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Abstract In many atmospheric flows, a dispersed phase is actively suspended
by turbulence, whose competition with gravitational settling ultimately dic-
tates its vertical distribution. Examples of dispersed phases include snow, sea
spray droplets, dust, or sand, where individual elements of much larger density
than the surrounding air are carried by turbulent motions after emission from
the surface. In cases where the particle is assumed to deviate from local fluid
motions only by its gravitational settling (i.e. they are inertialess), traditional
flux balances predict a power law dependence of particle concentration with
height. It is unclear, however, how particle inertia influences this relationship,
and this question is the focus of this work. Direct numerical simulations are
conducted of turbulent open channel flow, laden with Lagrangian particles
of specified inertia; in this way the study focuses on the turbulent transport
which occurs in the lowest few meters of the planetary boundary layer, in re-
gions critical for connecting emission fluxes to the fluxes felt by the full-scale
boundary layer. Simulations over a wide range of particle Stokes number, while
holding the dimensionless settling velocity constant, are performed to under-
stand the role of particle inertia on vertical dispersion. It is found that particles
deviate from their inertialess behavior in ways that are not easily captured by
traditional theory; concentrations are reduced with increasing Stokes number.
Furthermore, a similarity-based eddy diffusivity for particle concentration fails
as particles experience inertial acceleration, precluding a closed-form solution
for particle concentration as in the case of inertialess particles. The primary
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2 David Richter, Marcelo Chamecki

consequence of this result is that typical flux parameterizations connecting sur-
face emission models (e.g. saltation models or sea spray generation functions)
to elevated boundary conditions may overestimate particle concentrations due
to the reduced vertical transport caused by inertia in between; likewise particle
emission may be underestimated if inferred from concentration measurements
aloft.

Keywords atmospheric boundary layer - dispersion - dust - inertial particles -
sea spray

1 Introduction

The planetary boundary layer (PBL) links the earth’s surface to the atmo-
sphere, and as a result controls the transmission of dust, salt, and other
aerosols from their emission source at the surface to the larger meso- and
synoptic-scale motions which govern their long-range transport and ultimate
fate. Once airborne, these particulates can alter key chemical (O’Dowd and
de Leeuw, 2007), optical (Kleefeld et al., 2002), and meteorological (Rosenfeld
et al., 2008) processes before being deposited back onto the terrestrial or ma-
rine surface. Thus much work has been done in understanding and accurately
parameterizing near-surface particle emission and transport processes for use
in weather and climate prediction models, however continued discrepancies
between models and observations remain a challenge (Knippertz and Todd,
2012; Reid et al., 2006). For instance the aircraft observation of large (up to
300 pm) sand grains above the Saharan Desert (Rosenberg et al., 2014) is in
seeming contradiction with the upper limit of standard saltation models (Kok,
2011).

The difficulty of developing dust and aerosol emission schemes is due largely
to unresolved, small-scale, and process-specific details, such as those resulting
from wave breaking (Lewis and Schwartz, 2004) or saltation (Anderson and
Haff, 1988). In this regard, the present work focuses on understanding the de-
tails of turbulent particle transport within the surface layer of the PBL — in
particular the vertical flux of large particles which are heavy (i.e. they experi-
ence gravitational settling) and inertial (i.e. they do not necessarily follow fluid
streamlines). It is the latter consideration, that of particle inertia, which is of-
ten neglected in particle flux parameterizations since even large sand grains
or water droplets do indeed appear inertialess relative to PBL-scale motions.
This work is focused, however, on turbulent transport which occurs in the low-
est layers of the atmospheric surface layer (centimeters to meters above the
surface), a region which plays the crucial role of connecting surface particle
emission to transport throughout the full PBL, and where particle inertia can
be non-negligible in their transport characteristics.

Attempts to parameterize heavy particle transport can begin by first ap-
proximating the suspended particulate as a passive scalar, in which case the
horizontally-averaged vertical concentration profile and its relation to the sur-
face flux could be described by Monin-Obukhov (MO) similarity theory (Monin
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Vertical concentration profiles of inertial particles 3

and Yaglom, 1971). The particles can be made more realistic by adding a
nonzero and constant settling velocity, which yields a power-law vertical pro-
file under neutral conditions when assuming that the turbulent diffusivity of
particle concentration is proportional to that of momentum (Prandtl, 1952;
Rouse, 1937), and reflects an equilibrium balance between suspension via tur-
bulence and gravitational settling. Other modifications, including disequilib-
rium between gravitational settling and turbulent suspension (Chamberlain,
1967; Kind, 1992), heterogeneous surface fluxes (Chamecki and Meneveau,
2011; Pan et al., 2013), non-neutral atmospheric stability (Freire et al., 2016),
or various other meteorological effects specific to, for instance, sea salt aerorols
(Toba, 1965) or snow (Pomeroy and Male, 1992), can be made as well.

It is well-known that particle inertia can lead to phenomena in turbulent
flows such as preferential clustering (Rouson and Eaton, 2001) or turbophoretic
drift (i.e. a net flux down a gradient of turbulent kinetic energy) (Reeks, 1983;
Sardina et al., 2012), and these play a key role in determining inertial particle
dispersion. For example, inhomogeneous horizontal particle distributions, such
as those found in sand streamers (Baas, 2008), may disrupt the assumptions
behind previous relationships. Much effort has gone into understanding inertial
particle transport in turbulent channel flows, relating particle dynamics with
turbulent events such as sweeps and ejections (Soldati and Marchioli, 2009;
Righetti and Romano, 2004) or studying the modulation of turbulence via the
suspended particles (Vreman, 2015), but many of these studies neglect the
effects of wall-normal gravitational settling. In the presence of gravitational
settling, particle clustering can lead to enhancements of the effective particle
settling velocity (Wang and Maxey, 1993; Aliseda et al., 2002), where the
average downwards particle velocity exceeds the still-air settling velocity as
predicted by, say, Stokes drag.

