Session 3B: Differential Privacy 2

CCS’18, October 15-19, 2018, Toronto, ON, Canada

Detecting Violations of Differential Privacy

Zeyu Ding
Pennsylvania State University
dxd437@psu.edu

Danfeng Zhang
Pennsylvania State University
zhang@cse.psu.edu

ABSTRACT

The widespread acceptance of differential privacy has led to the
publication of many sophisticated algorithms for protecting privacy.
However, due to the subtle nature of this privacy definition, many
such algorithms have bugs that make them violate their claimed
privacy. In this paper, we consider the problem of producing coun-
terexamples for such incorrect algorithms. The counterexamples
are designed to be short and human-understandable so that the
counterexample generator can be used in the development process
- a developer could quickly explore variations of an algorithm and
investigate where they break down. Our approach is statistical in
nature. It runs a candidate algorithm many times and uses statistical
tests to try to detect violations of differential privacy. An evalua-
tion on a variety of incorrect published algorithms validates the
usefulness of our approach: it correctly rejects incorrect algorithms
and provides counterexamples for them within a few seconds.

CCS CONCEPTS

« Security and privacy — Privacy protections;

KEYWORDS
Differential privacy; counterexample detection; statistical testing

ACM Reference Format:

Zeyu Ding, Yuxin Wang, Guanhong Wang, Danfeng Zhang, and Daniel Kifer.
2018. Detecting Violations of Differential Privacy. In 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’18), October
15-19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3243734.3243818

1 INTRODUCTION

Differential privacy has become a de facto standard for extracting
information from a dataset (e.g., answering queries, building ma-
chine learning models, etc.) while protecting the confidentiality
of individuals whose data are collected. Implemented correctly, it
guarantees that any individual’s record has very little influence on
the output of the algorithm.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’18, October 15-19, 2018, Toronto, ON, Canada

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5693-0/18/10...$15.00
https://doi.org/10.1145/3243734.3243818

Yuxin Wang
Pennsylvania State University
ywang@cse.psu.edu

475

Guanhong Wang
Pennsylvania State University
gpw5092@psu.edu

Daniel Kifer
Pennsylvania State University
dkifer@cse.psu.edu

However, the design of differentially private algorithms is very
subtle and error-prone - it is well-known that a large number of
published algorithms are incorrect (i.e. they violate differential
privacy). A sign of this problem is the existence of papers that
are solely designed to point out errors in other papers [12, 28].
The problem is not limited to novices who may not understand
the subtleties of differential privacy; it even affects experts whose
goal is to design sophisticated algorithms for accurately releasing
statistics about data while preserving privacy.

There are two main approaches to tackling this prevalence of
bugs: programming platforms and verification. Programming plat-
forms, such as PINQ [29], Airavat [37], and GUPT [32] provide a
small set of primitive operations that can be used as building blocks
of algorithms for differential privacy. They make it easy to cre-
ate correct differentially private algorithms at the cost of accuracy
(the resulting privacy-preserving query answers and models can
become less accurate). Verification techniques, on the other hand,
allow programmers to implement a wider variety of algorithms and
verify proofs of correctness (written by the developers) [2-7] or
synthesize most (or all) of the proofs [1, 24, 35, 41].

In this paper, we take a different approach: finding bugs that
cause algorithms to violate differential privacy, and generating
counterexamples that illustrate these violations. We envision that
such a counterexample generator would be useful in the develop-
ment cycle - variations of an algorithm can be quickly evaluated
and buggy versions could be discarded (without wasting the devel-
oper’s time in a manual search for counterexamples or a doomed
search for a correctness proof). Furthermore, counterexamples can
help developers understand why their algorithms fail to satisfy
differential privacy and thus can help them fix the problems. This
feature is absent in all existing programming platforms and veri-
fication tools. To the best of our knowledge, this is the first paper
that treats the problem of detecting counterexamples in incorrect
implementations of differential privacy.

Although recent work on relational symbolic execution [22] aims
for simpler versions of this task (like detecting incorrect calcula-
tions of sensitivity), it is not yet powerful enough to reason about
probabilistic computations. Hence, it cannot detect counterexam-
ples in sophisticated algorithms like the sparse vector technique [19],
which satisfies differential privacy but is notorious for having many
incorrect published variations [12, 28].

Our counterexample generator is designed to function in black-
box mode as much as possible. That is, it executes code with a
variety of inputs and analyzes the (distribution of) outputs of the
code. This allows developers to use their preferred languages and
libraries as much as possible; in contrast, most language-based

https://doi.org/10.1145/3243734.3243818
https://doi.org/10.1145/3243734.3243818

Session 3B: Differential Privacy 2

tools will restrict developers to specific programming languages
and a very small set of libraries. In some instances, the code may
include some tuning parameters. In those cases, we can use an
optional symbolic execution model (our current implementation
analyzes python code) to find values of those parameters that make
it easier to detect counterexamples. Thus, we refer to our method
as a semi-black-box approach.
Our contributions are as follows:

e We present the first counterexample generator for differen-
tial privacy. It treats programs as semi-black-boxes and uses
statistical tests to detect violations of differential privacy.

e We evaluate our counterexample generator on a variety of so-
phisticated differentially private algorithms and their common
incorrect variations. These include the sparse vector method
and noisy max [19], which are cited as the most challenging
algorithms that have been formally verified so far [1, 5]. In
particular, the sparse vector technique is notorious for having
many incorrect published variations [12, 28]. We also evalu-
ate the counterexample generator on some simpler algorithms
such as the histogram algorithm [14], which are also easy for
novices to get wrong (by accidentally using too little noise). In
all cases, our counterexample generator produces counterex-
amples for incorrect versions of the algorithms, thus showing
its usefulness to both experts and novices.

o The false positive error (i.e. generating "counterexamples” for
correct code) of our algorithm is controllable because it is based
on statistical testing. The false positive rate can be made arbi-
trarily small just by giving the algorithm more time to run.

Limitations: it is impossible to create counterexample/bug detec-
tor that works for all programs. For this reason, our counterexample
generator is not intended to be used in an adversarial setting (where
arogue developer wants to add an algorithm that appears to satisfy
differential privacy but has a back door). In particular, if a program
satisfies differential privacy except with an extremely small prob-
ability (a setting known as approximate differential privacy [16])
then our counterexample generator may not detect it. Solving this
issue is an area for future work.

The rest of the paper is organized as follows. Related work is
discussed in Section 2. Background on differential privacy and
statistical testing is discussed in Section 3. The counterexample
generator is presented in Section 4. Experiments are presented in
Section 5. Conclusions and future work are discussed in Section 6.

2 RELATED WORK

Differential privacy. The term differential privacy covers a fam-
ily of privacy definitions that include pure e-differential privacy
(the topic of this paper) [17] and its relaxations: approximate (¢, §)-
differential privacy [16], concentrated differential privacy [8, 20],
and Renyi differential privacy [31]. The pure and approximate ver-
sions have received the most attention from algorithm designers
(e.g., see the book [19]). However, due to the lack of availability of
easy-to-use debugging and verification tools, a considerable frac-
tion of published algorithms are incorrect. In this paper, we focus
on algorithms for which there is a public record of an error (e.g.,
variants of the sparse vector method [12, 28]) or where a seemingly
small change to an algorithm breaks an important component of

476

CCS’18, October 15-19, 2018, Toronto, ON, Canada

the algorithm (e.g., variants of the noisy max algorithm [5, 19] and
the histogram algorithm [14]).

Programming platforms and verification tools. Several dynamic
tools [21, 29, 37, 39, 40] exist for enforcing differential privacy.
Those tools track the privacy budget consumption at runtime, and
terminates a program when the intended privacy budget is ex-
hausted. On the other hand, static methods exist for verifying
that a program obeys differential privacy during any execution,
based on relational program logic [1-7] and relational type sys-
tem [24, 35, 41]. We note that those methods are largely orthogonal
to this paper: their goal is to verify a correct program or to terminate
an incorrect one, while our goal is to detect an incorrect program
and generate counterexamples for it. The counterexamples provide
valuable guidance for fixing incorrect algorithms for algorithm de-
signers. Moreover, we believe our tool fills in the currently missing
piece in the development of differentially private algorithms: with
our tool, immature designs can first be tested for counterexamples,
before being fed into those dynamic and static tools.

Counterexample generation. Symbolic execution [9, 10, 26] is
widely used for program testing and bug finding. One attractive
feature of symbolic execution is that when a property is being vio-
lated, it generates counterexamples (i.e., program inputs) that lead
to violations. More relevant to this paper is work on testing rela-
tional properties based on symbolic execution [22, 30, 33]. However,
those work only apply to deterministic programs, but the differen-
tial privacy property inherently involves probabilistic programs,
which is beyond the scope of those work.

3 BACKGROUND

In this section, we discuss relevant background on differential pri-
vacy and hypothesis testing.

3.1 Differential Privacy

We view a database as a finite multiset of records from some domain.
It is sometimes convenient to represent a database by a histogram,
where each cell is the count of times a specific record is present.

