we prove in
Appendix A.5 that:

Theorem 4 Fe:VT €T :CTgry(T,e)=-GO.

The reason behind the laxity of the state-based definition is
that isolation models in databases consider only committed trans-
actions and are therefore unable to distinguish values produced by
aborted transactions from those produced by future transactions.
This distinction, however, is not lost in environments, such as
transactional memory, where correctness depends on providing
guarantees such as opacity [30] for all live transactions. We
discuss this further in Section 7.

| Strict Serializability |Strict serializability guarantees that the

real-time order of transactions will be reflected in the final history
or execution. It can be expressed by adding the following condition

to the serializability commit test: YT/ € T : T’ <s T = s~ 5 ST.

|Parallel Snapshot Isolation‘ Parallel snapshot isolation

(PSI) was recently proposed by Sovran et al. [53] to address SI's
scalability issues in geo-replicated settings. Snapshot isolation
requires transactions to read from a snapshot (a complete state in
our parlance) that reflects a single commit ordering of transactions.
The coordination implied by this requirement is expensive to carry
out in a geo-replicated system and must be enforced even when
transactions do not conflict. PSI aims to offer a scalable alternative
by allowing distinct geo-replicated sites to commit transactions
in different orders. The specification of PSI is given as an abstract
specification code that an implementation must emulate. Specifi-
cally, a PST execution must enforce three properties. First, site snap-
shot read: all operations read the most recent committed version at
the transaction’s origin site as of the time when the transaction be-
gan (P1). Second, no write-write conflicts: the write sets of each pair
of somewhere-concurrent committed transactions must be disjoint
(two transactions are somewhere-concurrent if they are concur-
rent on site(Ty) or site(T2)) (P2). And finally, commit causality
across sites: if transaction T; commits at a site A before transaction
T, starts at site A, then Tj cannot commit after T, at any site.

Our first step towards a state-based definition of PSI is to
populate, using solely client-observable states, the precede-
set of each transaction T, i.e. the set of transactions after
which T must be ordered. A transaction T’ is in T’s precede-
set if (i) T reads a value that T’ wrote; or (ii) T writes
an object modified by T’ and the execution orders T’ be-
fore T; or (iii) T’ precedes T and T"’ precedes T. Formally:
p-prec(T) = {T|Fo € 2 T=Tgy Y U{TlsT 5 s AWianWr 20}
We write T; »T; if T; €p-prece(T}) and T; »T; if T; transitively pre-
cedes Tj. PSI guarantees that the state observed by a transaction
T’s operation includes the effects of all transactions that precede it.
We can express this requirement in PSI’s commit test as follows:

Definition 6 CTps(T,e) = rrereane (T) AVT’ »T :Yo € 3T : 0.k €
(WT/ =T leo.

Withdraw(acc,amnt)
s = READ(S) ; c¢ = READ(C)
If (s+c>=amt)

If (acc = s) WRITE(S,s-amnt)
else WRITE(C,c-amnt)
else WRITE(Log,Fail) ; abort

C=30,8=30 C=-10,S=30

Figure 3: Simple Banking Application. Alice and Bob share
checking and savings accounts. Withdrawals are allowed as

long as the sum of both account is greater than zero.

s,

This client-centric definition of PSI makes immediately clear
that the state which operations observe is not necessarily a
complete state, and hence may not correspond to a snapshot of
the database at a specific time. We prove the following theorem in
Appendix E.3:

Theorem 5 e:VT €T :CTpsy(T,e)=PSL

Read atomic [13], like PSI, aims to be a

scalable alternative to snapshot isolation. It preserves atomic
visibility (transactions observe either all or none of a committed
transaction’s effects) but does not preclude write-write conflicts
nor guarantees that transactions will read from a causally consis-
tent prefix of the execution. These weaker guarantees allow for
efficient implementations and nonetheless ensure synchronization
independence: one client’s transactions cannot cause another
client’s transactions to fail or stall. Read atomic can be expressed
in our state-based model as follows:

Definition 7 CTra(T,e) = Vri(ky, v1), ra(ke, v2) € 27 A kg €
Wr,, =sfn Ssfy,.

Intuitively, if an operation o1 observes the writes of a transac-
tion T;’s, all subsequent operations that read a key included in
T;’s write set must read from a state that includes T;’s effects. We
prove the following theorem in Appendix B:

Theorem 6 Je:VT €T :CTra(T,e)=RA.