In the PBL, while many theoretical and computational attempts have been
made to characterize the Lagrangian dispersion characteristics of particles in
turbulence (Wang and Stock, 1993; Csanady, 1963), it remains unclear how
these effects of particle inertia modify the flux-profile relationship of particle
mass concentration in the PBL, particularly in the lowest layers near the sur-
face where Stokes numbers can be non-negligible. Even in theoretical studies
devoted to the topic of vertical particle dispersion which attempt to include
inertia, such as Belan et al. (2016), restrictions are necessarily made regarding
the degree of particle inertia and the regions of the flow where the corrections
are valid. Furthermore, in the well-known conceptual model for dry deposition
(Slinn and Slinn, 1980; Slinn, 1982), the overall deposition velocity of par-
ticulate matter is represented as a series of resistances to vertical transport,
including turbulence, molecular diffusion, and (when applicable) vegetative
canopies. This conceptual model is the basis for many studies which aim to
link surface emission to concentrations measured aloft — see for example Hop-
pel et al. (2002) or Fairall and Larsen (1984) — and within this framework
particle inertia is only occasionally considered (Zhang et al., 2001; Peters and
Eiden, 1992). When inertia is indeed included, it is only in the form of so-called
inertial impaction, the process by which particles can efficiently travel through
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the diffusive sublayer due to inertia, thereby reducing the diffusive resistance
to deposition.

The aim of the present study is to therefore investigate the role of parti-
cle inertia on modifying concentration profiles and vertical fluxes in the first
several meters of the PBL. This is done using an idealized approach based on
direct numerical simulation (DNS), and focuses on the flux-profile relationship
and potential modeling strategies. It is ultimately demonstrated that particle
inertia can reduce turbulent fluxes of particle concentration, which can create
a disconnect between true surface emission fluxes and fluxes felt by the full
PBL. In some sense this is akin to an additional inertial resistance layer in
the conceptual model of Slinn and Slinn (1980), and could potentially cause
miscalculations of surface fluxes or overprediction of suspended particulate
matter.

2 Methodology
2.1 Numerical Simulation
2.1.1 Direct Numerical Simulation

The basis of this study is DNS of turbulent open channel flow, where La-
grangian particles are tracked individually. Details of the numerical method
can be found in previous studies (Richter and Sullivan, 2013, 2014; Helgans and
Richter, 2016), so only a brief summary will be included here. The neutrally-
stratified, incompressible Navier-Stokes equations are solved in a Cartesian
domain using a pseudospectral discretization in the homogeneous, periodic x
and y directions and a second-order, finite difference discretization in the ver-
tical, wall-normal z direction. Time integration is done via a low-storage, third
order Runge-Kutta scheme (Spalart et al., 1991).
Mass and momentum conservation are given by:

8ui
8xi

=0, (1)

ou; ou; B 1 dp 0%u;

ot " Yor; T ppom aat

(2)

where u; is the fluid velocity, p¢ is the fluid density, and vy is the fluid kine-
matic viscosity. Incompressibility is enforced by solving a pressure Poisson
equation at each Runge-Kutta stage. A no-slip condition is imposed at the
lower domain wall, and a no-stress condition is imposed at the upper wall. The
horizontal directions are periodic, and the flow is driven by a constant pres-
sure gradient, chosen to produce turbulent open channel flow with a Reynolds
number of Re, = 300, where Re, = u.,H /vy is the friction Reynolds number
based on the domain height H and the friction velocity w. = /7w /ps (T is
the wall stress).
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Viscous/diffusive  q—
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(Prandtl theory
not valid)
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| (Prandtl theory valid)

—>

1073 1072 10" 100
z/H
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Fig. 1 Left: Snapshot of the computation. Colors reflect contours of fluctuating vertical
velocity and brown dots represent Lagrangian particles. z axis in this figure has been mag-
nified by a factor of 2.5. Right: mean velocity profile, showing the existence of a logarithmic
layer above z/H ~ 0.1.

At the same time, an advection-diffusion equation for a passive scalar is

computed as well:

oC 0 0%C

ot + 8.’13]‘ (UJC) - FC 81‘? ) (3)
where I is the molecular diffusivity of scalar C. The concentration is advected
by a velocity v;, which is not necessarily equal to the local fluid velocity u;.
For instance, as done by Chamecki et al. (2009), this can be set to v; =
u; — wsd;3 to represent uniform gravitational settling, where ws = 7,g is the
single-particle particle terminal velocity specified by its inertial time constant
7p and the gravitational acceleration magnitude g, and d;3 is the Kronecker
delta. A truly passive scalar would have v; = u;. In this study we assume a
Schmidt number Sc¢ = v;/I'c of unity. At the lower boundary, the Dirichlet
condition C' = Cy = 1 is held fixed, while at the upper boundary a no-flux
condition is imposed. The domain is initialized with C =0 at ¢t = 0.

2.1.2 Lagrangian Particle Tracking

The primary goal of this study is to characterize the effects of particle inertia
on turbulent fluxes and vertical concentration profiles in a turbulent boundary
layer, and this is readily accomplished using Lagrangian methods (see e.g.
Balachandar (2009)). Thus each simulation is seeded with a large number of
Lagrangian point particles, whose ensemble-averaged concentration field is the
scalar C' governed by Eq. 3. The particles are assumed to be one-way coupled,
in that they do not have any influence on the surrounding flow, since we
assume here that the mass fraction of suspended particles is sufficiently low.
In air suspended with solid or liquid particles, this approximation holds if the
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mass loading is roughly 1% or below (Balachandar and Eaton, 2010). Each
particle obeys momentum conservation according to:
d?}p,i 1

= — (uf;i — vp,i) — gdis, 4
dt T (U’f: Up7) 993 ()

where vy, ; is the particle velocity, g is the magnitude of gravitational acceler-
ation, and 7, = ppd§/18pf1/f is the Stokes time scale. In these expressions d,,
is the particle diameter, uy; is the fluid velocity interpolated to the particle
location, and p, is the particle density.

