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Evolution of the quantum Hall bulk spectrum into
chiral edge states
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One of the most intriguing and fundamental properties of topological systems is the corre-

spondence between the conducting edge states and the gapped bulk spectrum. Here, we use

a GaAs cleaved edge quantum wire to perform momentum-resolved spectroscopy of the

quantum Hall edge states in a tunnel-coupled 2D electron gas. This reveals the momentum

and position of the edge states with unprecedented precision and shows the evolution from

very low magnetic fields all the way to high fields where depopulation occurs. We present

consistent analytical and numerical models, inferring the edge states from the well-known

bulk spectrum, finding excellent agreement with the experiment—thus providing direct evi-

dence for the bulk to edge correspondence. In addition, we observe various features beyond

the single-particle picture, such as Fermi level pinning, exchange-enhanced spin splitting and

signatures of edge-state reconstruction.
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S
ystems with topologically protected surface states, such as
the quantum spin Hall insulator1,2 and many other topo-
logical insulators, are currently attracting great interest.

Among the topological states, the integer quantum Hall effect3

stands out since it was first discovered. It is the most simple case
out of which others have emerged, and thus serves as a para-
digmatic system. Accessing the surface states in a topological
system separately and independently, however, has proven to be
challenging for a number of reasons, including disorder, insuffi-
cient resolution, or remnant bulk conductivity contaminating
transport experiments. Local probes, such as scanning single
electron transistors, could in principle overcome the bulk con-
ductivity problem and have been intensely investigated in the
context of quantum Hall systems4–13. However, moderate spatial
resolution and the requirement of large magnetic fields for dis-
criminating among individual edge states have limited existing
experiments to low filling factors and prevented tracking the
evolution of the quantum hall edges all the way down to low
fields.

Previously, tunneling spectroscopy of cleaved edge overgrowth
wires has established the system as one of the best realizations of a
1D ballistic conductor, exhibiting distinct signatures such as
quantized conductance14, spin-charge separation15, charge frac-
tionalization16, and indication of helical nuclear order induced by
the strongly interacting electrons17,18. Here, we use a vector
magnet to independently control two orthogonal magnetic fields:
one to form quantum Hall edge states and another to perform
tunneling spectroscopy.

In this work, we use momentum-resolved tunneling spectro-
scopy to track the guiding center (GC) positions of the quantum
Hall edge states with nanometer precision. Over the magnetic
field evolution, we observe first magnetic compression towards
the sample edge, and then, at higher fields, motion into the bulk
and magnetic depopulation of Landau levels (LLs). Note that in
this work we are studying integer quantum Hall edge states and
not the spin Hall effect or any other topological state. However,

this technique is also applicable to the latter states. Using both an
analytical model and numerical solutions for the evolution of
edge states in the limit of hard wall confinement19–21, we are able
to match very well the tunneling spectroscopy fingerprint of the
conducting edge states from the topologically gapped bulk phase
and hence reveal their direct correspondence. Individual edge
modes22–24 are discernible down to unprecedented low magnetic
fields Bz ≈ 10 mT, where the bulk filling factor ν is about 500.
Furthermore, we observe the chiral nature of edge states, as well
as Fermi level pinning effects. In addition, interactions lead to
signatures of edge reconstruction and exchange-enhanced spin-
splitting at large in-plane magnetic fields. We emphasize that this
spectroscopy is done at zero bias, thus eliminating heating or
lifetime effects.

Results
Integer quantum Hall edge states for the hard wall confine-
ment. A magnetic field Bz, applied perpendicular to a 2D electron
gas (2DEG), quenches the kinetic energy of free electrons and
condenses them into discrete LLs that are energetically separated
by the cyclotron energy ħωc. Here, ωc = eBz/m

* denotes the
cyclotron frequency, e the elementary charge, ħ the reduced
Planck constant, and m* the effective electron mass. Upon
approaching the sample edge the electrostatic confinement
potential lifts LLs in energy and causes them to intersect with the
Fermi energy, thereby forming a corresponding edge state for each
bulk LL, see Fig. 1a and Supplementary Fig. 4. Here, we use the
Landau gauge (vector potential A = 0 at the edge), where the
momentum kx along the quantum wires is a good quantum
number that fully characterizes each state. Given kx, all other
quantities may be calculated, such as the wave function center of
mass (CM) as well as the GC position Y = kxl