Differential privacy relies on the notion of adjacent databases.
The two most common definitions of adjacency are: (1) two databases
D; and Dy are adjacent if Dy can be obtained from D; by adding
or removing a single record. (2) two databases Dy and D are adja-
cent if Dy can be obtained from D1 by modifying one record. The
notion of adjacency used by an algorithm must be provided to the
counterexample generator. We write D1 ~ Dj to mean that Dy is
adjacent to Dy (under whichever definition of adjacency is relevant
in the context of a given algorithm).

We use the term mechanism to refer to an algorithm M that tries
to protect the privacy of its input. In our case, a mechanism is an
algorithm that is intended to satisfy e-differential privacy:

Definition 3.1 (Differential Privacy [17]). Let € > 0. A mechanism
M is said to be e-differentially private if for every pair of adjacent
databases D; and D3, and every E C Range(M), we have

P(M(Dy) € E) < € - P(M(D3) € E).

The value of ¢, called the privacy budget, controls the level of
the privacy: the smaller € is, the more privacy is guaranteed.

Session 3B: Differential Privacy 2

One of the most common building blocks of differentially private
algorithms is the Laplace mechanism [17] , which is used to answer
numerical queries. Let D be the set of possible databases. A numer-
ical query is a function q : © — R¥ (i.e. it outputs a k-dimensional
vector of numbers). The Laplace mechanism is based on a concept
called global sensitivity, which measures the worst-case effect one
record can have on a numerical query:

Definition 3.2 (Global Sensitivity [17]). The {1-global sensitivity
of a numerical query q is

Ag = D1) = q(D2)|lx.
q D‘f%z”q(1) = q(D2)llh

The Laplace mechanism works by adding Laplace noise (having
density f(x | b) = ﬁ exp (—|x|/b) and variance 2b%) to query an-
swers. The chosen variance depends on € and the global sensitivity.
We use the notation Lap(b) to refer to the Laplace noise.

Definition 3.3 (The Laplace mechanism [17]). For any numerical
query q : D — R", the Laplace mechanism outputs

M(D, q,€) = q(D) + (1, ..,7n)

where 77; are independent random variables sampled from Lap(Ag4/e).

THEOREM 3.4 ([19]). The Laplace mechanism is e-differentially
private.

3.2 Hypothesis Testing

A statistical hypothesis is a claim about the parameters of the dis-
tribution that generated the data. The null hypothesis, denoted by
Hy is a statistical hypothesis that we are trying to disprove. For
example, if we have two samples, X and Y where X was gener-
ated by a Binomial(n, p;) distribution and Y was generated by a
Binomial(n, p2) distribution, one null hypothesis could be p; = p2
(that is, we would like to know if the data supports the conclusion
that X and Y came from different distributions). The alternative
hypothesis, denoted by Hj, is the complement of the null hypothesis
(e.g., p1 # p2)-

A hypothesis test is a procedure that takes in a data sample
Z and either rejects the null hypothesis or fails to reject the null
hypothesis. A hypothesis test can have two types of errors: type I
and type II. A type I error occurs if the test incorrectly rejects Hy
when it is in fact true. A type II error occurs if the test fails to reject
Hj when the alternative hypothesis is true. Type I and type II errors
are analogous to false positives and false negatives, respectively.

In most problems, controlling type I error is the most important.
In such cases, one specifies a significance level a and requires that
the probability of a type I error be at most . Commonly used values
for o are 0.05 and 0.01. In order to allow users to control the type I
error, the hypothesis test also returns a number p — known as the
p-value — which is a probabilistic estimate of how unlikely it is that
the null hypothesis is true. The user rejects the null hypothesis if
p < a.In order for this to work (i.e. in order for the Type I error to
be below a), the p-value must satisfy certain technical conditions:
(1) a p-value is a function of a data sample Z, (2) 0 < p(Z) < 1, (3) if
the null hypothesis is true, then P(p(Z) < a | Hp) < a.

A relevant example of a hypothesis test is Fisher’s exact test [23]

for two binomial populations. Let ¢; be a sample from a Binomial(ny, p1)

477

CCS’18, October 15-19, 2018, Toronto, ON, Canada

distribution and let ¢z be a sample from a Binomial(ny, p2) distribu-
tion. Here p; and p, are unknown. Using these values of ¢; and c3,
the goal is to test the null hypothesis Hy : p1 < p2 against the alter-
native Hj : p1 > pa. Let s = ¢1 + ca. The key insight behind Fisher’s
test is that if C; ~ Binomial(ny,p;) ! and C, ~ Binomial(nz, p2)
and if p; = py, then the value P(C; > ¢1 | C1 + C2 = s) does not
depend on the unknown parameters p; or py and can be computed
from the cumulative distribution function of the hypergeometric
distribution; specifically, it is equal to 1 — Hypergeometric.cdf(cy |
ni + nz, ni,s). When p; > pa, then P(C; > ¢1 | C1 + C2 = s) cannot
be computed without knowing p; and pz. However, it is less than
1 — Hypergeometric.cdf(cy | n1 + ng, ni,s). Thus it can be shown
that 1 — Hypergeometric.cdf(c; | ny + ngz, ny, s) is a valid p-value
and so the Fisher’s exact test rejects the null hypothesis when this
quantity is < a.

4 COUNTEREXAMPLE DETECTION

For a mechanism M that does not satisfy e-differential privacy, the
goal is to prove this failure. By Definition 3.1, this involves finding
a pair of adjacent databases Dy, Dy and an output event E such that
P(M(D1) € E) > e*P(M(D3) € E). Thus a counterexample involves
finding these two adjacent inputs D1 and D, the bad output set E,
and to show that for these choices, P(M(D1) € E) > eP(M(D2) €
E).

Ideally, one would compute the probabilities P(M(D;) € E) and
P(M(D3) € E). Unfortunately, for sophisticated mechanisms, it is
not always possible to compute these quantities exactly. However,
we can sample from these distributions many times by repeatedly
running M(D1) and M(D3) and counting the number of times that
the outputs fall into E. Then, we need a statistical test to reject the
null hypothesis P(M(D;) € E) < eP(M(D3) € E) (or fail to reject
it if the algorithm is e-differentially private).

We will be using the following conventions:

e The input to most mechanisms is actually a list of queries
Q =(q1,- - -,q) rather than a database directly. For example, al-
gorithms to release differentially private histograms operate on
a histogram of the data; the sparse vector mechanism operates
on a sequence of queries that each have global sensitivity equal
to 1. Thus, we require the user to specify how the input query
answers can differ on two adjacent databases. For example, in a
histogram, exactly one cell count changes by at most 1. In the
sparse vector technique [19], every query answer changes by
at most 1. To simplify the discussion, we abuse notation and
use D1, Dy to also denote the answers of Q on the input adja-
cent databases. For example, when discussing the sparse vector
technique, we write D; = [0,0] and Dy = [1, 1]. This means
there are adjacent databases and a list of queries Q = [q1, q2]
such that they evaluate to [0, 0] on the first database and [1, 1]
on the second database.

e We use ¢ to indicate the privacy level that a mechanism claims
to achieve.

o We use Q for the set of all possible outputs (i.e., range) of the
mechanism M. We use o for a single output of M.

I This is read as "C; is a random variable having the Binomial(rn;, p;) distribution”.

Session 3B: Differential Privacy 2

e We call a subset E C Q an event. We use p; (respectively, ps)
to denote P(M(D;) € E), the probability that the output of M
falls into E when executing on database D; (respectively, Dy).

e Some mechanisms take additional inputs, e.g., the sparse vector
mechanism. We collectively refer to them as args.

Our discussion is organized as follows. We provide an overview
of the counterexample generator in Section 4.1. Then we incre-
mentally explain our approach. In Section 4.2 we present the hy-
pothesis test. That is, suppose we already have query sequences
D and Dy that are generated from adjacent databases and an out-
put set E, how do we test if P(M(D1) € E) < e*P(M(D3) € E) or
P(M(D1) € E) > e“P(M(D;) € E)? Next, in Section 4.3, we con-
sider the question of output selection. That is, suppose we already
have query answers Dy and D5 that are generated from adjacent
databases, how do we decide which E should be used in the hy-
pothesis test? Finally, in Section 4.4, we consider the problem of
generating the adjacent query sequences D1 and D3 as well as
additional inputs args.

The details of specific mechanisms we test for violations of dif-
ferential privacy will be given in the experiments in Section 5.

4.1 Overview

At a high level, the counterexample generator can be summarized
in the pseudocode in Algorithm 1. First, it generates an InputList, a
set of candidate tuples of the form (D1, D, args). That is, instead of
returning a single pair of adjacent inputs Dj, Dy and any auxiliary
arguments the mechanism may need, we return multiple candidates
which will be filtered later. Each adjacent pair (D1, D3) is designed
to be short so that a developer can understand the problematic
inputs and trace them through the code of the mechanism M. For
this reason, the code of M will also run fast, so that it will be possible
to later evaluate M(D1, args) and M(D2, args) multiple times very
quickly.

