
Detecting Violations of Differential Privacy
Zeyu Ding

Pennsylvania State University

dxd437@psu.edu

Yuxin Wang

Pennsylvania State University

ywang@cse.psu.edu

Guanhong Wang

Pennsylvania State University

gpw5092@psu.edu

Danfeng Zhang

Pennsylvania State University

zhang@cse.psu.edu

Daniel Kifer

Pennsylvania State University

dkifer@cse.psu.edu

ABSTRACT
The widespread acceptance of differential privacy has led to the

publication of many sophisticated algorithms for protecting privacy.

However, due to the subtle nature of this privacy definition, many

such algorithms have bugs that make them violate their claimed

privacy. In this paper, we consider the problem of producing coun-

terexamples for such incorrect algorithms. The counterexamples

are designed to be short and human-understandable so that the

counterexample generator can be used in the development process

– a developer could quickly explore variations of an algorithm and

investigate where they break down. Our approach is statistical in

nature. It runs a candidate algorithmmany times and uses statistical

tests to try to detect violations of differential privacy. An evalua-

tion on a variety of incorrect published algorithms validates the

usefulness of our approach: it correctly rejects incorrect algorithms

and provides counterexamples for them within a few seconds.
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1 INTRODUCTION
Differential privacy has become a de facto standard for extracting

information from a dataset (e.g., answering queries, building ma-

chine learning models, etc.) while protecting the confidentiality

of individuals whose data are collected. Implemented correctly, it

guarantees that any individual’s record has very little influence on

the output of the algorithm.
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However, the design of differentially private algorithms is very

subtle and error-prone – it is well-known that a large number of

published algorithms are incorrect (i.e. they violate differential

privacy). A sign of this problem is the existence of papers that

are solely designed to point out errors in other papers [12, 28].

The problem is not limited to novices who may not understand

the subtleties of differential privacy; it even affects experts whose

goal is to design sophisticated algorithms for accurately releasing

statistics about data while preserving privacy.

There are two main approaches to tackling this prevalence of

bugs: programming platforms and verification. Programming plat-

forms, such as PINQ [29], Airavat [37], and GUPT [32] provide a

small set of primitive operations that can be used as building blocks

of algorithms for differential privacy. They make it easy to cre-

ate correct differentially private algorithms at the cost of accuracy

(the resulting privacy-preserving query answers and models can

become less accurate). Verification techniques, on the other hand,

allow programmers to implement a wider variety of algorithms and

verify proofs of correctness (written by the developers) [2–7] or

synthesize most (or all) of the proofs [1, 24, 35, 41].

In this paper, we take a different approach: finding bugs that

cause algorithms to violate differential privacy, and generating

counterexamples that illustrate these violations. We envision that

such a counterexample generator would be useful in the develop-

ment cycle – variations of an algorithm can be quickly evaluated

and buggy versions could be discarded (without wasting the devel-

oper’s time in a manual search for counterexamples or a doomed

search for a correctness proof). Furthermore, counterexamples can

help developers understand why their algorithms fail to satisfy

differential privacy and thus can help them fix the problems. This

feature is absent in all existing programming platforms and veri-

fication tools. To the best of our knowledge, this is the first paper

that treats the problem of detecting counterexamples in incorrect

implementations of differential privacy.

Although recent work on relational symbolic execution [22] aims

for simpler versions of this task (like detecting incorrect calcula-

tions of sensitivity), it is not yet powerful enough to reason about

probabilistic computations. Hence, it cannot detect counterexam-

ples in sophisticated algorithms like the sparse vector technique [19],
which satisfies differential privacy but is notorious for having many

incorrect published variations [12, 28].

Our counterexample generator is designed to function in black-

box mode as much as possible. That is, it executes code with a

variety of inputs and analyzes the (distribution of) outputs of the

code. This allows developers to use their preferred languages and

libraries as much as possible; in contrast, most language-based

Session 3B: Differential Privacy 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

475

https://doi.org/10.1145/3243734.3243818
https://doi.org/10.1145/3243734.3243818


tools will restrict developers to specific programming languages

and a very small set of libraries. In some instances, the code may

include some tuning parameters. In those cases, we can use an

optional symbolic execution model (our current implementation

analyzes python code) to find values of those parameters that make

it easier to detect counterexamples. Thus, we refer to our method

as a semi-black-box approach.

Our contributions are as follows:

• We present the first counterexample generator for differen-

tial privacy. It treats programs as semi-black-boxes and uses

statistical tests to detect violations of differential privacy.

• We evaluate our counterexample generator on a variety of so-

phisticated differentially private algorithms and their common

incorrect variations. These include the sparse vector method

and noisy max [19], which are cited as the most challenging

algorithms that have been formally verified so far [1, 5]. In

particular, the sparse vector technique is notorious for having

many incorrect published variations [12, 28]. We also evalu-

ate the counterexample generator on some simpler algorithms

such as the histogram algorithm [14], which are also easy for

novices to get wrong (by accidentally using too little noise). In

all cases, our counterexample generator produces counterex-

amples for incorrect versions of the algorithms, thus showing

its usefulness to both experts and novices.

• The false positive error (i.e. generating "counterexamples" for

correct code) of our algorithm is controllable because it is based

on statistical testing. The false positive rate can be made arbi-

trarily small just by giving the algorithm more time to run.

Limitations: it is impossible to create counterexample/bug detec-

tor that works for all programs. For this reason, our counterexample

generator is not intended to be used in an adversarial setting (where

a rogue developer wants to add an algorithm that appears to satisfy

differential privacy but has a back door). In particular, if a program

satisfies differential privacy except with an extremely small prob-

ability (a setting known as approximate differential privacy [16])

then our counterexample generator may not detect it. Solving this

issue is an area for future work.

The rest of the paper is organized as follows. Related work is

discussed in Section 2. Background on differential privacy and

statistical testing is discussed in Section 3. The counterexample

generator is presented in Section 4. Experiments are presented in

Section 5. Conclusions and future work are discussed in Section 6.

2 RELATED WORK
Differential privacy. The term differential privacy covers a fam-

ily of privacy definitions that include pure ϵ-differential privacy
(the topic of this paper) [17] and its relaxations: approximate (ϵ,δ )-
differential privacy [16], concentrated differential privacy [8, 20],

and Renyi differential privacy [31]. The pure and approximate ver-

sions have received the most attention from algorithm designers

(e.g., see the book [19]). However, due to the lack of availability of

easy-to-use debugging and verification tools, a considerable frac-

tion of published algorithms are incorrect. In this paper, we focus

on algorithms for which there is a public record of an error (e.g.,

variants of the sparse vector method [12, 28]) or where a seemingly

small change to an algorithm breaks an important component of

the algorithm (e.g., variants of the noisy max algorithm [5, 19] and

the histogram algorithm [14]).

Programming platforms and verification tools. Several dynamic

tools [21, 29, 37, 39, 40] exist for enforcing differential privacy.

Those tools track the privacy budget consumption at runtime, and

terminates a program when the intended privacy budget is ex-

hausted. On the other hand, static methods exist for verifying

that a program obeys differential privacy during any execution,

based on relational program logic [1–7] and relational type sys-

tem [24, 35, 41]. We note that those methods are largely orthogonal

to this paper: their goal is to verify a correct program or to terminate

an incorrect one, while our goal is to detect an incorrect program

and generate counterexamples for it. The counterexamples provide

valuable guidance for fixing incorrect algorithms for algorithm de-

signers. Moreover, we believe our tool fills in the currently missing

piece in the development of differentially private algorithms: with

our tool, immature designs can first be tested for counterexamples,

before being fed into those dynamic and static tools.

Counterexample generation. Symbolic execution [9, 10, 26] is

widely used for program testing and bug finding. One attractive

feature of symbolic execution is that when a property is being vio-

lated, it generates counterexamples (i.e., program inputs) that lead

to violations. More relevant to this paper is work on testing rela-

tional properties based on symbolic execution [22, 30, 33]. However,

those work only apply to deterministic programs, but the differen-

tial privacy property inherently involves probabilistic programs,

which is beyond the scope of those work.