In the limit of inertialess particles (i.e. the Stokes number St — 0, where
St = 1,/7y and 7y is a relevant flow time scale; here we use the Kolmogorov
time scale 7k ), Eq. 4 is not solved and rather the particle velocity is simply
equal to the local fluid velocity less its terminal velocity:

Upi = Ugi — Tpgliz = Uf; — Ws0;3. (5)

In the further limit of massless particles, in which case the particles would
simply represent a discretized form of a continuous passive tracer field, the
particle velocity is equal to the local fluid velocity: vy ; = uy,;.

Given the restriction to relatively low Reynolds numbers due to the use
of DNS, molecular diffusion of both momentum and scalar C' occurs in a
non-negligible region near the walls. To provide equivalency between the La-
grangian representation (i.e. the particles) and the Eulerian field C, the parti-
cles are moved according to a combination of their advection velocity v, ; and
a Brownian step chosen to provide a diffusivity I'c:

dﬁbpﬂ‘ = ’Upﬂ‘dt + v 2ch§i, (6)

where d§; is a Weiner process representing Brownian motion. Numerically,
advection is solved using the same RK3 method used for the flow, and at the
end of each time step, a random jump is added to provide the diffusive jump.
Figure 1 provides a snapshot of the flow simulation with instantaneous particle
location.

As noted above, the Eulerian scalar concentration C'is held fixed at Cy = 1
at the bottom wall, and a no-flux condition is imposed at the top wall. For
Lagrangian particles, the same conditions are enforced: at the top wall, this
means that particles are elastically reflected, and at the bottom wall, a reser-
voir of a constant number of particles just below the surface is maintained
whose concentration is defined as Cy = 1. The mean concentration (C') is then
computed from a Lagrangian point of view at a specific height by counting the
particles in the horizontal slab with volume L, x L, x Az (where L, and L, are
the domain extents in the z and y directions and Az is the vertical grid spac-
ing at a particular height z) and normalizing with the concentration/volume
combination maintained just below the bottom surface. This method requires
a sufficient number of particles for statistical convergence of the particle aver-
ages, and in this case the number of particles maintained in the lower reservoir
was held at 1 x 10% (this leads to particle numbers in the domain of O(10°)).
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Vertical concentration profiles of inertial particles 7

Figure 2(a) shows a comparison between the Eulerian (Eq. 3) and La-
grangian prediction of (C) /Cp in the inertia-free case, for three different set-
tling velocities. The settling velocities wy are normalized by ku, so that they
reflect the settling tendency as compared to the strength of wall shear stress —
in sediment transport literature this ratio is commonly referred to as the Rouse
number (Rouse, 1937). Figure 2(a) demonstrates the equivalence between the
FEulerian and Lagrangian particle treatment, including the adjustment of the
advection velocity v; in Eq. 3 by the settling velocity.

2.2 Existing theory

Following Prandtl (1952) (and many others since), the Reynolds decomposition
C = (C) + ¢ can be introduced into Eq. 3, and after averaging the equations
in absence of particle inertia and a net surface flux (e.g. Kind (1992)), one
recovers a balance between turbulent suspension and gravitational settling:

(dw'y = (CYws =0 (7)

If one then makes the assumption that the turbulent particle concentra-
tion flux (cw’) can be expressed with an eddy diffusivity, in analogy with
momentum and passive scalars, Eq. 7 becomes:

—Kc—— — (C)ws =0, (8)

where K¢ is an eddy diffusivity. In the neutral atmospheric surface layer,
Monin-Obukhov similarity theory implies K¢ = ku,z since the turbulent flux
(c'w’) does not vary with height (here x = 0.41 is the von Karmdan constant
and the turbulent Schmidt number is assumed to be unity). For open channel
flow, however, the linearly varying momentum flux with height results in a
parabolic diffusivity profile, given by K¢ = ku.z (1 — z/H) (see for example
Fischer (1973)).

In its original formulation, the Prandtl solution to the ordinary differential
equation of Eq. 8 suggests that the average concentration varies as a power law
with height, with an exponent of wy/ (ku.). Using the open channel version
of K¢ yields an equivalent result for systems where the total momentum flux
varies linearly with height, which is a product of two power laws:

<CZ’T(Z) _ (ZZT) L (;_Z)ws/m* )

Here, z, is a constant reference height where the mean concentration is C,
(zr = 0.3H in this work). Throughout the manuscript, the “Prandt]l” solution
will refer to Eq. 9, although it represents a profile in an open channel config-
uration where the eddy diffusivity K¢ is parabolic with height, as opposed to
the original atmospheric surface layer version (Prandtl, 1952). As noted previ-
ously, throughout the literature (particularly in relation to sediment transport)
this profile is also sometimes referred to as the Rouse profile (Rouse, 1937).
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a) 1 (b) 10°
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Fig. 2 Mean normalized particle concentration (C) /Cp versus normalized height z/H for
three different settling velocities without inertia. Colors indicate different settling velocities
and are indicated on the left. (a) Linear axes showing the comparison between the Eulerian
solution (solid lines) and Lagrangian solution (dashed lines). (b) Logarithmic axes comparing
the computed solutions to the Prandtl (1952) theory (Eq. 9).

Figure 2(b) shows that the Prandtl solution of Eq. 9 agrees very well with
the concentration profiles computed in the inertialess cases, above a height
of z/H around 0.1. Below this height, molecular diffusivity plays a large role
(since the simulations are based on DNS), violating the basic assumption that
the particle concentration is a result of a balance between turbulent suspen-
sion and gravitational settling. Thus in the absence of particle inertia, Eq. 9
accurately predicts concentrations over a range of settling velocities in regions
of the flow where turbulence and gravity are indeed the dominant transport
mechanisms.