Algorithm 1: Overview of Counterexample Generator

1 function CounterExampleDetection(M, €):
input: M: mechanism
€: desired privacy (is M e-differentially private?)
// get set of possible inputs: (D1, Da,args)
2 InputList <— InputGenerator(M, €)
3 E,Dq,Dy,args < EventSelector(M, €, InputList)
4 pT,p1L < HypothesisTest(M, ¢, D1, Do, args, E)
5 return pr,p;

The next step is the EventSelector. It takes each tuple (D1, D2, args)
from InputList and runs M(D1, args) and M(D2, args) multiple times.
Based on the type of the outputs, it generates a set of candidates
for E. For example, if the output is a real number, then the set of
candidates is the set of intervals (a, b). For each candidate E and
each tuple (D1, Dy, args), it counts how many times M(D1, args)
produced an output w € E and how many times M(D, args) pro-
duced an output in E. Based on these results, it picks one specific
E and one tuple (D1, Dy, args) which it believes is most likely to
show a violation of €y-differential privacy.

478

CCS’18, October 15-19, 2018, Toronto, ON, Canada

Finally, the HypothesisTest takes the selected E, D1, Dy, and args
and checks if it can detect statistical evidence that P(M(Dy, args) €
E) > e°P(M(D3,args) € E) — which corresponds to the p-value
pt — or e P(M(D1,args) € E) < P(M(Dz,args) € E) — which
corresponds to the p-value p, .

It is important to note that the EventSelector also uses Hypothe-
sisTest internally as a sub-routine to filter out candidates. That is,
for every candidate E and every candidate (D1, Do, args), it runs
HypothesisTest and treats the returned value as a score. The combi-
nation of E and (D1, D2, args) with the best score is returned by the
EvenSelector. Note that EventSelector is using the HypothesisTest
in an exploratory way - it evaluates many hypotheses and returns
the best one it finds. This is why the E and (D1, Dy, args) that are
finally chosen need to be evaluated again on Line 4 using fresh
samples from M.

Interpreting the results. One of the best ways of understanding
the behavior of the counterexample generator is to look at the p-
values it outputs. That is, we take an mechanism M that claims to
satisfy €o-differential privacy and, for each € close to €y, we test
whether it satisfies e-differential privacy (that is, even though M
claims to satisfy €g-differential privacy, we may want to test if it
satisfies e-differential privacy for some other value of € that is close
to €). The hypothesis tester returns two p-values:

e pr. Small values indicate that probably P(M(D1, args) € E) >
e€P(M(Dg, args) € E).

e p, . Small values indicate that probably P(M(D3, args) € E) >
e€P(M(Dy, args) € E).

For each €, we plot the minimum of pt and p, . Figure 1 shows
typical results that would appear when the counterexample detector
is run with real mechanisms M as input.

In Figure 1a, M correctly satisfies the claimed €y = 0.7 differen-
tial privacy. In that plot, we see that the p-values corresponding
to € = 0.2,0.4,0.6 are very low, meaning that the counterexam-
ple generator can prove that the algorithm does not satisfy differ-
ential privacy for those smaller values of €. Near 0.7 it becomes
difficult to find counterexamples; that is, if an algorithm satisfies
0.7-differential privacy, it is very hard to statistically prove that it
does not satisfy 0.65 differential privacy. This is a typical feature of
hypothesis tests as it becomes difficult to reject the null hypothesis
when it is only slightly incorrect (e.g., when the true privacy pa-
rameter is only slightly different from the € we are testing). Now,
any algorithm that satisfies 0.7-differential privacy also satisfies
e-differential privacy for all € > 0.7. This behavior is seen in Figure
1a as the p-values are large for all larger values of €.

Figure 1b shows a graph that can arise from two distinct sce-
narios. One of the situations is when the mechanism M claims to
provide 0.7-differential privacy but actually provides more privacy
(i.e. e-differential privacy for € < 0.7). In this figure, the counterex-
ample generator could prove, for example, that M does not satisfy
0.4-differential privacy, but leaves open the possibility that it satis-
fies 0.5-differential privacy. The other situation is when our tool
has failed to find good counterexamples. Thus when a mechanism
is correct, good precision by the counterexample generator means
that the line starts rising close to (but before the dotted line), and
worse precision means that the line starts rising much earlier.

Session 3B: Differential Privacy 2

CCS’18, October 15-19, 2018, Toronto, ON, Canada

—=— Test Result
Ideal

0.8 0.8

0.6 0.6

P Value
P Value

0.4 0.4

0.2 0.2

—=— Test Result
Ideal

—=— Test Result
Ideal

0.0 0.0

0.6 0.2 0.4

Test €

0.8

(a) Expected results for algorithms cor-
rectly claiming ¢y = 0.7 differential pri-
vacy.

0.6

Test €

(b) Expected results where counterexam-
ples cannot be found or when M satisfies
differential privacy for € < ¢y = 0.7.

0.25 0.50 0.75 1.00

Test €

0.8 1.0 125 1.50 1.75

(c) Expected results where M does not satisfy
0.7-differential privacy (i.e. M has a bug and
provides less privacy than advertised).

Figure 1: Interpreting experimental results on hypothesis tests. A hypothetical algorithm M claims to achieve ¢;-differential
privacy. For each € from 0.2 to 2.4 we would evaluate if M satisfies e-differential privacy. We show a typical graph when M does
satisfy ¢p-differential privacy (left), a graph where M possibly provides more privacy (center) and a graph where M provides

less privacy than advertised.

Figure 1c shows a typical situation in which an algorithm claims
to satisfy 0.7-differential privacy but actually provides less privacy
than advertised. In this case, the counterexample generator can
generate good counterexamples at € = 0.7 (the dotted line) and even
at much higher values of e. When an mechanism is incorrect, such
a graph indicates good precision by the counterexample generator.

Limitations. In some cases, finding counterexamples requires a
large input datasets. In those cases, searching for the right inputs
and running algorithms on them many times will impact the ability
of our counterexample generator to find counterexamples. This is
a limitation of all techniques based on statistical tests.

Another important case where our counterexample generator
is not expected to perform well is when violations of differential
privacy happen very rarely. For example, consider a mechanism
M that checks if its input is D1 = [1]. If so, with probability e it
outputs 1 and otherwise it outputs 0 (if the input is not 1, M always
outputs 0). M does not satisfy e-differential privacy for any value
of e. However, showing it statistically is very difficult. Supposing
D; = [1] and Dy = [0] are adjacent databases, it requires running
M(D1) and M(D>) billions of times to observe that an output of 1
is possible under D; but is at least e€ times less likely under D;.

Addressing both of these problems will likely involve incorpo-
ration of program analysis, such as symbolic execution, into our
statistical framework and is a direction for future work.

4.2 Hypothesis Testing

Suppose we have a mechanism M, inputs D1, D2 and an output set E

(we discuss the generation of Dy, Dy in Section 4.4 and E in Section

4.3). We would like to check if P(M(D;) € E) > e¢P(M(D3) € E)

or if P(M(D;) € E) > eP(M(D1) € E), as that would demonstrate

a violation of e-differential privacy. We treat the P(M(D;) € E) >

e“P(M(D3) € E) case in this section, as the other case is symmetric.
To do this, the high level idea is to:

e Define p; = P(M(D;) € E) and py = P(M(D3) € E)

479

Algorithm 2: Hypothesis Test. Parameter n: # of iterations

1 function pvalue(cy, ¢z, n, €):

2 ¢1 « Binomial(cy, 1/e€)
3 S« (1 +cCo
4 return 1 — Hypergeom.cdf(¢; | 2n,n,s)

5 function HypothesisTest(M, args, €, D1, D2 , E):
input: M: mechanism

args: additional arguments for M

€: privacy budget to test

D, Dy: adjacent databases

E: Event
6 01 « results of running M(Dy, args) for n times
7 O, « results of running M(Dy, args) for n times

8 | o< |[{i|Oili] € E}|
o | cz < [{i| Oqli] € E}|
pt «—pvalue (

p1 «<pvalue (cz,c1,n,€)

return pr,p,

10 1,C2, M, €)
11

12

e Formulate the null hypothesis as Hy : p; < €€ - py and the
alternative as Hy : p; > e€ - pa.

e Run M with inputs D; and D independently n times each.
Record the results as O7 and O.

e Count the number of times the result falls in E in each case. Let
c1 = i | O1li] € E}| and ¢3 = |{i | Oz[i] € E}|. Intuitively,
¢1 > ecy provides strong evidence against the null hypothesis.

o Calculate a p-value based on ¢y, ¢z to determine how unlikely
the null hypothesis is.

The challenge is, of course, in the last step as we don’t know what
p1 and py are. One direction is to estimate them from c; and c;.
However, it is also challenging to estimate the variance of our
estimates p and py (the higher the variance, the less the test should
trust the estimates).

Session 3B: Differential Privacy 2

Instead, we take a different approach that allows us to conduct
the test without knowing what p; and p, are. First, we note that
c1 and ¢y are equivalent to samples from a Binomial(n, p1) dis-
tribution and a Binomial(n, p2) distribution respectively. We first
consider the border case where p; = e€p,. Consider sample ¢; from
a Binomial(cy, 1/e€) distribution. We note that this sample enjoys
the following property (which implies that in the border case, ¢
has the same distribution as c¢3):

LEMMA 4.1. Let X ~Binomial(n, p1) and Z be generated from X
by sampling from the Binomial(X, 1/e€) distribution. The marginal
distribution of Z is Binomial(n, p1 /e€).