3 BACKGROUND
In this section, we discuss relevant background on differential pri-

vacy and hypothesis testing.

3.1 Differential Privacy
We view a database as a finite multiset of records from some domain.

It is sometimes convenient to represent a database by a histogram,

where each cell is the count of times a specific record is present.

Differential privacy relies on the notion of adjacent databases.
The twomost common definitions of adjacency are: (1) two databases

D1 and D2 are adjacent if D2 can be obtained from D1 by adding
or removing a single record. (2) two databases D1 and D2 are adja-
cent if D2 can be obtained from D1 by modifying one record. The

notion of adjacency used by an algorithm must be provided to the

counterexample generator. We write D1 ∼ D2 to mean that D1 is

adjacent to D2 (under whichever definition of adjacency is relevant

in the context of a given algorithm).

We use the termmechanism to refer to an algorithmM that tries

to protect the privacy of its input. In our case, a mechanism is an

algorithm that is intended to satisfy ϵ-differential privacy:

Definition 3.1 (Differential Privacy [17]). Let ϵ ≥ 0. A mechanism

M is said to be ϵ-differentially private if for every pair of adjacent

databases D1 and D2, and every E ⊆ Range(M), we have
P(M(D1) ∈ E) ≤ eϵ · P(M(D2) ∈ E).

The value of ϵ , called the privacy budget, controls the level of

the privacy: the smaller ϵ is, the more privacy is guaranteed.
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One of the most common building blocks of differentially private

algorithms is the Laplace mechanism [17] , which is used to answer

numerical queries. LetD be the set of possible databases. A numer-

ical query is a function q : D → Rk (i.e. it outputs a k-dimensional

vector of numbers). The Laplace mechanism is based on a concept

called global sensitivity, which measures the worst-case effect one

record can have on a numerical query:

Definition 3.2 (Global Sensitivity [17]). The ℓ1-global sensitivity
of a numerical query q is

∆q = max

D1∼D2

∥q(D1) − q(D2)∥1.

The Laplace mechanism works by adding Laplace noise (having

density f (x | b) = 1

2b exp (−|x |/b) and variance 2b2) to query an-

swers. The chosen variance depends on ϵ and the global sensitivity.

We use the notation Lap(b) to refer to the Laplace noise.

Definition 3.3 (The Laplace mechanism [17]). For any numerical

query q : D → Rn , the Laplace mechanism outputs

M(D,q, ϵ) = q(D) + (η1, . . . ,ηn )

whereηi are independent randomvariables sampled from Lap(∆q/ϵ).

Theorem 3.4 ([19]). The Laplace mechanism is ϵ-differentially
private.

3.2 Hypothesis Testing
A statistical hypothesis is a claim about the parameters of the dis-

tribution that generated the data. The null hypothesis, denoted by

H0 is a statistical hypothesis that we are trying to disprove. For

example, if we have two samples, X and Y where X was gener-

ated by a Binomial(n,p1) distribution and Y was generated by a

Binomial(n,p2) distribution, one null hypothesis could be p1 = p2
(that is, we would like to know if the data supports the conclusion

that X and Y came from different distributions). The alternative
hypothesis, denoted byH1, is the complement of the null hypothesis

(e.g., p1 , p2).
A hypothesis test is a procedure that takes in a data sample

Z and either rejects the null hypothesis or fails to reject the null

hypothesis. A hypothesis test can have two types of errors: type I

and type II. A type I error occurs if the test incorrectly rejects H0

when it is in fact true. A type II error occurs if the test fails to reject

H0 when the alternative hypothesis is true. Type I and type II errors

are analogous to false positives and false negatives, respectively.

In most problems, controlling type I error is the most important.

In such cases, one specifies a significance level α and requires that

the probability of a type I error be at most α . Commonly used values

for α are 0.05 and 0.01. In order to allow users to control the type I

error, the hypothesis test also returns a number p – known as the

p-value – which is a probabilistic estimate of how unlikely it is that

the null hypothesis is true. The user rejects the null hypothesis if

p ≤ α . In order for this to work (i.e. in order for the Type I error to

be below α ), the p-value must satisfy certain technical conditions:

(1) a p-value is a function of a data sample Z , (2) 0 ≤ p(Z ) ≤ 1, (3) if

the null hypothesis is true, then P(p(Z ) ≤ α | H0) ≤ α .
A relevant example of a hypothesis test is Fisher’s exact test [23]

for two binomial populations. Let c1 be a sample from a Binomial(n1,p1)

distribution and let c2 be a sample from a Binomial(n2,p2) distribu-
tion. Here p1 and p2 are unknown. Using these values of c1 and c2,
the goal is to test the null hypothesis H0 : p1 ≤ p2 against the alter-
native H1 : p1 > p2. Let s = c1 + c2. The key insight behind Fisher’s

test is that if C1 ∼ Binomial(n1,p1) 1 and C2 ∼ Binomial(n2,p2)
and if p1 = p2, then the value P(C1 > c1 | C1 + C2 = s) does not
depend on the unknown parameters p1 or p2 and can be computed

from the cumulative distribution function of the hypergeometric

distribution; specifically, it is equal to 1 − Hypergeometric.cdf(c1 |
n1 + n2,n1, s). When p1 > p2, then P(C1 > c1 | C1 +C2 = s) cannot
be computed without knowing p1 and p2. However, it is less than
1 − Hypergeometric.cdf(c1 | n1 + n2,n1, s). Thus it can be shown

that 1 − Hypergeometric.cdf(c1 | n1 + n2,n1, s) is a valid p-value
and so the Fisher’s exact test rejects the null hypothesis when this

quantity is ≤ α .

4 COUNTEREXAMPLE DETECTION
For a mechanismM that does not satisfy ϵ-differential privacy, the
goal is to prove this failure. By Definition 3.1, this involves finding

a pair of adjacent databases D1,D2 and an output event E such that

P(M(D1) ∈ E) > eϵP(M(D2) ∈ E). Thus a counterexample involves

finding these two adjacent inputs D1 and D2, the bad output set E,
and to show that for these choices, P(M(D1) ∈ E) > eϵP(M(D2) ∈
E).

Ideally, one would compute the probabilities P(M(D1) ∈ E) and
P(M(D2) ∈ E). Unfortunately, for sophisticated mechanisms, it is

not always possible to compute these quantities exactly. However,

we can sample from these distributions many times by repeatedly

runningM(D1) andM(D2) and counting the number of times that

the outputs fall into E. Then, we need a statistical test to reject the

null hypothesis P(M(D1) ∈ E) ≤ eϵP(M(D2) ∈ E) (or fail to reject

it if the algorithm is ϵ-differentially private).

We will be using the following conventions:

• The input to most mechanisms is actually a list of queries

Q = (q1, . . . ,ql ) rather than a database directly. For example, al-

gorithms to release differentially private histograms operate on

a histogram of the data; the sparse vector mechanism operates

on a sequence of queries that each have global sensitivity equal

to 1. Thus, we require the user to specify how the input query

answers can differ on two adjacent databases. For example, in a

histogram, exactly one cell count changes by at most 1. In the

sparse vector technique [19], every query answer changes by

at most 1. To simplify the discussion, we abuse notation and

use D1,D2 to also denote the answers of Q on the input adja-

cent databases. For example, when discussing the sparse vector

technique, we write D1 = [0, 0] and D2 = [1, 1]. This means

there are adjacent databases and a list of queries Q = [q1,q2]
such that they evaluate to [0, 0] on the first database and [1, 1]
on the second database.

• We use ϵ0 to indicate the privacy level that a mechanism claims

to achieve.

• We use Ω for the set of all possible outputs (i.e., range) of the

mechanismM . We use ω for a single output ofM .

1
This is read as "C1 is a random variable having the Binomial(n1, p1) distribution".
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• We call a subset E ⊆ Ω an event. We use p1 (respectively, p2)
to denote P(M(Di ) ∈ E), the probability that the output of M
falls into E when executing on database D1 (respectively, D2).