3 Results and discussion
3.1 Interpretation

The numerical methodology outlined in the previous sections represents an
idealized approach towards understanding the role of inertia in the flux-profile
relationship of suspended particles. As such, we include here a brief discussion
of both the applicability of the following results, as well as an explanation for
how they should be interpreted.

First, the lower boundary conditions utilized for both the Eulerian and
Lagrangian simulations are not intended to physically represent the process of
particle emission from the surface. Since aeolian saltation at the sand/snow
surface, droplet formation at the air-sea interface, lifting at the subaqueous
sediment layer, etc. have widely varying physical explanations, the focus here
is instead on the vertical transport of particles once they have been suspended.
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Fig. 3 Schematic detailing the structure of the PBL and the focus of the present DNS
study. In the region above the emission layer and below the full boundary layer, local Stokes
numbers can be large due to the rapid change in the turbulent kinetic energy dissipation
rate with height, resulting in inertia-dominated transport of particles in the bottom few
meters of the PBL. The emission layer includes the region where processes such as bubble
bursting or saltation occur, which are not explicitly represented in this study.

In the present work, molecular diffusion, as represented by Brownian motion
for the Lagrangian particles and by a constant molecular diffusivity for the
Eulerian concentration field, is used as a means for achieving this suspension,
in the sense that it is responsible for carrying particles from the specified
concentration at the surface to a level where turbulence dominates transport
(this occurs at a level of z/H = 0.1 in the DNS presented here). This allows
for a direct comparison between the FEulerian and Lagrangian methods, and
allows us to focus instead on the turbulent transport in regions above this
layer. How the particles have arrived this this height is immaterial for our
purposes.

Second, the DNS framework is meant to represent only the lowest few
meters of the PBL where inertia is present (the “inertial resistance layer” —
see Fig. 3). Thus the parameter H in the simulations is not the boundary layer
height of O(1000m) but rather the top of the inertial resistance layer which
has a height of O(1m). For a given particle size, the Stokes number computed
based on the local Kolmogorov time scale changes very rapidly with height,
leaving a region near the surface (but above the emission layer) where inertia
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can be large. The depth of this layer is controlled by both the particle size
and the turbulence levels in the boundary layer. Since St = 7,/7x depends
on both 7, and the local Kolmogorov time scale, the depth of this layer would

scale as df,, since T, is proportional to dg, and with ui/ 2, since the turbulent
kinetic energy dissipation rate € is proportional to u2 and Tx is proportional
to e~1/2 (at least in neutral conditions). As demonstrated below in section 3.6,
the features observed in the DNS can be felt throughout larger-scale models
which cannot resolve these small-scale motions and instead resolve PBL-scale
motions.

3.2 Adding particle inertia

The goal of this work is to extend the analysis of section 2.2 to include par-
ticles which exhibit appreciable inertia during their turbulent transport. In
most studies on this topic (Chamberlain, 1967; Chamecki et al., 2009; Kind,
1992), particle inertia is neglected and only gravitational settling is taken into
consideration. In other studies (Belan et al., 2016; Csanady, 1963; Freire et al.,
2016), particle inertia is treated insofar as it is responsible for altering disper-
sion rates, and compared to the large scales associated with the full PBL the
effect of inertia is quite small. Here, our focus is on the lowest layers of the
particle-laden boundary layer, where the transport is crucial for linking the
small-scale emission processes with the large-scale PBL.

With this in mind, we design a set of numerical experiments whose purpose
is to systematically vary the particle inertia while holding the settling tendency
the same, in order to determine the effects on the average concentration profiles
and flux characteristics. A nondimensional settling velocity of ws/ (ku.) = 0.06
is held fixed (red lines in Fig. 2), and the flow Reynolds number is likewise fixed
at Re, = 300. The particle inertial time scale 7, is then varied to provide Stokes
numbers ranging between St = 0.05 and St = 5.0. We note that the following
analysis only reports results from a single nondimensional settling velocity, but
the same general results are found at other values of ws/ (ku.). The effect of
wy is to modify the baseline concentration profile, from which inertia modifies
as described below. We also note that while holding w, constant while varying
St is artificial, it allows us to target explicitly the effects of inertia, without
confounding them with changes in w, at the same time. In reality, ws and St
are linked via 7,, although local values of St can change with height.

For our DNS, we use a flow time scale of 7y = Tx to define St, where Tx is
the vertically-averaged Kolmogorov time scale in the channel. For reference, if
one uses the logarithmic scaling of viscous dissipation rate in the atmospheric
surface layer, ¢ = u3/kz, then T averaged over the lower 5 meters of the
surface layer for u, = 0.4m s is roughly 0.015 seconds. In these conditions
the Stokes number range of St = 0.5 to St = 5.0 corresponds to diameters of
dp ~ 10 pym to d,, ~ 150 um when the particle density is of order 1000 kg m™.
Thus spray droplets or dust particles suspended in air can quite easily behave
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Fig. 4 (a) Average normalized concentration (C)/Cy computed from the inertial, La-
grangian simulations as a function of z/H. The settling velocity is held fixed at ws/ (kux) =
0.06 for all cases, and Resx = 300. (b) The same concentration profiles on logarithmic axes,
with Eq. 9 plotted in thin black lines for reference. The addition of inertia dramatically
changes the concentration within the domain, and causes the average profile to deviate
significantly from the inertialess theory.

as inertial particles within O(1m) of the surface (i.e. the “inertial resistance
layer” found in Fig. 3).