Proor. The relationship between Binomial and Bernoulli ran-
dom variables means that X = 2?21 X;, where X; is a Bernoulli(p;)
random variable. Generating Z from X is the same as doing the
following: set Z; = 0if X; = 0.If X; = 1, set Z; = 1 with probability
1/€€ (and set Z; = 0 otherwise). Then set Z = 31" | Z;. Hence, the
marginal distribution of Z; is a Bernoulli(p; /e€) random variable:

P(Zi = 1) = P(Zi =1 |X,‘ = 1)P(Xi = 1)+P(Zi =1 |Xi = O)P(Xi = 0)
=(1/e€) - p1+0-(1—p1) =pi/e°

This means that the marginal distribution of Z is Binomial(n, p1 /e€).
O

Thus we have the following facts that follow immediately from
the lemma:

o If p; > e“py then the distribution of ¢; is Binomial(n, p1) with
p1 = p1/e€ and so has a larger Binomial parameter than cy
(which is Binomial(n, p3)). We want our test to be able to reject
the null hypothesis in this case.

e If p; = e€py then the distribution of ¢; is Binomial(n, p;) with
p1 = p2 and so has the same Binomial parameter as c;. We do
not want our test to reject the null hypothesis in this case.

o If p1 < e€py then the distribution of ¢; is Binomial(n, p1) with
p1 = p1/e€ and so has a smaller Binomial parameter than c;
(which is Binomial(n, p2)). We do not want to reject the null
hypothesis in this case.

Thus, by randomly generating ¢; from c1, we have (randomly)
reduced the problem of testing p; > e€py vs. p1 < e€py (on the
basis of ¢; and ¢3) to the problem of testing p1 > p2 vs. p1 < p2 (on
the basis of ¢; and ¢3). Now, checking whether ¢; and ¢z come from
the same distribution can be done with the Fisher’s exact test (see
Section 3): the p-value is 1 — Hypergeom.cdf(¢; | 2n,n,¢; + 2).2
This is done in the function pvalue in Algorithm 2.

To summarize, given c; and cz, we first sample ¢; from the
Binomial(cq, 1/e€) distribution and then return the p-value of (1 —
Hypergeom.cdf(¢; | 2n, n, ¢1 +c¢2)). Since this is a random reduction,
we reduce its variance by sampling ¢; multiple times and averaging
the p-values. That is, we run the p-value function (Algorithm 2)
multiple times with the same inputs and average the p-values it
returns.

?Here we use a notation from SciPy [25] package where Hypergeom.cdf means the
cumulative distribution function of hypergeometric distribution.

480

CCS’18, October 15-19, 2018, Toronto, ON, Canada

4.3 Event Selection

Having discussed how to test if P(M(D;) € E) > e P(M(D3) € E)
or if P(M(Dy) € E) > e¢P(M(D1) € E) when D1, D2, and E were
pre-specified, we now discuss how to select the event E that is most
likely to show violations of e-differential privacy.

Algorithm 3: Event Selector. Parameter n: # of iterations

1 function EventSelector(n, M, €, InputList):
input: M: mechanism

InputList: possible inputs

€: privacy budget to test

2 SearchSpace « search space based on return type

3 poalues « []

4 results « []

5 foreach (D1, Dy, args) € InputList do

6 01 « results of running M(Dy, args) for n times
7 O, « results of running M(Dy, args) for n times
8 foreach E € SeachSpace do

9 ci < {i| O1li] € E}|

cz — |{i| Ozli] € E}|

pr <pvalue (c, c2,n,€)

10

11

12 p1 «pvalue (c2,c1,n,€)

13 pualues.append(min(pr, p1))
14 results.append(D1, D, args, E)
15 end

16 end

17 return results[argmin(pvalues)]

One of the challenges is that different mechanisms could have
different output types (e.g., a discrete number, a vector of numbers,
a vector of categorical values, etc.). To address this problem, we
define a search space S of possible events to look at. The search
space depends on the type of the output w of M, which can be
determined by running M(D;) and M(D3) multiple times.

(1) The output w is a fixed length list of categorical values.
We first run M(D1) once and ask it to not use any noise (i.e. tell it
to satisfy e-differential privacy with € = o). Denote this output
as wo. Now, when M runs with its preferred privacy settings to
produce an output w, we define t(w) be the Hamming distance
between the output w and wy. The search space is

S={{o]|tw) =k} :k=01,...,1}

where [is the fixed length of output of M. Another set of events
relate to the count of a categorical value in the output. If there
are m values, then define

S; = {{w | w.count(value;) =k} : k=0,1,...,1},

1 < i < m. The overall search space is the union of S and all S;.

(2) The output w is a variable length list of categorical val-
ues. In this case, one extra set of events E we look at corre-
spond to the length of the output. For example, we may check
if P(M(D1) has length k) > P(M(D3) has length k). Hence, we
define

So = {{w | w.length =k} :k=0,1,...}

Session 3B: Differential Privacy 2

For the search space S, we use this Sy unioned with the search
space from the previous case.

(3) The output w is a fixed length list of numeric values.
In this case, the output is of the form w = (ay,...,am). Our
search space is the union of the following:

{{w | wli] € (a,b)}:i=1,...,mand a < b},
{{w | avg(w) € (a,b)} : a < b},
{{w | min(w) € (a,b)} : a < b},
{{w | max(w) € (a,b)} : a < b}.

That is, we would end up checking if P(avg(M(D1)) € (a, b)) >
P(avg(M(D2)) € (a,b)), etc.. To save time, we often restrict a
and b to be multiples of a small number like 0.2, or +oo. In the
case that the output w is always an integer array, we replace
the condition “€ (a, b)” with “= k” for each integer k.

M outputs a variable length list of numeric values.

The search space is the union of Case 3 and Sy in Case 2.

M outputs a variable length list of mixed categorical and
numeric values. In this case, we separate out the categorical
values from numeric values and use the cross product of the
search spaces for numeric and categorical values. For instance,
events would be of the form “w has k categorical components
equal to ¢ and the average of the numerical components of w is
in (a, b)”

The EventSelector is designed to return one event E for use in
the hypothesis test in Algorithm 1. The way EventSelector works is
it receives an InputList, which is a set of tuples (D1, Dy, args) where
D1, D, are adjacent databases and args is a set of values for any
other parameters M needs. For each such tuple, it runs M(D;) and
M(Dy) for n times each. Then for each possible event in the search
space, it runs the hypothesis test (as an exploratory tool) to get a
p-value. The combination of (D1, D, args) and E that produces the
lowest p-value is then returned to Algortihm 1. Algorithm 1 uses
those choices to run the real hypothesis test on fresh executions of
M on D; and Ds.

The pseudocode for the EventSelector is shown in Algorithm 3.3

4

4.4 Input Generation

In this section we discuss our approaches for generating candidate
tuples (D1, Dy, args) where D1, D, are adjacent databases and args
is a set of auxiliary parameters that a mechanism M may need.

4.4.1 Database Generation . To find the adjacent databases that are
likely to form the basis of counterexamples that illustrate violations
of differential privacy, we adopt a simple and generic approach that
works surprisingly well. Recalling that the inputs to mechanisms
are best modeled as a vector of query answers, we use the type of
patterns shown in Table 1.

The “One Above” and “One Below” categories are suitable for
algorithms whose input is a histogram (i.e. in adjacent databases,
at most one query can change, and it will change by at most 1). The
rest of the categories are suitable when in adjacent databases every

3In practice, to avoid choosing bad E, we let cg be the total number of times M(Dy)
and/or M(D,) produced an output in E. Then it only executes Line 11-14 in Algorithm
3ifcg > 0.001 - n - e€, otherwise the selection of E is too noisy.

481

CCS’18, October 15-19, 2018, Toronto, ON, Canada

Algorithm 4: Input Generator.

1 function ArgumentGenerator (M, Dy, D>):
argsp < Arguments used in noise generation with values
that minimize the noises

3 constraints « Traverse the source code of M and generate
constraints to force D1 and D3 to diverge on branches

4 args; < MaxSMT (constraints)

5 return argso + args;

6 function InputGenerator (M, len):
input: M: mechanism
len: length of input to generate
7 candidates «— Empirical pairs of databases of length len
8 InputList « []
9 foreach (D1, Dy) € candidates do

10 args < ArgumentGenerator(M, Dy, Dy)
1 InputList.append(D1, Do, args)

12 end

13 return InputList

Table 1: Database categories and samples

Category Sample D1 Sample D2

One Above [1,1,1,1,1] [2,1,1,1,1]

One Below [1,1,1,1,1] [0,1,1,1,1]

One Above Rest Below [1,1,1,1,1] [2,0,0,0, 0]
One Below Rest Above [1,1,1,1,1] [0,2,2,2, 2]
Half Half [1,1,1,1,1] [0,0,0,2,2]

All Above & All Below [1,1,1,1,1] [2,2,2,2,2]
X Shape [1,1,0,0,0] [0,0,1,1,1]

query can change by at most one (i.e. the queries have sensitivity*
Ag=1).

