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mixotrophic nutrition of Trichodesmium when inorganic nutrients are scarce. Nano-scale secondary
ion mass spectrometry (nanoSIMS) analyses of individual trichomes sampled in the South Pacific
Ocean, showed significant **C-enrichments after incubation with either *C-labeled carbohydrates or
amino acids. These results suggest that DOM could be directly taken up by Trichodesmium or primarily
consumed by heterotrophic epibiont bacteria that ultimately transfer reduced DOM compounds to

i their host trichomes. Although the addition of carbohydrates or amino acids did not significantly affect

bulk N, fixation rates, N, fixation was enhanced by amino acids in individual colonies of Trichodesmium.

© We discuss the ecological advantages of DOM use by Trichodesmium as an alternative to autotrophic

nutrition in oligotrophic open ocean waters.

Nitrogen is recognized as the proximate limiting nutrient for primary production in the oceans'. The oceanic
i nitrogen reservoir is controlled by a balance between fixed nitrogen gains (via dinitrogen -N,- fixation) and losses

(denitrification) While global nitrogen budget estimations determine that denitrification exceeds N, fixation
considerably?, recent improvements in the 1°N, isotope tracer method used to measure biological N, fixation have

© evidenced that formerly published rates could be underestimated by a factor of ~2 to 6*8, and thus could be high

enough to balance denitrification on a global basis. However, the variability among N, fixation rates obtained

i when using the two different methods (adding 1N, as a bubble or pre-dissolved in seawater)** can be high” and

at times not significant'®'2. A mechanistic understanding of which factors determine the degree of discrepancy

between the two °N, methods is currently lacking. Moreover, marine pelagic N, fixation had been long attributed
: to the tropical and subtropical latitudinal bands of the ocean, e.g."%, while other ecological niches such as high
. latitude waters, oxygen minimum zones and the vast dark realm of the ocean (below the euphotic zone) are now

recognized as active N, fixation sites!*6, It is likely that the inclusion of these previously unaccounted for active

i N, fixation sites will be more important in equilibrating denitrification and N, fixation rates than the underesti-
: mation of rates due to discrepancies between isotopic tracer methods.

In chronically stratified open ocean regions such as the vast subtropical gyres, primary production depends

largely on external fixed nitrogen inputs provided by N, fixation performed by prokaryotes termed ‘diazotrophs’
i Diazotrophic cyanobacteria are photosynthetic prokaryotes (with the exception of the photoheterotrophic

Candidatus Atelocyanobacterium thalassa which cannot photosynthesize)!” that thrive in oligotrophic tropical
and subtropical waters of the oceans where they provide an important source of fixed nitrogen for other phyto-

lankton!3. Despite being classically regarded as photoautotrophs, some unicellular diazotrophic cyanobacteria
: P P 8 y reg. P % P ¥

like Cyanothece are able to take up dissolved organic matter (DOM) molecules photoheterotrophically'®. As well,

: various filamentous diazotrophic cyanobacteria such as Anabaena bear genes for amino acids transport, which
. may be used to incorporate amino acids from the in situ DOM pool, or to assimilate amino acids self-produced

during diazotrophic growth®.
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The filamentous diazotrophic cyanobacterium Trichodesmium is ubiquitous in the tropical and subtropical
oceans where it is estimated to contribute 60-80% of global N, fixation inputs?. Trichodesmium is limited by
iron and/or phosphate availability? which are often scarce in oligotrophic subtropical gyres. The concomitant
accumulation of DOM in these oligotrophic gyres?? where Trichodesmium thrives, suggests it could benefit from
organic compounds. While most of the marine DOM is composed of refractory molecules that persist in seawater
for millennia, labile DOM (degraded within hours or days) accumulates preferentially at the surface ocean as
a result of photosynthesis products®. Trichodesmium has been shown to assimilate organic phosphorus com-
pounds such as phosphomonoesters and phosphonates when phosphate is scarce?? in an equally efficient man-
ner to phosphate consumption?, although a minimum availability of inorganic nutrients may be needed before
Trichodesmium can cleave the carbon-phosphorus bond of phosphonates?”. On the other hand, while the uptake
of carbon or nitrogen-rich DOM compounds has been studied in cultures of Trichodesmium (e.g. refs 28 and 29),
such activity has not been revisited for almost two decades. The extent to which mixotrophic nutrition facilitates
the growth and/or N, fixation in Trichodesmium remains poorly known, particularly for natural colonies. Here
we quantify the uptake of carbohydrates and amino acids and their effect on N, fixation by natural Trichodesmium
colonies using nano-scale secondary ion mass spectrometry (nanoSIMS).

Results

Station LDA presented relatively oligotrophic conditions at the surface with inorganic nutrient concentrations
below the detection limit (0.02 pM for both nitrate -NO,™- and phosphate -PO,~-; Table S1), but high dissolved
organic carbon (DOC; 95.34 £ 2.81 uM) and relatively high chlorophyll a concentrations (0.36 4 0.05pug L™
Table S1) when compared to typical open ocean regional values®. Station LDB was sampled in an elevated chlo-
rophyll a patch (0.83 £0.07 pgL™!) and exhibited lower DOC concentrations (70.65 & 0.09 uM). Bacterial abun-
dance was > 3-fold higher at LDB than at LDA (Table S1).

