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Abstract In many atmospheric flows, a dispersed phase is actively suspended6

by turbulence, whose competition with gravitational settling ultimately dic-7

tates its vertical distribution. Examples of dispersed phases include snow, sea8

spray droplets, dust, or sand, where individual elements of much larger density9

than the surrounding air are carried by turbulent motions after emission from10

the surface. In cases where the particle is assumed to deviate from local fluid11

motions only by its gravitational settling (i.e. they are inertialess), traditional12

flux balances predict a power law dependence of particle concentration with13

height. It is unclear, however, how particle inertia influences this relationship,14

and this question is the focus of this work. Direct numerical simulations are15

conducted of turbulent open channel flow, laden with Lagrangian particles16

of specified inertia; in this way the study focuses on the turbulent transport17

which occurs in the lowest few meters of the planetary boundary layer, in re-18

gions critical for connecting emission fluxes to the fluxes felt by the full-scale19

boundary layer. Simulations over a wide range of particle Stokes number, while20

holding the dimensionless settling velocity constant, are performed to under-21

stand the role of particle inertia on vertical dispersion. It is found that particles22

deviate from their inertialess behavior in ways that are not easily captured by23

traditional theory; concentrations are reduced with increasing Stokes number.24

Furthermore, a similarity-based eddy diffusivity for particle concentration fails25

as particles experience inertial acceleration, precluding a closed-form solution26

for particle concentration as in the case of inertialess particles. The primary27
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consequence of this result is that typical flux parameterizations connecting sur-28

face emission models (e.g. saltation models or sea spray generation functions)29

to elevated boundary conditions may overestimate particle concentrations due30

to the reduced vertical transport caused by inertia in between; likewise particle31

emission may be underestimated if inferred from concentration measurements32

aloft.33

Keywords atmospheric boundary layer · dispersion · dust · inertial particles ·34

sea spray35

1 Introduction36

The planetary boundary layer (PBL) links the earth’s surface to the atmo-37

sphere, and as a result controls the transmission of dust, salt, and other38

aerosols from their emission source at the surface to the larger meso- and39

synoptic-scale motions which govern their long-range transport and ultimate40

fate. Once airborne, these particulates can alter key chemical (O’Dowd and41

de Leeuw, 2007), optical (Kleefeld et al., 2002), and meteorological (Rosenfeld42

et al., 2008) processes before being deposited back onto the terrestrial or ma-43

rine surface. Thus much work has been done in understanding and accurately44

parameterizing near-surface particle emission and transport processes for use45

in weather and climate prediction models, however continued discrepancies46

between models and observations remain a challenge (Knippertz and Todd,47

2012; Reid et al., 2006). For instance the aircraft observation of large (up to48

300µm) sand grains above the Saharan Desert (Rosenberg et al., 2014) is in49

seeming contradiction with the upper limit of standard saltation models (Kok,50

2011).51

The difficulty of developing dust and aerosol emission schemes is due largely52

to unresolved, small-scale, and process-specific details, such as those resulting53

from wave breaking (Lewis and Schwartz, 2004) or saltation (Anderson and54

Haff, 1988). In this regard, the present work focuses on understanding the de-55

tails of turbulent particle transport within the surface layer of the PBL — in56

particular the vertical flux of large particles which are heavy (i.e. they experi-57

ence gravitational settling) and inertial (i.e. they do not necessarily follow fluid58

streamlines). It is the latter consideration, that of particle inertia, which is of-59

ten neglected in particle flux parameterizations since even large sand grains60

or water droplets do indeed appear inertialess relative to PBL-scale motions.61

This work is focused, however, on turbulent transport which occurs in the low-62

est layers of the atmospheric surface layer (centimeters to meters above the63

surface), a region which plays the crucial role of connecting surface particle64

emission to transport throughout the full PBL, and where particle inertia can65

be non-negligible in their transport characteristics.66

Attempts to parameterize heavy particle transport can begin by first ap-67

proximating the suspended particulate as a passive scalar, in which case the68

horizontally-averaged vertical concentration profile and its relation to the sur-69

face flux could be described by Monin-Obukhov (MO) similarity theory (Monin70
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and Yaglom, 1971). The particles can be made more realistic by adding a71

nonzero and constant settling velocity, which yields a power-law vertical pro-72

file under neutral conditions when assuming that the turbulent diffusivity of73

particle concentration is proportional to that of momentum (Prandtl, 1952;74

Rouse, 1937), and reflects an equilibrium balance between suspension via tur-75

bulence and gravitational settling. Other modifications, including disequilib-76

rium between gravitational settling and turbulent suspension (Chamberlain,77

1967; Kind, 1992), heterogeneous surface fluxes (Chamecki and Meneveau,78

2011; Pan et al., 2013), non-neutral atmospheric stability (Freire et al., 2016),79

or various other meteorological effects specific to, for instance, sea salt aerorols80