Figure 4(a) presents the normalized average concentration profiles as a
function of z/H over the range of St considered. Despite the settling velocity
being identical between these cases, the addition of inertia clearly inhibits
the ability of particles to distribute vertically throughout the domain. Over
the present range of St, this trend is monotonic, in that higher St leads to
lower mean concentrations throughout the entire channel. The exception is the
St = 5.0 case, where upwards turbophoretic drift (Reeks, 1983; Sardina et al.,
2012) actually overcomes gravitational settling, pushing particles towards the
top wall and increasing concentrations there (i.e. the finite size of the domain
begins to contaminate the solution since vertical velocity fluctuations must
approach zero at the top wall).

Figure 4(b) illustrates that the Prandtl theory describing the vertical pro-
files of concentration as a balance between turbulent flux and gravitational
settling fails significantly as St is increased (thin black lines). At low St, Eq. 9
is still accurate in the upper regions of the domain, but the height range over
which agreement is found diminishes. The disagreement propagates from the
bottom, since the local Stokes number, as computed by the local value of 7,
is a monotonically decreasing function with height. Thus the first regions of
the flow where the theory begins to fail are those where the local St is locally
large enough to cause the particles to cease acting like settling, passive tracers.

By solving Eq. 3 and only considering gravitational advection (i.e. v; =
uj —wgdj3), the turbulent flux (¢'w’}, diffusive flux —I'c (0 (C) /9z), and grav-
itational flux —w, (C) are computed directly from the Eulerian concentration



354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

12 David Richter, Marcelo Chamecki

field. Simultaneously, the same flux quantities can be computed from the La-
grangian particles as well. The gravitational flux is still —w; (C) (using the
Lagrangian-based (C')), and Reynolds averaging of the particle evolution equa-
tions shows that the sum of the turbulent and gravitational fluxes is equal to
(wp) (C), where (wp) is the average particle vertical velocity. Therefore the
turbulent flux (counterpart to (¢'w’) in the Eulerian frame) is the difference
between the gravitational flux and the concentration-weighted average particle
velocity. Finally, the total flux is computed from the Lagrangian point of view
by keeping track of the net number of particles crossing each horizontal plane
in each time step. From this total, the gravitational and turbulent fluxes can
be subtracted to yield the diffusive flux.

First, to demonstrate that the Eulerian versus Lagrangian-based flux calcu-
lations are equivalent for systems with no inertia, Fig. 5 shows the Lagrangian-
computed profiles in thick red lines and the Eulerian-computed fluxes thin
black lines for the inertialess case shown in Figure 4. It is clear that the flux
profiles in this case are nearly identical, and therefore the Lagrangian-based
fluxes are accurate representations of vertical particle transport.

Several features are of note in Fig. 5. First, since we average only after
the system has reached steady state, the total flux should be zero, which
Fig. 5 indeed indicates is the case. Figure 5 shows that in this steady state
condition, above z/H ~ 0.1 and below z/H = 0.9, the flux balance, even in the
presence of substantial particle inertia, is strictly between gravitational settling
and turbulent suspension. As expected, this spatial region corresponds to the
region of Fig. 4 where the Prandtl-predicted concentration profile agrees with
the simulations in the absence of particle inertia. Near the top and bottom
walls, turbulent fluxes are replaced by nonzero diffusive fluxes, thus violating
the assumptions behind the Prandtl theory.

Figure 5 also illustrates that within the regions unaffected by diffusion, in-
creases in particle inertia suppress turbulent fluxes, which are in turn balanced
by lower gravitational settling fluxes. So while the dominant balance remains
between turbulence and gravity, their magnitudes have deviated sharply from
the noninertial case. This trend increases with St, and the inertialess Eulerian
formulation (thin black lines) is clearly insufficient in predicting the fluxes for
inertial particles.

3.3 Inertial correction to the advection velocity

In order to capture inertial effects in the Eulerian calculations, we utilize an
inertial correction to the advection velocity v; in Eq. 3 which is based on an
asymptotic expansion of equation 4 in Stokes number, retaining only the first
order correction (Druzhinin, 1995; Maxey, 1987). More recent implementations
of this correction have acquired the name of the “Equilibrium Eulerian” model,
whose advantage is that it captures some inertial affects while still allowing
the particle advection velocity to be written in terms of local flow velocities
and accelerations (Ferry and Balachandar, 2001; Balachandar, 2009).
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Fig. 5 Vertical profiles of concentration fluxes for a subset of the overall Stokes numbers:
St =0 (red), St = 0.1 (green), and St = 1.0 (blue). Line types provided in the legend refer
to the turbulent flux, the gravitational flux, the diffusive flux, and the total flux. The thick
colored lines refer to fluxes computed from the Lagrangian particle data; thin black lines
are fluxes from an Eulerian, inertialess perspective. Fluxes normalized by CoUp, where Uy
is the maximum velocity in the channel.

Under this approximation, the advection velocity takes the form:

DUj
Dt
where DQt = % + uk% is the total fluid acceleration. The meaning of the last
term in Eq. 10 is that the fluid velocity seen by the particle at a time 7, before
the present time should be factored into the current particle velocity due to
inertia, and would only be expected to be accurate below St =~ 0.2 since the
correction is only first order (Ferry and Balachandar, 2001).

Following the same Reynolds averaging procedure as done for deriving Eq.
7, this correction to the advection velocity leads to two additional terms in
the vertical flux balance:

’Uj = Uj — w55j3 — (10)

0 {(w'" Dw'’
(dw'y — (CYws — (C) T”<az> -7 <C/Dt> =0. (11)
The first two terms are the same turbulent and gravitational settling fluxes
from Eq. 7. The third term on the left hand side of Eq. 11 represents tur-
bophoresis, where inertia causes a drift against gradients of turbulent kinetic
energy (Reeks, 1983), and the fourth term on the left hand side represents
correlations between concentration fluctuations and vertical accelerations. It
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Fig. 6 Additional, inertia-based flux terms in Eq. 11 as a function of height. Different lines
refer to different Stokes numbers ranging between 0 and 1.0 (see legend). (a) turbophore-

. a(w’? . . . .

sis term: —p (C) <;Jz >, (b) correlation between concentration fluctuations and vertical
’

accelerations: —7p <c’DD—“2>. Both terms normalized by CoUp.

can be easily shown that the sum of these two terms is simply —7, <C DD—“;'>,
i.e., the correlation of the total concentration with vertical acceleration.