• Some mechanisms take additional inputs, e.g., the sparse vector

mechanism. We collectively refer to them as args.

Our discussion is organized as follows. We provide an overview

of the counterexample generator in Section 4.1. Then we incre-

mentally explain our approach. In Section 4.2 we present the hy-

pothesis test. That is, suppose we already have query sequences

D1 and D2 that are generated from adjacent databases and an out-

put set E, how do we test if P(M(D1) ∈ E) ≤ eϵP(M(D2) ∈ E) or
P(M(D1) ∈ E) > eϵP(M(D2) ∈ E)? Next, in Section 4.3, we con-

sider the question of output selection. That is, suppose we already

have query answers D1 and D2 that are generated from adjacent

databases, how do we decide which E should be used in the hy-

pothesis test? Finally, in Section 4.4, we consider the problem of

generating the adjacent query sequences D1 and D2 as well as

additional inputs args.
The details of specific mechanisms we test for violations of dif-

ferential privacy will be given in the experiments in Section 5.

4.1 Overview
At a high level, the counterexample generator can be summarized

in the pseudocode in Algorithm 1. First, it generates an InputList, a

set of candidate tuples of the form (D1,D2,arдs). That is, instead of
returning a single pair of adjacent inputs D1,D2 and any auxiliary

arguments the mechanismmay need, we return multiple candidates

which will be filtered later. Each adjacent pair (D1,D2) is designed
to be short so that a developer can understand the problematic

inputs and trace them through the code of the mechanismM . For

this reason, the code ofM will also run fast, so that it will be possible

to later evaluateM(D1,arдs) andM(D2,arдs) multiple times very

quickly.

Algorithm 1: Overview of Counterexample Generator

1 function CounterExampleDetection(M , ϵ):
input :M : mechanism

ϵ : desired privacy (isM ϵ-differentially private?)

// get set of possible inputs: (D1,D2,arдs)
2 InputList← InputGenerator(M , ϵ)

3 E,D1,D2,arдs ← EventSelector(M, ϵ, InputList)

4 p⊤,p⊥ ← HypothesisTest(M, ϵ,D1,D2,arдs,E)

5 return p⊤,p⊥

The next step is the EventSelector. It takes each tuple (D1,D2,arдs)
from InputList and runsM(D1,arдs) andM(D2,arдs)multiple times.

Based on the type of the outputs, it generates a set of candidates

for E. For example, if the output is a real number, then the set of

candidates is the set of intervals (a,b). For each candidate E and

each tuple (D1,D2,arдs), it counts how many times M(D1,arдs)
produced an output ω ∈ E and how many times M(D2,arдs) pro-
duced an output in E. Based on these results, it picks one specific

E and one tuple (D1,D2,arдs) which it believes is most likely to

show a violation of ϵ0-differential privacy.

Finally, the HypothesisTest takes the selected E, D1, D2, and args

and checks if it can detect statistical evidence that P(M(D1,arдs) ∈
E) > eϵP(M(D2,arдs) ∈ E) – which corresponds to the p-value
p⊤ – or eϵP(M(D1,arдs) ∈ E) < P(M(D2,arдs) ∈ E) – which

corresponds to the p-value p⊥.
It is important to note that the EventSelector also uses Hypothe-

sisTest internally as a sub-routine to filter out candidates. That is,

for every candidate E and every candidate (D1, D2, args), it runs

HypothesisTest and treats the returned value as a score. The combi-

nation of E and (D1,D2,arдs) with the best score is returned by the

EvenSelector. Note that EventSelector is using the HypothesisTest

in an exploratory way – it evaluates many hypotheses and returns

the best one it finds. This is why the E and (D1, D2, args) that are

finally chosen need to be evaluated again on Line 4 using fresh

samples fromM .

Interpreting the results. One of the best ways of understanding
the behavior of the counterexample generator is to look at the p-

values it outputs. That is, we take an mechanism M that claims to

satisfy ϵ0-differential privacy and, for each ϵ close to ϵ0, we test
whether it satisfies ϵ-differential privacy (that is, even though M
claims to satisfy ϵ0-differential privacy, we may want to test if it

satisfies ϵ-differential privacy for some other value of ϵ that is close
to ϵ0). The hypothesis tester returns two p-values:

• p⊤. Small values indicate that probably P(M(D1,arдs) ∈ E) >
eϵP(M(D2,arдs) ∈ E).
• p⊥. Small values indicate that probably P(M(D2,arдs) ∈ E) >
eϵP(M(D1,arдs) ∈ E).

For each ϵ , we plot the minimum of p⊤ and p⊥. Figure 1 shows
typical results that would appear when the counterexample detector

is run with real mechanismsM as input.

In Figure 1a,M correctly satisfies the claimed ϵ0 = 0.7 differen-

tial privacy. In that plot, we see that the p-values corresponding
to ϵ = 0.2, 0.4, 0.6 are very low, meaning that the counterexam-

ple generator can prove that the algorithm does not satisfy differ-

ential privacy for those smaller values of ϵ . Near 0.7 it becomes

difficult to find counterexamples; that is, if an algorithm satisfies

0.7-differential privacy, it is very hard to statistically prove that it

does not satisfy 0.65 differential privacy. This is a typical feature of

hypothesis tests as it becomes difficult to reject the null hypothesis

when it is only slightly incorrect (e.g., when the true privacy pa-

rameter is only slightly different from the ϵ we are testing). Now,
any algorithm that satisfies 0.7-differential privacy also satisfies

ϵ-differential privacy for all ϵ ≥ 0.7. This behavior is seen in Figure

1a as the p-values are large for all larger values of ϵ .
Figure 1b shows a graph that can arise from two distinct sce-

narios. One of the situations is when the mechanism M claims to

provide 0.7-differential privacy but actually provides more privacy

(i.e. ϵ-differential privacy for ϵ < 0.7). In this figure, the counterex-

ample generator could prove, for example, that M does not satisfy

0.4-differential privacy, but leaves open the possibility that it satis-

fies 0.5-differential privacy. The other situation is when our tool

has failed to find good counterexamples. Thus when a mechanism

is correct, good precision by the counterexample generator means

that the line starts rising close to (but before the dotted line), and

worse precision means that the line starts rising much earlier.
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(a) Expected results for algorithms cor-
rectly claiming ϵ0 = 0.7 differential pri-
vacy.
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(b) Expected results where counterexam-
ples cannot be found or when M satisfies
differential privacy for ϵ < ϵ0 = 0.7.
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(c) Expected results where M does not satisfy
0.7-differential privacy (i.e. M has a bug and
provides less privacy than advertised).

Figure 1: Interpreting experimental results on hypothesis tests. A hypothetical algorithm M claims to achieve ϵ0-differential
privacy. For each ϵ from 0.2 to 2.4we would evaluate ifM satisfies ϵ-differential privacy. We show a typical graph whenM does
satisfy ϵ0-differential privacy (left), a graph where M possibly provides more privacy (center) and a graph where M provides
less privacy than advertised.

Figure 1c shows a typical situation in which an algorithm claims

to satisfy 0.7-differential privacy but actually provides less privacy

than advertised. In this case, the counterexample generator can

generate good counterexamples at ϵ = 0.7 (the dotted line) and even

at much higher values of ϵ . When an mechanism is incorrect, such

a graph indicates good precision by the counterexample generator.

Limitations. In some cases, finding counterexamples requires a

large input datasets. In those cases, searching for the right inputs

and running algorithms on them many times will impact the ability

of our counterexample generator to find counterexamples. This is

a limitation of all techniques based on statistical tests.

Another important case where our counterexample generator

is not expected to perform well is when violations of differential

privacy happen very rarely. For example, consider a mechanism

M that checks if its input is D1 = [1]. If so, with probability e−9 it
outputs 1 and otherwise it outputs 0 (if the input is not 1,M always

outputs 0).M does not satisfy ϵ-differential privacy for any value

of ϵ . However, showing it statistically is very difficult. Supposing

D1 = [1] and D2 = [0] are adjacent databases, it requires running
M(D1) andM(D2) billions of times to observe that an output of 1

is possible under D1 but is at least e
ϵ
times less likely under D2.