Bulk N, fixation rates at LDA were 2.23, 4.61 and 4.10 nmol N L~! d~! for the control, carbohydrate and amino
acid treatments, respectively. At station LDB, bulk N, fixation rates were ~9-, 5- and 2-fold higher than at LDA
(21.28,23.44 and 10.79 nmol N L~! d~1, respectively; Fig. 1a,b). At LDA, the addition of both carbohydrates and
amino acids increased bulk N, fixation but the variability among replicates was high, resulting in non-significant
differences (p > 0.05) as observed in previous similar experiments'*. No significant enhancement of bulk N, fixa-
tion rates were observed at station LDB for either treatment.

At both stations LDA and LDB, nanoSIMS analyses of individual trichomes (Table S2) revealed significant
3C-enrichments (p < 0.0001) by ~1.7-fold relative to the control upon both carbohydrate and amino acid addi-
tions (Fig. 1¢,d). These additions also significantly enhanced the *N-enrichment of Trichodesmium by ~1.2-fold
at station LDA (both p < 0.0001), but not at station LDB, where a high degree of variability was observed between
filaments (Fig. 1c,d). When comparing both stations, we observed that per-trichome carbon and nitrogen uptake
rates were ~2- and 5-fold higher at LDB than at LDA (Fig. le,f). NanoSIMS example images of *C and N
enriched trichomes in control, carbohydrate and amino acid treatments are shown in Fig. 2a—f, respectively.
The addition of both carbohydrate or amino acids enhanced per-trichome nitrogen uptake rates at each station,
although increases were only statistically significant for amino acid additions (Fig. 1e,f).

Discussion

‘We present evidence of carbohydrate and amino acid uptake by natural Trichodesmium colonies in conditions
usually regarded as optimal for their autotrophic growth (Table S1). The addition of either carbohydrates or
amino acids increased per-trichome N, fixation rates compared to the control at both LDA and LDB, but only
amino acid additions induced statistically significant per-trichome N, fixation enhancements (Fig. le,f). At LDB,

the enhancement of per-trichome N, fixation rates with respect to the control upon the addition of either carbo- -

hydrates or amino acids was ~5-fold higher than at LDA, suggesting different DOM degradation patterns at LDB.
LDB was located inside a massive chlorophyll patch, which had been drifting eastwards for several months (see
chlorophyll g satellite images time lapse, where station LDB is represented by a pink cross; de Verneil, 2015). The
persistence of the patch could be maintained by a regular input of inorganic nutrients via wet deposition, which
often enhances primary production due to the high nutrient and trace metal content of volcanic ashes in this
highly seismic active area of the South Pacific Ocean?'. The wet deposition of inorganic nutrients could maintain
both photosynthetic and N, fixation activities while promoting a dynamic production and consumption of DOM.
The higher DOM uptake by Trichodesmium at LDB (Fig. 1d,f) suggests that higher in situ DOM availability at
LDB compared to LDA, promoted the heterotrophic nutrition of Trichodesmium over growth on inorganic nutri-
ents. DOC standing stocks were lower at LDB than at LDA likely due to a tight coupling between its production
and consumption, as suggested by the higher bacterial abundance (Table S1) and production at LDB than at LDA
(E Van Wambeke, personal communication). Alternatively, differences in Trichodesmium DOM uptake between
stations LDA and LDB could be influenced by different DOM uptake genetic ability in different Trichodesmium
strains®.

Given the high energetic cost of CO, and N, fixation in cyanobacteria®*, the alternative nutrition on DOM
is thought to alleviate energy shortages. For example, unicellular cyanobacteria use glycerol as an alternative
to CO,'%, but the use of organic carbon substrates such as carbohydrates by Trichodesmium has seldom been
observed and at low rates®. Although the external input of combined nitrogen is thought to preclude N, fixation
in Trichodesmium®»5%7, our results show a significant enhancement of per-trichome N, fixation rates upon the
addition of amino acids, as observed in other sites where heterotrophic diazotrophs predominate, like in meso-
pelagic waters'>*#%_ Amino acids may provide a more readily accessible source of organic carbon than carbohy-
drates, resulting in a greater enhancement of N, fixation rates.

DOM utilization likely confers nutritional plasticity to Trichodesmium in oligotrophic environments, reinforc-
ing the obsoleteness of the categorical division of marine microbes into autotrophs or heterotrophs. Although we