2
B, where lB =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!h= eBzð Þ
p

denotes the magnetic length. Throughout the paper,
the filling factor is defined as ν = 2n + g, where n = 0, 1, 2, … is
the orbital Landau level index, and 0 ≤ g < 2 is the spin occupancy.
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Fig. 1 Bulk to edge correspondence. a Energy evolution of the center of mass (CM) position (thin blue/red curves) and the guiding center (GC) position

(bold blue/red curves) for the first two Landau levels LL0 and LL1. Here, LL2 is above the Fermi energy and is depopulated. The confinement (hard wall) lifts

the bulk LLs in energy, resulting in corresponding edge states (solid circles) when the CM is crossing the Fermi energy EF. Note that the Fermi energy

shown here is lower than in the experiment. b Same as a for larger magnetic field Bz, where the width 2σn = 2lB
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1
p

of LLn is squeezed and LL1 was

depopulated, with magnetic length lB. c Coordinate system (black) and sample schematic, showing the 2DEG in light blue, upper and lower quantum wire

(UW/LW) in dark blue, top gate in green, and CM for integer quantum Hall edge states in purple. Ω indicates the conductance measurement. d Simplified

UW and LL dispersions calculated for independent triangular and hard wall confinement. e Calculated dispersion for the combined confinement potential,

resulting in hybridized states Hn with avoided crossings (see inset). Here, the bulk LL0 transforms into the UW mode at the sample edge. Gray segments

indicate empty states, colored ones are filled
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At elevated Bz, shown in Fig. 1b, the cyclotron splitting is
enhanced. As a consequence the highest LLs are energetically
lifted above the Fermi energy and thus magnetically depopulated
of electrons, compare Fig. 1a and b. In addition, increasing Bz
reduces the magnetic length, thereby squeezing the remaining LL
wave functions by magnetic compression and moving the
corresponding edge states closer to the sample edge. This holds
up to a certain point, when the edge state starts suddenly moving
back into the bulk just before being magnetically depopulated, see
Fig. 1b.

A sample schematic is depicted in Fig. 1c and consists of two
parallel GaAs quantum wells, separated by a thin AlGaAs tunnel
barrier. The upper quantum well hosts a high mobility 2DEG,
while the bulk of the lower quantum well remains unpopulated.
Cleavage of the sample and subsequent overgrowth results in
strongly confined 1D-channels in both quantum wells (see
Methods section and refs. 14–16,25–31 for more details), termed
upper wire (UW) and lower wire (LW) in the following. The LW
is used as a tunnel probe to spectroscopically image the integer
quantum Hall edge states of the upper quantum well at effectively
zero bias voltage.

A simplified picture for the complete dispersion for the upper
system is shown in Fig. 1d. It consists of a single localized wire
mode UW (dark blue), resulting from the triangular confinement
at the sample edge, and the LL spectrum in the presence of hard
wall confinement and perpendicular magnetic field Bz. Solving the
combined electrostatic problem (hard wall confinement with
triangular potential near the edge) hybridizes the LL spectrum
and quantum wire modes at commensurate conditions where
energy and momentum are matched, see Fig. 1e. As a
consequence the bulk LL0 transforms into the lowest quantum
wire mode at the sample edge. While each LL like edge state in

Fig. 1e acquires an additional node in the wave function in
comparison to the hard wall spectrum of Fig. 1d, the intersection
with the Fermi energy EF is hardly changed

32,33, giving almost the
same effective momentum kx. Therefore, the simplified dispersion
of Fig. 1d is used in the following to describe the magnetic field
evolution of edge states.