(Toba, 1965) or snow (Pomeroy and Male, 1992), can be made as well.81

It is well-known that particle inertia can lead to phenomena in turbulent82

flows such as preferential clustering (Rouson and Eaton, 2001) or turbophoretic83

drift (i.e. a net flux down a gradient of turbulent kinetic energy) (Reeks, 1983;84

Sardina et al., 2012), and these play a key role in determining inertial particle85

dispersion. For example, inhomogeneous horizontal particle distributions, such86

as those found in sand streamers (Baas, 2008), may disrupt the assumptions87

behind previous relationships. Much effort has gone into understanding inertial88

particle transport in turbulent channel flows, relating particle dynamics with89

turbulent events such as sweeps and ejections (Soldati and Marchioli, 2009;90

Righetti and Romano, 2004) or studying the modulation of turbulence via the91

suspended particles (Vreman, 2015), but many of these studies neglect the92

effects of wall-normal gravitational settling. In the presence of gravitational93

settling, particle clustering can lead to enhancements of the effective particle94

settling velocity (Wang and Maxey, 1993; Aliseda et al., 2002), where the95

average downwards particle velocity exceeds the still-air settling velocity as96

predicted by, say, Stokes drag.97

In the PBL, while many theoretical and computational attempts have been98

made to characterize the Lagrangian dispersion characteristics of particles in99

turbulence (Wang and Stock, 1993; Csanady, 1963), it remains unclear how100

these effects of particle inertia modify the flux-profile relationship of particle101

mass concentration in the PBL, particularly in the lowest layers near the sur-102

face where Stokes numbers can be non-negligible. Even in theoretical studies103

devoted to the topic of vertical particle dispersion which attempt to include104

inertia, such as Belan et al. (2016), restrictions are necessarily made regarding105

the degree of particle inertia and the regions of the flow where the corrections106

are valid. Furthermore, in the well-known conceptual model for dry deposition107

(Slinn and Slinn, 1980; Slinn, 1982), the overall deposition velocity of par-108

ticulate matter is represented as a series of resistances to vertical transport,109

including turbulence, molecular diffusion, and (when applicable) vegetative110

canopies. This conceptual model is the basis for many studies which aim to111

link surface emission to concentrations measured aloft — see for example Hop-112

pel et al. (2002) or Fairall and Larsen (1984) — and within this framework113

particle inertia is only occasionally considered (Zhang et al., 2001; Peters and114

Eiden, 1992). When inertia is indeed included, it is only in the form of so-called115

inertial impaction, the process by which particles can efficiently travel through116
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the diffusive sublayer due to inertia, thereby reducing the diffusive resistance117

to deposition.118

The aim of the present study is to therefore investigate the role of parti-119

cle inertia on modifying concentration profiles and vertical fluxes in the first120

several meters of the PBL. This is done using an idealized approach based on121

direct numerical simulation (DNS), and focuses on the flux-profile relationship122

and potential modeling strategies. It is ultimately demonstrated that particle123

inertia can reduce turbulent fluxes of particle concentration, which can create124

a disconnect between true surface emission fluxes and fluxes felt by the full125

PBL. In some sense this is akin to an additional inertial resistance layer in126

the conceptual model of Slinn and Slinn (1980), and could potentially cause127

miscalculations of surface fluxes or overprediction of suspended particulate128

matter.129

2 Methodology130

2.1 Numerical Simulation131

2.1.1 Direct Numerical Simulation132

The basis of this study is DNS of turbulent open channel flow, where La-133

grangian particles are tracked individually. Details of the numerical method134

can be found in previous studies (Richter and Sullivan, 2013, 2014; Helgans and135

