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Abstract—This paper investigates a flow- and path-sensitive
static information flow analysis. Compared with security type
systems with fixed labels, it has been shown that flow-sensitive
type systems accept more secure programs. We show that
an information flow analysis with fixed labels can be both
flow- and path-sensitive. The novel analysis has two major
components: 1) a general-purpose program transformation that
removes false dataflow dependencies in a program that confuse
a fixed-label type system, and 2) a fixed-label type system that
allows security types to depend on path conditions. We formally
prove that the proposed analysis enforces a rigorous security
property: noninterference. Moreover, we show that the analysis
is strictly more precise than a classic flow-sensitive type system,
and it allows sound control of information flow in the presence
of mutable variables without resorting to run-time mechanisms.
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I. INTRODUCTION

Information-flow security is a promising approach to se-
curity enforcement, where the goal is to prevent disclosure of
sensitive data by applications. Since Denning and Denning’s
seminal paper [20], static program analysis has been widely
adopted for information-flow control [38]. Among these
program analyses, type systems (e.g., [33], [36], [41]) have
enjoyed a great popularity due to their strong end-to-end
security guarantee, and their inherently compositional nature
to combine secure components forming a larger secure
system as long as the type signatures agree.

Conventionally, we assume secrets are stored in variables,
and security levels (e.g., P for public and S for secret) are
associated with variables to describe the intended secrecy of
the contents. The security problem is to verify that the final
value of the public variables (outputs visible to the public)
is not influenced by the initial value of the secret variables.

Many security type systems (e.g., [33], [36], [41]) assume
fixed levels. That is, the security level for each variable
remain unchanged throughout program execution. Though
this fixed-level assumption simplifies the design of those
type systems, one consequence is that they tend to be over-
conservative (i.e., reject secure programs). For example,
given that s has a level S (i.e., s holds a secret value) and
p has a level P, a fixed-level type system rejects secure
programs, such as (p := s; p := 0;), even though the publicly
observable final value of p is always zero.

Previous work (e.g., [26]) observes that such inaccuracy
roots from the flow-insensitive nature (i.e., the order of
program execution is ignored) of fixed-level systems. From
this perspective, the previous example is mistakenly con-
sidered insecure because the (impossible) execution order
(p := 0;p :=s;) is insecure.

Hunt and Sands [26] propose a classic flow-sensitive type
system which allows a variable to have multiple security
levels over the course of computation. For example, this
floating-level type system correctly accepts the program
(p := s;p := 0;) by assigning p with levels S and P after
the first and second assignments respectively. However, this
floating-level system is still path-insensitive, meaning that
the predicates at conditional branches are ignored in the
analysis. For example, it incorrectly rejects the following
secure program since the (impossible) branch combination
(y :=s;p:=y;) is insecure.

if (x=1) then y:=0 else y:=s;
if (x=1) then p:i=y

This paper develops a flow- and path-sensitive information
flow analysis that is precise enough to accept the aforemen-
tioned secure programs. The novel analysis is built on two
key observations. First, flow-sensitivity can be gained via a
general-purpose program transformation that eliminates false
dataflow dependencies that confuse a flow-insensitive type
system. Consider the example (p := s;p := 0;) again. The
transformation removes the false dataflow dependency be-
tween s and p by introducing an extra copy of the variable p
and keeps track of the final copy of each variable at the same
time. So, the example is transformed to (p; := s;p2 := 05),
where po is marked as the final copy. Then, a fixed-level
system can easily type-check this program by assigning
levels S and P to p; and ps respectively.

Second, path-sensitivity can be gained via consolidating
dependent type theory (e.g., [16], [39], [43]) into security
labels. That is, a security label is, in general, a function
from program states to security levels. Consider the second
example above with branches. We can assign y a dependent
security label: (z = 17P : S), meaning that the level of y
is P when x = 1, and S otherwise. Hence, the information
flow from y to p can be judged as secure since it only occurs
when & = 1 (hence, y has level p).



Based on the key observations, we propose a flow- and
path-sensitive information flow analysis that consists of two
major components: a general purpose program transforma-
tion that removes false dataflow dependencies that otherwise
compromise the precision of a fixed-level system, as well
as a fixed-label type system with dependent labels. Each
component of our analysis targets one insensitive source of
previous type systems. The modular design not only enables
tunable precision of our analysis, but also sheds light on the
design of security type systems: we show that a fixed-level
system (e.g., [41]) plus the program transformation is as
precise as' the classic flow-sensitive system in [26]; fur-
thermore, a fixed-label dependent type system can soundly
control information flow in the presence of mutable variables
without resorting to run-time mechanisms (e.g., [23], [45]).

This paper makes the following key contributions:

1) We formalize a novel flow- and path-sensitive infor-
mation flow analysis for a simple WHILE language.
The analysis consists of a novel program transformation,
which eliminates imprecision due to flow-insensitivity
(Section IV), and a purely static type system using
dependent security labels (Section V).

2) We formally prove the soundness of our analysis (Sec-
tion VI): the source program satisfies termination-
insensitive noninterference whenever the transformed
program type-checks. Novel proof techniques are re-
quired due to the extra variables introduced (for added
precision) in the transformed program.

3) We show that our analysis is strictly more precise than a
classic flow-sensitive type system [26] (Section VII). One
interesting consequence is that the program transforma-
tion automatically makes a sound flow-insensitive type
system (e.g., [41]) as precise as the classic flow-sensitive
system [26].

4) We show that our dependent type system soundly con-
trols information flow in the presence of mutable vari-
ables without resorting to dynamic mechanisms, such as
the dynamic erasure mechanism in previous work [23],
[45].

II. BACKGROUND AND OVERVIEW
A. Information Flow Analysis

We first review standard information flow terminology
used in this paper. We assume all variables are associated
with security levels. A security policy is specified as the
ordering of the security levels, typically in the form of a
security lattice. For data d; with security level ¢; and data

I'We note that in the information flow literature, different terms (such as
“precision” and “permissiveness”) have been used to compare the amount
of false positives of various mechanisms [15]. In this paper, we say a static
analysis A is as precise as a static analysis B if A accepts every secure
program that is accepted by B. Moreover, we say A is (strictly) more precise
than B if A is as precise as B, and A accepts at least one secure program
that is rejected by B.

do with level /5, the policy allows information flow from
dy to dy if and only if ¢4 T /5. In this paper, we use
two distinguished security levels S (Secret) and P (Public)
for simplicity, but keep in mind that the proposed theory is
general enough to express richer security levels. The security
policy on the levels P and S is defined as P T S, while
S £ P. That is, information flow from public data to secret
variable is allowed, while the other direction is forbidden.
Hereafter, we assume variable s is labeled as S, and variable
p is labeled as P unless specified otherwise.

Explicit and Implicit Flows: An information flow anal-
ysis prohibits any explicit or implicit information flow that
is inconsistent with the given policy. Explicit flows take
place when confidential data are passed directly to public
variables, such as the command p := s, while implicit flows
arise from the control structure of the program. For example,
the following program has an implicit flow:

if (s=0) thenp:=0elsep:=1

Assume the secret variable s is either 0 or 1. This code
is insecure since it is functionally equivalent to p := s. That
is, the confidential data s is copied to a public variable p.

An information flow security system rules out all explicit
and implicit flows; any violation of a given security policy
results in an error. As in most information flow analyses, we
do not consider timing, termination and other side channels
in this paper; controlling side channel leakage (e.g., [1], [28],
[44]) is largely an orthogonal issue.