5 BENEFITS OF A STATE-BASED APPROACH

Specifying isolation using client-observable states rather than
histories is not only equally expressive, but brings forth several
benefits: it gives application developers a clearer intuition for
the implications of choosing a given isolation level (§5.1), brings
additional clarity to how different isolation levels relate (§5.2), and
opens up opportunities for performance improvements in existing
implementations (§5.3).

5.1 Minimizing the intuition gap

A state-based model makes it easier for application programmers
to understand the anomalies allowed by weak isolation levels, as
it precisely captures the root cause of these anomalies. Consider,

Strong SI

3 Strong
PC-SI Session SI

GSI ANSI SI

g
mO<>Om>m>D

SI

PSI PL-2+

Figure 4: Snapshot-based isolation guarantees hierarchy.
(ANSISI[15, 24], Adya SI[2], Strong SI [24], GSI[48], PSI[53],
Strong Session SI [24], PL-2+ [3], PC-SI [24]).

for example, snapshot isolation: it allows for a non-serializable be-
havior called write-skew (see §1), illustrated in the simple banking
example of Figure 3. Alice and Bob share checking (C) and savings
(S) accounts, each holding $30, the sum of which should never
be negative. Before performing a withdrawal, they check that the
total funds in their accounts allow for it. They then withdraw
the amount from the specified account, using the other account
to cover any overdraft. Suppose Alice and Bob try concurrently
to withdraw $40 from, respectively, their checking and savings
account, and issue transactions T and T». Figure 3(a) shows an ex-
ecution under serializability. Because transactions read from their
parent state (see Table 1), T» observes T;’s withdrawal and, since
the balance of Bob’s accounts is below $40, aborts. In contrast, con-
sider the execution under snapshot isolation in Figure 3(b). As it is
is legal for both T; and T3 to read from a complete but stale state s1,
Alice and Bob can both find that the combined funds in the two ac-
counts exceed $40, and, unaware of each other, proceed to generate
an execution whose final state s3 is illegal. The state-based defini-
tions of snapshot isolation and serializability make both the causes
and the danger of write-skew immediately clear: to satisfy snap-
shot isolation, it suffices that both transactions read from the same
complete state sq, even though this behavior is clearly not serial-
izable, as s; is not the parent state of T>. The link is, arguably, less
obvious with the history-based definition of snapshot isolation,
which requires “disallowing all cycles consisting of write-write
and write-read dependencies and a single anti-dependency”.

5.2 Removing implementation artefacts

By cleanly separating high-level properties from low-level im-
plementation details, a state-based model makes the plethora of
isolation guarantees introduced in recent years easier to compare.
We leverage this newfound clarity below to systematize snapshot-
based guarantees, including ANSI SI [15], Adya SI [2], Weak
SI [24], Strong SI [24], generalized snapshot isolation (GSI) [48],
parallel snapshot isolation (PSI) [53], Strong Session SI [24], PL-2+
(Lazy Consistency) [3], Prefix-Consistent SI (PC-SI) [24]. We find
that several of these isolation guarantees, previously thought to
be distinct, are in fact equivalent from a client’s perspective, and
establish a clean hierarchy that encompasses them.
Snapshot-based isolation guarantees, broadly speaking, are
defined as follows. A transaction is assigned both a start and a
commit timestamp; the first determines the database snapshot
from which the transaction can read (it includes all transactions

with a smaller commit timestamp), while the second maintains
the “first-committer-wins” rule: no conflicting transactions should
write to the same objects. The details of these protocols, however,
differ. Each strikes a different performance trade-off in how it
assigns timestamps and computes snapshots that influences its
high-level guarantee in ways that can only be understood by
applications with in-depth knowledge of the internals of the un-
derlying systems. As a result, it is hard for application developers
and researchers alike to compare and contrast them.

In contrast, formulating isolation in terms of client-observable
states forces definitions that specify guarantees according to how
they are perceived by clients. It then becomes straightforward to
understand what guarantees are provided, and to observe their
differences and similarities. Specifically, it clearly exposes the
three dimensions along which snapshot-based guarantees differ:
(i) time (whether timestamps are logical [2, 37, 53] or based on
real-time [15, 24, 48]); (ii) snapshot recency (whether the computed
snapshot contains all transactions that committed before the
transaction start time [2, 24] or can be stale [9, 24, 48, 53]); and
state completeness (in our parlance, whether snapshots must
correspond to a complete state [2, 15, 24, 48] or whether a causally
consistent [4] snapshot suffices [3, 9, 37, 53]).