Richter, 2016), so only a brief summary will be included here. The neutrally-136

stratified, incompressible Navier-Stokes equations are solved in a Cartesian137

domain using a pseudospectral discretization in the homogeneous, periodic x138

and y directions and a second-order, finite difference discretization in the ver-139

tical, wall-normal z direction. Time integration is done via a low-storage, third140

order Runge-Kutta scheme (Spalart et al., 1991).141

Mass and momentum conservation are given by:142

∂ui
∂xi

= 0, (1)

143

∂ui
∂t

+ uj
∂ui
∂xj

= − 1

ρf

∂p

∂xi
+ νf

∂2ui
∂x2j

, (2)

where ui is the fluid velocity, ρf is the fluid density, and νf is the fluid kine-144

matic viscosity. Incompressibility is enforced by solving a pressure Poisson145

equation at each Runge-Kutta stage. A no-slip condition is imposed at the146

lower domain wall, and a no-stress condition is imposed at the upper wall. The147

horizontal directions are periodic, and the flow is driven by a constant pres-148

sure gradient, chosen to produce turbulent open channel flow with a Reynolds149

number of Re∗ = 300, where Re∗ = u∗H/νf is the friction Reynolds number150

based on the domain height H and the friction velocity u∗ =
√
τw/ρf (τw is151

the wall stress).152
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Fig. 1 Left: Snapshot of the computation. Colors reflect contours of fluctuating vertical
velocity and brown dots represent Lagrangian particles. z axis in this figure has been mag-
nified by a factor of 2.5. Right: mean velocity profile, showing the existence of a logarithmic
layer above z/H ≈ 0.1.

At the same time, an advection-diffusion equation for a passive scalar is153

computed as well:154

∂C

∂t
+

∂

∂xj
(vjC) = ΓC

∂2C

∂x2j
, (3)

where ΓC is the molecular diffusivity of scalar C. The concentration is advected155

by a velocity vj , which is not necessarily equal to the local fluid velocity uj .156

For instance, as done by Chamecki et al. (2009), this can be set to vj =157

uj − wsδj3 to represent uniform gravitational settling, where ws = τpg is the158

single-particle particle terminal velocity specified by its inertial time constant159

τp and the gravitational acceleration magnitude g, and δj3 is the Kronecker160

delta. A truly passive scalar would have vj = uj . In this study we assume a161

Schmidt number Sc = νf/ΓC of unity. At the lower boundary, the Dirichlet162

condition C ≡ C0 = 1 is held fixed, while at the upper boundary a no-flux163

condition is imposed. The domain is initialized with C = 0 at t = 0.164

2.1.2 Lagrangian Particle Tracking165

The primary goal of this study is to characterize the effects of particle inertia166

on turbulent fluxes and vertical concentration profiles in a turbulent boundary167

layer, and this is readily accomplished using Lagrangian methods (see e.g.168

Balachandar (2009)). Thus each simulation is seeded with a large number of169

Lagrangian point particles, whose ensemble-averaged concentration field is the170

scalar C governed by Eq. 3. The particles are assumed to be one-way coupled,171

in that they do not have any influence on the surrounding flow, since we172

assume here that the mass fraction of suspended particles is sufficiently low.173

In air suspended with solid or liquid particles, this approximation holds if the174
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mass loading is roughly 1% or below (Balachandar and Eaton, 2010). Each175

particle obeys momentum conservation according to:176

dvp,i
dt

=
1

τp
(uf,i − vp,i)− gδi3, (4)

where vp,i is the particle velocity, g is the magnitude of gravitational acceler-177

ation, and τp = ρpd
2
p/18ρfνf is the Stokes time scale. In these expressions dp178

is the particle diameter, uf,i is the fluid velocity interpolated to the particle179

location, and ρp is the particle density.180

In the limit of inertialess particles (i.e. the Stokes number St → 0, where181

St = τp/τf and τf is a relevant flow time scale; here we use the Kolmogorov182

time scale τK), Eq. 4 is not solved and rather the particle velocity is simply183

equal to the local fluid velocity less its terminal velocity:184

vp,i = uf,i − τpgδi3 = uf,i − wsδi3. (5)