B. Sources of Imprecision

Most information flow analyses provide soundness (i.e.,
if the analysis determines that a program is secure, then
the program provably prevents disclosure of sensitive data).
However, since the problem of checking information flow
security is in general undecidable [38], one key challenge
of designing an information flow analysis is to maintain
soundness, while improving precision (i.e., reject fewer
secure programs).

In this section, we introduce the major sources of im-
precision in existing type systems. In the next section
(Section II-C), we illustrate how does our novel information
flow analysis alleviate those sources of imprecision.

Flow-Insensitivity: The first source of imprecision is
flow-insensitivity, meaning that the order of execution is not
taken into account in a program analysis [35]. In the context
of information flow analysis, the intuition is that an analysis
is flow-insensitive if a program is analyzed as secure only
when every subprogram is analyzed as secure [26].

Many security type systems, including [33], [36], [41],
are flow-insensitive. Consider the program in Figure 1(a)
(for now, ignore the brackets). This program is secure since
the public variable p has a final value zero regardless of the
secret variable s. However, it is considered insecure by a
flow-insensitive analysis because of the insecure subprogram



1 x:=s; 1 z:=s;
2 Jz:=0]; 2 x1:=0
3 pi=ux; 3 pi=ux1;

(a) Flow-Insensitive Analysis
Rejects Secure Program.

(b) Flow-Insensitive Analysis
Accepts Equivalent Program.

1 z:=0; y:=0;

2 if (p1 < 0) then y:=s;
3 if (p; > 0) then z:=y;
4 p2:=x;

(c) Path-Insensitive Analysis Rejects Secure Program.

Figure 1: Examples: Imprecise Information Flow Analysis Rejects Secure Programs.

(x := s;p := z;). Under the hood, the imprecision arises
since the analysis requires fixed levels: the security level of
a variable must remain the same throughout the program
execution. But in this example, these is no fixed-level for
the variable z: when the level is S, p := x is insecure; when
the level is P, x := s is insecure.

Path-Insensitivity: The second source of imprecision is
path-insensitivity, meaning that the predicates at conditional
branches are ignored in a program analysis [35]. In the
context of information flow analysis, the intuition is that
an analysis is path-insensitive if a program is analyzed as
secure only when every sequential program generated from
one combination of branch outcomes is analyzed as secure.

For instance, the flow-sensitive type system in [26] is
path-insensitive; consequently, it rejects the secure program
shown in Figure 1(c) (due to Le Guernic and Jensen [29]).
This example is secure since the value of the secret vari-
able s never flows to the public variable ps, since the
assignments y := s and x := y never execute together
in the same program execution. However, the type system
in [26] rejects this program because it lacks the knowledge
that the two if-statements cannot take the “then” branch
in the same execution. Hence, it has to conservatively
analyze the security of an impossible program execution:
z:=0;y :=0;y :=s;x := y;p := x, which is insecure due
to an explicit flow from s to p.

Under the hood, we observe that the imprecision arises
from the fact that a path-insensitive analysis (e.g., [26])
requires that the security levels of a variable on two paths
to be “merged” (as the least upper bound) after a branch.
Consider the first branch in Figure 1(c). The “then” branch
requires y to be S due to the flow from s to y. So after that
if-statement, the label of y must be S (i.e., which path is
taken is unknown to the rest of the program). Similarly, x
has label S after the second if-statement. Hence, ps := x is
rejected due to an explicit flow from S to P.

C. Overview

In order to alleviate analysis imprecision due to flow-
and path-insensitivity, our novel information flow analysis
has two major components: a program transformation that
enables flow-sensitivity and a type system with dependent
security labels, which enables path-sensitivity.

1) Program Transformation: Consider the example in
Figure 1(a) (for now, ignore the brackets). A fixed-level type
system rejects this program since the levels of x at line 1

and 3 are inconsistent. We observe that there are indeed two
copies of x in this program but only the final one (defined at
line 2) is released. So without modifying a type system, we
can explicitly transform the source program to a semantically
equivalent one that explicitly marks different copies.

The source language of our program analysis (Section III)
provides a tunable knob for improved precision: a bracketed
assignment in the form of [z := e]. Such an assignment is
semantically identical to = := e but allows a programmer to
request improved precision (the source language allows such
flexibility since reduced precision might be preferred for
reasons such as more efficient analysis on the program). In
particular, for a bracketed assignment [z := e]), the program
transformation (Section IV) generates a fresh copy for z
and uses that copy in the rest of program until another
new copy is generated. For example, given the bracketed
assignment at line 2 of Figure 1(a), the transformed program
is shown in Figure 1(b), where the second definition of x
and its use at line 3 are replaced with x;. The benefit is
that the false dataflow dependency from s to p in the source
program is eliminated. Hence, the transformed program can
be accepted by a fixed-level type system, by assigning z
and x1 to levels S and P respectively. In general, we prove
that (when all assignments are bracketed) the transformation
enables a fixed-level system to be at least as precise as a
classic flow-sensitive type system (Section VII).

2) Dependent Labels: Consider the example in Fig-
ure 1(c). A path-insensitive type system rejects this program
since such a type system ignores the path conditions under
which assignments occur. Consequently, the security level of
y is conservatively estimated as S after line 2, though when
p1 > 0, variable y only carries public information.

In our system, path-sensitivity is gained via dependent
security labels (i.e., security labels that depend on program
states). Compared with a security level drawn directly from
a lattice, a dependent security label precisely tracks all
possible security levels from different branches; hence, path-
sensitivity is gained. Since dependent security labels are
orthogonal to bracketed assignments, extra precision can
be gained in our system even in the absence of bracketed
assignments. For example, while the program in Figure 1(c)
can not be accepted using any simple security level for y,
we can assign to y a dependent label (p; < 07S : P),
which specifies an invariant that the level of y is S when
p1 < 0 (i.e., the “then” branch is taken at line 2); the
level is P otherwise. Such an invariant can be maintained



Vars z,y, %z € Vars
Expr ex=xz|n|eope
Cmds cu=skip|cye |zi=¢| v :=¢] |

if (e) then ¢; else c2 | while (e) ¢

Figure 2: Syntax of the Source Language.

by the type system described in Section V. For instance,
to ensure that the explicit flow from y to x at line 3
is secure, the type system generates a proof obligation
(p1 > 0 = (p1 < 07S : P) C P), meaning that the
information flow from y to  must be permissible under the
path condition p; < 0. This proof obligation can easily be
discharged by an external solver. The soundness of our type
system (Section VI) guarantees that all security violations
are detected at compile time.

III. LANGUAGE SYNTAX AND SEMANTICS

In this paper, we consider a simple imperative WHILE
language whose syntax and operational semantics are shown
in Figures 2 and 3 respectively. The syntax and semantics
are mostly standard: expressions e consist of variables x,
integers n, and composed expressions e op e, where op
is a binary arithmetic operation. Commands c consist of
standard imperative instructions, including skip, sequential
composition c1; ce, assignments, conditional if branch and
while loop. The semantics of expressions are given in the
form of (e, m) | n (big-step semantics), where memory m
maps variables to their values. The small-step semantics of
commands has the form of (¢, m) — (¢/,m’), where (¢, m)
is a configuration. We use m{z — n} to denote the memory
that is identical to m except that variable x is updated to
the new value n.

The only interesting case is the bracketed assignment
[t := e], which is semantically equivalent to normal
assignment x := e in the source language. These commands
are tunable knobs for improved precision in our information
flow analysis, as we show shortly.