Addressing both of these problems will likely involve incorpo-

ration of program analysis, such as symbolic execution, into our

statistical framework and is a direction for future work.

4.2 Hypothesis Testing
Suppose we have a mechanismM , inputsD1,D2 and an output set E
(we discuss the generation of D1,D2 in Section 4.4 and E in Section

4.3). We would like to check if P(M(D1) ∈ E) > eϵP(M(D2) ∈ E)
or if P(M(D2) ∈ E) > eϵP(M(D1) ∈ E), as that would demonstrate

a violation of ϵ-differential privacy. We treat the P(M(D1) ∈ E) >
eϵP(M(D2) ∈ E) case in this section, as the other case is symmetric.

To do this, the high level idea is to:

• Define p1 = P(M(D1) ∈ E) and p2 = P(M(D2) ∈ E)

Algorithm 2: Hypothesis Test. Parameter n: # of iterations

1 function pvalue(c1, c2, n, ϵ):
2 c̃1 ← Binomial(c1, 1/eϵ )
3 s← c̃1 + c2
4 return 1 − Hypergeom.cdf(c̃1 | 2n,n, s)
5 function HypothesisTest(M , arдs , ϵ , D1, D2 , E):

input :M : mechanism

arдs: additional arguments forM
ϵ : privacy budget to test

D1, D2: adjacent databases

E: Event
6 O1 ← results of runningM(D1,arдs) for n times

7 O2 ← results of runningM(D2,arдs) for n times

8 c1 ← |{i | O1[i] ∈ E}|
9 c2 ← |{i | O2[i] ∈ E}|

10 p⊤ ←pvalue (c1, c2,n, ϵ)

11 p⊥ ←pvalue (c2, c1,n, ϵ)

12 return p⊤,p⊥

• Formulate the null hypothesis as H0 : p1 ≤ eϵ · p2 and the

alternative as H1 : p1 > eϵ · p2.
• Run M with inputs D1 and D2 independently n times each.

Record the results as O1 and O2.
• Count the number of times the result falls in E in each case. Let

c1 = |{i | O1[i] ∈ E}| and c2 = |{i | O2[i] ∈ E}|. Intuitively,
c1 ≫ eϵc2 provides strong evidence against the null hypothesis.
• Calculate a p-value based on c1, c2 to determine how unlikely

the null hypothesis is.

The challenge is, of course, in the last step as we don’t know what

p1 and p2 are. One direction is to estimate them from c1 and c2.
However, it is also challenging to estimate the variance of our

estimates p̂1 and p̂2 (the higher the variance, the less the test should
trust the estimates).
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Instead, we take a different approach that allows us to conduct

the test without knowing what p1 and p2 are. First, we note that
c1 and c2 are equivalent to samples from a Binomial(n,p1) dis-
tribution and a Binomial(n,p2) distribution respectively. We first

consider the border case where p1 = eϵp2. Consider sample c̃1 from
a Binomial(c1, 1/eϵ ) distribution. We note that this sample enjoys

the following property (which implies that in the border case, c̃1
has the same distribution as c2):

Lemma 4.1. Let X ∼Binomial(n,p1) and Z be generated from X
by sampling from the Binomial(X , 1/eϵ ) distribution. The marginal
distribution of Z is Binomial(n,p1/eϵ ).

Proof. The relationship between Binomial and Bernoulli ran-

dom variables means that X =
∑n
i=1 Xi , where Xi is a Bernoulli(p1)

random variable. Generating Z from X is the same as doing the

following: set Zi = 0 ifXi = 0. IfXi = 1, set Zi = 1with probability

1/eϵ (and set Zi = 0 otherwise). Then set Z =
∑n
i=1 Zi . Hence, the

marginal distribution of Zi is a Bernoulli(p1/eϵ ) random variable:

P (Zi = 1) = P (Zi = 1 | Xi = 1)P (Xi = 1) + P (Zi = 1 | Xi = 0)P (Xi = 0)
= (1/eϵ ) · p1 + 0 · (1 − p1) = p1/eϵ

Thismeans that themarginal distribution ofZ is Binomial(n,p1/eϵ ).
□

Thus we have the following facts that follow immediately from

the lemma:

• If p1 > eϵp2 then the distribution of c̃1 is Binomial(n, p̃1) with
p̃1 = p1/eϵ and so has a larger Binomial parameter than c2
(which is Binomial(n,p2)). We want our test to be able to reject

the null hypothesis in this case.

• If p1 = eϵp2 then the distribution of c̃1 is Binomial(n, p̃1) with
p̃1 = p2 and so has the same Binomial parameter as c2. We do

not want our test to reject the null hypothesis in this case.

• If p1 < eϵp2 then the distribution of c̃1 is Binomial(n, p̃1) with
p̃1 = p1/eϵ and so has a smaller Binomial parameter than c2
(which is Binomial(n,p2)). We do not want to reject the null

hypothesis in this case.

Thus, by randomly generating c̃1 from c1, we have (randomly)

reduced the problem of testing p1 > eϵp2 vs. p1 ≤ eϵp2 (on the

basis of c1 and c2) to the problem of testing p̃1 > p2 vs. p̃1 ≤ p2 (on
the basis of c̃1 and c2). Now, checking whether c̃1 and c2 come from

the same distribution can be done with the Fisher’s exact test (see

Section 3): the p-value is 1 − Hypergeom.cdf(c̃1 | 2n,n, c̃1 + c2).2
This is done in the function pvalue in Algorithm 2.

To summarize, given c1 and c2, we first sample c̃1 from the

Binomial(c1, 1/eϵ ) distribution and then return the p-value of (1 −
Hypergeom.cdf(c̃1 | 2n,n, c̃1+c2)). Since this is a random reduction,

we reduce its variance by sampling c̃1 multiple times and averaging

the p-values. That is, we run the p-value function (Algorithm 2)

multiple times with the same inputs and average the p-values it

returns.

2
Here we use a notation from SciPy [25] package where Hypergeom.cdf means the

cumulative distribution function of hypergeometric distribution.

4.3 Event Selection
Having discussed how to test if P(M(D1) ∈ E) > eϵP(M(D2) ∈ E)
or if P(M(D2) ∈ E) > eϵP(M(D1) ∈ E) when D1,D2, and E were

pre-specified, we now discuss how to select the event E that is most

likely to show violations of ϵ-differential privacy.

Algorithm 3: Event Selector. Parameter n: # of iterations

1 function EventSelector(n,M , ϵ , InputList):
input :M : mechanism

InputList : possible inputs
ϵ : privacy budget to test

2 SearchSpace ← search space based on return type

3 pvalues ← [ ]
4 results ← [ ]
5 foreach (D1,D2,arдs) ∈ InputList do
6 O1 ← results of runningM(D1,arдs) for n times

7 O2 ← results of runningM(D2,arдs) for n times

8 foreach E ∈ SeachSpace do
9 c1 ← |{i | O1[i] ∈ E}|

10 c2 ← |{i | O2[i] ∈ E}|
11 p⊤ ←pvalue (c1, c2,n, ϵ)

12 p⊥ ←pvalue (c2, c1,n, ϵ)

13 pvalues .append(min(p⊤, p⊥))
14 results .append(D1,D2,arдs,E)

15 end
16 end
17 return results[argmin(pvalues)]

One of the challenges is that different mechanisms could have

different output types (e.g., a discrete number, a vector of numbers,

a vector of categorical values, etc.). To address this problem, we

define a search space S of possible events to look at. The search

space depends on the type of the output ω of M , which can be

determined by runningM(D1) andM(D2) multiple times.