In the further limit of massless particles, in which case the particles would185

simply represent a discretized form of a continuous passive tracer field, the186

particle velocity is equal to the local fluid velocity: vp,i = uf,i.187

Given the restriction to relatively low Reynolds numbers due to the use188

of DNS, molecular diffusion of both momentum and scalar C occurs in a189

non-negligible region near the walls. To provide equivalency between the La-190

grangian representation (i.e. the particles) and the Eulerian field C, the parti-191

cles are moved according to a combination of their advection velocity vp,i and192

a Brownian step chosen to provide a diffusivity ΓC :193

dxp,i = vp,idt+
√

2ΓCdξi, (6)

where dξi is a Weiner process representing Brownian motion. Numerically,194

advection is solved using the same RK3 method used for the flow, and at the195

end of each time step, a random jump is added to provide the diffusive jump.196

Figure 1 provides a snapshot of the flow simulation with instantaneous particle197

location.198

As noted above, the Eulerian scalar concentration C is held fixed at C0 = 1199

at the bottom wall, and a no-flux condition is imposed at the top wall. For200

Lagrangian particles, the same conditions are enforced: at the top wall, this201

means that particles are elastically reflected, and at the bottom wall, a reser-202

voir of a constant number of particles just below the surface is maintained203

whose concentration is defined as C0 = 1. The mean concentration 〈C〉 is then204

computed from a Lagrangian point of view at a specific height by counting the205

particles in the horizontal slab with volume Lx×Ly×∆z (where Lx and Ly are206

the domain extents in the x and y directions and ∆z is the vertical grid spac-207

ing at a particular height z) and normalizing with the concentration/volume208

combination maintained just below the bottom surface. This method requires209

a sufficient number of particles for statistical convergence of the particle aver-210

ages, and in this case the number of particles maintained in the lower reservoir211

was held at 1× 104 (this leads to particle numbers in the domain of O(106)).212
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Figure 2(a) shows a comparison between the Eulerian (Eq. 3) and La-213

grangian prediction of 〈C〉 /C0 in the inertia-free case, for three different set-214

tling velocities. The settling velocities ws are normalized by κu∗ so that they215

reflect the settling tendency as compared to the strength of wall shear stress —216

in sediment transport literature this ratio is commonly referred to as the Rouse217

number (Rouse, 1937). Figure 2(a) demonstrates the equivalence between the218

Eulerian and Lagrangian particle treatment, including the adjustment of the219

advection velocity vi in Eq. 3 by the settling velocity.220

2.2 Existing theory221

Following Prandtl (1952) (and many others since), the Reynolds decomposition222

C = 〈C〉+ c′ can be introduced into Eq. 3, and after averaging the equations223

in absence of particle inertia and a net surface flux (e.g. Kind (1992)), one224

recovers a balance between turbulent suspension and gravitational settling:225

〈c′w′〉 − 〈C〉ws = 0 (7)

If one then makes the assumption that the turbulent particle concentra-226

tion flux 〈c′w′〉 can be expressed with an eddy diffusivity, in analogy with227

momentum and passive scalars, Eq. 7 becomes:228

−KC
d 〈C〉
dz
− 〈C〉ws = 0, (8)

where KC is an eddy diffusivity. In the neutral atmospheric surface layer,229

Monin-Obukhov similarity theory implies KC = κu∗z since the turbulent flux230

〈c′w′〉 does not vary with height (here κ = 0.41 is the von Kármán constant231

and the turbulent Schmidt number is assumed to be unity). For open channel232

flow, however, the linearly varying momentum flux with height results in a233

parabolic diffusivity profile, given by KC = κu∗z (1− z/H) (see for example234

Fischer (1973)).235

In its original formulation, the Prandtl solution to the ordinary differential236

equation of Eq. 8 suggests that the average concentration varies as a power law237

with height, with an exponent of ws/ (κu∗). Using the open channel version238

of KC yields an equivalent result for systems where the total momentum flux239

varies linearly with height, which is a product of two power laws:240

〈C〉 (z)
Cr

=

(
z

zr

)−ws/κu∗ ( z −H
zr −H

)ws/κu∗

(9)

Here, zr is a constant reference height where the mean concentration is Cr241

(zr = 0.3H in this work). Throughout the manuscript, the “Prandtl” solution242

will refer to Eq. 9, although it represents a profile in an open channel config-243

uration where the eddy diffusivity KC is parabolic with height, as opposed to244

the original atmospheric surface layer version (Prandtl, 1952). As noted previ-245

ously, throughout the literature (particularly in relation to sediment transport)246

this profile is also sometimes referred to as the Rouse profile (Rouse, 1937).247
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Fig. 2 Mean normalized particle concentration 〈C〉 /C0 versus normalized height z/H for
three different settling velocities without inertia. Colors indicate different settling velocities
and are indicated on the left. (a) Linear axes showing the comparison between the Eulerian
solution (solid lines) and Lagrangian solution (dashed lines). (b) Logarithmic axes comparing
the computed solutions to the Prandtl (1952) theory (Eq. 9).