Grouping isolation guarantees in this way highlights a clean
hierarchy between these definitions, and suggests that many of
the newly proposed isolation levels proposed are in fact equivalent
to prior guarantees. We summarize the different commit tests in
Table 2 and the resulting hierarchy in Figure 4. As the existence
of the hierarchy follows straightforwardly from the commit tests,
we defer the proof of its soundness to Appendix F, along with
proofs of the corresponding equivalences.

At the top of the hierarchy is Strong SI [24]. It requires that a
transaction T observe the effects of all transactions that have com-
mitted (in real-time) before T (in other words, read from the most
recent database snapshot) and obtain a commit timestamp greater
than any previously committed transaction. We express this
(Table 2, first row) by requiring that the last state in the execution
generated by a transaction that happens before T in real time must

be complete (VT’ < T : s7 5 s), and that the total order defined
by the execution respects commit order (c-oro(T,T”)=T.commit <
T’.commit). We prove that this formulation is equivalent to its
traditional implementation specification in Appendix C.4:
Theorem 7 3e:VT €7 : CTstrongsi(T.e)=Strong SI.

Skipping for a moment one level in the hierarchy, we consider
next ANSI SI [15]. ANSI SI weakens Strong SI’s requirement that
the snapshot from which T reads include all transactions that
precede T in real-time (including those that access objects that T
does not access). This weakening, which improves scalability by
avoiding the coordination needed to generate Strong SI's snap-
shot, can be expressed in our state-based approach by relaxing
the requirement that the complete state be the most recent in
real-time (Table 2, third line). An attractive consequence of this
new formulation is that it clarifies the relationship between ANSI
SI and generalized snapshot isolation [48], a refinement of ANSI SI
for lazily replicated databases. We prove that these two decade-old
guarantees are actually equivalent in Appendices C.2 and D.2:

Theorem 8 Je:VT €T : CTansy si(T.e) = GSI= ANSI SI.

Strong SI (CTStrong s1(T, 6))

C—ORD(TSP,T)/\EIS €Se :COMPLETE,, 7(5) ANO-CONFT($)A(Ts <s T)A(VT' <s T:sp+ 5 s)

Strong Session SIPC-SI (CTsession s1(Tye)) | C-ORD(Ts,, T)A3s € Se :COMPLETE,, T(s) ANO-CONE7(s) A(Ty <5 T)A(VT’ 2 Tisp D)

ANSI SI/GSI (CTansr si(T,e))

C-ORD(T,, T)ATs €S, :COMPLETE,, 7($) ANO-CONE7(s)A(Ts <5 T)

Adya SI(CTs1(T,e))

s € Se : COMPLETE,, 7(s) ANO-CONF7(s)

PSI/PL-2+ (CTpsr(T,e))

PREREAD(T)AVT’ »T:CAUS-VIS(e, T)

Table 2: Commit tests for snapshot-based protocols

This is not an isolated case: we find that the two less popular
notions of isolation that occupy the level of the hierarchy between
Strong SI and ANSI SI (Strong Session SI (SSessSI) [48] and Prefix-
Consistent SI (PC-SI) [24]) are also equivalent These guarantees
seek to prevent transaction inversions [24] (a client c¢; executes a
transaction T; followed, in real-time by T without T» observing
the effects of Ty) that can arise when transactions read from a stale
snapshot—but without requiring all transactions to read from the
most recent snapshot. To this effect, they strike a balance between
ANSI ST and Strong SI: they introduce the notion of sessions and re-
quire a transaction T to read from a snapshot more recent than the
commit timestamp of all transactions that precede T in a session

formally: a session seis a tuple Tse,i) where — is a total order
Yy p.

over the transactions in 75 such that T T =T <s T’). Our
model straightforwardly captures this definition (Table 2, second
row) by requiring that the complete state from which a transaction
reads follow the commit state of all transactions in a session. We
prove the following theorem in Appendices C.3 and D.3:
Theorem 9 Je:Vt €T : CTsession si(t,e)=SSessSI=PC-SI.