The tunneling regime is obtained by setting the top gate in
Fig. 1c to deplete the 2DEG and all UW modes beneath it while
preserving a single conducting mode in the LW. This divides the
upper system electrically into two halves but preserves tunnel
coupling on each side to the LW. Due to translational invariance
of UW and LW (away from the top gate, where tunneling occurs),
momentum is conserved during the tunneling event, and can be
controlled by means of the Lorentz force. In particular, in the
presence of an in-plane magnetic field By applied perpendicular to
the plane spanned by the two wires (see coordinate system in
Fig. 1c), tunneling electrons experience a momentum kick Δkx =
−edBy/ħ along the x-direction of free propagation, thus effectively
shifting the wire dispersions with respect to each other15,16,28,29.
Here, d denotes the tunneling distance along the z-direction. The
resulting zero-bias tunneling conductance is large whenever
Fermi points of upper and lower system coincide, see also
Supplementary Fig. 1a. In a similar fashion, each LW mode can
also be brought into resonance with any given LL. However, in
contrast to the quantum wires, the effective momentum of edge
modes kx;LLn of the LLs depends on Bz.

Formation and evolution of the edge states. Figure 2 shows the
measured differential tunneling conductance as a function of
magnetic fields Bz and By. Two horizontal features are visible that
correspond to resonant tunneling (energy and momentum
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Fig. 2 Formation and B-field evolution of the chiral integer quantum Hall edge states. a Differential tunneling conductance as a function of in-plane

magnetic field By and perpendicular magnetic field Bz at ≈10 mK. The 2D-wire transitions break up into multiple curves and fan out with increasing |Bz|, see

also Supplementary Fig. 2. Horizontal resonances at small By
"

"

"

", associated with wire-wire tunneling, are not affected by Bz. b Larger By range than a showing

6 fans corresponding to tunneling to modes LW2, LW3, and LW4. Due to the chiral nature of the states, the fans are not seen in the data when only Bz is

reversed. The sketches depict the resonance condition (black dots) at Bz = 0. c Schematic representation of quantum wire (gray) to LL (red) tunneling at Bz

= 0.7 T. By shifts the lower wire dispersion in relation to the LLs, as indicated by gray arrows of the corresponding length. The blue filled parabola indicates

the 2DEG dispersion for Bz = 0, projected onto the kx axis. Black dots and black circle indicate resonant tunneling to bulk states and edge state, respectively
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conservation) between co-propagating electrons of the first upper
and lower wire mode, UW1 and LW1, respectively. Since the
electron density in UW1 and LW1 is very similar, only little

momentum transfer and correspondingly small By

"

"

"

"

"

" is required to

bring the modes into resonance. These resonances are indepen-
dent of Bz because the Y coordinates of both UW1 and LW1

modes are very similar. In addition to wire–wire tunneling,
extensively studied in the past15,16,28–31, sharp tunneling reso-
nances of a different origin22–24 are observed that split into fans
of discrete curves in the presence of a perpendicular field and
separate with increasing field strength. For each fan, about 10
curves can be resolved down to Bz ≳ 10 mT, see Fig. 2. As we will
show, these fans correspond to resonant tunneling between
quantum Hall edge states and the LW modes which are acting as
a momentum selective spectrometer. The fan structures observed
here track the momentum evolution of edge states with Bz and
thereby produce a fingerprint of the conducting edge states. This
is in contrast to the conventional Landau fan that simply is an
expression of the bulk filling factor as a function of 2DEG density
and Bz.

The wire modes are supporting states propagating in both
negative and positive x-direction, irrespective of the perpendi-
cular field, and give transitions extending over both positive and
negative Bz, see also Supplementary Fig. 1. The quantum Hall
edge states, on the other hand, are chiral and are thus propagating
only in one direction for a chosen sign of Bz along a given edge.
The corresponding LL dispersions are therefore not symmetric
under reversal of kx, and the fan structures become directional.
Indeed, the fans are seen only for one sign of Bz around a given
By, e.g. in the lower right in Fig. 2a but not the lower left. The
opposite sign of Bz also supports a fan but only when By is
inverted at the same time, i.e., when the total B-field is switching
sign (Onsager’s reciprocity34), see upper left in Fig. 2a. This
directly indicates the chiral nature of these edge states.

Besides fan structures in Fig. 2a, there are additional fans
originating at different By values, see Fig. 2b where a larger field
range is displayed. These other fans result from tunneling to other
modes of the LW. Since each of the different modes in the LW
has a different density and thus a different Fermi momentum, an
overall momentum shift results, which displaces the fans along By,
as illustrated in the sketches of Fig. 2b, where the resonance
condition at Bz = 0 is shown (origin of the fans).