IV. PROGRAM TRANSFORMATION

To alleviate the imprecision due to flow-insensitivity, one
component of our analysis is a novel program transformation
that introduces extra variable copies to the source program,
so that false dataflow dependencies that otherwise may
confuse flow-insensitive analyses are removed.

A. Bracketed Assignments and the Transformed Program

We propose a general and flexible design for the program
transformation. In particular, the program transformation is
triggered only for assignments that are marked with brackets.
Such a design enables a tunable control of analysis precision
for programmers or high-level program analysis built on
our meta source language: when there is no bracketed

assignment, the transformed program is simply identical to
the source program; when all assignments have brackets, the
transformation generates a fresh copy of z for each bracketed
assignment [z := e].

Due to the nature of the transformation, the transformed
program follows the same syntax and semantics as the source
language, except that all bracketed assignments are removed.

To avoid confusion, we use underlined notations for the
transformed program: e for expressions, ¢ for commands and
m for memories, when both the original and the transformed
programs are in the context; otherwise, we simply use e, ¢
and m for the transformed programs as well.

B. Transformation Rules

The program transformation maintains one active copy for
each variable in the source code. One invariant maintained
by the transformation is that for each program point, there
is exactly one active copy for each source-program variable.
Intuitively, that unique active copy holds the most recent
value of the corresponding source-program variable.

Definition 1 (Active Set): An active set A : Vars —
Vars, is an injective function that maps a source variable
to a unique variable in the transformed program.

For simplicity, we assume that the variables in the trans-
formed program follow the naming convention of z; where
x € Vars and ¢ is an index. Hence, for any variable v in the
range of A, we simply use v | to denote its corresponding
source variable (i.e., a variable without the index). Hence,
v = A(v|) always holds by definition. Moreover, since we
frequently refer to the range of A, we abuse the notation
of A to denote active copies that A may map to (i.e., the
range of A). That is, we simply write v € A instead of
v € Ran(.A) in this paper. Moreover, we use A{x — z;} to
denote an active set that is identical to A except that x is
mapped to x;.

The transformation rules are summarized in Figure 4.
For an expression e, the transformation has the form of
(e, A) = e, where ¢ is the transformed expression. The
transformation of an expression simply replaces the source
variables with their active copies in .A.

For a command ¢, the transformation has the form of
(¢, A) = (¢, A’), where ¢ is the source command and
c is the transformed one. Since assignments may update the
active set, A’ represents the active set after c.

Rule (TRSF-Assign) applies to a normal assignment. It
transforms the assignment to one with the same assignee and
update A accordingly. Rule (TRSF-Assgin-Create) applies
to a bracketed assignment [z := e]]. It renames the assignee
to a fresh variable. For example, line 1 of the transformed
program in Figure 1(b) is exactly the same as the original
program in 1(a); but the assignee of line 2 is renamed to ;.
Rule (TRSF-IF) uses a special ® function, defined in Fig-
ure 5, to merge the active sets generated from the branches.
In particular, ®(A;, A2) = Az generates an active set



(n,m) § n (z,m) § m(z)

-ASSIGN
S-SKkip S S1G

(e,m) | n

<€17m> I ny
<€27m> I na

(e1 op ea,m) I n

n ="n1 Op N2

S-ASSIGN-BRACKET

(e,m) | n

(skip;c,m) — (¢, m)

S-SEQ

<cl, m> N <C/17 m/> S-WHILE

(x :=e,m) — (skip,m{x — n})

([x := e],m) — (skip, m{x — n})

{c1;c9,m) — (c];ca,m’)

S-IF1
(e,;m) bn n#0

(if (e) then ¢ else cy,m) — {c1,m)

(while (e) ¢,m) — (if (e) then (c;while (e) ¢) else skip,m)

S-1F2
(e;mydn n=0

(if (e) then ¢ else cy,m) — {(co,m)

Figure 3: Semantics of the Source Language.

(n,A) = n

TRSF-ASSIGN

TRSF-SKiIp (e,.A) = ¢

(skip, A) = (skip,.A)

(z,A) = Az)

<€la~’4> = Qll <627~A> E4 Q/Q
(e1 op e, A) = ¢} op €

TRSF-ASSIGN-CREATE
(e, A) = e 1 is a fresh index for =

TRSF-SEQ
(1, A) = (¢, A1) (e, A1) = (e, A2)

(x:=e,A) = (z:=¢, A{z — z})

([x :=€], A) = (x; :=e, A{x— z;})

TRSF-WHILE
(¢, A) = (¢, A1)

(e, A1) = (¢, A2) (e, A1) = ¢

(c1;62,A) = (c15¢9,A2)

TRSF-IF

(e, A) = e (c1,A) = (¢, A1)

<027 “4> = <Q27 “42>

(while (e) ¢, A) = (A;:= A;while (e) (¢; A1 := A2), A1)

D(A,A) = As

(if (e) then c¢; else ¢, A) = (if (e) then (ci;. A3 := A;) else (cy; A3z := Az), A3)

Figure 4: Program Transformation. We use A := A’ as a shorthand for {A(v) := A'(v) | v € Vars A A(v) # A'(v)}.

x;, 4 fresh for x, Aj(zr)#Az(x)
Ai(z), A ()= Az ()
Az = merge(A;, A2)

@(Al,Az) = As

merge(A;, As) = Az. {

TRSF-PHI

Figure 5: Merge Function.

Asz that maps x to a fresh variable iff A;(z) # As(x).
Transformation for the while loop is a little tricky since
we need to compute an active set that is active both before
and after each iteration. Rule (TRSF-WHILE) shows one
feasible approach: the rule transforms the loop in a way that
A; is a fixed-point: the active set is always A; before and
after an iteration by the transformation.

We note that given an identity function as the initial
active set A, a program without any bracketed assignment is
transformed to itself with a final active set A. At the other

extreme, the transformation generates one fresh active copy
for each assignment when all assignments are bracketed.

C. Correctness of the Transformation

One important property of the proposed transformation
is its correctness: a transformed program is semantically
equivalent to the source program. To formalize this property,
we need to build an equivalence relation on the memory for
the source program (m : Vars — N) and the memory for
the transformed program (m : Vars — N). We note that
the projection of m on an active set A defined as follows
shares the same domain and range as m. Hence, it naturally
specifies an equivalence relation on m and m w.rt. A: m
can be directly compared with m.

Definition 2 (Memory Projection on Active Set): We use
m™ to denote the projection of m on the active set A,
defined as follows:

Vz € Vars. m™(z) = m(A(z))



We formalize the correctness of our transformation as the
following theorem. As stated in the theorem, the correctness
is not restricted to any particular initial active set .A.

Theorem 1 (Correctness of Transformation): Any trans-
formed program is semantically equivalent to its source:

\V/C,Q, m,m, m/7m/a A7 A/'

(e, A) = (¢, A") A (c,m) —* (skip,m’)
A (e, m) —* (skip,m’) A m = m™A
=m =m)*".
Proof sketch. By induction on the transformation rules. The
full proof is available in the full version of this paper [30].

D. Relation to Information Flow Analysis

Up to this point, it might be unclear why introducing
extra variables can improve the precision of information
flow analysis. We first note that transformed programs enable
more precise reasoning for dataflows. Consider the program
in Figure 1(a) and Figure 1(b). In the transformed program,
it is clear that the value stored in = never flows to variable p;
but such information is not obvious in the source program.
Moreover, Theorem 1 naturally enables a more precise
analysis of the transformed program, since it implies that
if any property holds on the final active set A’ for the
transformed program, then the property holds on the entire
final memory for the original program. That is, in terms
of information flow security, the original program leaks no
information if the transformed program leaks no information
in the subset A’ of the final memory. Consider the example
in Figure 1(b) again. Theorem 1 allows a program analysis
to accept the (secure) program even though the variable z,
which is not in A’, may leak the secret value.