Though ANSI SI or Strong Session SI are both more scalable
than Strong SI, their definitions still include several red flags for
efficient large-scale implementations. First, they require a total or-
der on transactions (c-orn(s,sp)), forcing developers to implement
expensive coordination mechanisms, even as transactions may ac-
cess different objects. Second, they limit a transaction T to reading
only from complete states that do not include transactions that
committed in real time after T’s start timestamp. This implementa-
tion choice often forces transactions to read further in the past than
necessary, making them more prone to write-write conflicts with
concurrent transactions. Moreover, it prevents transactions from
reading uncommitted operations, precluding efficient implementa-
tions for high-contention workloads [26, 60]. Adya’s reformulation
of SI [2] side-steps many of these baked-in implementation deci-
sions by removing the dependence on real-time, instead allocating
logical timestamps consistent with the transactions’ observations.
Our model can capture this distinction by simply removing the
two aforementioned clauses from the commit test (Table 2, fourth
row), allowing for maximum flexibility for how snapshot isolation
can be implemented without affecting client-side guarantees.

The lowest level of the hierarchy covers snapshot-based
isolation guarantees intended for large-scale geo-replicated
systems. When transactions may be asynchronously replicated
for performance and availability, it is challenging to require that
transactions read a database snapshot that corresponds to a single
moment in time (and hence read from a complete state) as it would
require transactions to become visible atomically across all (possi-
bly distant) datacenters. PSI [53] (introduced in §4) and PL-2+ [2, 3]
consequently weaken Adya’s SI to address these new challenges:
PSI requires that transactions read from a committed snapshot

but allows concurrent transactions to commit in a different order
at different sites, while PL-2+ disallows cycles consisting of either
write-write/write-read dependencies, or containing a single anti-
dependency edge. Unlike what these widely different low-level def-
initions suggest, taking a client-centric view of these guarantees
indicates that PSI and PL-2+ in fact weaken Adya’s snapshot iso-
lation in an identical fashion: they no longer require transactions
to read from a complete state, and instead require that operations
read from a (possibly different) state that includes the effects of all
previously observed transactions. Our model cleanly captures the
shared guarantee provided by PL-2+/PSI: that a transaction T must
observe the effects of all transactions that it is not concurrent with
(Table 2, fifth line). We write: for every transaction T’ that a trans-
action T depends on: Yoe X7 :0.k € W = spv 5 slo =causvis(e,T).
From this client-centric formulation, we prove the following
theorem in Appendix E:

Theorem 10 Je:VT €7 : CTpsi(T,e) = PSI=PL-2+.

5.3 Identifying performance opportunities

Beyond improving clients’ understanding, defining isolation
guarantees in terms of client-observable states helps prevent
them from subjecting transactions to stronger requirements than
what these guarantees require end-to-end. Indeed, by removing
all implementation-specific details (timestamps, replicas) present
in system-centric formulations, our model gives full flexibility
to how these guarantees can be implemented. We illustrate this
danger, and highlight the benefits of our approach, using the
specific example of PSI/PL-2+.

In its original specification, the definition of parallel snapshot
isolation [53] requires datacenters to enforce snapshot isolation,
even as it globally only offers (as we prove in Theorem 10) the
guarantees of lazy consistency/PL-2+. This baked-in implemen-
tation decision makes the very definition of PSI unsuitable for
large-scale partitioned datacenters as it makes the definition
(and therefore any system that implements it) susceptible to
slowdown cascades. Slowdown cascades (common in large-scale
systems [5]) arise when a slow or failed node/partition delays
operations that do not access that node itself, and have been
identified by industry [5] as the primary barrier to adoption of
stronger consistency guarantees. By enforcing SI on every site,
the history-based definition of PSI creates a total commit order
across all transactions within a datacenter, even as they may
access different keys. Transactions thus become dependent on all
previously committed transactions on that datacenter, and cannot
be replicated to other sites until all these transactions have been
applied. If a single partition is slow, all transactions that artificially
depend on transactions on that node will be unnecessarily delayed,
creating a cascading slowdown.

—— [
—— Client-Centric

Dependencies

100

Time (5
Figure 5: Number of dependencies per transaction as a
function of time. TARDIS [23] runs with three replicas on a
shared local cluster (2.67GHz Intel Xeon CPU X5650, 48GB
memory and 2Gbps network).