In order to quantitatively understand the field evolution of the
fan structures, the LL dispersions have to be considered, which
depend on the electrostatics at the edge6,35–41. For the present
samples, the cleavage exposes an atomically sharp edge, which is
immediately overgrown by means of lattice matched molecular
beam epitaxy25,26. The resulting hard wall confinement potential
gives rise to the LL dispersions of Fig. 2c (red)19,21, shown along
with the quantum wire modes in the lower well (gray) and the
2DEG at Bz = 0 (blue). Lowering Bz reduces the bulk LL energy
splitting ħωc and hence introduces a more dense LL structure
while leaving the LW modes unaffected (due to their strong
transverse confinement). The in-plane magnetic field By, on the
other hand, is assumed to not directly affect the LLs, but only
shift their dispersion in relation to the LW.

The fan structures at positive BZ in Fig. 2b can then be
understood in terms of momentum-conserving edge state
tunneling using one of the LW left Fermi points as a spectro-
meter, see Fig. 2c, where the case of LW3 is marked with an open
circle. Thus, each fan represents a map of the momenta of the LL
edge states at the Fermi energy, and thus, via the GC-momentum
relation Y = kxl

2
B, a precise map of the GC positions of the edge

states. Upon approaching Bz = 0, the effective momentum of edge
states, i.e. the intersection of LLs with the chemical potential,

approaches the Bz = 0 Fermi wave vector −kF,2D of the 2DEG.
During this process edge states associated with LLs of increasing
orbital index subsequently come into co-propagating resonance
with LW2 at By = 0.

In the following section, the range in the perpendicular
magnetic field is extended (Fig. 3) in order to study the field
evolution of edge states and their magnetic depopulation at large
Bz. For better visibility, we plot the second derivative with respect
to By of the differential tunnel conductance in Fig. 3a. A large
number of interpenetrating resonances are visible, extracted in
Fig. 3b for clarity, and grouped into bundles according to their
different origin, i.e. red, black, and light blue data indicate co-
propagating tunneling to the first three LW modes, LW1, LW2,
and LW3, respectively. The LL edge states can also be mapped in a
counter-propagating fashion (Fig. 3c), i.e. where the wire state
and edge states are propagating in opposite directions. To achieve
momentum conservation in this case, a relatively large momen-
tum kick needs to be provided by the magnetic field, and these
transitions thus appear at larger By.

In addition to edge state–wire tunneling, intra−wire transitions
are seen and color coded in gray in Fig. 3b. As the wave functions
for LW1 and UW1 are very similar, their CM positions nearly sit
on top of each other and hence there is no resulting momentum
kick Δkx = eΔyBz/ħ due to the perpendicular field. Here, Δy
denotes their lateral displacement. As a consequence, the
corresponding resonances (light gray) appear as horizontal lines.
In contrast to this, transitions involving different wire modes, e.g.
UW1 and LW2 (dark gray data in Fig. 3b), appear with a slope
that reflects the different center of mass positions of the
participating wave functions.

Returning to LL tunneling, we note a few important points.
First, all LL resonances terminate on the right end at a specific
bulk filling factor when magnetic depopulation removes the
corresponding edge state from the sample, clearly seen for the
black data in Fig. 3b. In particular, tunneling involving LL2 with
n = 2 is observed up to Bz ≈ 1.1 T, terminating at the
corresponding bulk filling factor ν = 6, labeled on the top axes in
Fig. 3b. Here, spin occupancy g = 2 because of a spin-unresolved
case. The resonances for LL3 with n = 3 are already lost above Bz
≈ 0.8 at ν = 8, independent of which LW mode is used as a
spectrometer (compare red, black and light blue data in Fig. 3b).