Figure 2(b) shows that the Prandtl solution of Eq. 9 agrees very well with248

the concentration profiles computed in the inertialess cases, above a height249

of z/H around 0.1. Below this height, molecular diffusivity plays a large role250

(since the simulations are based on DNS), violating the basic assumption that251

the particle concentration is a result of a balance between turbulent suspen-252

sion and gravitational settling. Thus in the absence of particle inertia, Eq. 9253

accurately predicts concentrations over a range of settling velocities in regions254

of the flow where turbulence and gravity are indeed the dominant transport255

mechanisms.256

3 Results and discussion257

3.1 Interpretation258

The numerical methodology outlined in the previous sections represents an259

idealized approach towards understanding the role of inertia in the flux-profile260

relationship of suspended particles. As such, we include here a brief discussion261

of both the applicability of the following results, as well as an explanation for262

how they should be interpreted.263

First, the lower boundary conditions utilized for both the Eulerian and264

Lagrangian simulations are not intended to physically represent the process of265

particle emission from the surface. Since aeolian saltation at the sand/snow266

surface, droplet formation at the air-sea interface, lifting at the subaqueous267

sediment layer, etc. have widely varying physical explanations, the focus here268

is instead on the vertical transport of particles once they have been suspended.269
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Fig. 3 Schematic detailing the structure of the PBL and the focus of the present DNS
study. In the region above the emission layer and below the full boundary layer, local Stokes
numbers can be large due to the rapid change in the turbulent kinetic energy dissipation
rate with height, resulting in inertia-dominated transport of particles in the bottom few
meters of the PBL. The emission layer includes the region where processes such as bubble
bursting or saltation occur, which are not explicitly represented in this study.

In the present work, molecular diffusion, as represented by Brownian motion270

for the Lagrangian particles and by a constant molecular diffusivity for the271

Eulerian concentration field, is used as a means for achieving this suspension,272

in the sense that it is responsible for carrying particles from the specified273

concentration at the surface to a level where turbulence dominates transport274

(this occurs at a level of z/H ≈ 0.1 in the DNS presented here). This allows275

for a direct comparison between the Eulerian and Lagrangian methods, and276

allows us to focus instead on the turbulent transport in regions above this277

layer. How the particles have arrived this this height is immaterial for our278

purposes.279

Second, the DNS framework is meant to represent only the lowest few280

meters of the PBL where inertia is present (the “inertial resistance layer” —281

see Fig. 3). Thus the parameter H in the simulations is not the boundary layer282

height of O(1000 m) but rather the top of the inertial resistance layer which283

has a height of O(1 m). For a given particle size, the Stokes number computed284

based on the local Kolmogorov time scale changes very rapidly with height,285

leaving a region near the surface (but above the emission layer) where inertia286
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can be large. The depth of this layer is controlled by both the particle size287

and the turbulence levels in the boundary layer. Since St = τp/τK depends288

on both τp and the local Kolmogorov time scale, the depth of this layer would289

scale as d2p, since τp is proportional to d2p, and with u
3/2
∗ , since the turbulent290

kinetic energy dissipation rate ε is proportional to u3∗ and τK is proportional291

to ε−1/2 (at least in neutral conditions). As demonstrated below in section 3.6,292

the features observed in the DNS can be felt throughout larger-scale models293

which cannot resolve these small-scale motions and instead resolve PBL-scale294

motions.295

3.2 Adding particle inertia296

The goal of this work is to extend the analysis of section 2.2 to include par-297

ticles which exhibit appreciable inertia during their turbulent transport. In298

most studies on this topic (Chamberlain, 1967; Chamecki et al., 2009; Kind,299

1992), particle inertia is neglected and only gravitational settling is taken into300

consideration. In other studies (Belan et al., 2016; Csanady, 1963; Freire et al.,301