(1) The output ω is a fixed length list of categorical values.
Wefirst runM(D1) once and ask it to not use any noise (i.e. tell it
to satisfy ϵ-differential privacy with ϵ = ∞). Denote this output
as ω0. Now, whenM runs with its preferred privacy settings to

produce an output ω, we define t(ω) be the Hamming distance

between the output ω and ω0. The search space is

S = {{ω | t(ω) = k} : k = 0, 1, . . . , l}
where l is the fixed length of output ofM . Another set of events

relate to the count of a categorical value in the output. If there

arem values, then define

Si = {{ω | ω .count(valuei ) = k} : k = 0, 1, . . . , l},
1 ≤ i ≤ m. The overall search space is the union of S and all Si .

(2) The output ω is a variable length list of categorical val-
ues. In this case, one extra set of events E we look at corre-

spond to the length of the output. For example, we may check

if P(M(D1) has length k) > P(M(D2) has length k). Hence, we
define

S0 = {{ω | ω .lenдth = k} : k = 0, 1, . . .}
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For the search space S , we use this S0 unioned with the search

space from the previous case.

(3) The output ω is a fixed length list of numeric values.
In this case, the output is of the form ω = (a1, . . . ,am ). Our
search space is the union of the following:

{{ω | ω[i] ∈ (a,b)} : i = 1, . . . ,m and a < b},
{{ω | avg(ω) ∈ (a,b)} : a < b},
{{ω | min(ω) ∈ (a,b)} : a < b},
{{ω | max(ω) ∈ (a,b)} : a < b}.

That is, we would end up checking if P(avд(M(D1)) ∈ (a,b)) >
P(avд(M(D2)) ∈ (a,b)), etc.. To save time, we often restrict a
and b to be multiples of a small number like ±0.2, or ±∞. In the

case that the output ω is always an integer array, we replace

the condition “∈ (a,b)” with “= k” for each integer k .
(4) M outputs a variable length list of numeric values.

The search space is the union of Case 3 and S0 in Case 2.

(5) M outputs a variable length list of mixed categorical and
numeric values. In this case, we separate out the categorical

values from numeric values and use the cross product of the

search spaces for numeric and categorical values. For instance,

events would be of the form “ω has k categorical components

equal to ℓ and the average of the numerical components of ω is

in (a,b)”
The EventSelector is designed to return one event E for use in

the hypothesis test in Algorithm 1. The way EventSelector works is

it receives an InputList, which is a set of tuples (D1,D2,arдs)where
D1,D2 are adjacent databases and args is a set of values for any

other parametersM needs. For each such tuple, it runsM(D1) and
M(D2) for n times each. Then for each possible event in the search

space, it runs the hypothesis test (as an exploratory tool) to get a

p-value. The combination of (D1,D2,arдs) and E that produces the

lowest p-value is then returned to Algortihm 1. Algorithm 1 uses

those choices to run the real hypothesis test on fresh executions of

M on D1 and D2.

The pseudocode for the EventSelector is shown in Algorithm 3.
3

4.4 Input Generation
In this section we discuss our approaches for generating candidate

tuples (D1,D2,arдs) where D1,D2 are adjacent databases and args

is a set of auxiliary parameters that a mechanismM may need.

4.4.1 Database Generation . To find the adjacent databases that are
likely to form the basis of counterexamples that illustrate violations

of differential privacy, we adopt a simple and generic approach that

works surprisingly well. Recalling that the inputs to mechanisms

are best modeled as a vector of query answers, we use the type of

patterns shown in Table 1.

The “One Above” and “One Below” categories are suitable for

algorithms whose input is a histogram (i.e. in adjacent databases,

at most one query can change, and it will change by at most 1). The

rest of the categories are suitable when in adjacent databases every

3
In practice, to avoid choosing bad E , we let cE be the total number of times M (D1)
and/orM (D2) produced an output in E . Then it only executes Line 11-14 in Algorithm

3 if cE ≥ 0.001 · n · eϵ , otherwise the selection of E is too noisy.

Algorithm 4: Input Generator.

1 function ArgumentGenerator(M , D1,D2):
2 arдs0 ← Arguments used in noise generation with values

that minimize the noises

3 constraints ← Traverse the source code ofM and generate

constraints to force D1 and D2 to diverge on branches

4 arдs1 ← MaxSMT(constraints)

5 return arдs0 + arдs1
6 function InputGenerator(M , len):

input :M : mechanism

len: length of input to generate

7 candidates ← Empirical pairs of databases of length len

8 InputList ← [ ]
9 foreach (D1,D2) ∈ candidates do

10 arдs ← ArgumentGenerator(M,D1,D2)
11 InputList .append(D1,D2,arдs)

12 end
13 return InputList

Table 1: Database categories and samples

Category Sample D1 Sample D2
One Above [1, 1, 1, 1, 1] [2, 1, 1, 1, 1]

One Below [1, 1, 1, 1, 1] [0, 1, 1, 1, 1]

One Above Rest Below [1, 1, 1, 1, 1] [2, 0, 0, 0, 0]

One Below Rest Above [1, 1, 1, 1, 1] [0, 2, 2, 2, 2]

Half Half [1, 1, 1, 1, 1] [0, 0, 0, 2, 2]

All Above & All Below [1, 1, 1, 1, 1] [2, 2, 2, 2, 2]

X Shape [1, 1, 0, 0, 0] [0, 0, 1, 1, 1]

query can change by at most one (i.e. the queries have sensitivity
4

∆q = 1).

The design of the categories is based on the wide variety of

changes in query answers that are possible when evaluated on one

database and on an adjacent database. For example, it could be the

case that a few of the queries increase (by 1, if their sensitivity

is 1, or by ∆q in the general case) but most of them decrease. A

simple representative of this situation is “One Above Rest Below”

in which one query increases and the rest decrease. The category

“One Below Rest Above” is the reverse.

Another situation is where roughly half of the queries increase

and half decrease (when evaluated on a database compared to when

evaluated on an adjacent database). This scenario is captured by the

“Half Half” category. Another situation is where all of the queries

increase. This is captures by the “All Above & All Below” category.

Finally, the “X Shape” category captures the setting where the query

answers are not all the same and some increase and others decrease

when evaluated on one database compared to an adjacent database.

These categories were chosen from our desire to allow coun-

terexamples to be easily understood by mechanism designers (and

to make it easier for them to manually trace the code to understand

4
For queries with larger sensitivity, the extension is obvious. For example D1 =

[1, 1, 1, 1, 1] and D2 = [1 + ∆q, 1 + ∆q, . . . , 1 + ∆q ]
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the problems). Thus the samples are short and simple. We consider

inputs of length 5 (as in Table 1) and also versions of length 10.

4.4.2 Argument Generation. Some differentially-private algorithms

require extra parameters beyond the database. For example, the

sparse vector technique [19], shown in Algorithm 11, takes as inputs

a threshold T and a bound N . It tries to output numerical queries

that are larger than T . However, for privacy reasons, it will stop

after it returns N noisy queries whose values are greater than T .
These two arguments are specific to the algorithm and their proper

values depend on the desired privacy level as well as algorithm

precision.

To find values of auxiliary parameters (such as N andT in Sparse

Vector), we build argument generator based on Symbolic Execution
[26], which is typically used for bug finding: it generates concrete

inputs that violate assertions in a program. In general, a symbolic

executor assigns symbolic values, rather than concrete values as

normal execution would do, for inputs. As the execution goes, the

executor maintains a symbolic program state at each assertion and

generates constraints that will violate the assertion. When those

constraints are satisfiable, concrete inputs (i.e., a solution of the

constraints) are generated.

Compared with standard symbolic execution, a major difference

in our argument generation is that we are interested in algorithm

arguments that will likelymaximize the privacy cost of an algorithm.

In other words, there is no obvious assertion to be checked in our

argument generation. To proceed, we use two heuristics that likely

will cause large privacy cost of an algorithm:

• The first heuristic applies to parameters that affect noise gener-

ation. For example in Sparse Vector, the algorithm adds Lap(2 ·
N · ∆q/ϵ0) noise. For such a variable, we use the value that

results in small amount of noise (i.e., N = 1). Small amount of

noise is favorable since it reduces the variance in the hypothesis

testing (Section 4.2).