Spin splitting and Landau level depopulation. A set of bright
vertical features appears in the upper half of Fig. 3a (corre-
sponding to the dashed vertical lines of integer filling factors in
Fig. 3b), whose position is coincident with the disappearance of
LL resonances. These features are even more visible in Supple-
mentary Fig. 5. These result from probing the flat part of the LL
dispersion i.e. they reflect the bulk filling factor, and account for
the majority of the measured tunneling signal in Fig. 3 prior to
differentiation of the data. For example at Bz = 0.7 T, shown in
the level schematics of Fig. 2c, LL4 is aligned with the chemical
potential causing a resonance with the right Fermi-points of LW1,
LW2, and LW3 as indicated with black dots. While applying a
positive in-plane magnetic field shifts the LW dispersions to the
right and hence preserves resonant tunneling, this condition is
lost for sufficiently negative By. Consequently, the vertical lines,
corresponding to magnetic depopulation of a LL in the bulk,
appear predominantly at positive By.

Beyond the vertical lines, the smooth evolution of LL tunneling
resonances from Fig. 2 develops shoulder-like structures at larger
Bz, clearly seen in Fig. 3d. The shoulders appear exactly at the
transition between bulk filling factors (vertical lines in Fig. 3b)
and are attributed to Fermi level pinning to LLs and impurity
states, respectively, previously only accessible through
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investigation of the bulk 2DEG properties42,43. Here, we also note
that the momentum resolution and the corresponding real space
resolution of this spectroscopy technique improves with perpen-
dicular magnetic field (white bars in Fig. 3d) and reaches the
nanometer range for fields above 1 T. The resonance width
depends on the degree to which momentum conservation is
broken during tunneling, i.e. breaking of translational symmetry
due to disorder and the finite size of the tunneling region. Finally,
also, any variation of the tunneling distance between the upper
and lower system, such as single-atomic steps in the growth plane
or other crystal defects, will add to the observed broadening.

While each LL carries two spin-resolved sub-bands, energeti-
cally split by the total Zeeman energy given by magnetic fields Bz
and By, the corresponding difference in Fermi wave vectors is too
small to be resolved by means of this spectroscopic method.
However, at large in-plane magnetic fields, the interplay between
Hartree term and exchange interactions44 may lead to the

formation of spin-polarized strips where spin split sub-bands are
also separated in real space45. As a consequence, tunneling
resonances split up for the raw data in Fig. 3e and the
spectroscopy becomes spin selective.

Analytical model of resonant tunneling. In the last part of this
article, we develop an analytical model19,20,24,32, and in addition
provide numerical predictions (see Supplementary Note 3) for the
evolution of LLs in the limit of hard wall confinement using a 1D
single-particle Schrödinger solver. The perpendicular magnetic
field introduces an additional local parabolic confinement, cen-
tered at each GC position Y, hence condensing bulk electrons into
discrete LLs with well-known Hermite-Gaussian wave functions.
We assume that upon approaching the hard wall, LLs remain at
their bulk energy Ebulk

n = !hωc nþ 1
2

# $

until the tail of the wave
function intersects with the hard wall (Y ≈ σn for LLn, with σn the
half width of the LL wave function). When moving Y even closer
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as a function of magnetic fields By and Bz. b Extracted resonance positions from a. Red, black, and light blue data correspond to

tunneling between edge modes and the first (LW1), second (LW2) and third (LW3) lower wire mode. c–f Zoom-in of a for regions of interest: c Landau fans

for Bz < 0 (counter-clockwise edge states ⇔ right moving edge state at cleaved edge), imaged with co-propagating (white solid ellipse) and counter-

propagating wire modes (white dashed ellipse). d Jumps in the resonance position whenever the bulk filling changes. The three vertical bars of growing

height indicate a distance of 2 nm in real space. The height ΔBy of the bar is given by ΔBy = ΔYBz/d, where ΔY is the distance in real space. Thus, the real

space resolution is improving with increasing magnetic field Bz. e LL spin splitting clearly visible even in undifferentiated raw data (tunneling conductance

gT). f Branching out of resonances at the transition to magnetic depopulation

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06025-3 ARTICLE

NATURE COMMUNICATIONS | �(2018)�9:3692� | DOI: 10.1038/s41467-018-06025-3 | www.nature.com/naturecommunications 5



to the edge or beyond, the hard wall retains the wave functions
within the sample, thus separating in space the GC position Y =
kxl

2
B and the wave function center of mass (CM) position, see

Fig. 1a, b and 4a. As a consequence, LLs acquire kinetic energy
and are simply lifted up the parabolic magnetic confinement until
they cross the Fermi energy, thereby forming the conducting edge
states (Fig. 1a, b and Supplementary Figs. 3, 4). Using these
approximations, the LL dispersion En(kx) reads:

EnðkxÞ ¼ Ebulk
n þ

!h2

2m%
Θ σn & Yð Þ

σn

l2B
& kx

' (2

; ð1Þ

where Θ(x) is the Heaviside function. The condition for resonant
tunneling is obtained by equating the LL spectrum at the Fermi
energy with the lower wire dispersion ϵ

ðiÞ
kx
, shifted in kx-direction

to account for the momentum kick eByd (tunneling to the lower
system in presence of By) and eBzΔyi (displacement Δyi of the
LWi wave function CM with respect to the cleaved edge):

ϵ
ðiÞ
kx

¼
!hkx & eByd & eBzΔyi

% &2

2m%
þ ϵ

ðiÞ
0 :

ð2Þ

Here, ϵ
ðlÞ
0 is an energy offset that accounts for the difference in

band edges of 2DEG and respective lower wire mode with respect
to the common Fermi energy. Combining Eqs. (1) and (2) we
obtain the evolution of the tunneling resonances as a function of
By and Bz,

eByd

!h
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1

l2B

s

&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2F;2D &
2nþ 1

l2B

s

þ γi &
Δyi
l2B

ð3Þ

where γi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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is a quantum wire mode
dependent overall momentum shift.

Discussion
Both the numerical and the analytical models capture the
experimental tunneling resonances very well and result in very
similar fitting parameters, shown in Fig. 4b, c for LL tunneling to
LW2 (black data from Fig. 3). We note that equally good fits are
obtained for tunneling to other lower wire modes as well, using
the same 2DEG density n2DEG = k2F;2D=2π and increasing quan-
tum wire displacement Δyi for higher modes (see Supplementary
Fig. 6), as expected—thus lending further support to the models.
We emphasize that both models consistently deliver the CM
positions, with similar nanometer precision as the GC positions
extracted directly from the spectroscopy. This makes it possible to
plot a full map of the magnetic field evolution of the edge states,
see Fig. a. Throughout the process of increasing magnetic field Bz,
the electron wave function is progressively compressed (from
green to red curves). There are two stages of the edge state motion
as magnetic field Bz increases: first, motion of the center of mass
towards the hard wall (empty circles for Bz < 2.78 T) and motion
away from the hard wall at larger fields, see also Supplementary
Fig. 3. During the latter stage, the center of mass merges with the
GC position (black and blue curves approach and then coincide
for larger Bz in Fig. 4a), followed by depopulation of the corre-
sponding LL.

Despite the good match between experiment and non-
interacting single-particle theory, there remain minor dis-
crepancies. In particular, the shoulder structures at the transitions
between integer bulk filling factors (Fig. 3d) and the spin splitting
observed at large in-plane magnetic field (Fig. 3e) are not cap-
tured by the model. Furthermore, at the transition to magnetic
depopulation, individual resonances are observed to branch out,
clearly visible for, e.g., the LL1–LW2 transition in Fig. 3f. Splitting

of single resonances could arise e.g. from edge reconstruction or
may also result from the formation of stripe or bubble phases.

In summary, we employed momentum-resolved tunneling
spectroscopy to image the evolution for the lowest ≈10 integer
quantum Hall edge states of a GaAs 2DEG with nanometer
resolution, and down to magnetic fields of Bz ≳ 10 mT (νbulk ≈

500). We directly observe the chiral nature of integer quantum
Hall edge states, as well as magnetic depopulation at the
respective bulk filling factor. In addition, spin splitting is observed
at the transition to depopulation. Theoretical predictions
assuming the topologically gapped bulk spectrum and hard wall
confinement reproduce very well the experimental data over the
entire range of magnetic field, thus confirming the bulk to edge
correspondence.