200
250
300

An approach based on client-observable states, in contrast,
makes no such assumptions: the depend-set of a transaction is
computed using client observations and read states only, and thus
consists exclusively of transactions that the application itself can
perceive as ordered with respect to one another. Every dependency
created stems from an actual observation: the number of dependen-
cies that a client-centric definition creates is consequently minimal
(and the fewer dependencies a system creates, the less likely it
will be subject to slowdown cascades). To illustrate this potential
benefit, we simulated the number of transactional dependencies
created at each datacenter by the traditional definition of PSI as
compared to the “true” dependencies generated by the proposed
client-centric definition, using an asynchronously replicated trans-
actional key-value store, TARDIS [23]. On a workload consisting
of read-write transactions (three reads, three writes) accessing
data uniformly over 10,000 objects (Figure 5), we found that a
client-centric approach decreased dependencies, per transaction,
by two orders of magnitude (175X), a reduction that can yield
significant dividends in terms of scalability and robustness.

State-based specifications of isolation guarantees can also
benefit performance, as they abstract away the details of specific
mechanisms used to enforce isolation, and instead focus on how
different flavors of isolation constrain permissible read states. A
case-in-point is Ardekani et al’s non-monotonic snapshot isola-
tion (NMSI) [9]: NMSI logically moves snapshots forward in time
to minimize the risk of seeing stale data (and consequent aborts
due to write-write conflicts), without violating any consistency
guarantees. This technique is premised on the observation that,
given the values read by the client, the states at the earlier and
later snapshot are indistinguishable.

6 RELATED WORK

Most past definitions of isolation and consistency [2, 9, 15—
19, 27, 31, 47, 53, 55] refer to specific orderings of low-level
operations and to system properties that cannot be easily ob-
served or understood by applications. To better align these
definitions with what clients perceive, recent work [10, 20, 36, 57]
distinguishes between concrete executions (the nuts-and-bolts
implementations details) and abstract executions (the system
behaviour as perceived by the client). Attiya et al., for instance,
introduce the notion of observable causal consistency [10], a
refinement of causal consistency where causality can be inferred
by client observations. Likewise, Cerone et al. [20, 21] introduce

the dual notions of visibility and arbitration to define, axiomat-
ically, a large number of existing isolation levels. The simplicity
of their formulation, however, relies on restricting their model to
consider only isolation levels that guarantee atomic visibility [13],
which prevents them from expressing guarantees like read-
committed, the default isolation level of most common database
systems [39, 42, 45, 45, 46, 50, 51, 58], and the only supported level
for some [45]°. Shapiro and Ardekani [52] adopt a similar approach
to identify three orthogonal dimensions (total order, visibility,
and transaction composition) that they use to classify consistency
and isolation guarantees. All continue, however, to characterize
correctness by constraining the ordering of read and write oper-
ations and often let system specific details (e.g., system replicas)
leak through definitions. Our model takes their approach a step
further: it directly defines consistency and isolation in terms of the
observable states that are routinely used by developers to express
application invariants [6, 12, 23]. Finally, several practical systems
have recognized the benefits of taking a client-centric approach to
system specification and development. These systems target very
different concerns, from file I/O [44] to cloud storage [38], and
from Byzantine fault-tolerance [33] to efficient Paxos implementa-
tions [49]. In the specific context of databases and key-value stores,
in addition to Ardekani et al’s work [9], Mehdi et al. [37] recently
proposed a client-centric implementation of causal consistency
that is both scalable and resilient to slowdown cascades (§5.3).

7 CONCLUSION

We present a new way to reason about isolation based on
application-observable states and prove it to be as expressive
as prior approaches based on histories. We present evidence
suggesting that this approach (i) maps more naturally to what
applications can observe and illuminates the anomalies allowed
by distinct isolation/consistency levels; (ij) makes it easy to
compare isolation guarantees, leading us to prove that distinct,
decade-old guarantees are in fact equivalent; and (iii) facilitates
reasoning end-to-end about isolation guarantees, enabling new
opportunities for performance optimization.