The design of the categories is based on the wide variety of
changes in query answers that are possible when evaluated on one
database and on an adjacent database. For example, it could be the
case that a few of the queries increase (by 1, if their sensitivity
is 1, or by Ag in the general case) but most of them decrease. A
simple representative of this situation is “One Above Rest Below”
in which one query increases and the rest decrease. The category
“One Below Rest Above” is the reverse.

Another situation is where roughly half of the queries increase
and half decrease (when evaluated on a database compared to when
evaluated on an adjacent database). This scenario is captured by the
“Half Half” category. Another situation is where all of the queries
increase. This is captures by the “All Above & All Below” category.
Finally, the “X Shape” category captures the setting where the query
answers are not all the same and some increase and others decrease
when evaluated on one database compared to an adjacent database.

These categories were chosen from our desire to allow coun-
terexamples to be easily understood by mechanism designers (and
to make it easier for them to manually trace the code to understand

4For queries with larger sensitivity, the extension is obvious. For example D; =
[L1,1, 1, 1]and Dy = [1+Ag, 1+ Ag, . .., 1+ Ag]

Session 3B: Differential Privacy 2

the problems). Thus the samples are short and simple. We consider
inputs of length 5 (as in Table 1) and also versions of length 10.

4.4.2 Argument Generation. Some differentially-private algorithms
require extra parameters beyond the database. For example, the
sparse vector technique [19], shown in Algorithm 11, takes as inputs
a threshold T and a bound N. It tries to output numerical queries
that are larger than T. However, for privacy reasons, it will stop
after it returns N noisy queries whose values are greater than T.
These two arguments are specific to the algorithm and their proper
values depend on the desired privacy level as well as algorithm
precision.

To find values of auxiliary parameters (such as N and T in Sparse
Vector), we build argument generator based on Symbolic Execution
[26], which is typically used for bug finding: it generates concrete
inputs that violate assertions in a program. In general, a symbolic
executor assigns symbolic values, rather than concrete values as
normal execution would do, for inputs. As the execution goes, the
executor maintains a symbolic program state at each assertion and
generates constraints that will violate the assertion. When those
constraints are satisfiable, concrete inputs (i.e., a solution of the
constraints) are generated.

Compared with standard symbolic execution, a major difference
in our argument generation is that we are interested in algorithm
arguments that will likely maximize the privacy cost of an algorithm.
In other words, there is no obvious assertion to be checked in our
argument generation. To proceed, we use two heuristics that likely
will cause large privacy cost of an algorithm:

o The first heuristic applies to parameters that affect noise gener-
ation. For example in Sparse Vector, the algorithm adds Lap(2 -
N - Ag/eo) noise. For such a variable, we use the value that
results in small amount of noise (i.e., N = 1). Small amount of
noise is favorable since it reduces the variance in the hypothesis
testing (Section 4.2).

o The second heuristic (for variables that do not affect noise)
prefers arguments that make two program executions using
two different databases (as described in Section 4.4.1) to take
as many diverging branches as possible. The reason is that
diverging branches will likely use more privacy budget.

Next, we give a more detailed overview of our customized sym-
bolic executor. The symbolic executor takes a pair of concrete databases
as inputs (as described in Section 4.4.1) and uses symbolic values
for other input parameters. Random samples in the program (e.g., a
sample from Laplace distribution) are set to value 0 in the symbolic
execution. Then, the symbolic executor tracks symbolic program
states along program execution in the standard way [26]. For ex-
ample, the executor will generate a constraint® x = y + 1 after an
assignment (x <« y+1), assuming that variable y has a symbolic
value y before the assignment. Also, the executor will unroll loops
in the source code, which is standard in most symbolic executors.

Unlike standard symbolic executors, the executor conceptually
tracks a pair of symbolic program states along program execution
(one on concrete database D1, and one on concrete database Dy).
Moreover, it also generate extra constraints, according to the two
heuristics above, in the hope of maximizing the privacy cost of an

SFor simplicity, we use a simple representation for constraints; Z3 has an internal
format and a user can either use Z3’s APIs or SMT2 [34] format to represent constraints.

482

CCS’18, October 15-19, 2018, Toronto, ON, Canada

algorithm. In particular, it handles two kinds of statements in the
following way:

o Sampling. The executor generates two constraints for a sam-
pling statement: a constraint that eliminates randomness in
symbolic execution by assigning sample to value 0, and a con-
straint that ensures a small amount of noise. Consider a state-
ment (n < Lap(e)). The executor generates two constraints:
n = 0 as well as a constraint that minimizes expression e.

Branch. The executor generates a constraint that makes the
two executions diverge on branches. Consider a branch state-
ment (if e then - - -). Assume that the executor has symbolic
values e; and e; for the value of expression e on databases Dq
and D3 respectively; it will generates a constraint (e; A —ez) V
(—e1 A e2) to make the executions diverge. Note that unlike
other constraints, a diverging constraint might be unsatisfiable
(e.g., if the query answers under D and Dy are the same). How-
ever, our goal is to maximize the number of satisfiable diverging
constraints, which can be achieved by a MaxSMT solver.

The executor then uses an external MaxSMT solver such as Z3
[13] on all generated constraints to find arguments that maximizes
the number of diverged branches.

For example, the correct version of the Sparse Vector algorithm
(see the complete algorithm in Algorithm 11) has the parameter T
(a threshold). It has a branch that tests whether the noisy query
answer is above the threshold T:

q+7722f

Here, 72 is a noise variable, g is one query answer (i.e. one of the
components of the input D; of the algorithm) and T is a noisy
threshold (T = T + n1). Suppose we start from a database candidate
([1,1,1,1,1], [2, 2, 2, 2, 2]). The symbolic executor assigns symbolic
values to the parameters T and unrolls the loop in the algorithm,
where each iteration handles one noisy query. Along the execution,
it updates program states. For example, statement T« T+ n
results in T = T + ;. For the first execution of the branch of
interest, the executor tracks the following symbolic program state:

qg1=1Ag2=2Am ZOAI]ZIO/\f1 =T+l71/\'1:2:T+I]2
as well as the following constraint for diverging branches:
@+mzTiAg+m <T)Vig+m <Ting+n=T)

Similarly, the executor generates constraints from other itera-
tions. In this example, the MaxSMT solver returns a value in be-
tween of 1 and 2 so that constraints from all iterations are satisfied.
This value of T is used as arg in the candidate tuple (D1, D2, arg).

5 EXPERIMENTS

We implemented our counterexample detection framework with
all components, including hypothesis test, event selector and input
generator. The implementation is publicly available®. The tool takes
in an algorithm implementation and the desired privacy bound ey,
and generates counterexamples if the algorithm does not satisfy
€o-differential privacy.

® https://github.com/cmla-psu/statdp.

https://github.com/cmla-psu/statdp

Session 3B: Differential Privacy 2

In this section we evaluate our detection framework on some of
the popular privacy mechanisms and their variations. We demon-
strate the power of our tool: for mechanisms that falsely claim to be
differentially private, our tool produces convincing evidence that
this is not the case in just a few seconds.

5.1 Noisy Max

Report Noisy Max reports which one among a list of counting queries
has the largest value. It adds Lap(2/€p) noise to each answer and
returns the index of the query with the largest noisy answer. The
correct versions have been proven to satisfy ep-differential privacy
[19] no matter how long the input list is. A naive proof would show
that it satisfies (ep - |Q|/2)-differential privacy (where |Q| is the
length of the input query list), but a clever proof shows that it
actually satisfies €o-differential privacy.

Algorithm 5: Correct Noisy Max with Laplace noise

1 function NoisyMax(Q, €):
input:Q: queries to the database, €y: privacy budget.

2 NoisyVector « [|
3 fori=1...len(Q)do

4 ‘ NoisyVector[i] « Q[i] + Lap(2/ep)

5 end

6 return argmax(NoisyVector)

5.1.1 Adding Laplace Noise. The correct Noisy Max algorithm (Al-

gorithm 5) adds independent Lap(2/€p) noise to each query answer
and returns the index of the maximum value. As Figure 2a shows,
we test this algorithm for different privacy budget ep at 0.2, 0.7, 1.5.
All lines rise when the test € is slightly less than the claimed privacy
level €y of the algorithm. This demonstrates the precision of our
tool: before €, there is almost 0 chance to falsely claim that this
algorithm is not private; after €y, the p-value is too large to conclude
that the algorithm is incorrect. We note that the test result is very
close to the ideal cases, illustrated by the vertical dashed lines.

Algorithm 6: Correct Noisy Max with Exponential noise

1 function NoisyMax(Q, €g):
input:Q: queries to the database, €): privacy budget.

2 NoisyVector « [|
3 fori=1...len(Q)do

4 ‘ NoisyVector[i] «— Q[i] + Exponential(2/eg)
5 end
6 return argmax(NoisyVector)

5.1.2 Adding Exponential Noise. One correct variant of Noisy Max
adds Exponential(2/€p) noise, rather than Laplace noise, to each
query answer(Algorithm 6). This mechanism has also been proven
to be ep-differential private[19]. Figure 2b shows the corresponding
test result, which is similar to that of Figure 2a. The result indicates
that this correct variant likely satisfies ep-differential privacy for
the claimed privacy budget.