With this formulation in mind, we perform a new simulation in which v;
in Eq. 3 is replaced by Eq. 10 in order to compare its predictions with the true
behavior of the inertial Lagrangian particles (here “true” indicates that we
expect the theory to match the Lagrangian simulations exactly if the theory
were correct). From these calculations, Fig. 6 presents the two extra flux terms
in Eq. 11 as a function of height for a range of St, which shows that each of
the inertial corrections to the vertical flux are of the same order of magnitude.
As expected, the turbophoretic term in Fig. 6(a) is largest in the regions near
the lower wall where the gradients of the turbulent kinetic are the highest.
These profiles are related to one another, in the sense that the gradient 8<g22>
is the same in all cases since the underlying turbulence has not changed with
particle Stokes number.

In the range where molecular diffusion is unimportant (above z/H = 0.1),
the concentration fluctuation/vertical acceleration correlation term (Fig. 6(b))
is dominant and negative, suggesting that inertia tends to reduce the vertical
flux. This is in agreement with the Lagrangian-based fluxes computed in Fig. 5,
and provides an Eulerian interpretation of this suppression of the concentration
flux. It is noteworthy that the dominance of this term over the turbophoretic
term indicates that inertial corrections to vertical dispersion must include
additional effects beyond turbophoretic drift. As the particle Stokes number
increases, these flux corrections generally become larger since they are pro-
portional to 7,, although the correlation saturates around St = 0.5. We note
that the corrections for St = 5.0 are not shown since the inertia-corrected ad-
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Fig. 7 Turbulent fluxes with inertial correction to Eulerian advection velocity. Uncorrected
turbulent flux (c/w’) (dashed), Lagrangian turbulent flux (dash-dotted), and the corrected
turbulent flux (¢'w’),,,.,. (solid). Line colors refer to legend in Fig. 6. Axes have been zoomed
in to better highlight agreement between the Lagrangian-based fluxes and the corrected
Eulerian fluxes.

vection velocity causes the numerical simulations to become unstable at such
high values of 7,.

If one interprets the last two terms of Eq. 11 as a correction to the iner-
tialess turbulent flux, then a corrected turbulent flux can be defined:

0 {w" Duw'

R e i RN (12)
which should approach the Lagrangian-computed turbulent flux for the iner-
tial particles presented in Fig. 5. Figure 7 shows that this is indeed the case,
however beginning at St ~ 0.3 the linear correction begins to break down. In
this figure, the turbulent flux (¢'w’) (“uncorrected” in Fig. 7) far overpredicts
the vertical turbulent flux over much of the domain when v; is modified to
include the inertia. When adding the additional flux terms of Eq. 11 to (c'w’)
(“corrected” in Fig 7), the vertical turbulent flux nearly exactly matches the
true flux predicted from the Lagrangian particles. While the corrected Eu-
lerian flux diverges from the Lagrangian beginning at St ~ 0.3, the flux is
fairly accurate through St = 0.5, suggesting that the key inertial effects on
vertical fluxes have been captured by the linear correction to v;. The resulting
predictions of the vertical concentration profiles are likewise accurate up to
St =~ 0.3, as shown in Fig. 8. The degree of success of inertial correction to v;
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Fig. 8 Concentration profiles as predicted by the Lagrangian particles (solid lines) and the
corrected Eulerian field (dashed lines). (a) Linear axes, (b) Logarithmic axes.

is in complete agreement with previous uses of the Equlibrium Eulerian model
(Ferry and Balachandar, 2001).

3.4 Revisiting the Prandtl theory

The Prandtl solution for concentration (Eq. 9) was derived assuming a balance
between turbulent suspension and gravitational settling. Furthermore, it uses
a parabolic form of the eddy diffusivity, i.e., Ko = kuyz (1 —2z/H), which
is the eddy diffusivity predicted by MO similarity theory in the presence of a
linear momentum flux. As a first step, therefore, we compute K¢ in the case of
inertial particles to see how well a parabolic function compares with the eddy
diffusivity implied by the ratio of the turbulent flux to the mean concentration
gradient. For the corrected Eulerian flux this follows:

<C/w/>COT’I‘
KC,E - — W 5 (13)

0z

while for the Lagrangian-computed turbulent flux K¢ is computed as:

wp) + ws) (C
PO SESTOL )

0z

(14)

where the numerator is the turbulent flux measured from the Lagrangian par-
ticles, and inherently includes all true inertial effects.

Figure 9 shows both K¢ g and K¢, 1, and compares them to the parabolic
solution assumed by MO theory. It is clear that the inertialess case (St = 0, red
lines) follows the parabolic solution fairly closely, which is expected since the
Prandtl solution was successful at predicting the mean concentration profiles
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Fig. 9 Eddy diffusivities normalized by the molecular diffusivity I'c. Dotted black line
represents the parabolic solution K¢ = kusz (1 — z/H). Solid lines represent K¢ g and
dash-dotted lines represent K¢ . Both profiles have been smoothed with an averaging
filter. Colors follow legend of Fig. 8.

in Fig. 4. As St increases, however, not only do the computed eddy diffusiv-
ities deviate from the parabolic approximation, the Eulerian and Lagrangian
predictions deviate from one another. Again, this is expected given the devi-
ation between the corrected Eulerian and Lagrangian profiles shown in Fig.
7 and Fig. 8, since the Eulerian correction is only valid at low St. We note
that the difference between K¢ ; and the parabolic solution is not simply a
result of the so-called crossing trajectories effect: the correction proposed by
Csanady (1963) for the vertical eddy diffusivity results in a vertical dispersion
coefficient that is less than 1% different than the parabolic solution.