In Section VII, we show that, in general, the program
transformation automatically makes a flow-insensitive type
system (e.g., the Volpano, Smith and Irvine’s system [41]
and the system in Section V) at least as precise as a classic
flow-sensitive type system [26].

E. Relation to Single Static Assignment (SSA)

SSA [17] is used in the compilation chain to improve
and simplify dataflow analysis. Viewed in this way, it is
not surprising that our program transformation shares some
similarity with the standard SSA-transformation. However,
our transformation is different from the latter in major ways:

« Most importantly, our transformation does not involve

the distinguishing ¢-functions of SSA. First of all,
removing ¢-functions simplifies the soundness proof,
since the resulting target language syntax and semantics
are completely standard. Moreover, it greatly simplifies
information flow analysis on the transformed programs.
Intuitively, the reason is that in the standard SSA from,
the ¢-function is added after a branch (i.e., in the
form of (if (e) then ¢; else c2);x = ¢(x1,22)).

However, without a nontrivial program analysis for the
¢-function, the path conditions under which z := z;
and x := z2 occur (needed for path-sensitivity) is
lost in the transformed program. On the other hand,
extra assignments are inserted under the corresponding
branches in our transformation. The consequence is that
the path information is immediately available for the
analysis on the transformed program. We defer a more
detailed discussion on this topic to Section V-F, after
introducing our type system.

e As discussed in Section IV-D, the final active set
A’ generated from the transformation is crucial for
enabling a more precise program analysis on the trans-
formed program (intuitively, an information flow anal-
ysis may safely ignore variables not in A’); however,
such information is lost in the standard SSA form.

o Our general transformation offers a full spectrum of
analysis precision: from adding no active copy to
adding one copy for each assignment, but the standard
SSA transformation only performs the latter.

V. TYPE SYSTEM

The second component of the analysis is a sound type
system with expressive dependent labels. The type system
analyzes a transformed program along with the final active
set; the type system ensures that the final values of the public
variables in the final active set are not influenced by the
initial values of secret variables.

A. Overview

We first introduce the nonstandard features in the type
system: dependent security labels and program predicates.

Return to the example in Figure 1(c). We observe that
this program is secure because: 1) y holds a secret value
only when p; < 0, and 2) the information flow from y to
x at line 3 only occurs when p; > 0. Accordingly, to gain
path-sensitivity, two pieces of information are needed in the
type system: 1) expressive security labels that may depend
on program states, and 2) an estimation of program states
that may reach a program point.

We note that such information can be gained by intro-
ducing dependent security labels and program predicates to
the type system. For the example in Figure 1(c), the relation
between the level of y and the value of x can be described as
a concise dependent label (p; < 07S : P), meaning that the
security level of x is S when p; < 0; the level is P otherwise.
Moreover, for precision, explicit and implicit flows should
only be checked under program states that may reach the
program point. In general, a predicate overestimates such
states. For the example in Figure 1(c), checking that the
explicit flow from y to x is secure under any program state
is too conservative, since it only occurs when p; > 0. With
a program predicate that p; > 0 for the assignment z := y,
the label of y can be precisely estimated as P. Note that
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z:=0; y:=0; 1 z:=0; y:=0;

if (p; < 0) then 2 if (p; < 0) then
Yy:=s; 3 Yy:i=Ss;

[p1 :=1]; 4 p3:=1;

if (p; > 0) then 5 if (p3 > 0) then
Ti=1Yy; 6 T i=y;

p2 :=x; 7 p2i=x;

(a) Insecure Program. (b) Transformed Program of 6(a).

Figure 6: Examples: Implicit Declassification.

our analysis agrees with the definition of path-sensitivity: it
understands that the two assignments y := s and x := y;
never execute together in one execution. The example in
Figure 1(c) is accepted by our type system.

B. Challenge: Statically Checking Implicit Declassification

Though designing a dependent security type system may
seem simple at the first glance, handling mutable variables
can be challenging. The implicit declassification problem,
as defined in [45], occurs whenever the level of a variable
changes to a less restrictive one, but its value remains the
same. Consider the insecure program in Figure 6(a), which
is identical to the secure program in Figure 1(c) except for
line 4. This program is obviously insecure since the sequence
y:=s;p1 = l;x := y;p2 := x; may be executed together.
Compared with Figure 1(c), the root cause of this program
being insecure is that at line 4 (when p; is updated), y’s new
level P (according to the label p; < 07S : P) is no longer
consistent with the value it holds.

The type systems in [23], [45] resort to a run-time
mechanism to tackle the implicit declassification problem.
However, that also means that the type system might change
the semantics of the program being analyzed. In this paper,
we aim for a purely static solution.

Program Transformation and Implicit Declassification:
Although the program transformation in Section IV is
mainly designed for flow-sensitivity, we observe that it
also helps to detect implicit declassification. Consider the
example in Figure 6(a) again, where the assignment at line
4 has brackets. The corresponding transformed program
(Figure 6(b)) does not have an implicit declassification
problem since updating ps at line 4 does not change y’s level,
which depends on the value of py, rather than ps. Moreover,
the insecure program cannot be type-checked since both
“then” branches might be executed together.

While adding extra variable copies helps in the previous
example, it unfortunately does not eliminate the issue. The
intuition is that even for a fully-bracketed program, variables
modified in a loop might still be mutable (since the local
variables defined in the loop might change in each iteration).
Consider the program in 7(a). This program is insecure since
it copies s to y in the first iteration, and copies y to p in the
next iteration. When fully-bracketed, the loop body becomes

1 x=0; Low=0;
2 while (z <10) { i Whlilfe (;S‘CV;—I%)) fchen
3 if (2%2=0) then 0e=
4 — 4 Y:=S;

Y:=5i 5 else
5 else 6 pi= i
6 P=Yi 7 r:=z+1;
7 r:=x+1;
8 ) 8 y:=0;

9 1}

(a) Insecure Program.
(b) Secure Program.

Figure 7: Examples: Implicit Declassification in Loop.
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Figure 8: Syntax of Security Labels.

if (22%2 =0) then y; :=s;ys3:=y; else ...;

x3 = w2+ i@ 1= T35y2 1= Ys;
where the labels of y; and y3 depend on 5. In this program,
implicit declassification happens when x5 is updated.

One naive solution is to disallow mutable variables in a
program. However, dependence on mutable variables does
not necessarily break security. Consider the program in
Figure 7(b), which is identical to the previous example
except that y is updated at line 8. In this program, y’s level
depends on the mutable variable x, but it is secure since the
value of s never flows to the next iteration.

Our Solution: Our insight is that changing y’s level at
line 7 in Figure 7(b) is secure since the value of y is not
used in the future (in terms of dataflow analysis, ¥ is dead
after line 6). This observation motivates us to incorporate
a customized liveness analysis (Section V-D) into the type
system: an update to a variable x is allowed if no labels of
the live variables at that program point depend on x.

C. Type Syntax and Typing Environment

In our type system, types are extended with security
labels, whose syntax is shown in Figure 8. The simplest form
of label 7 is a concrete security level ¢ drawn from a security
lattice £. Dependent labels, specifying levels that depend on
run-time values, have the form of (e?7; : 75), where e is an
expression. Semantically, if e evaluates to a non-zero value,
the dependent label evaluates to 7, otherwise, 75. A security
label can also be the least upper bound, or the greatest lower
bound of two labels.