483

CCS’18, October 15-19, 2018, Toronto, ON, Canada

Algorithm 7: Incorrect Noisy Max with Laplace noise, return-
ing the maximum value

1 function NoisyMax(Q, €):
input:Q: queries to the database, €): privacy budget.

2 NoisyVector « []
3 fori=1...len(Q)do

4 ‘ NoisyVector[i] «— Q[i] + Laplace(2/€p)
5 end

6 // returns maximum value instead of index
7 ’ return max(NoisyVector)

Algorithm 8: Incorrect Noisy Max with Exponential noise,
returning the maximum value

1 function NoisyMax(Q, €):
input:Q: queries to the database, €): privacy budget.

2 NoisyVector « []
3 fori=1...len(Q)do

4 ‘ NoisyVector|[i] < Q[i] + Exponential(2/¢)
5 end

6 // returns maximum value instead of index

7 ’ return max(NoisyVector)

Algorithm 9: Histogram

1 function Histogram(Q, €):
input: Q:queries to the database, €p: privacy budget.

2 NoisyVector « []
3 fori=1...len(Q)do

4 ‘ NoisyVector|[i] < Q[i] + Lap(1/ep)
5 end
6 return NoisyVector

Algorithm 10: Histogram with wrong scale

1 function Histogram(Q, €):

input:Q: queries to the database, €): privacy budget.
2 NoisyVector « []

3 fori=1...len(Q)do

4 /] wrong scale of noise is added

‘ NoisyVector[i] « Q[i] + Lap(ep)

5 end

6 return NoisyVector

5.1.3 Incorrect Variants of Exponential Noise. An incorrect variant
of NoisyMax has the same setup but instead of returning the index
of maximum value, it directly returns the maximum value. We
evaluate on two variants that report the maximum value instead of
the index (Algorithm 7 and 8) and show the test result in Figure 2c
and 2d.

For the variant using Laplace noise (Figure 2c), we can see that
for g = 0.2, the line rises at around test € of 0.4, indicating that
this algorithm is incorrect for the claimed privacy budget of 0.2.

Session 3B: Differential Privacy 2

CCS’18, October 15-19, 2018, Toronto, ON, Canada

_———) 1.0 - —
! - € =02 - €6 =02
| —o— € =07 —o— € =07
| —— € =15 —A— € =15
| 0.8
|
|
|
|
| 0.6
) |)
= | =
< [<
= | =
a | a
| 0.4
|
|
|
| {
| 0.2 |
| 1
| i
| L
P NP VD S W : : 0.0 T i . .
0.50 0.75 1.00 1.25 1.75 2.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Test € Test €
(a) Correct Noisy Max with Laplace noise. (b) Correct Noisy Max with Exponential noise.
1.0 — - 1.0 ;
i - €=02 i ‘ !
i - € =0.7 i | 1
i —— € =15 i | i
0.8 4 : : | 0.8 !
1 1 : 1
1 1 | 1
i i | i
i i | i
i i | i
0.6 1 ! ! | 0.6 !
(3] H | | o 1
3 ! ! ‘ 3 !
< | <
o] i i | o] i
0.4 1 1 | 0.4 I
1 1 | 1
1 1 1
i i | i
1 1 | 1
1 1 | 1
i i | i
0.2 ! ! | 0.2 1 !
1 i | I
i i | I
i i | 1
N S R S [I N R
ool = PP PP S SN DY 3 A S N
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.25 0.50 0.75 1.00
Test € Test €

(c) Incorrect variant with Laplace noise. It returns the
maximum value instead of the index.

(d) Incorrect variant with Exponential noise. It returns the
maximum value instead of the index.

Figure 2: Results of Noisy Max algorithm and its variants.

The same pattern happens when we set privacy budget to be 0.7
and 1.5: all lines rise much later than their claimed privacy budget.
In this incorrect version, returning the maximum value (instead
of its index) causes the algorithm to actually satisfy € - |Q|/2 dif-
ferential privacy instead of ey-differential privacy. For the variant
using Exponential noise (Figure 2d), the lines rise much later than
the claimed privacy budgets, indicating strong evidence that this
variant is indeed incorrect. Also, we can hardly see the lines for
privacy budgets 0.7 and 1.5, since their p-values remain 0 for all
the test € ranging from 0 to 2.2 in the experiment.

5.2 Histogram

The Histogram algorithm [14] is a very simple algorithm for publish-
ing an approximate histogram of the data. The input is a histogram
and the output is a noisy histogram with the same dimensions. The
Histogram algorithm requires input queries to differ in at most one

484

element. Here we evaluate with different scale parameters for the
added Laplace noise.

The correct Histogram algorithm adds independent Lap(1/¢)
noise to each query answer, as shown in Algorithm 9. Since at most
one query answer may differ by at most 1, returning the maximum
value is €p-differentially private [14].

To mimic common mistakes made by novices of differential
privacy, we also evaluate on an incorrect variant where Lap(ep)
noise is used in the algorithm (Algorithm 10). We note that the
incorrect variant here satisfies 1/€o-differential privacy, rather the
claimed ¢g-differential privacy.

Figures 3a and 3b show the test results for the correct and in-
correct variants respectively. Here, Figures 3a indicates that the
correct implementation satisfies the claimed privacy budgets. For
the incorrect variant, the claimed budgets of 0.2 and 0.7 are cor-

rectly rejected; this is expected since the true privacy budgets are
1/0.2 and 1/0.7 respectively for this incorrect version. Interestingly,

Session 3B: Differential Privacy 2

CCS’18, October 15-19, 2018, Toronto, ON, Canada

R 1.0 T x
! ! - €=02
i 4 € =07
i I = =15
0.8 i i
i i
1 1 1
1 i i
i i i
1 1 1
1 1 1
i i i
H 0.6 1 H H
] 1 o 1 1
= ! = ! !
< <
> i > i i
e i e i i
1 0.4 1 1 1
1 1 1
i i i
1 1 1
1 1 1
i i i
1 1 1
i 0.2 i i
! - =02 ! !
i € =07 i i
1 —— € =15 i i
S — i . T 0oLl m s m T : ISP PP
050 075 1.00 1.25 1.50 175 2.00 025 050 0.75 1.00 1.25 1.50 1.75 2.00
Test € Test €

(a) Correct Histogram algorithm with Lap(1/¢y) noise.

(b) Incorrect Histogram algorithm with Lap(e) noise. It
provides more privacy than advertised when ¢, > 1 and
less privacy than advertised when ¢, < 1.

Figure 3: Results of Histogram algorithm and its variants

the result indicates that for ¢y = 1.5, this algorithm is likely to
be more private than claimed (the line rise around 0.6 rather than
1.5). Again, this is expected since in this case, the variant is indeed
1/1.5 = 0.67-differentially private.

5.3 Sparse Vector

The Sparse Vector Technique (SVT) [18] (see Algorithm 11) is a
powerful mechanism for answering numerical queries. It takes a list
of numerical queries and simply reports whether their answers are
above or below a preset threshold T It allows the program to output
some noisy query answers without any privacy cost. In particular,
arbitrarily many “below threshold” answers can be returned, but
only at most N “above threshold” answers can be returned. Because
of this remarkable property, there are many variants proposed in
both published papers and practical use. However, most of them
turn out to be actually not differentially private[28]. We test our
tool on a correct implementation of SVT and the major incorrect
variants summarized in [28]. In the following, we describe what
the variants do and list their pseudocodes.

5.3.1 SVT[28]. Lyuetal. have proposed an implementation of SVT
and proved that it satisfies €o-differential privacy. This algorithm
(Algorithm 11) tries to allocate the global privacy budget €y into
two parts: half of the privacy budget goes to the threshold, and
the other half goes to values which are above the threshold. There
will not be any privacy cost if the noisy value is below the noisy
threshold, in which case the program will output a False. If the
noisy value is above the noisy threshold, the program will output a
True. After outputting a certain amount (N) of True’s, the program
will halt.

Figure 4a shows the test result for this correct implementation.

All lines rise around the true privacy budget, indicating that our
tool correctly conclude that this algorithm is correct.

485

Algorithm 11: SVT [28].
input:Q: queries to the database, €): privacy budget
T: threshold, N: bound of outputting True’s
A: sensitivity
1 function SVT(Q, T, €, A, N):
2 out « []

3 n1 < Lap(2 = A/ep)
4 f<—T+171

5 count < 0

6 foreach g in Q do

7 n2 < Lap(2 « N = A/€p)
8 if ¢+ 12 > T then

9 out < True :: out

count < count + 1

if count > N then
‘ Break

end

10
11
12
13
else

‘ out « False :: out

14

15

16 end

17 end

18

return (out)

5.3.2 iSVT 1[38]. One incorrect variant (Algorithm 12) adds no
noise to the query answers, and has no bound on the number of
True’s that the algorithm can output. This implementation does not
satisfy €o-differential privacy for any finite €.

This expectation is consistent with the test result shown in Figure
4b: the p-value never rises at any test €. This result strongly indicates
that this implementation with claimed privacy budget 0.2, 0.7, 1.5
is not private for at least any € < 2.2.

Session 3B: Differential Privacy 2

CCS’18, October 15-19, 2018, Toronto, ON, Canada

Algorithm 12: iSVT 1 [38]. This does not add noise to the
query answers, and has no bound on number of True’s to output
(i.e., N). This is not private for any privacy budget € .