While the shape of both K¢ g and K¢ is still somewhat parabolic at
St = 0.3 (yellow lines in Fig. 9), the emergence of an inflection point in the
concentration profile at St = 1.0 (see Fig. 8) causes K¢ 1, to spike to very large
and even negative numbers near z/H = 0.8. This behavior indicates that iner-
tial particles violate the basic flux-gradient relationship assumed when defin-
ing an eddy diffusivity K¢, although the inertial correction to the Eulerian
advection velocity compensates for this up to St =~ 0.2, as noted earlier.

It is instructive therefore to repeat the Prandtl analysis and attempt to
predict the concentration profile while incorporating the inertial corrections
to the Eulerian concentration field. The goal here is to determine whether or
not a parabolic eddy diffusivity can be utilized for the uncorrected turbulent
flux (dw’) while capturing the inertial effects separately and explicitly. If this
fails (which it indeed does), it would indicate that inertial effects must be
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accounted for in the eddy diffusivity itself and not as a series of correction
terms to the overall flux balance. If Eq. 11 is written as:

(cw') = (C)w; + B(2) =0, (15)

where ((z) represents the inertial corrections to the turbulent flux,

8=~ (O et 7, (2, (16)

the analog to Eq. 8 assuming the parabolic form of the eddy diffusivity K¢ is:

ﬁu*z(l—z/H)%+<C>ws=3(2)- (17)

The solution to this inhomogeneous equation takes the following form:

<C> (Z) B i —Ws /KUy s H We /KUy
C.  \z 2z — H

—Ws /KU z Ws /KUy
(2 | (5= Be) g,
H—=z 2 \H — 2 Crruez (1 —2z/H)

Equation 18 contains the original Prandtl solution of Eq. 9 as the first term,
followed by a correction which involves an integral of the inertial correction
term f((z). Since we do not have a closure for this term, we must integrate
this term numerically, and its solution is presented in Fig. 10. Note that since
(C) appears in the definition of 3(z), the numerical solution must be iterative;
since the term containing (C') is small above z,. = 0.3 (Fig. 6(a)), however, the
solution converges very rapidly.

Figure 10 shows that the correction indicated by Eq. 18 does not adequately
modify the original Prandtl solution to account for inertia. This is of course
true at the highest values of St (since again the inertial correction only is valid
at low St), but even at St = 0.3 the additional term in Eq. 18 overcorrects
the Prandtl solution substantially.

The reason behind this discrepancy is that the similarity-based, parabolic
form of the eddy diffusivity K¢ is no longer valid as St increases. If Eq. 8 is
written using the Lagrangian-based K¢ j, as:

a{C)

KL = 1
Lt~ (C)ws =0, (19)

then the solution for (C) can be computed numerically using the K¢ 1, profiles
presented in Fig. 9 (i.e. the dash-dotted lines). Note that Eq. 19 does not
contain the inertial correction term [(z) since the Lagrangian-based K¢ p,
inherently includes all inertial effects. Figure 10 shows that when solving Eq.
19, the predicted concentration profile very closely matches the Lagrangian-
based concentration profiles, except for regions near the inflection points in
(C) where K¢, is ill-defined. Thus, the effects of particle inertia on vertical
dispersion must not be limited to corrections to the turbulent flux (e.g. using
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Fig. 10 Vertical concentration profiles computed from the inertial Lagrangian particles
(solid lines) compared to the prediction of Eq. 18 (dashed lines). As before, z,, = 0.3H and
C) is the concentration at this height, so the solution to Eq. 18 only exists above z/H = 0.3.
Dash-dotted lines are the numerical solutions to Eq. 19, which uses the Lagrangian-based
K¢, 1, illustrating that the parabolic K¢ becomes insufficient at high St. Colors refer to the
legend in Fig. 8.

the Equilibrium Eulerian model to correct the particle advection velocity),
but must also consider the fact that the eddy diffusivity, and therefore the
relationship between the flux and the mean concentration gradient, is modified
by inertia as well.

3.5 Reynolds number

Before demonstrating the effect of the inertial resistance layer in larger-scale
models, we provide a comment upon the usage of direct numerical simulation,
and thus the limitation in Reynolds number, of the current work. As the
Reynolds number of this type of simulation increases towards the types of
atmospheric flows we aim to investigate, the primary effect is to reduce the
region over which molecular momentum and scalar diffusion dominate; indeed
it is only outside of this region that the present work has focused. To this
end, two additional simulations were run at a Reynolds number of Re, = 700
in order to demonstrate that the primary conclusions of this work remain
intact. Figure 11 shows the counterparts to Figs. 4(b) and 9 for an inertialess
and a St = 0.1 particle at the same dimensionless settling velocity. Figure
11(a) shows that again, the inclusion of particle inertia causes a reduction in
the concentration profile, and that the deviation from the Prandtl solution
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Fig. 11 (a) Concentration profiles and (b) eddy diffusivity profiles for Rer = 700 cases
for St = 0 (cyan) and St = 0.1 (dark red) particles. The trends are nearly identical to
those presented in Figs. 4(b) and 9, respectively, illustrating the robustness of the present
conclusions with increasing Re.

propagates from the lower wall upwards, beginning in regions with high local
St. The only difference with the increased Reynolds number is that the range
of agreement of the St = 0 case with the Prandtl solution extends further
towards the lower surface, to z/H = 0.02 as opposed to z/H =~ 0.08 as before.
The same is true in Fig. 11(b): the presence of inertia begins to alter the eddy
diffusivity profile in a similar way to that of the lower Re cases, only in this
case the magnitude of K¢ is larger (as expected). Thus we argue that the
methodology of using DNS as a tool for studying inertial particle fluxes in the
lowest regions of the atmospheric surface layer is justified in that the effects
of Reynolds number do not appreciably alter our basic findings.