• The second heuristic (for variables that do not affect noise)

prefers arguments that make two program executions using

two different databases (as described in Section 4.4.1) to take

as many diverging branches as possible. The reason is that

diverging branches will likely use more privacy budget.

Next, we give a more detailed overview of our customized sym-

bolic executor. The symbolic executor takes a pair of concrete databases
as inputs (as described in Section 4.4.1) and uses symbolic values
for other input parameters. Random samples in the program (e.g., a

sample from Laplace distribution) are set to value 0 in the symbolic

execution. Then, the symbolic executor tracks symbolic program

states along program execution in the standard way [26]. For ex-

ample, the executor will generate a constraint
5 x = y + 1 after an

assignment (x← y+1), assuming that variable y has a symbolic

value y before the assignment. Also, the executor will unroll loops

in the source code, which is standard in most symbolic executors.

Unlike standard symbolic executors, the executor conceptually

tracks a pair of symbolic program states along program execution

(one on concrete database D1, and one on concrete database D2).

Moreover, it also generate extra constraints, according to the two

heuristics above, in the hope of maximizing the privacy cost of an

5
For simplicity, we use a simple representation for constraints; Z3 has an internal

format and a user can either use Z3’s APIs or SMT2 [34] format to represent constraints.

algorithm. In particular, it handles two kinds of statements in the

following way:

• Sampling. The executor generates two constraints for a sam-

pling statement: a constraint that eliminates randomness in

symbolic execution by assigning sample to value 0, and a con-

straint that ensures a small amount of noise. Consider a state-

ment (η ← Lap(e)). The executor generates two constraints:

η = 0 as well as a constraint that minimizes expression e .
• Branch. The executor generates a constraint that makes the

two executions diverge on branches. Consider a branch state-

ment (if e then · · · ). Assume that the executor has symbolic

values e1 and e2 for the value of expression e on databases D1

and D2 respectively; it will generates a constraint (e1 ∧ ¬e2) ∨
(¬e1 ∧ e2) to make the executions diverge. Note that unlike

other constraints, a diverging constraint might be unsatisfiable

(e.g., if the query answers under D1 and D2 are the same). How-

ever, our goal is tomaximize the number of satisfiable diverging

constraints, which can be achieved by a MaxSMT solver.

The executor then uses an external MaxSMT solver such as Z3

[13] on all generated constraints to find arguments that maximizes

the number of diverged branches.

For example, the correct version of the Sparse Vector algorithm

(see the complete algorithm in Algorithm 11) has the parameter T
(a threshold). It has a branch that tests whether the noisy query

answer is above the threshold T :

q + η2 ≥ T̂

Here, η2 is a noise variable, q is one query answer (i.e. one of the

components of the input D1 of the algorithm) and T̂ is a noisy

threshold (T̂ = T +η1). Suppose we start from a database candidate

([1, 1, 1, 1, 1], [2, 2, 2, 2, 2]). The symbolic executor assigns symbolic

values to the parameters T and unrolls the loop in the algorithm,

where each iteration handles one noisy query. Along the execution,

it updates program states. For example, statement T̂ ← T + η1
results in T̂ = T + η1. For the first execution of the branch of

interest, the executor tracks the following symbolic program state:

q1 = 1 ∧ q2 = 2 ∧ η1 = 0 ∧ η2 = 0 ∧ T̂1 = T + η1 ∧ T̂2 = T + η2

as well as the following constraint for diverging branches:

(q1 + η1 ≥ T̂1 ∧ q2 + η2 < T̂2) ∨ (q1 + η1 < T̂1 ∧ q2 + η2 ≥ T̂2)

Similarly, the executor generates constraints from other itera-

tions. In this example, the MaxSMT solver returns a value in be-

tween of 1 and 2 so that constraints from all iterations are satisfied.

This value of T is used as arg in the candidate tuple (D1,D2,arд).

5 EXPERIMENTS
We implemented our counterexample detection framework with

all components, including hypothesis test, event selector and input

generator. The implementation is publicly available
6
. The tool takes

in an algorithm implementation and the desired privacy bound ϵ0,
and generates counterexamples if the algorithm does not satisfy

ϵ0-differential privacy.

6
https://github.com/cmla-psu/statdp.
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In this section we evaluate our detection framework on some of

the popular privacy mechanisms and their variations. We demon-

strate the power of our tool: for mechanisms that falsely claim to be

differentially private, our tool produces convincing evidence that

this is not the case in just a few seconds.

5.1 Noisy Max
Report NoisyMax reports which one among a list of counting queries

has the largest value. It adds Lap(2/ϵ0) noise to each answer and

returns the index of the query with the largest noisy answer. The

correct versions have been proven to satisfy ϵ0-differential privacy
[19] no matter how long the input list is. A naive proof would show

that it satisfies (ϵ0 · |Q |/2)-differential privacy (where |Q | is the
length of the input query list), but a clever proof shows that it

actually satisfies ϵ0-differential privacy.

Algorithm 5: Correct Noisy Max with Laplace noise

1 function NoisyMax(Q , ϵ0):
input :Q : queries to the database, ϵ0: privacy budget.

2 NoisyVector← [ ]
3 for i = 1 . . . len(Q) do
4 NoisyVector[i] ← Q[i] + Lap(2/ϵ0)
5 end
6 return arдmax (NoisyVector)

5.1.1 Adding Laplace Noise. The correct Noisy Max algorithm (Al-

gorithm 5) adds independent Lap(2/ϵ0) noise to each query answer

and returns the index of the maximum value. As Figure 2a shows,

we test this algorithm for different privacy budget ϵ0 at 0.2, 0.7, 1.5.
All lines rise when the test ϵ is slightly less than the claimed privacy

level ϵ0 of the algorithm. This demonstrates the precision of our

tool: before ϵ0, there is almost 0 chance to falsely claim that this

algorithm is not private; after ϵ0, thep-value is too large to conclude
that the algorithm is incorrect. We note that the test result is very

close to the ideal cases, illustrated by the vertical dashed lines.

Algorithm 6: Correct Noisy Max with Exponential noise

1 function NoisyMax(Q , ϵ0):
input :Q : queries to the database, ϵ0: privacy budget.

2 NoisyVector← [ ]
3 for i = 1 . . . len(Q) do
4 NoisyVector[i] ← Q[i] + Exponential(2/ϵ0)
5 end
6 return arдmax (NoisyVector)

5.1.2 Adding Exponential Noise. One correct variant of Noisy Max

adds Exponential(2/ϵ0) noise, rather than Laplace noise, to each

query answer(Algorithm 6). This mechanism has also been proven

to be ϵ0-differential private[19]. Figure 2b shows the corresponding
test result, which is similar to that of Figure 2a. The result indicates

that this correct variant likely satisfies ϵ0-differential privacy for

the claimed privacy budget.

Algorithm 7: Incorrect Noisy Max with Laplace noise, return-

ing the maximum value

1 function NoisyMax(Q , ϵ0):
input :Q : queries to the database, ϵ0: privacy budget.

2 NoisyVector← [ ]
3 for i = 1 . . . len(Q) do
4 NoisyVector[i] ← Q[i] + Laplace(2/ϵ0)
5 end
6 // returns maximum value instead of index

7 returnmax (NoisyVector)

Algorithm 8: Incorrect Noisy Max with Exponential noise,

returning the maximum value

1 function NoisyMax(Q , ϵ0):
input :Q : queries to the database, ϵ0: privacy budget.

2 NoisyVector← [ ]
3 for i = 1 . . . len(Q) do
4 NoisyVector[i] ← Q[i] + Exponential(2/ϵ0)
5 end
6 // returns maximum value instead of index

7 returnmax (NoisyVector)

Algorithm 9: Histogram

1 function Histogram(Q , ϵ0):
input :Q :queries to the database, ϵ0: privacy budget.