2016), particle inertia is treated insofar as it is responsible for altering disper-302

sion rates, and compared to the large scales associated with the full PBL the303

effect of inertia is quite small. Here, our focus is on the lowest layers of the304

particle-laden boundary layer, where the transport is crucial for linking the305

small-scale emission processes with the large-scale PBL.306

With this in mind, we design a set of numerical experiments whose purpose307

is to systematically vary the particle inertia while holding the settling tendency308

the same, in order to determine the effects on the average concentration profiles309

and flux characteristics. A nondimensional settling velocity of ws/ (κu∗) = 0.06310

is held fixed (red lines in Fig. 2), and the flow Reynolds number is likewise fixed311

atRe∗ = 300. The particle inertial time scale τp is then varied to provide Stokes312

numbers ranging between St = 0.05 and St = 5.0. We note that the following313

analysis only reports results from a single nondimensional settling velocity, but314

the same general results are found at other values of ws/ (κu∗). The effect of315

ws is to modify the baseline concentration profile, from which inertia modifies316

as described below. We also note that while holding ws constant while varying317

St is artificial, it allows us to target explicitly the effects of inertia, without318

confounding them with changes in ws at the same time. In reality, ws and St319

are linked via τp, although local values of St can change with height.320

For our DNS, we use a flow time scale of τf = τK to define St, where τK is321

the vertically-averaged Kolmogorov time scale in the channel. For reference, if322

one uses the logarithmic scaling of viscous dissipation rate in the atmospheric323

surface layer, ε = u3∗/κz, then τK averaged over the lower 5 meters of the324

surface layer for u∗ = 0.4 m s-1 is roughly 0.015 seconds. In these conditions325

the Stokes number range of St = 0.5 to St = 5.0 corresponds to diameters of326

dp ≈ 10µm to dp ≈ 150µm when the particle density is of order 1000 kg m-3.327

Thus spray droplets or dust particles suspended in air can quite easily behave328
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Fig. 4 (a) Average normalized concentration 〈C〉 /C0 computed from the inertial, La-
grangian simulations as a function of z/H. The settling velocity is held fixed at ws/ (κu∗) =
0.06 for all cases, and Re∗ = 300. (b) The same concentration profiles on logarithmic axes,
with Eq. 9 plotted in thin black lines for reference. The addition of inertia dramatically
changes the concentration within the domain, and causes the average profile to deviate
significantly from the inertialess theory.

as inertial particles within O(1 m) of the surface (i.e. the “inertial resistance329

layer” found in Fig. 3).330

Figure 4(a) presents the normalized average concentration profiles as a331

function of z/H over the range of St considered. Despite the settling velocity332

being identical between these cases, the addition of inertia clearly inhibits333

the ability of particles to distribute vertically throughout the domain. Over334

the present range of St, this trend is monotonic, in that higher St leads to335

lower mean concentrations throughout the entire channel. The exception is the336

St = 5.0 case, where upwards turbophoretic drift (Reeks, 1983; Sardina et al.,337

2012) actually overcomes gravitational settling, pushing particles towards the338

top wall and increasing concentrations there (i.e. the finite size of the domain339

begins to contaminate the solution since vertical velocity fluctuations must340

approach zero at the top wall).341

Figure 4(b) illustrates that the Prandtl theory describing the vertical pro-342

files of concentration as a balance between turbulent flux and gravitational343

settling fails significantly as St is increased (thin black lines). At low St, Eq. 9344

is still accurate in the upper regions of the domain, but the height range over345

which agreement is found diminishes. The disagreement propagates from the346

bottom, since the local Stokes number, as computed by the local value of τK ,347

is a monotonically decreasing function with height. Thus the first regions of348

the flow where the theory begins to fail are those where the local St is locally349

large enough to cause the particles to cease acting like settling, passive tracers.350

By solving Eq. 3 and only considering gravitational advection (i.e. vj =351

uj−wsδj3), the turbulent flux 〈c′w′〉, diffusive flux −ΓC (∂ 〈C〉 /∂z), and grav-352

itational flux −ws 〈C〉 are computed directly from the Eulerian concentration353
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field. Simultaneously, the same flux quantities can be computed from the La-354

grangian particles as well. The gravitational flux is still −ws 〈C〉 (using the355

Lagrangian-based 〈C〉), and Reynolds averaging of the particle evolution equa-356

tions shows that the sum of the turbulent and gravitational fluxes is equal to357