3.6 Consequence of the inertial resistance layer

We argue above that within the first few meters above the emission layer, par-
ticles often experience inertial effects as they are carried upwards by turbulent
motions. In the DNS this is manifested as a reduction of the concentration
profile at steady state, but can also be described as a reduction in the vertical
turbulent flux above a particle source, similar to classic descriptions of depo-
sition velocity resistance via molecular diffusion or vegetation canopies (Slinn
and Slinn, 1980). In practice, this reduction in turbulent flux near the surface
effectively reduces the emission flux felt by the boundary layer as compared
to the true source flux. In this study we use DNS to resolve these near-wall
motions to study their effect, but in practice these motions cannot be resolved
and thus their effect must be parameterized.

To demonstrate this process, we perform a representative large eddy simu-
lation (LES) using the unstable convective PBL studied in Freire et al. (2016).
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Fig. 12 (a) Concentration profiles of d, = 10 um (blue) and dp = 30 um (red) particles for
the unstable convective PBL of Freire et al. (2016). Solid curves represent full surface fluxes
of 0.2 ug m2!s! and dashed lines represent surface fluxes corrected for inertial transport
between the first grid point and the emission layer. (b) Stokes numbers of d, = 10 um and
dp = 30 um particles, as computed by the subgrid dissipation of the LES scheme. From the
perspective of LES, these particles are nearly inertialess, but can have significant inertial
effects near the surface.

For an initial boundary layer height of z; = 570m, a surface heat flux of
0.24K m s!, and a geostrophic wind of U, = 10m s!, Eulerian concentration
fields of d, = 10um and d, = 30 um particles are solved, only taking into
account gravitational settling and not explicitly accounting for inertia.

In Fig. 12(a), the solid curves represent the concentration profiles averaged
between hours 3 and 4 for the same surface emission flux of 0.2 ug m2 s
As expected, the heavier particles have lower concentrations throughout the
PBL. To account for inertial effects at and beneath the first LES grid point,
we estimate a surface Stokes number based on LES dissipation at the first grid
point, and use Fig. 7 to provide a corresponding reduction in the surface flux
due to the inertial resistance layer. For the case of d,, = 10 um particles, the
local Stokes number at the bottom grid point is St &~ 0.01 and the corrected
flux is estimated to be 99% of the original surface flux; the dashed blue line
in Fig. 12(a) reflects this small difference. For the case of d,, = 30 um (dashed
red line), however, the surface Stokes number is St ~ 0.1 and the reduction in
surface flux is roughly 22%. Figure 12(a) highlights the fact that, as a result of
this near-surface reduction of turbulent flux, mean concentrations throughout
the entire PBL can be influenced by inertia near the surface. Furthermore,
Fig. 12(b) shows that while inertial effects can lead to substantial changes in
the predicted large-scale concentrations, particles in these regions do indeed
appear nearly inertialess at these scales, as computed by their local Stokes
number. Only near the surface do they begin to experience inertial effects, even
possibly throughout the surface layer (see for example Nemes et al. (2017)).
We again emphasize that the region of interest in this study, as simulated by
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DNS, is within several meters of the surface (Fig. 3). By definition, LES in
general cannot resolve the observed inertial behavior of the particles because
it is a processes which occurs at the smallest scales of the turbulent flow.

4 Conclusions

In this work we seek to better understand the influence of particle inertia
on vertical concentration profiles, and in particular the shortcomings of tra-
ditional relationships that work well in low- or zero-inertia conditions (e.g.
Prandtl (1952)). We utilize direct numerical simulations and Lagrangian point
particles in turbulent open channel flow to explore the ability of inertial correc-
tions to the Eulerian transport equation (i.e. the Equilibrium Eulerian model
(Ferry and Balachandar, 2001)) to capture changes in the turbulent fluxes
and concentration profiles. This numerical setup is meant to provide insight
into the lowest O(1m) portion of the atmospheric surface layer, where wa-
ter droplets or sand/dust grains will experience inertial influences on their
trajectories between the time they are emitted and the subsequent transport
throughout the whole PBL.

We find that while the primary balance governing the concentration of
suspended particles remains between turbulent flux and gravitational settling,
both fluxes are reduced in magnitude and cause a reduction of particle con-
centration at a specific height. This reduction in concentration increases with
particle Stokes number, and reflects an inability of the particle to be instan-
taneously transported with the local fluid motion. Up to a Stokes number
of approximately St ~ 0.3, the Equilibrium Eulerian framework provides a
viable means for correcting the turbulent flux, and thus can reproduce iner-
tial particle profiles accurately. Above this threshold, however, this first-order
correction fails to reproduce behavior seen by the Lagrangian particles. In
all cases, as the Stokes number is increased, the turbulent flux becomes less
well represented by a similarity-based eddy diffusivity, and any attempt at
parameterizing the vertical turbulent flux must begin with a more accurate
description of the effective, inertia-influenced eddy diffusivity.

The result is that atmospheric weather prediction or large eddy simulation
models, which attempt to predict the transport of spray, dust, snow, etc.,
may overestimate airborne concentrations if an inertialess, similarity-based
theory is used to link traditional emission schemes (e.g., saltation models,
sea spray generation functions) to the flux at the first grid point above the
lower surface. Likewise in practice, surface emission parameterizations may
underestimate true emission if airborne concentration observations are used
to infer surface fluxes. Since particles must traverse through the first several
meters of the surface layer before arriving at elevations corresponding to the
first grid point in numerical models, they have necessarily experienced some
inertial transport along the way. The present results suggest that this inertial
behavior may result in a decrease in vertical fluxes compared to traditional
predictions.
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