2 NoisyVector← [ ]
3 for i = 1 . . . len(Q) do
4 NoisyVector[i] ← Q[i] + Lap(1/ϵ0)
5 end
6 return NoisyVector

Algorithm 10: Histogram with wrong scale

1 function Histogram(Q , ϵ0):
input :Q : queries to the database, ϵ0: privacy budget.

2 NoisyVector← [ ]
3 for i = 1 . . . len(Q) do
4 // wrong scale of noise is added

NoisyVector[i] ← Q[i] + Lap(ϵ0)
5 end
6 return NoisyVector

5.1.3 Incorrect Variants of Exponential Noise. An incorrect variant

of NoisyMax has the same setup but instead of returning the index
of maximum value, it directly returns the maximum value. We

evaluate on two variants that report the maximum value instead of

the index (Algorithm 7 and 8) and show the test result in Figure 2c

and 2d.

For the variant using Laplace noise (Figure 2c), we can see that

for ϵ0 = 0.2, the line rises at around test ϵ of 0.4, indicating that

this algorithm is incorrect for the claimed privacy budget of 0.2.

Session 3B: Differential Privacy 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

483



0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Test ϵ

0.0

0.2

0.4

0.6

0.8

1.0
P

Va
lu

e

ϵ0 = 0.2
ϵ0 = 0.7
ϵ0 = 1.5

(a) Correct Noisy Max with Laplace noise.
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(b) Correct Noisy Max with Exponential noise.
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(c) Incorrect variant with Laplace noise. It returns the
maximum value instead of the index.
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(d) Incorrect variantwith Exponential noise. It returns the
maximum value instead of the index.

Figure 2: Results of Noisy Max algorithm and its variants.

The same pattern happens when we set privacy budget to be 0.7

and 1.5: all lines rise much later than their claimed privacy budget.

In this incorrect version, returning the maximum value (instead

of its index) causes the algorithm to actually satisfy ϵ0 · |Q |/2 dif-
ferential privacy instead of ϵ0-differential privacy. For the variant
using Exponential noise (Figure 2d), the lines rise much later than

the claimed privacy budgets, indicating strong evidence that this

variant is indeed incorrect. Also, we can hardly see the lines for

privacy budgets 0.7 and 1.5, since their p-values remain 0 for all

the test ϵ ranging from 0 to 2.2 in the experiment.

5.2 Histogram
TheHistogram algorithm [14] is a very simple algorithm for publish-

ing an approximate histogram of the data. The input is a histogram

and the output is a noisy histogram with the same dimensions. The

Histogram algorithm requires input queries to differ in at most one

element. Here we evaluate with different scale parameters for the

added Laplace noise.

The correct Histogram algorithm adds independent Lap(1/ϵ0)
noise to each query answer, as shown in Algorithm 9. Since at most

one query answer may differ by at most 1, returning the maximum

value is ϵ0-differentially private [14].

To mimic common mistakes made by novices of differential

privacy, we also evaluate on an incorrect variant where Lap(ϵ0)
noise is used in the algorithm (Algorithm 10). We note that the

incorrect variant here satisfies 1/ϵ0-differential privacy, rather the
claimed ϵ0-differential privacy.

Figures 3a and 3b show the test results for the correct and in-

correct variants respectively. Here, Figures 3a indicates that the

correct implementation satisfies the claimed privacy budgets. For

the incorrect variant, the claimed budgets of 0.2 and 0.7 are cor-

rectly rejected; this is expected since the true privacy budgets are

1/0.2 and 1/0.7 respectively for this incorrect version. Interestingly,
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(a) Correct Histogram algorithm with Lap(1/ϵ0) noise.
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(b) Incorrect Histogram algorithm with Lap(ϵ0) noise. It
provides more privacy than advertised when ϵ0 ≥ 1 and
less privacy than advertised when ϵ0 < 1.

Figure 3: Results of Histogram algorithm and its variants

the result indicates that for ϵ0 = 1.5, this algorithm is likely to

be more private than claimed (the line rise around 0.6 rather than

1.5). Again, this is expected since in this case, the variant is indeed

1/1.5 = 0.67-differentially private.

5.3 Sparse Vector
The Sparse Vector Technique (SVT) [18] (see Algorithm 11) is a

powerful mechanism for answering numerical queries. It takes a list

of numerical queries and simply reports whether their answers are

above or below a preset thresholdT . It allows the program to output

some noisy query answers without any privacy cost. In particular,

arbitrarily many “below threshold” answers can be returned, but

only at most N “above threshold” answers can be returned. Because

of this remarkable property, there are many variants proposed in

both published papers and practical use. However, most of them

turn out to be actually not differentially private[28]. We test our

tool on a correct implementation of SVT and the major incorrect

variants summarized in [28]. In the following, we describe what

the variants do and list their pseudocodes.

5.3.1 SVT [28]. Lyu et al. have proposed an implementation of SVT

and proved that it satisfies ϵ0-differential privacy. This algorithm
(Algorithm 11) tries to allocate the global privacy budget ϵ0 into
two parts: half of the privacy budget goes to the threshold, and

the other half goes to values which are above the threshold. There

will not be any privacy cost if the noisy value is below the noisy

threshold, in which case the program will output a False. If the
noisy value is above the noisy threshold, the program will output a

True. After outputting a certain amount (N ) of True’s, the program
will halt.

Figure 4a shows the test result for this correct implementation.

All lines rise around the true privacy budget, indicating that our

tool correctly conclude that this algorithm is correct.

Algorithm 11: SVT [28].

input :Q : queries to the database, ϵ0: privacy budget

T : threshold, N : bound of outputting True’s
∆: sensitivity

1 function SVT(Q , T , ϵ0, ∆, N):
2 out ← [ ]
3 η1 ← Lap(2 ∗ ∆/ϵ0)
4 T̃ ← T + η1
5 count ← 0

6 foreach q in Q do
7 η2 ← Lap(2 ∗ N ∗ ∆/ϵ0)
8 if q + η2 ≥ T̃ then
9 out ← True :: out

10 count ← count + 1

11 if count ≥ N then
12 Break
13 end
14 else
15 out ← False :: out

16 end
17 end
18 return (out )

5.3.2 iSVT 1 [38]. One incorrect variant (Algorithm 12) adds no

noise to the query answers, and has no bound on the number of

True’s that the algorithm can output. This implementation does not

satisfy ϵ0-differential privacy for any finite ϵ0.
This expectation is consistent with the test result shown in Figure

4b: the p-value never rises at any test ϵ . This result strongly indicates
that this implementation with claimed privacy budget 0.2, 0.7, 1.5

is not private for at least any ϵ ≤ 2.2.
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Algorithm 12: iSVT 1 [38]. This does not add noise to the

query answers, and has no bound on number of True’s to output
(i.e., N ). This is not private for any privacy budget ϵ0 .

input :Q : queries to the database, ϵ0: privacy budget

T : threshold, ∆: sensitivity
1 function iSVT1(Q , T , ϵ0, ∆):
2 out ← [ ]
3 η1 ← Lap(∆/ϵ0)
4 T̃ ← T + η1
5 // no bounds on number of outputs

6 foreach q in Q do
7 // adds no noise to query answers

8 η2 ← 0

9 if q + η2 ≥ T̃ then
10 out ← True :: out

11 else
12 out ← False :: out

13 end
14 end
15 return (out )

Algorithm 13: iSVT 3 [27]. The noise added to queries doesn’t

scale with N . The actual privacy cost is
1+6N

4
ϵ0.

input :Q : queries to the database, ϵ0: privacy budget

T : threshold, N : bound of outputting True’s
∆: sensitivity

1 function iSVT3(Q , T , ϵ0, ∆, N):
2 out ← [ ]
3 η1 ← Lap(4 ∗ ∆/ϵ0)
4 T̃ ← T + η1
5 count ← 0

6 foreach q in Q do
7 // noise added doesn’t scale with N

8 η2 ← Lap(4 ∗ ∆/(3 ∗ ϵ0))
9 if q + η2 ≥ T̃ then

10 out ← True :: out

11 count ← count + 1

12 if count ≥ N then
13 Break
14 end
15 else
16 out ← False :: out

17 end
18 end
19 return (out )