Algorithm 14:iSVT 2 [11]. This one has no bounds on number
of True’s (i.e, N) to output. This is not private for any finite
privacy budget €.

input: Q: queries to the database, €): privacy budget
T: threshold, A: sensitivity
1 function iSVT1(Q, T, €, A):

2 out « []

3 | m < Lap(A/e)

4 Te—T+ n

5 // no bounds on number of outputs
6 foreach do

7 // adds no noise to query answers
s

9 if g+ 12 > T then

10 ‘ out < True :: out

11 else

12 ‘ out «— False :: out

13 end

14 end

15 return (out)

Algorithm 13:iSVT 3 [27]. The noise added to queries doesn’t

scale with N. The actual privacy cost is 1+2N €.

input: Q: queries to the database, €): privacy budget
T: threshold, N: bound of outputting True’s
A: sensitivity
1 function iSVT3(Q, T, €y, A, N):

2 out «— []

3 n1 < Lap(4 % A/ep)

4 T—T+ n

5 count « 0

6 foreach q in Q do

7 // noise added doesn’t scale with N
s 12— Lap(4 A/(3 5 e0))
9 if g+ 12 > T then

10 out « True :: out

1 count « count + 1

12 if count > N then

13 ‘ Break

14 end

15 else

16 ‘ out «— False :: out

17 end

18 end

19 return (out)

5.3.3 iSVT 2 [11]. Another incorrect variant (Algorithm 14) has
no bounds on the number of True’s the algorithm can output. With-
out the bounds, the algorithm will still output True even if it has

input:Q: queries to the database, €): privacy budget
T: threshold, A: sensitivity
1 function iSVT2(Q, T, €, A):

2 out « []

3 | m < Lap(2+A/e)

4 Te—T+ n

5 // no bounds on number of outputs
6 foreach do

7

s n2 Lap(2 * A/eo)

9 if g+ 12 > T then
10 ‘ out < True :: out
1 else

12 ‘ out < False :: out
13 end

14 end

15 return (out)

Algorithm 15:iSVT 4 [36]. When the noisy query answer is
above the threshold, output the actual value of noisy query
answer.
input:Q: queries to the database, €): privacy budget
T: threshold, N: bound of outputting True’s
A: sensitivity
1 function iSVT4(Q, T, €y, A, N):

2 out < []

3 n1 < Lap(2 = A/ep)

4 Te—T+ n

5 count < 0

6 foreach q in Q do

7 n2 < Lap(2 = N = A/€g)
8 ifq+17227~‘then

9 // output numerical value instead of boolean value
10 ’ out « (q + n2) :: out
11 count < count + 1

12 if count > N then

13 ‘ Break

14 end

15 else

16 ‘ out « False :: out

17 end

18 end

19 return (out)

exhausted its privacy budget. So this variant is not private for any
finite €.

Figure 4c indicates this implementation with privacy budget
€0 = 0.2 is most likely not private for any € < 0.5. When €y = 0.7,

CCS’18, October 15-19, 2018, Toronto, ON, Canada

Session 3B: Differential Privacy 2

1.00

. .
© =

1.0
0.8 1
0.2

S S
anjeA d

. ’
© <

1.0
0.8 1
0.2 4

=3 S
anjeA d

1.50 1.75 2.00

1.25

0.50 0.75

0.25

0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.25

Test €

Test €

(b) iSVT 1 [38] adds no noise to query and threshold.

(a) Correct implementation of SVT [28].

4

4

4

4

4

4

-4

4

4

4

L4

+

4

4

-1

1

¢+

4

||||||||||||||||||||||||||||||||||||||| -4

L

S % 2 < S S

- =3 =3 = =3 =
anjeA d
N~ N

i S S - 1

i [T 4

I ¢ &¢ 1

n 4

$t4 :

4

N 4

n 4

n 4

] I~

i 1

i 1

i 1

i 1

o e e e -4

4

1

1

4

+

1

4

-1

i

i

II -4

L

S % 2 < S S

- =] =3 =3 =3 =
anjeA d

0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0
Test € Test €

0.0

(d) iSVT 3 [27] query noise does not scale with N.

(c) iSVT 2 [11] no bounds on outputting True’s.

15

—h— €

1.0

0.8 1

. .
© =

S S
onfeA d

0.2 1

Test €

(e) iSVT 4 [36] outputs the actual query answer when it is

above the threshold.

Results for variants of Sparse Vector Technique

Figure 4

487

Session 3B: Differential Privacy 2

CCS’18, October 15-19, 2018, Toronto, ON, Canada

Table 2: Counterexamples detected for incorrect privacy mechanisms

Mechanism () = 1.5) Event E D1 D2

Incorrect Noisy Max with Laplace Noise w € (-, 0.0) [1,1,1,1,1] [0,0,0,0,0]
Incorrect Noisy Max with Exponential Noise w € (-0, 1.0) [1,1,1,1,1] [0,0,0,0,0]
Incorrect Histogram [17] w[0] € (=0, 1.0) [1,1,1,1,1] [2,1,1,1,1]

iSVT 1[38] Hw) =0 [1,1,1,1,1,1,1,1,1,1] [0,0,0,0,0,2, 2, 2, 2, 2]

iSVT 2 [11] Hw) =9 [1,1,1,1,1,0,0,0,0,0] [0,0,0,0,0,1,1,1,1,1]

iSVT 3 [27] Hew)=0 [1,1,1,1,1,0,0,0,0,0] [0,0,0,0,0,1,1,1,1,1]

iSVT 4 [36] (w.count(False), w[9]) € {9} x(-2.4,2.4) [1,1,1,1,1,1,1,1,1,1] [0,0,0,0,0,0,0,0,0, 0]

we have detected counterexamples showing the algorithm is likely
not private for any € € (0,2.1]. When ¢y = 1.5, we have detected
counterexamples showing the algorithm is likely not private for
any € € (0,3.0].

5.3.4 iSVT 3 [27]. Another incorrect variant (Algorithm 13) adds
noise to queries but the noise doesn’t scale with the bound N. The
actual privacy budget for this variant is 1+2N
input privacy budget.

We note that our tool detects the actual privacy cost, as shown
in Figure 4d, for this incorrect algorithm. Consider privacy budget
€0 = 0.2. The corresponding line rises at 0.3, right before the actual
budget #eo = 0.35 (N = 1), suggesting the precision of our tool.
The same happens for ¢g = 0.7 and 1.5. The two lines rise at 1.1
and 2.3, which are close to but before the actual budget 1.225 and
2.625, respectively.

€y where ¢ is the

5.3.5 iSVT 4 [36]. Another incorrect variant (Algorithm 15) out-
puts the actual value of noisy query answer when it is above the
noisy threshold.

The interesting part of this algorithm is that, since it outputs het-
erogeneous list of booleans and values, our event selector chooses
{9} X (2.4, 2.4). This means we choose an event that consists of 9
booleans (in this case, Falses) followed by a number in (-2.4, 2.4).
Figure 4e shows much noise in it because this one is almost cor-
rect in the sense that violations of differential privacy happen with
very low probability; thus it is hard to detect its incorrectness. But
we can still see that the lines all rise later than the corresponding
claimed privacy budget €. Hence, our tool correctly concludes that
this algorithm does not satisfy €y-differential privacy.

5.4 Performance

We performed all experiments on a double Intel® Xeon® E5-2620
v4 @ 2.10GHz CPU machine with 64 GB memory. Our tool is im-
plemented in Anaconda distribution of Python 3 and optimized for
running in parallel environment to fully utilize the 32 logical cores
of the machine.

For each test €, we set the samples of iteration n to be 500,000
for the hypothesis test and 100,000 for the event selector and query
generator. Table 3 lists the average time spent on hypothesis test
for a specific test € (i.e., the average time spent on generating one
single point in the figures) for each algorithm. The results suggest
that it is very efficient to run a test for an algorithm against one
privacy cost: all tests finish within 23 seconds.

The time difference between Noisy Max, Histogram and Sparse
Vector Technique is due to the nature of the algorithms. For SVT, the

488

Table 3: Time spent on running tool for different algorithms

Mechanism Time / Seconds
Correct Laplace Noisy Max[15] 4.32
Incorrect Laplace Noisy Max 9.49
Correct Exponential Noisy Max [15] 4.25
Incorrect Exponential Noisy Max 8.70
Histogram [14] 10.39
Incorrect Histogram 11.28
SVT [28] 1.99
iSVT 1 [38] 1.62
iSVT 2 [11] 4.56
iSVT 3 [27] 2.56
iSVT 4 [36] 22.97

parameter N is set to 1, meaning that the algorithm will halt once
it hit a True branch. For Noisy Max and Histogram, all noise will be
calculated and applied to each query answer, consuming more time
to calculate p-values. Another factor that will also influence the test
time is the search space of events. Correct Noisy Max returns an
index which we would have a search space of only integers ranging
from 1 to the length of queries. However, the incorrect Noisy Max
will return a real number so the search space would be much larger
than the correct one, thus taking more time to find a suitable event
E. This also occurs in Sparse Vector Technique.