In the future, also fractional quantum Hall edge state can be
investigated with the spectroscopy technique presented here. The
present sample exhibits clearly visible ν = 4/3 and ν = 5/3
fractional states in conventional transport measurements. Ima-
ging the fractional states by means of this highly sensitive
momentum-resolved tunnel spectroscopy would be of great
interest and can be addressed in future experiments. Fractional
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states are stabilized by electron-electron interactions and are thus
believed to exist only in the vicinity of the respective filling factor,
in contrast to integer edge states that persist at all fields up to
their magnetic depopulation. Because of power law exponents
determining the tunneling conductance from the fractional
quantum Hall edge states46–50, a pronounced DC bias voltage
dependence is expected for these states. This also makes it very
interesting to explore another experimental knob, bias voltage,
which controls the energy transfer during the tunneling event.

Beyond fractional states, the technique described here can also
be applied to other topological insulator materials. In those sys-
tems where a wire exhibiting tunneling can be integrated or
placed in parallel, edge states, both 1D or 2D in nature, can also
be studied with this method with unprecedented resolution in a
weakly invasive way. We note that ultra clean wires, such as used
here to probe the edge states, are not necessary, in fact, thus
opening the door to studying a variety of topological materials
and their exotic edge states with this new tunneling spectroscopy.

Methods
Device layout. The device used for this study is produced by means of the cleaved
edge overgrowth method. It consists of a lower, 30 nm wide GaAs quantum well,
separated by a 6-nm-thick AlGaAs tunnel barrier from the upper, 20-nm-thick
GaAs quantum well28. A silicon doping layer above the upper quantum well
provides free charge carriers, resulting in the formation of a 2DEG in the upper
quantum well while the lower well remains unpopulated. The sample with pre-
fabricated tungsten top gate is then cleaved inside the growth chamber and
immediately overgrown on the sample edge (including a Si doping layer). Due to
the additional side dopants, charge carriers are attracted to the sample edge,
thereby forming strongly confined 1D channels (in upper and lower quantum well)
along the entire cleaved edge. The 1D channels support a few (5 or less) transverse
modes with sub-band spacing up to 20meV and mean free path exceeding 10μm14.
Ohmic indium solder contacts to the 2DEG allow for transport studies. While the
upper 1D system is well coupled to the 2DEG, the lower 1D channels are only
weakly tunnel coupled, thus allowing for tunnel spectroscopy measurements.

Measurements setup. Tunneling spectroscopy measurements were recorded with
the standard low frequency (5–10 Hz) lock-in technique with typically 6 μV AC
excitation. All measurements were done at effectively zero DC bias using a specially
designed low noise current preamplifier with active drift compensation (Basel
Electronics Lab) ensuring VDC ≲ 5 μV.

Significant efforts were taken in order to obtain low electronic temperatures51–
57. The present device is mounted on a home-built silver epoxy sample holder
inside a heavily filtered dilution refrigerator with 5 mK base temperature. Roughly
1.5 m of thermocoax wire is used in combination with two stages of home-built
silver epoxy microwave filters53 to efficiently filter and thermalize each
measurement lead, resulting in electronic sample temperatures around 10 mK.

Numerical solution. Numerical solutions are obtained by solving the 1D Schrö-
dinger equation using Numerov’s method. The hard wall confinement forces the
electronic wave functions to be zero at that boundary. The perpendicular magnetic
field gives an additional parabolic confinement. Its minimum is shifted away from
the hard wall by the GC position Y. The energy of a given solution is then changed
iteratively until a vanishing wave function at the hard wall is obtained.

Data acquisition. A vector magnet (8 T solenoid and 4 T split-pair) is used to
provide the external magnetic field for spectroscopy measurements. Exceptional
device stability is required in order to perform those extremely time-consuming B-
field vs B-field maps in the main article. In particular, Fig. 3a is composed of 3
individual data sets with a total measurement time of roughly 6 weeks. In order to
reduce the measurement time, here the magnetic field Bz was scanned in a zig-zag
fashion, i.e. taking data during ramping up and ramping down of Bz. However, due
to the finite inductance of the magnet, a hysteretic behavior of the applied B-field
results, which was accounted for by performing a non-linear correction to the
measured data. The empty white spaces in Fig. 3a (round corners) are due to the
accessible combined field range of the vector magnet. A slight sample misalignment
with respect to the y- and z-direction is accounted for by tilting the experimental
data in Figs. 2–4

Data availability
The data of all the Figures of the main manuscript and the relevant code are available on

a Zenodo repository (https://doi.org/10.5281/zenodo.1251622).
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