5.3.3 iSVT 2 [11]. Another incorrect variant (Algorithm 14) has

no bounds on the number of True’s the algorithm can output. With-

out the bounds, the algorithm will still output True even if it has

Algorithm 14: iSVT 2 [11]. This one has no bounds on number

of True’s (i.e, N ) to output. This is not private for any finite

privacy budget ϵ0.

input :Q : queries to the database, ϵ0: privacy budget

T : threshold, ∆: sensitivity
1 function iSVT2(Q , T , ϵ0, ∆):
2 out ← [ ]
3 η1 ← Lap(2 ∗ ∆/ϵ0)
4 T̃ ← T + η1
5 // no bounds on number of outputs

6 foreach q in Q do
7

8 η2 ← Lap(2 ∗ ∆/ϵ0)
9 if q + η2 ≥ T̃ then

10 out ← True :: out

11 else
12 out ← False :: out

13 end
14 end
15 return (out )

Algorithm 15: iSVT 4 [36]. When the noisy query answer is

above the threshold, output the actual value of noisy query

answer.

input :Q : queries to the database, ϵ0: privacy budget

T : threshold, N : bound of outputting True’s
∆: sensitivity

1 function iSVT4(Q , T , ϵ0, ∆, N):
2 out ← [ ]
3 η1 ← Lap(2 ∗ ∆/ϵ0)
4 T̃ ← T + η1
5 count ← 0

6 foreach q in Q do
7 η2 ← Lap(2 ∗ N ∗ ∆/ϵ0)
8 if q + η2 ≥ T̃ then
9 // output numerical value instead of boolean value

10 out ← (q + η2) :: out
11 count ← count + 1

12 if count ≥ N then
13 Break
14 end
15 else
16 out ← False :: out

17 end
18 end
19 return (out )

exhausted its privacy budget. So this variant is not private for any

finite ϵ0.
Figure 4c indicates this implementation with privacy budget

ϵ0 = 0.2 is most likely not private for any ϵ ≤ 0.5. When ϵ0 = 0.7,
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(a) Correct implementation of SVT [28].
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(b) iSVT 1 [38] adds no noise to query and threshold.
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(c) iSVT 2 [11] no bounds on outputting True’s.
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(d) iSVT 3 [27] query noise does not scale with N .
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(e) iSVT 4 [36] outputs the actual query answer when it is
above the threshold.

Figure 4: Results for variants of Sparse Vector Technique
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Table 2: Counterexamples detected for incorrect privacy mechanisms

Mechanism (ϵ0 = 1.5) Event E D1 D2
Incorrect Noisy Max with Laplace Noise ω ∈ (−∞, 0.0) [1, 1, 1, 1, 1] [0, 0, 0, 0, 0]

Incorrect Noisy Max with Exponential Noise ω ∈ (−∞, 1.0) [1, 1, 1, 1, 1] [0, 0, 0, 0, 0]

Incorrect Histogram [17] ω[0] ∈ (−∞, 1.0) [1, 1, 1, 1, 1] [2, 1, 1, 1, 1]

iSVT 1 [38] t (ω) = 0 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [0, 0, 0, 0, 0, 2, 2, 2, 2, 2]

iSVT 2 [11] t (ω) = 9 [1, 1, 1, 1, 1, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]

iSVT 3 [27] t (ω) = 0 [1, 1, 1, 1, 1, 0, 0, 0, 0, 0] [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]

iSVT 4 [36] (ω .count (False), ω[9]) ∈ {9} × (−2.4, 2.4) [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

we have detected counterexamples showing the algorithm is likely

not private for any ϵ ∈ (0, 2.1]. When ϵ0 = 1.5, we have detected

counterexamples showing the algorithm is likely not private for

any ϵ ∈ (0, 3.0].

5.3.4 iSVT 3 [27]. Another incorrect variant (Algorithm 13) adds

noise to queries but the noise doesn’t scale with the bound N . The

actual privacy budget for this variant is
1+6N

4
ϵ0 where ϵ0 is the

input privacy budget.

We note that our tool detects the actual privacy cost, as shown

in Figure 4d, for this incorrect algorithm. Consider privacy budget

ϵ0 = 0.2. The corresponding line rises at 0.3, right before the actual

budget
1+6N

4
ϵ0 = 0.35 (N = 1), suggesting the precision of our tool.

The same happens for ϵ0 = 0.7 and 1.5. The two lines rise at 1.1

and 2.3, which are close to but before the actual budget 1.225 and

2.625, respectively.

5.3.5 iSVT 4 [36]. Another incorrect variant (Algorithm 15) out-

puts the actual value of noisy query answer when it is above the

noisy threshold.

The interesting part of this algorithm is that, since it outputs het-

erogeneous list of booleans and values, our event selector chooses

{9} × (−2.4, 2.4). This means we choose an event that consists of 9

booleans (in this case, Falses) followed by a number in (−2.4, 2.4).
Figure 4e shows much noise in it because this one is almost cor-

rect in the sense that violations of differential privacy happen with

very low probability; thus it is hard to detect its incorrectness. But

we can still see that the lines all rise later than the corresponding

claimed privacy budget ϵ0. Hence, our tool correctly concludes that

this algorithm does not satisfy ϵ0-differential privacy.

5.4 Performance
We performed all experiments on a double Intel

®
Xeon

®
E5-2620

v4 @ 2.10GHz CPU machine with 64 GB memory. Our tool is im-

plemented in Anaconda distribution of Python 3 and optimized for

running in parallel environment to fully utilize the 32 logical cores

of the machine.

For each test ϵ , we set the samples of iteration n to be 500,000

for the hypothesis test and 100,000 for the event selector and query

generator. Table 3 lists the average time spent on hypothesis test

for a specific test ϵ (i.e., the average time spent on generating one

single point in the figures) for each algorithm. The results suggest

that it is very efficient to run a test for an algorithm against one

privacy cost: all tests finish within 23 seconds.

The time difference between Noisy Max, Histogram and Sparse

Vector Technique is due to the nature of the algorithms. For SVT, the

Table 3: Time spent on running tool for different algorithms

Mechanism Time / Seconds
Correct Laplace Noisy Max[15] 4.32

Incorrect Laplace Noisy Max 9.49

Correct Exponential Noisy Max [15] 4.25

Incorrect Exponential Noisy Max 8.70

Histogram [14] 10.39

Incorrect Histogram 11.28

SVT [28] 1.99

iSVT 1 [38] 1.62

iSVT 2 [11] 4.56

iSVT 3 [27] 2.56

iSVT 4 [36] 22.97

parameter N is set to 1, meaning that the algorithm will halt once

it hit a True branch. For Noisy Max and Histogram, all noise will be

calculated and applied to each query answer, consuming more time

to calculate p-values. Another factor that will also influence the test

time is the search space of events. Correct Noisy Max returns an

index which we would have a search space of only integers ranging

from 1 to the length of queries. However, the incorrect Noisy Max
will return a real number so the search space would be much larger

than the correct one, thus taking more time to find a suitable event

E. This also occurs in Sparse Vector Technique.

6 CONCLUSIONS AND FUTURE WORK
While it is invaluable to formally verify correct differentially-private

algorithms, we believe that it is equally important to detect incor-

rect algorithms and provide counterexamples for them, due to the

subtleties involved in algorithm development. We proposed a novel

semi-black-box method of evaluating differentially private algo-

rithms, and providing counterexamples for those incorrect ones. We

show that within a few seconds, our tool correctly rejects incorrect

algorithms (including published ones) and provides counterexam-

ples for them.

Future work includes extensions that detect violations of differ-

ential privacy even if those violations occur with extremely small

probabilities. This will require additional extensions such as a more

refined use of program analysis techniques (including symbolic

execution) that reason about what happens when a program is run

on adjacent databases. Additional extensions include counterex-

ample generation for other variants of differential privacy, such
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as approximate differential privacy, zCDP, and renyi-differential

privacy.
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