Limitations Nonetheless, our model currently has two main
limitations, which we plan to address in future work. First, it does
not constrain the behavior of ongoing transactions. It thus cannot
express consistency models, like opacity [30] or virtual world con-
sistency [32] , designed to prevent STM transactions from access-
ing an invalid memory location. This limitation is consistent with
the assumption, made in most isolation and consistency research,
that applications never make externally visible decisions based on
uncommitted data, so that their actions can be rolled back if the
transaction aborts. Second, our model focuses on the traditional
transactional/read/write model, predominant in database theory
and modern distributed storage systems. To support semantically
rich operations, abstract data types, and commutativity, we will
start from Weikum et al’s theory of multi-level serializability [59],
which maps higher-level operations to reads and writes.

Acknowledgements We thank Peter Bailis, Phil Bernstein,
Ittay Eyal, Idit Keidar, Fred Schneider, and Immanuel Trummer
for their valuable feedback on earlier drafts of this work. This

3as of June 2017

work was supported by the National Science Foundation under
grants CNS-1409555 and CNS-1718709, and by a Google Faculty
Research Award. Natacha Crooks was partially funded by a
Google Fellowship in Distributed Computing.

REFERENCES

(1]
(2]

(3]

[10]

(1]

[12]

[13]
[14]
[15]
[16]
[17]
(18]

[19]

[20]

[21]

[22]

[23]

[27]

[28]

Facebook. http://www.facebook.com/.

ApyYA, A. Weak Consistency: A Generalized Theory and Optimistic Implementa-
tions for Distributed Transactions. Ph.D., MIT, Cambridge, MA, USA, Mar. 1999.
Also as Technical Report MIT/LCS/TR-786.

Abpya, A, AND Liskov, B. Lazy consistency using loosely synchronized
clocks. In Proceedings of the Sixteenth Annual ACM Symposium on Principles of
Distributed Computing (New York, NY, USA, 1997), PODC 97, ACM, pp. 73-82.
AHAMAD, M., NEIGER, G., Burns, J. E., Kontr, P., aAND HutTo, P. Causal
memory: Definitions, implementation and programming. Tech. rep., Georgia
Institute of Technology, 1994.

Ajoux, P., Bronson, N., Kumar, S., Lroyp, W.,, AND VEERARAGHAVAN, K.
Challenges to adopting stronger consistency at scale. In Proceedings of the 15th
USENIX Conference on Hot Topics in Operating Systems (2015), HOTOS’15.
Arvaro, P., Baiuis, P., Conway, N., AND HELLERSTEIN, J. M. Consistency
without borders. In Proceedings of the 4th ACM Symposium on Cloud Computing
(2013), SOCC "13, pp. 23:1-23:10.

Amazon elastic compute cloud. http://aws.amazon.com/ec2/.

APACHE. Cassandra. http://cassandra.apache.org/.

ARDEKANI, M. S., SUTRA, P., AND SHAPIRO, M. Non-monotonic snapshot isola-
tion: Scalable and strong consistency for geo-replicated transactional systems.
In Proceedings of the 32nd International Symposium on Reliable Distributed
Systems (2013), SRDS 13, pp. 163-172.

AtTIvA, H., ELLEN, F., AND MORRISON, A. Limitations of highly-available
eventually-consistent data stores. In Proceedings of the 2015 ACM Symposium
on Principles of Distributed Computing (2015), PODC 15, ACM, pp. 385-394.
Baruis, P., Davipson, A., FEKETE, A., GHODsI, A., HELLERSTEIN, J. M., AND
Stoica, I. Highly available transactions: Virtues and limitations. PVLDB 7, 3
(2013), 181-192.

Baiwis, P., FEKETE, A., FRANKLIN, M. J., GHODsI, A., HELLERSTEIN, J. M., AND
Stoica, I Feral concurrency control: An empirical investigation of modern
application integrity. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (2015), SIGMOD ’15, pp. 1327-1342.

BarLis, P., FEKETE, A., GHODSI, A., HELLERSTEIN, J. M., AND STOICA, L. Scalable
atomic visibility with ramp transactions. ~ACM Transactions on Database
Systems 41, 3 (July 2016), 15:1-15:45.

Basno. Riak. http://basho.com/products/.

BERENSON, H., BERNSTEIN, P., Gray, J., MELTON, J., O’NEIL, E., AND O’NEIL, P.
A critique of ansi sql isolation levels. SIGMOD Rec. 24, 2 (May 1995), 1-10.
BERNSTEIN, P. A, AND GoopMAN, N. Concurrency control in distributed
database systems. ACM Computing Survey 13, 2 (June 1981), 185-221.
BERNSTEIN, P. A., AND GooDpMAN, N. Multiversion concurrency control;theory
and algorithms. ACM Transactions on Database Systems 8, 4 (1983), 465-483.
BERNSTEIN, P. A., HADzILACOS, V., AND GOODMAN, N. Concurrency control and
recovery in database systems. 1987.