We use I' to denote a typing environment, a function
from program variables to security labels. The integration of
dependent labels puts constraints on the typing environment
I' to ensure soundness. In particular, we say I' is well-
formed, denoted as - T', if: 1) no variable depends on a more
restrictive variable, preventing leakage from labels; 2) there
is no chain of dependency. These restrictions are formalized
as follows, where FV(7) denotes the free variables in 7:



LIVE,,,[final] = A
LIVE;, [s] = GEN[s] U (LIVE,y,[s] — KILL[s])

LIVEou(s] = | J LIVEi,[p]
pEsuccls]
GEN[z :=, ] = FV(e) U ( U FV(['(v)))
vEFV(e)

KILL[z :=, €] = {z}

Figure 9: Liveness Analysis of £ 4.

Definition 3 (Well-Formedness): A typing environment I'
is well-formed, written + I, if and only if:

Vz € Vars. (V' € FY(I'(x)). I'(2') C T'(z))
A(Vx' € FY(T'(z)). FV([(2")) = 0)

We note that the definition rules out self-dependence,
since if x € FV(I'(z)), we have FV(I'(z)) =0. Contradiction.

D. Predicates and Variable Liveness

Our type system is parameterized on two static program
analyses: a predicate generator and a customized liveness
analysis. Instead of embedding these analyses into our
type system, we follow the modular design introduced in
[45] to decouple program analyses from the type system.
Consequently, the soundness of the type system is only
based on the correctness of those analyses, regardless of
the efficiency or the precision of those analyses.

Predicate Generator: We assume a predicate generator
that generates a (conservative) program predicate for each
assignment 7 in the transformed program, denoted as P(7).
A predicate generator is correct as long as each predicate is
always true when the corresponding assignment is executed.

A variety of techniques, regarding the trade-offs between
precision and complexity, can be used to generate predicates
that describe the run-time state. For example, weakest pre-
conditions [21] or the linear propagation [45] could be used.
Our observation is that for path-sensitivity, only shallow
knowledge containing branch conditions is good enough for
our type system.

Liveness Analysis: Traditionally, a variable is defined
as alive if its value will be read in the future. But in our type
system, if a variable x is alive, then any free variable in the
label of = should also be considered as alive, because the
concrete level of x depends on those variables. Moreover,
we assume at the end of a program, only the variables in
the final active set are alive, due to Theorem 1.

The liveness analysis is defined in Figure 9, where s
denotes a program command, and final refers to the last
command of the program being analyzed. Here, final is
the initial state for the backward dataflow analysis. succ[s]
returns the successors (as a set) of the command s. In
the GEN set of an assignment x := e, both FV(e), and

Uverv(e) FV(I'(v)), the free variables inside their labels, are
included. Since we are analyzing the transformed program,
the state of the final active set is crucial for precision.
Therefore, the analysis also enforces that, at the end of the
program, all active copies in A are alive. Other rules are
standard for liveness analysis.

Interface to the Type System: We assume each assign-
ment in the transformed language is associated with a unique
identifier . We use o7 and ne to denote the precise program
points right before and after the assignment respectively.
For example, P(en) represents the predicates right before
statement 7, and £ 4(ne) denotes the alive set right after
statement 7 with initialization of A as the final live set.

E. Typing Rules

The type system is formalized in Figure 10 and Figure 11.
Typing rules for expressions have the form of I' - e : T,
where e is the expression being checked and 7 is the label
of e. The typing judgment of commands has the form of
I, pc - c. Here, pc is the usual program-counter label [38],
used to control implicit flows.

Most rules are standard, thanks to the modular design
of our type system. The only interesting one is rule (T-
ASSIGN). For an assignment x :=, e, this rule checks
that both the explicit and implicit flows are allowed in the
security lattice: 7 U pc C I'(z). Note that since 7 might be
a dependent label that involves free program variables, the
C relation is technically the lifted version of the relation
on the security lattice. Hence, the constraint 7 L pc C T'(z)
requires the label of = to be at least as restrictive as the
label of current context pc and the label e under any program
execution. For precision, the type system validates the partial
ordering under the predicate P(e7), the predicate that must
hold for any execution that reaches the assignment.

Moreover, the assignment rule checks that for any variable
in the liveness set after the assignment, its security label
must not depend on x; otherwise, its label might be incon-
sistent with its value. As discussed in Section V-B, this check
is required to rule out insecure implicit declassification.

At the top level, the type system collects proof obligations
in the form of = P = 71 C 79, where 71 and 7o are
security labels, and P is a predicate. Such proof obligations
can easily be discharged by theorem solvers, such as Z3 [19].

As an example, consider again the interesting examples in
Figure 7. In both programs, we can assign y to the dependent
label (%2 = 07S : P), and assign z to the label P. From the
liveness analysis, we know that the live sets right after line
7 are {z,y,s} and {z,p,s} for Figure 7(a) and Figure 7(b)
respectively. Hence, the type system correctly rejects the
insecure program in Figure 7(a) since the check at line 7,
Vv € L a(ne). x ¢ FV(I'(v)), fails. On the other hand, the
check at line 7 succeeds for the program in Figure 7(b).
For line 4 in Figure 7(b), the assignment rule generates one
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——— T-CONST ———— T-VAR - T-Op
I'kn:L I'Fax:7 I'Feope :mUm
Figure 10: Typing Rules: Expressions.
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I, pc b while (e) ¢

Figure 11: Typing Rules: Commands.

proof obligation
E (x%2=0)=PUSC (z%2=07?S:P)

which is clearly true for any value of x. In fact, the secure
program in Figure 7(b) is correctly accepted by the type
system in Figure 10 and Figure 11.

FE. Program Transformation and Information Flow Analysis

We now discuss the benefits of the program transforma-
tion in Section IV for information flow analysis in details.

1) Simplifying Information Flow Analysis: As discussed
in Section IV-E, our transformation does not involve the
distinguishing ¢-functions of SSA. Doing so simplifies
information flow analysis on the transformed programs.
We illustrate this using the following example, where y is
expected to have the label (z = 17P : S) afterwards.

if (x=1) then y:=0 else y:=s

Our transformation yields the following program, which can
be verified with labels y1 : P, y2 : S, y3: (z = 17P: S).

if (x=1) then (y1:=0;ys3:=1y1)

else (Y2 :=s;ys = y2);
In comparison, the standard SSA form is:
(if (x=1) then y;:=0 else y3:=s;)ys:=0(y1,¥2);
To verify this program, a type system would need at least a
nontrivial typing rule for ¢, which somehow “remembers”
that y3 := %2 occurs only when x = 1. Even with
such knowledge, the type of ys cannot simply be S, since
otherwise, assigning ys to ys at ¢ is insecure. In fact, the
labels required for verification are y1, ya,y3 : (x = 17S : P).

Similar complexity is also involved for the ¢-functions
inserted for loops: to precisely reason about information
flow, the semantics and typing rules of ¢ also need to track
the number of iterations.

2) Improving Analysis Precision: Precision-Wise, brack-
eted assignments improve analysis precision in two ways.
First, as discussed in Section IV-D, they improve flow-
sensitivity by introducing new variable definitions. Second,
they also improve path-sensitivity by enabling more accurate
program predicates. Consider the following example.