6 CONCLUSIONS AND FUTURE WORK

While it is invaluable to formally verify correct differentially-private
algorithms, we believe that it is equally important to detect incor-
rect algorithms and provide counterexamples for them, due to the
subtleties involved in algorithm development. We proposed a novel
semi-black-box method of evaluating differentially private algo-
rithms, and providing counterexamples for those incorrect ones. We
show that within a few seconds, our tool correctly rejects incorrect
algorithms (including published ones) and provides counterexam-
ples for them.

Future work includes extensions that detect violations of differ-
ential privacy even if those violations occur with extremely small
probabilities. This will require additional extensions such as a more
refined use of program analysis techniques (including symbolic
execution) that reason about what happens when a program is run
on adjacent databases. Additional extensions include counterex-
ample generation for other variants of differential privacy, such

Session 3B: Differential Privacy 2

as approximate differential privacy, zCDP, and renyi-differential
privacy.

ACKNOWLEDGMENTS

We thank anonymous CCS reviewers for their helpful suggestions.
This work was partially funded by NSF awards #1228669, #1702760
and #1566411.

REFERENCES

(1]

[2

(3

=

[4

flaa

[10]

[11]

[12]

[13]

[14

=
i)

(16

[17

(18

[19

[20]

[21

Aws Albarghouthi and Justin Hsu. 2017. Synthesizing coupling proofs of dif-
ferential privacy. Proceedings of the ACM on Programming Languages 2, POPL
(2017), 58.

Gilles Barthe, George Danezis, Benjamin Grégoire, César Kunz, and Santiago
Zanella-Beguelin. 2013. Verified Computational Differential Privacy with Ap-
plications to Smart Metering. In 2013 IEEE 26th Computer Security Foundations
Symposium. 287-301.

Gilles Barthe, Noémie Fong, Marco Gaboardi, Benjamin Grégoire, Justin Hsu,
and Pierre-Yves Strub. 2016. Advanced Probabilistic Couplings for Differential
Privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. 55-67.

Gilles Barthe, Marco Gaboardi, Emilio Jesus Gallego Arias, Justin Hsu, César
Kunz, and Pierre-Yves Strub. 2014. Proving Differential Privacy in Hoare Logic.
In 2014 IEEE 27th Computer Security Foundations Symposium. 411-424.

Gilles Barthe, Marco Gaboardi, Benjamin Gregoire, Justin Hsu, and Pierre-Yves
Strub. 2016. Proving differential privacy via probabilistic couplings. In IEEE
Symposium on Logic in Computer Science (LICS).

Gilles Barthe, Boris Kopf, Federico Olmedo, and Santiago Zanella Béguelin. 2012.
Probabilistic Relational Reasoning for Differential Privacy. In Proceedings of the
39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. 97-110.

Gilles Barthe and Federico Olmedo. 2013. Beyond differential privacy: Com-
position theorems and relational logic for f-divergences between probabilistic
programs. In ICALP. 49-60.

Mark Bun and Thomas Steinke. 2016. Concentrated Differential Privacy: Simpli-
fications, Extensions, and Lower Bounds. In Proceedings of the 14th International
Conference on Theory of Cryptography - Volume 9985.

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs. In
8th USENIX Symposium on Operating Systems Design and Implementation, (OSDI).
209-224.

Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. 2006. EXE: Automatically Generating Inputs of Death. In Conference on
Computer and Communications Security (CCS). 322-335.

Rui Chen, Qian Xiao, Yu Zhang, and Jianliang Xu. 2015. Differentially private
high-dimensional data publication via sampling-based inference. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 129-138.

Yan Chen and Ashwin Machanavajjhala. 2015. On the Privacy Properties of
Variants on the Sparse Vector Technique. http://arxiv.org/abs/1508.07306. (2015).
Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337-340.

Cynthia Dwork. 2006. Differential Privacy. In Proceedings of the 33rd International
Conference on Automata, Languages and Programming - Volume Part Il (ICALP’06).
Springer-Verlag, Berlin, Heidelberg, 1-12. https://doi.org/10.1007/11787006_1
Cynthia Dwork. 2008. Differential privacy: A survey of results. In International
Conference on Theory and Applications of Models of Computation. Springer, 1-19.
Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. 2006. Our Data, Ourselves: Privacy via Distributed Noise Generation.
In EUROCRYPT. 486-503.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrat-
ing Noise to Sensitivity in Private Data Analysis.. In TCC.

Cynthia Dwork, Moni Naor, Omer Reingold, Guy N.Rothblum, and Salil Vad-
han. 2009. On the Complexity of Differentially Private Data Release: Efficient
Algorithms and Hardness Results. In STOC. 381-390.

Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-
ential privacy. Foundations and Trends® in Theoretical Computer Science 9, 3—4
(2014), 211-407.

Cynthia Dwork and Guy N. Rothblum. 2016. Concentrated Differential Privacy.
http://arxiv.org/abs/1603.01887. (2016).

Hamid Ebadi, David Sands, and Gerardo Schneider. 2015. Differential privacy:
Now it’s getting personal. In ACM Symposium on Principles of Programming
Languages (POPL).

CCS’18, October 15-19, 2018, Toronto, ON, Canada

Gian Pietro Farina, Stephen Chong, and Marco Gaboardi. 2017. Relational Sym-
bolic Execution. http://arxiv.org/abs/1711.08349. (2017).

R.A. Fisher. 1935. The design of experiments. 1935. Oliver and Boyd, Edinburgh.
Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C.
Pierce. 2013. Linear Dependent Types for Differential Privacy. In Proceedings of
the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (ACM Symposium on Principles of Programming Languages (POPL)).
357-370.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001-. SciPy: Open source
scientific tools for Python. (2001-). http://www.scipy.org/ [Online; accessed
2018-08-17].

James C King. 1976. Symbolic execution and program testing. Commun. ACM 19,
7 (1976), 385-394.

Jaewoo Lee and Christopher W Clifton. 2014. Top-k frequent itemsets via differ-
entially private fp-trees. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 931-940.

Min Lyu, Dong Su, and Ninghui Li. 2017. Understanding the sparse vector
technique for differential privacy. Proceedings of the VLDB Endowment 10, 6
(2017), 637-648.

Frank D. McSherry. 2009. Privacy Integrated Queries: An Extensible Platform
for Privacy-preserving Data Analysis. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data. 19-30.

Dimiter Milushev, Wim Beck, and Dave Clarke. 2012. Noninterference via sym-
bolic execution. In Formal Techniques for Distributed Systems. Springer, 152-168.
Ilya Mironov. 2017. Rényi Differential Privacy. In 30th IEEE Computer Security
Foundations Symposium, CSF.

Prashanth Mohan, Abhradeep Thakurta, Elaine Shi, Dawn Song, and David Culler.
2012. GUPT: Privacy Preserving Data Analysis Made Easy. In Proceedings of the
ACM SIGMOD International Conference on Management of Data.

Suzette Person, Matthew B Dwyer, Sebastian Elbaum, and Corina S Pasareanu.
2008. Differential symbolic execution. In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering. ACM, 226-237.
Silvio Ranise and Cesare Tinelli. 2006. The smt-lib standard: Version 1.2. Technical
Report. Technical report, Department of Computer Science, The University of
Towa, 2006. Available at www. SMT-LIB. org.

Jason Reed and Benjamin C. Pierce. 2010. Distance Makes the Types Grow
Stronger: A Calculus for Differential Privacy. In Proceedings of the 15th ACM
SIGPLAN International Conference on Functional Programming (ICFP °10). 157-168.
A. Roth. 2011. Sparse Vector Technique, Lecture notes for “The Algorithmic
Foundations of Data Privacy”. (2011).

Indrajit Roy, Srinath Setty, Ann Kilzer, Vitaly Shmatikov, and Emmett Witchel.
2010. Airavat: Security and Privacy for MapReduce. In NSDIL

Ben Stoddard, Yan Chen, and Ashwin Machanavajjhala. 2014. Differentially
private algorithms for empirical machine learning. arXiv preprint arXiv:1411.5428
(2014).

Michael Carl Tschantz, Dilsun Kaynar, and Anupam Datta. 2011. Formal Verifica-
tion of Differential Privacy for Interactive Systems (Extended Abstract). Electron.
Notes Theor. Comput. Sci. 276 (Sept. 2011), 61-79.

Lili Xu, Konstantinos Chatzikokolakis, and Huimin Lin. 2014. Metrics for Differ-
ential Privacy in Concurrent Systems. 199-215.

Danfeng Zhang and Daniel Kifer. 2017. LightDP: Towards Automating Differential
Privacy Proofs. In ACM Symposium on Principles of Programming Languages
(POPL). 888-901.

https://doi.org/10.1007/11787006_1
http://arxiv.org/abs/1603.01887
http://arxiv.org/abs/1711.08349
http://www.scipy.org/

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Differential Privacy
	3.2 Hypothesis Testing

	4 Counterexample Detection
	4.1 Overview
	4.2 Hypothesis Testing
	4.3 Event Selection
	4.4 Input Generation

	5 Experiments
	5.1 Noisy Max
	5.2 Histogram
	5.3 Sparse Vector
	5.4 Performance

	6 Conclusions and Future Work
	Acknowledgments
	References