SCIENTIFIC REPORTS | 7:41315 | DOI: 10.1038/srep41315 2



W WAlnatuieNcom/sSelentifiicre poksy

LDA LDB
5.5 30.0
a b
50 L
- | i 250
'T_l '.'_, >
z =z
S 40l i 5
£ ® £ o
E E 200}
L 4 k)
g 2
- -]
=z P4
x 30L x
E; 32 150 -
25 |-
2.0 I ; s 10.0 : ; l
- w w 5 o
£ £ § g
8 % EE o % .E
2 £ £
8 8
24 c 24 | d
20 - 20 b
g £
E E
S 16 | L 18|
5 §
ES I 3 r *
[ 34
§ 12 1 +* +' § 12 |-
z - A 2 T = o
o o ]
5 08| 5 08| ‘
!‘9 %* %* 20 7
04 |- o @ 04 R
0.0 | 00 ; ; . S
o 5 @ B 5
S R B SR R B
°
A A £
£ £
8 8
4000 4000
e f
3500 | 3500 |-
e e
%, 3000 |- 7, 3000 |- b
£ £
2 2
S 2500 |- ‘S 2500 |-
5 5
s s
E 2000 | E 2000 |- |
L L
g g
2 1500 |- + 8 1500 |-
= =z
5 5
o 1000 |- { o 1000 |
500 - I3 a* 500 -
@
7 T T T T 3
B 2 8 B 8 2
g B 3 § I ]
£ < £ <
(8] (8]

Figure 1. Bulk seawater N uptake rates at (a) station LDA, and (b) station LDB (note the different scale ranges
on the y-axis). Trichodesmium (c,d) 1*C -filled circles- and >N -open circles- atom % enrichment values, and
(e,f) 3C and N uptake rates at stations LDA and LDB, respectively. Error bars for C or N uptake rates (a,b,e,f)
represent the standard error, while error bars for atom % graphs (c,d) represent the standard deviation of the
mean. Straight and dotted lines in (c,d) indicate the average '*C and N atom % enrichment, respectively, of
time zero samples (average natural abundance). Asterisks indicate statistically significant differences (Mann
Whitney test, p <0.05).
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Figure 2. NanoSIMS trichome *C/!?C ratio images of (a) control, (b) carbohydrate-amended and (c) amino
acid-amended samples. The corresponding °N/!N ratio images are displayed below (d-f).

did not conduct 1*C-labeled bicarbonate uptake experiments during this cruise, previous experiments performed
in the Southwest Pacific Ocean and in cultures of Trichodesmium IMS101 have shown per trichome bicarbonate
uptake rates of ~2-3 X 10¢ fmol C trichome™ h=! %41, which are in the same order of magnitude as the per
trichome carbohydrate uptake rates measured here (~1-9 X 10° fmol C trichome~! h™!). This suggests that under
certain environmental conditions, Trichodesmium may be able to exploit carbon comparably from inorganic and
organic carbon sources. .

Our results cannot however confirm whether DOM molecules were directly taken up by Trichodesmium, or
if they were primarily reduced by epibiont bacteria and then transferred to the trichomes. For example, heter-
otrophic bacterial epibionts are known to facilitate dissolved organic phosphorus acquisition in Trichodesmium
colonies*?, Thus, the degree and/or functional diversity of epibiont bacteria colonization among sampling stations
could have also influenced DOM uptake rates in our Trichodesmium samples*’. We observed bacteria appearing
to be attached to trichomes in our samples (Fig. S1), and thus cannot rule out this possibility. Different incubation
time span experiments are needed to discern whether DOM passes through bacteria before being taken up by
Trichodesmium, or if Trichodesmium assimilates DOM directly. However, such short-term experiments would
require a high isotopic enrichment of the source DOM pool, which would likely bias the measured uptake rates.

We present evidence of carbohydrate and amino acid uptake by natural Trichodesmium colonies. Climate
change scenarios predict inorganic nutrient limitation and increased DOM retention within the photic zone*,
which will likely promote mixotrophy in Trichodesmium. Further studies on Trichodesmium organic versus inor-
ganic nutrient acquisition are thus needed to predict how this important diazotroph will respond to climate
alterations.

Methods

We sampled seawater at two stations in the Southwest Pacific (LDA: 19.21°S-164.68°E, LDB: 18.24°S-170.80°W,
on 26 February and 15 March 2015, respectively) at depths receiving 50% of surface photosynthetically active
radiation (corresponding to 7 and 9 m depth, respectively). The samples were incubated under in situ simulated
conditions for 36 h with equimolar quantities of *C-labeled carbohydrates (sodium pyruvate, sodium acetate and
glucose) or amino acids (alanine, leucine and glutamic acid; Sigma-Aldrich, Munich, Germany), added at concen-
trations of 4 uM C (final concentration for the mix of all three carbohydrates or all three amino acids®®). While the
real marine DOM pool is molecularly highly complex and mostly refractory, these commercially available com-
pounds were chosen as representative of carbohydrate and small organic acids typically found in marine labile
DOM!®345, Seawater was distributed into sixteen 4.3 L transparent polycarbonate bottles (Nalgene, Rochester,
NY, USA). Four bottles were filtered immediately upon collection (T0), four were amended with the carbohydrate
mix, and another four with the amino acids mix. The last four bottles were used as a control without amendments.
All bottles were labeled with 6 mL 98.9 atom% N, gas (Cambridge Isotope Laboratories, Tewksbury, MA, USA)
to assay N, fixation simultaneously. Of each quadruplicate set, three bottles were used to estimate bulk N, fixation
rates (expressed as ‘N uptake’) and one bottle was used for nanoSIMS analyses (see Supplementary Information).
Mann-Whitney statistical tests were used to test the significance of our results.
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