T:=—-1;

if (z>0) then y:=S; else y:=1;

[x := —z];

if (z >0) then p:=y;
This program is secure since p becomes 1 regardless of
the value of s. However, without the bracket shown, the
type system rejects it since no such label 7, satisfies the
constraints that (z > 0) = (S C 7,) (arising from the first
if) and (z > 0) = (7, C P) (arising from the second if).

However, with the bracket, the last two lines become

Tl = —&;

if (z7 >0) then p:=y;
This program can be type-checked with y’s label as (x >
07S : P) and a precise enough predicate generator, which
generates x1 = —x after the assignment x; := —z, because
constraints (z > 0) = (SC 7,) and (z1 > 0Az = —2) =
(1y £ P) can be solved with y’s label mentioned above.

VI. SOUNDNESS

Central to our analysis is rigorous enforcement of a strong
information security property. We formalize this property in
this section and sketch a soundness proof. The complete
proof is available in the full version of this paper [30].

A. Noninterference

Our formal definition of information flow security is based
on noninterference [24]. Informally, a program satisfies
noninterference if an attacker cannot observe any difference
between two program executions that only differ in their
confidential inputs. This intuition can be naturally expressed
by semantics models of program executions.

Since a security label may contain program variables, its
concrete level cannot be determined statically in general. But
it can always be evaluated under a concrete memory:

Definition 4: For a security label 7, we evaluate its con-
crete level under memory m as follows:

V(r,m) = ¢, where (T,m) | £

Moreover, to simplify notation, we use 7r(x, m) to denote
the concrete level of x under m and T' (i.e., Tr(z,m) =
V(I'(z), m)).



To formally define noninterference in the presence of
dependent labels, we first introduce an equivalence relation
on memories. Intuitively, two memories are (", £)-equivalent
if all variables with a level below level ¢ agree on both their
concrete levels and values.

Definition 5 ((I', £)-Equivalence): Given any concrete
level ¢ and T, we say two memories m; and my are
equivalent up to ¢ under I" (denoted by m; %f! ma) iff

Vx € Vars.
(7}(1’,7711) EK — 7}‘(.’)377712) C E) A ﬁ(xaml) C L
= my(x) = ma(x)

It is straightforward to check that ~% is an equivalence
relation on memories. Note that we require type of = be
bounded by ¢ in my whenever Tr(z,m1) C £. The reason
is to avoid label channels, where confidential data is leaked
via the security level of a variable [37], [45].

Given initial labels T on variables and final labels I on
variables, we can formalize noninterference as follows:

Definition 6 (Noninterference): We say a program c satis-
fies noninterference w.r.t. T', I if equivalent initial memories
produce equivalent final memories:

<Ca m1> —" <skip,m’1> A
(e, ma) —* (skip, m))
— m) ~b m)

The main theorem of this paper is the soundness of our
analysis: informally, if the transformed program type-checks,
then the original program satisfies noninterference. Since the
type system applies to the transformed program, we first
need to connect the types in the original and the transformed
programs. To do that, we define the projection of types for
the transformed program in a way similar to Definition 2:

Definition 7 (Projection of Types): Given an active set A
and T, types of variables in the transformed program, we
use I to denote a mapping from Vars to 7 as follows:

Vv € Vars. T4(v) = D(A(v))

Formally, the soundness theorem states that if a program c
under active set A (e.g., an identity function) is transformed
to ¢ and final active set A’, and ¢ is well-typed under
the type system (parameterized on A’), then c¢ satisfies
noninterference w.r.t. T4 and TA":

Theorem 2 (Soundness):

I / /
chga m17m27m17m255527 AaA .

<67A> = <Q,A/>/\|_£/\£|_Q/\m1 %%A ma/\

(e,m1) —* (skip,m}) A (¢, ma) —* (skip, mb)

A4
— ml NF

/
ar Mgy

To approach a formal proof, we notice that by the cor-
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<c, m,> — X > <skip, m,>
/ ‘ / ! Soundness
<c, m> <skip, m,"> |~ (Original)
A | A |
1 <c, m,> - <skip, m,’>
/ ! Soundness
<c, m,> <Skip, m1'> (Transformed)

Figure 12: Soundness of original and transformed programs.

0, x €FV(x) A’ €t (n)
m(z'), otherwise

erase(m, z,n)(z') = {

z,m)n m =miz—n
< 7> v — 7{ } ST-ERASE

(z =y e,m) —gr(a) (skip, erase(m’, z))

Figure 13: Erasure Semantics of Assignment.

rectness of the program transformation (Theorem 1), it is
sufficient to show that the transformed program leaks no in-
formation on the subset .A’. Such connection is illustrated in
Figure 12. We formalize the soundness for the transformed
program w.r.t. initial and final active sets as follows:

Theorem 3 (Soundness of Transformed Program):

VQ,M17MQ,M37M4»£a£7AaA/ .
(e, A = (¢, AANFLATEC /\mfwéAm“;‘

A{e,my) =" (skip, mg) A (¢, my) —* (skip,my)

= M? QEA/ mf
Proof sketch. One challenge in the formal proof is that the
equivalence relation ~. only holds on the active copies and
it may break temporarily during the program execution. Con-
sider the example in Figure 7(b). During the first iteration of
the loop body, y holds a secret value but its level is P right
after line 8. Hence, the relation zfﬁ may break at that point
in the small-step evaluation starting from two memories that
only differ in secrets. To tolerate such temporary violation
of the zfﬁ relation, we prove the soundness with a new
semantics which enforces that the relation ~% holds for
all variables, and the final values of variables in A’ agree
with those in the standard semantics. The new semantics,
called the erasure semantics is shown in Figure 13. The
semantics is parameterized on the final active set A’. The
only difference from the standard one is for assignments: the
new assignment rule (ST-ERASE) sets variables that are not
alive and whose types depend on x to be zero. It is easy to
check that the erasure semantics agrees on the final value of
the variables in .A’. Also, it removes the temporary violation
of the equivalence relation by forcing value of y to be zero
after line 7 of Figure 7(b). The complete proof is available
in the full version of this paper [30].



VII. ENABLING FLOW-SENSITIVITY WITH PROGRAM
TRANSFORMATION

Recall that the dependent security type system (with-
out program transformation) is flow-insensitive; yet, our
program analysis is flow-sensitive with the novel program
transformation in Section IV. In this section, we show
that this is not a coincidence: the program transformation
automatically makes a flow-insensitive type system (e.g., the
Volpano, Smith and Irvine’s system [41] and the system in
Section V) flow-sensitive.

A. The Hunt and Sands System

In [26], Hunt and Sands define a classic flow-sensitive
type system where the security level of a program variable
may “float” in the program. In particular, Hunt and Sands
(HS) judgments have the form of pc bys I'{c}I”, where T’
and TV are intuitively the typing environments before and
after executing c respectively.

Consider the program in Figure 1(a). While a flow-
insensitive type system rejects it, the HS system accepts it
with the following typing environments:

I{z :=s; }T{z := 0; }I"{p := x; }I”

where I' = {z — S,p— P} and I" = {z — P,p — P}.
The HS typing rules for commands are summarized in
Figure 14. We use Fyg to distinguish those judgments from
the ones in our system. The interesting rules are rule (HS-
IF) and rule (HS-WHILE): the former computes the type for
each variable as the least upper bound of its labels in the
two branches; the latter computes the least fixed-point of a
monotone function (the while loop) on a finite lattice.