BrzEZINSKI, B., SOBANIEC, C., AND D., W. From session causality to causal
consistency. In Proceedings of the 12th Euromicro Conference on Parallel,
Distributed and Network based Processing (2004), PDP 2004.

CERONE, A., BERNARDI, G., AND GOTSMAN, A. A framework for transactional
consistency models with atomic visibility. In 26th International Conference on
Concurrency Theory, CONCUR 2015, (2015).

CERONE, A., AND GOTSMAN, A. Analysing snapshot isolation. In Proceedings of
the 2016 ACM Symposium on Principles of Distributed Computing (2016), PODC
’16, ACM, pp. 55-64.

CERONE, A., GOTSMAN, A., AND YANG, H. Transaction Chopping for Parallel
Snapshot Isolation. DISC’15. 2015, pp. 388-404.

Crooks, N., Pu, Y., ESTRADA, N., GUupTA, T., ALVISL, L., AND CLEMENT, A. Tardis:
A branch-and-merge approach to weak consistency. In Proceedings of the 2016
International Conference on Management of Data (2016), SIGMOD ’16, ACM,
pp- 1615-1628.

DAUDJEE, K., AND SALEM, K. Lazy database replication with snapshot isolation.
In Proceedings of the 32nd International Conference on Very Large Data Bases
(2006), VLDB ’06, VLDB Endowment, pp. 715-726.

Escriva, R, WonG, B, AND SIRer, E. G. Warp: Lightweight multi-key
transactions for key-value stores. CoRR abs/1509.07815 (2015).

FALEIRO,]J. M., ABADI, D., AND HELLERSTEIN, J. M. High performance
transactions via early write visibility. PVLDB 10, 5 (2017), 613-624.

FEKETE, A., L1AROKAPIS, D., O'NEIL, E., O'NEIL, P., AND SHASHA, D. Making
snapshot isolation serializable. ACM Transactions on Database Systems 30, 2
(June 2005), 492-528.

GooGLE. Bigtable - massively scalable nosql. https://cloud.google.com/bigtable/.

(34]

(35]
(36]

(37]

[38]

[39]
[40]
[41]
[42]

[43]

GooGLE. Cloud sql - fully managed sql service. https://cloud.google.com/sql/.
GUERRAOUL R., AND KAPALKA, M. On the correctness of transactional memory.
In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (2008), PPoPP "08, ACM, pp. 175-184.

HEerLIHY, M. P, AND WING, J. M. Linearizability: a correctness condition for
concurrent objects. ACM Transactions Programming Language Systems 12, 3
(July 1990), 463-492.

ImBs, D., AND RAYNAL, M. Virtual world consistency: A condition for stm
systems (with a versatile protocol with invisible read operations). Theoretical
Computer Science 444 (July 2012), 113-127.

Kotira, R., Arvis, L., DAHLIN, M., CLEMENT, A., AND WONG, E. Zyzzyva:
Speculative Byzantine Fault Tolerance. ACM Transactions on Computer Systems
27, 4 (Jan. 2010), 7:1-7:39.

Kraska, T., PANG, G., FRANKLIN, M. J., MADDEN, S., AND FEKETE, A. Mdcc: multi-
data center consistency. In Proceedings of the 8th ACM European Conference on
Computer Systems (2013), EuroSys *13, pp. 113-126.

KRIPKE, S. A. Semantical considerations on modal logic. Acta Philosophica
Fennica 16, 1963 (1963), 83-94.

MAHAJAN, P., Arvisy, L., AND DAHLIN, M. Consistency, availability, convergence.
Tech. Rep. TR-11-22, Computer Science Department, UT Austin, May 2011.
MEnDI, A, LITTLEY, C., CROOKS, N., ALvISI, L., AND LLoYyD, W. I can’t believe
it’s not causal. In Proceedings of the 15th USENIX Symposium on Networked
Systems Design and Implementation (2017), NSDI *17.