B. Program Transformation and Flow-Sensitivity

We show that the program transformation in Section IV
along with a flow-insensitive type system subsumes the
HS system: for any program c that can be type-checked
in the HS system, the transformed program of [c] (i.e., a
fully-bracketed program) can be type-checked in a flow-
insensitive type system. This result has at least two inter-
esting consequences:

1) The program transformation removes the source of
“flow-insensitivity”; a flow-insensitivity type system
can be automatically upgraded to a flow-sensitive one.

2) The flow- and path-sensitive system in this paper
strictly subsumes the HS system: any secure program
accepted by the latter is accepted by the former, but not
vise versa (e.g., the program in Figure 1(c)).

To construct types in the transformed program, we first
introduce a few notations. Given a typing environment
I" : Vars — 7 for the original program and an active set
A, we can straightforwardly construct a (minimal) typing
environment, written I" 4, whose projection on A is T":

Vo e A T4(v) 2T (v])
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Easy to check that (I' 4)* =T.

Moreover, given a sequence of tying environments for the
transformed program, say I';,I'5,..., we define a merge
function, denoted as U, that returns the union of I';, L', . ..
so that conflicts in the environments are resolved in the order
of I'y,T,,.... For example, U({z1 — S,ys — P}, {z; —
P,yg — P}) = {1’1 — S,yg — P}

For a fully bracketed program [c], we can inductively
define the construction of I as inference rules in the form
of

(pe. T, A){[c] = ¢}, A) =T

where pe,T', ¢, I are consistent with the HS typing rules
in the form of pc Fus T'{c}I’; A, [c], A, ¢ are consis-
tent with the program transformation rules in the form of
{[e], A) = {(c, A").T is the constructed typing environment
that, as we show shortly in Theorem 4, satisfies L', pc F c.
The construction algorithm is formalized in Figure 15.

Most parts of the rules are straightforward; they are simply
constructed to be consistent with the HS typing rules and
the transformation rules in Figure 4. The following lemma
makes such connections explicit.

Lemma 1:

vpc7 Pa Fla A7 A/a C,C. pC l_HS F{C}F//\<HCH7 A> = <Q7 A/>
= 3L (pe, I, A){[c] = I, A) =T

Proof: By induction on the structure of c. [ ]

To construct types for the transformed program: for skip,
we use I'4 (the typing environment before this command);
for assignment, since x; must be fresh, we can simply
augment I' 4 with {x; — 7}. Other rules simply merge
constructed types from subexpressions in a conflict-solving
manner, using U. An eagle-eyed reader may find the con-
struction is intuitively correct if there is no conflict at all in
the merge operations.

We show that there is no conflict during construction by
two observations. First, if a variable has the same active copy
before and after transforming a fully-bracketed command
[], then its type must remain the same (before and after c)
in the HS system. This property is formalized as follows:

Lemma 2:

pe bus T{c A ([c], A) = (¢, A) =
Vo € Vars. (A(v) = A'(v)) = (T'(v)

I"(v))

Proof sketch. By induction on the structure of c¢. The most
interesting cases are for branch and loop.

e if (e) then ¢y else cy: by the HS typing rule, pc Fys
I‘{cl}I‘l A pc FHS F{CQ}FQ AN IV = Fl [ FQ. By the
transformation rules, ([¢;], A) = (¢;,A:),i € {1,2}.
Suppose A(v) # A (v), A1 (v) must be a fresh variable
generated in ¢;, and hence, cannot be in As. By the
definition of @, A3(v) must be fresh. This contradicts
the assumption A(v) = A’(v). Hence, I'(v) = I'1(v)



HS-SkIp HS-SE

pe Fus T{cl JT7 pe bus T {co} T
Q

pc bus T{skip}I’ pe Fus T{c1; e}

I'btpyse:

HS-ASSIGN
pc bus T{x := e}l {z — pcU T}

Phpse:7 7Upchkps T{c1}T1  7U pebgps T{ea} s
pc Fus T'{if (e) then c; else co}I”

HS-IF ’
where I' =1y LTy

F; Fuse:m T U pc Fus F;{C}F;/ 0<i<n

HS-WHILE
pc Fys T'{while (e) ¢}, where I'y =T, T, =T/ Ul T, =T,
Figure 14: The Hunt and Sands System [26].
C-skp (pc, T, A){skip = skip}(I,A) = T4
C-SE0 (pe, T, A{[er] = 3@ A") =Ly (pe, I, A){[e2] = }(I", A) =T,
(pe, T, A{[ers 2] = ez} (I, A) = UT,Ty)
coassion —FC Fus T{z :=e}I{z— 1} ([z:=¢],A) = (z;:=¢ Az — z;})
) (pe, T A{[z:=¢€] = z;=e}I{z— 1} Az~ 2;}) > TaU{z; = 7}
Prpse: 7 (tUpe, T, A{[cr] = ¢ }(T1,4) =Ty ;L
(0. A) 5 ¢ (rUpe LAl 5 e}l A) o, P04 = A T=T0T

C-IF

(pe, T, A){[if (e) then c; else cp] = if (e) then (¢;; Az := A1) else (cy3 Az := A2)}(I", A3) — UL}, Ty, T,)

Fus [{whil r
pefus Liumite (0 (1, 4) 5 (e, A1)

(pe, T, A){[while (e) ] = A;:= A;while (e) (¢; Ay := A2) [V, A1) = ULy, T 4)

(e, A1) = e (tUpe, T, A){[c] = T, Ay) = T,

C-WHILE

Figure 15: Type Construction in Transformed Program.

by the induction hypothesis. Similarly, we can infer that
I'(v) =T2(v). So I (v) = T'1(v) UT(v) = T'(v).

e while (e) ¢: By rule (TRSF-WHILE), we have
(Ie], AY = (¢, A1), where A’ is A; in this case.
Hence, by the assumption, we have A(v) = A;(v).
By rule (HS-WHILE), there is a sequence of environ-
ments I'},I'Y such that pc U, F I'}{c}I'/. By the
induction hypothesis, I'/ (v) = I';(v). Since I'y = T’
and I, ; = T'UTY in rule (HS-WHILE), we can
further infer that I'j, ; (v) = T'{(v). Hence, we have
I(v) =Ty (v) =To(v) =T(v).

Second, the constructed environment is minimal, meaning
that it just specifies types for the variables in A and the
freshly generated variables in ¢ (denoted as F'Vars(c)).

For technical reasons, we formalize this property along
with the main correctness theorem of the construction,
stating that the transformed program c type-checks under the
constructed environment I'. Note that given any .4, a fully
bracketed command [¢] always transforms to some ¢ and
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A’. Hence, by Lemma 1, the following theorem is sufficient
to show that our program analysis is at least as precise as
the HS system:

Theorem 4:

vc’ Q? pC7A’ A/’]'—‘7 ]‘—‘/7£' (pc’ F’A){[C:ﬂ 3 Q}(F/’A/) (% £
= Dom(l') C AUFVars(c) AL, pct ¢

Proof: Complete proof is available in the full version

of this paper [30]. [ ]

An interesting corollary of Theorem 4 is that the trans-

formed program can be type-checked under the classic fixed-
level system in [41] as well.

Corollary 1: Theorem 4 also applies to the type system in
Figure 10 and Figure 11 with the restriction that all labels are
security levels (i.e., non-dependent labels), which is identical
to the system in [41].

Proof: We note that the construction in Figure 15 only
uses the non-dependent part of our type system. Given all
labels are security levels, it is straightforward to check that



our type system degenerates to the system in [41]. [ |

Theorem 4 has a strong prerequisite that all assignments
in the original program are bracketed. We note that the result
remains true when such prerequisite is relaxed. Intuitively, a
bracket is unnecessary when the old and new definitions have
the same security label. Otherwise, a bracket is needed for
flow-sensitivity. For example, to gain flow-sensitivity, only
the second assignment in Figure 1(a) needs a bracket. The
strong prerequisite is used in Theorem 4 to make the result
general (i.e., type-agnostic).

According to Corollary 1, the result that any secure pro-
gram accepted by the HS system is accepted by our analysis
is true even if all dependent security labels degenerate to
simple security levels. On the other hand, introducing depen-
dent security labels makes our analysis strictly more precise
than the HS system. For example, the program in Figure 1(c)
cannot be verified without dependent security labels, but it
can be type-checked with a label y : (p; < 07S : P).

C. Comparison with the transformation in [26]

Hunt and Sands show that if a program can be type-
checked in the HS system, then there is an equivalent
program which can be type-checked by a fixed level sys-
tem [26]. However, their construction of the equivalent
program is type guided, meaning that the program trans-
formation assumes that security labels have already been
obtained in the HS system, while our program transforma-
tion (Figure 4) is general and syntax-directed. An interesting
application of our transformation is to test the typeability of
the HS system without obtaining the types needed in the HS
system in the first place.

It is noteworthy that our transformation is arguably sim-
pler than the HS transformation since our rule for loop has
no fixed-point construction while the latter has one. The
reason is that compared with the HS transformation, the goal
of our transformation is easier to achieve: our transformation
improves analysis precision, while the HS transformation
infers the type for each variable in a program. For example,
consider a loop with only one assignment x := z + 1,
and z is initially P. In the HS system, the transformed
program is xp := zp + 1, where xp is the public version of
variable z. On the other hand, our transformation generates
1 := x9; Ty := x1 + 1. From the perspective of inferring
labels, introducing =1 and x5 might seem unnecessary since
they must have the same label according to the type system.
However, doing so might improve analysis precision (e.g.,
the type system can specify the dependencies on z; and xo
separately with two copies of x).

VIII. RELATED WORK

We refer to [38] for a comprehensive survey of static
information flow analysis. Here, we focus on the most
relevant ones.

13

Dependent Labels and Information Flow Security:
Dependent types have been widely studied and have been
applied to practical programming languages (e.g., [7], [16],
[32], [33], [42], [43]). New challenges emerge for infor-
mation flow analysis, such as precise, sound handling of
information channels arising from label changes.

For security type systems, the most related works are
SecVerilog [23], [45], Lourengo and Caires [31] and Mur-
ray et al. [32]. SecVerilog is a Verilog-like language with
dependent security labels for verifying timing-sensitive non-
interference in hardware designs. The type systems in [23],
[45] are not purely static: they remove implicit declassi-
fication by a run-time enforcement that modifies program
semantics. A recent extension to SecVerilog [22] allevi-
ates such limitation by hardware-specific static reasoning.
However, those type systems do not handle loops (absent
in hardware description languages), which gives rise to
new challenges for soundness. Moreover, they are not flow-
sensitive. The recent work [31] also allows the security
type to depend on runtime values. However, the system
is flow-insensitive, and it does not have a modular design
that allows tunable precision. Moreover, the language has
limited expressiveness: it has no support for recursion, and
it disallows dependence on mutable variables. Exploring
dependent labels to their full extent exposes new challenges
that we tackle in this work, such as implicit declassification.
Murray et al. [32] present a flow-sensitive dependent security
type system for shared-memory programs. The type system
enforces a stronger security property: timing-sensitive non-
interference for concurrent programs. However, even when
the extra complexity due to concurrency and timing sen-
sitivity are factored out, extra precision in their system is
achieved via a floating type system that tracks the typing
environments and program states throughout the program.
In comparison, our analysis achieves flow-sensitivity via
a separate program transformation, which results in an
arguably simpler type system. Moreover, for dependency
on mutable variables, their system only allows a variable’s
security level to upgrade to a higher one, while our system
allows a downgrade to a lower level when doing so is secure.

Some prior type systems for information flow also support
limited forms of dependent labels [25], [27], [33], [39], [40],
[46]. The dependence on run-time program state, though, is
absent in most of these, and most of them are flow- and
path-insensitive.

Flow-Sensitive Information Flow Analysis: Flow-
sensitive information flow control [8], [26], [37] allows
security labels to change over the course of computation.
Those systems rely on a floating type system or a run-time
monitor to track the security labels at each program point.
On the other hand, the program transformation in our paper
eliminates analysis imprecision due to flow-insensitivity.
Moreover, the bracketed assignments in a source program
provide tunable control for needed analysis precision. These



1 z:=Ly:=1;

2 if (s==0) then skip
3 else z:=y;

4 p:=ux;

Figure 16: False Control-Flow Dependency.

features offer better flexibility and make it possible to turn
a flow-insensitive analysis to be flow-sensitive.

Semantic-Based Information Flow Analysis: Another
direction of information flow security is to verify the seman-
tic definition of noninterference based on program logics.
The first work that used a Hoare-style semantics to reason
about information flow is by Andrews and Reitman [5]. In-
dependence analysis based on customized logics [2]-[4] was
proposed to check whether two variables are independent or
not. Self-Composition [9], [18] composes a program with a
copy of itself, where all variables are renamed. The insight
is that noninterference of a program P can be reduced to a
safety property for the self-composition form of P.

Relational Hoare Logic [13] was first introduced for a
core imperative program to reason about the relation of two
program executions. It was later extended to verify security
proofs of cryptographic constructions [11] and differential
privacy of randomized algorithms [10], [12]. In the context
of information flow security, Relational Hoare Type The-
ory [34] extends Hoare Type Theory and has been used to
reason about advanced information flow policies.

Though some semantic-based information flow analyses
are flow- and path-sensitive, most mechanisms incur heavy
annotation burden and steep learning curve on programmers.
We believe our approach shows that it is not necessary to
resort to those heavyweight methods to achieve both flow-
and path-sensitivity.

IX. CONCLUSIONS AND FUTURE WORK

This paper presents a sound yet flow- and path-sensitive
information flow analysis. The proposed analysis consists
of a novel program transformation as well as a dependent
security type system that rigorously controls information
flow. We show that our analysis is both flow- and path-
sensitive. Compared with existing work, we show that our
analysis is strictly more precise than a classic flow-sensitive
type system, and it tackles the tricky implicit declassifica-
tion issue completely at the compile time. Moreover, the
novel design of our analysis allows a user to control the
analysis precision as desired. We believe our analysis offers
a lightweight approach to static information flow analysis
along with improved precision.

The proposed analysis alleviates analysis imprecision due
to data- and path-sensitivity, but it still may suffer from other
sources of imprecision, such as the presence of insecure
dead code and false control-flow dependency. For example,
consider the secure program in Figure 16 (simplified from
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an example in [14]) with security labels s : S, p : P. In this
example, although z is updated under a confidential branch
condition, both branches result in the same state where
x = 1; thus, the outcome of p is independent of the value of
s. However, our analysis rejects this program since rule (T-
ASSIGN) conservatively assumes that any public variable
modified in a confidential branch would leak information.
Motivated by the type system in [14], a promising direction
that we plan to investigate is to incorporate sophisticated
static program analyses so that the implicit flows can be
ignored for the variables whose values are independent
of branch outcomes. Additionally, hybrid information flow
monitors (e.g., [6], [14], [37]) are shown to be more precise
than static flow-sensitive type systems. We plan to compare
the analysis precision with those systems in our future work.
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