MICKENS, J., NIGHTINGALE, E. B., ELsON, J., GEHRING, D., FaN, B., Kapav, A., CHI-
DAMBARAM, V., KHAN, O., AND NAREDDY, K. Blizzard: Fast, Cloud-Scale Block
Storage for Cloud-Oblivious Applications. In Proceedings of the 11th USENIX
Symposium on Networked Systems Design and Implementation (2014), NSDI'14.
MicrosorT. Azure sql database. https://https://azure.microsoft.com/en-us/
services/sql-database/?v=16.50.

MICROSOFT. Azure storage - secure cloud storage. https://azure.microsoft.com/
en-us/services/storage/.

MicrosorT. Documentdb - nosgl service for json. https://azure.microsoft.com/
en-us/services/documentdb/.

MicrosorT. SQL Server. https://https://www.microsoft.com/en-cy/sql-server/
sql-server-2016.

Mu, S., Cul, Y., ZHANG, Y., LLoyp, W,, AND L1, J. Extracting more concurrency
from distributed transactions. In Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation (Berkeley, CA, USA, 2014),
OSDI'14, USENIX Association, pp. 479-494.

NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN, P. M., AND FLINN, J. Rethink
the Sync. ACM Transactions on Computer Systems 26, 3 (Sept. 2008), 6:1-6:26.
OracLE. MySQL Cluster. https://www.mysql.com/products/cluster/.

ORracLE. Oracle 12c. https://docs.oracle.com/database/121/.

PapapimiTrIOU, C. H. The serializability of concurrent database updates. 7.
ACM 26, 4 (Oct. 1979), 631-653.

PEDONE, F., ZWAENEPOEL, W., AND ELNIKETY, S. Database replication using
generalized snapshot isolation. 24th IEEE Symposium on Reliable Distributed
Systems (2005), 73-84.

PorTs, D.R. K., L1, J., L1u, V., SHARMA, N. K., AND KRISHNAMURTHY, A. Design-
ing distributed systems using approximate synchrony in data center networks.
In Proceedings of the 12th USENIX Conference on Networked Systems Design and
Implementation (Berkeley, CA, USA, 2015), NSDI'15, pp. 43-57.

PosTGREs. Postgresql. http://www.postgresql.org/.

SAP. Hana. https://www.sap.com/products/hana.html.

SHAPIRO, M., ARDEKANI, M. S., AND PETRI, G. Consistency in 3d (invited paper).
In 27th International Conference on Concurrency Theory (CONCUR 2016) (2016).
SOVRAN, Y., POWER, R., AGUILERA, M. K,, AND L1, J. Transactional storage
for geo-replicated systems. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (2011), SOSP ’11, pp. 385-400.

Su, C., Crooks, N., DING, C., ALvisy, L., AND XIE, C. Bringing modular concur-
rency control to the next level. In Proceedings of the 2017 ACM International
Conference on Management of Data (2017), SIGMOD °17, pp. 283-297.

TEeRRY, D. B., DEMERS, A. J., PETERSEN, K., SPREITZER, M. J., THEIMER, M. M.,
AND WELCH, B. B. Session guarantees for weakly consistent replicated data.
In Proceedings of the 3rd International Conference on on Parallel and Distributed
Information Systems (1994), PDIS *94, pp. 140-150.

TwiITTER. Twitter. https://www.twitter.com/.

ViotrTl, P., AND VukoLi¢, M. Consistency in non-transactional distributed
storage systems. ACM Computing Survey 49, 1 (June 2016), 19:1-19:34.
Warszawski, T., AND Baiuis, P. Acidrain: Concurrency-related attacks on
database-backed web applications. In Proceedings of the 2017 ACM International
Conference on Management of Data (2017), SIGMOD °17, pp. 5-20.

WEIKUM, G. Principles and realization strategies of multilevel transaction
management. ACM Transactions on Database Systems 16, 1 (Mar. 1991), 132-180.
XIE, C, Su, C, LiTTLEY, C., ALvIsy, L., KapriTsos, M., AND WANG, Y. High-
performance acid via modular concurrency control. In Proceedings of the 25th
Symposium on Operating Systems Principles (2015), SOSP ’15, pp. 279-294.

[61] Zuang, I, SHARMA, N. K., SZEKERES, A., KRISHNAMURTHY, A., AND PORTS,
D. R. K. Building consistent transactions with inconsistent replication. In
Proceedings of the 25th Symposium on Operating Systems Principles (2015), SOSP
15, pp. 263-278.