〈wp〉 〈C〉, where 〈wp〉 is the average particle vertical velocity. Therefore the358

turbulent flux (counterpart to 〈c′w′〉 in the Eulerian frame) is the difference359

between the gravitational flux and the concentration-weighted average particle360

velocity. Finally, the total flux is computed from the Lagrangian point of view361

by keeping track of the net number of particles crossing each horizontal plane362

in each time step. From this total, the gravitational and turbulent fluxes can363

be subtracted to yield the diffusive flux.364

First, to demonstrate that the Eulerian versus Lagrangian-based flux calcu-365

lations are equivalent for systems with no inertia, Fig. 5 shows the Lagrangian-366

computed profiles in thick red lines and the Eulerian-computed fluxes thin367

black lines for the inertialess case shown in Figure 4. It is clear that the flux368

profiles in this case are nearly identical, and therefore the Lagrangian-based369

fluxes are accurate representations of vertical particle transport.370

Several features are of note in Fig. 5. First, since we average only after371

the system has reached steady state, the total flux should be zero, which372

Fig. 5 indeed indicates is the case. Figure 5 shows that in this steady state373

condition, above z/H ≈ 0.1 and below z/H ≈ 0.9, the flux balance, even in the374

presence of substantial particle inertia, is strictly between gravitational settling375

and turbulent suspension. As expected, this spatial region corresponds to the376

region of Fig. 4 where the Prandtl-predicted concentration profile agrees with377

the simulations in the absence of particle inertia. Near the top and bottom378

walls, turbulent fluxes are replaced by nonzero diffusive fluxes, thus violating379

the assumptions behind the Prandtl theory.380

Figure 5 also illustrates that within the regions unaffected by diffusion, in-381

creases in particle inertia suppress turbulent fluxes, which are in turn balanced382

by lower gravitational settling fluxes. So while the dominant balance remains383

between turbulence and gravity, their magnitudes have deviated sharply from384

the noninertial case. This trend increases with St, and the inertialess Eulerian385

formulation (thin black lines) is clearly insufficient in predicting the fluxes for386

inertial particles.387

3.3 Inertial correction to the advection velocity388

In order to capture inertial effects in the Eulerian calculations, we utilize an389

inertial correction to the advection velocity vj in Eq. 3 which is based on an390

asymptotic expansion of equation 4 in Stokes number, retaining only the first391

order correction (Druzhinin, 1995; Maxey, 1987). More recent implementations392

of this correction have acquired the name of the “Equilibrium Eulerian” model,393

whose advantage is that it captures some inertial affects while still allowing394

the particle advection velocity to be written in terms of local flow velocities395

and accelerations (Ferry and Balachandar, 2001; Balachandar, 2009).396
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Fig. 5 Vertical profiles of concentration fluxes for a subset of the overall Stokes numbers:
St = 0 (red), St = 0.1 (green), and St = 1.0 (blue). Line types provided in the legend refer
to the turbulent flux, the gravitational flux, the diffusive flux, and the total flux. The thick
colored lines refer to fluxes computed from the Lagrangian particle data; thin black lines
are fluxes from an Eulerian, inertialess perspective. Fluxes normalized by C0U0, where U0

is the maximum velocity in the channel.

Under this approximation, the advection velocity takes the form:397

vj = uj − wsδj3 − τp
Duj
Dt

, (10)

where D
Dt = ∂

∂t +uk
∂
∂xk

is the total fluid acceleration. The meaning of the last398

term in Eq. 10 is that the fluid velocity seen by the particle at a time τp before399

the present time should be factored into the current particle velocity due to400

inertia, and would only be expected to be accurate below St ≈ 0.2 since the401

correction is only first order (Ferry and Balachandar, 2001).402

Following the same Reynolds averaging procedure as done for deriving Eq.403

7, this correction to the advection velocity leads to two additional terms in404

the vertical flux balance:405

〈c′w′〉 − 〈C〉ws − 〈C〉 τp
∂
〈
w′2
〉

∂z
− τp

〈
c′
Dw′

Dt

〉
= 0. (11)

The first two terms are the same turbulent and gravitational settling fluxes406

from Eq. 7. The third term on the left hand side of Eq. 11 represents tur-407

bophoresis, where inertia causes a drift against gradients of turbulent kinetic408

energy (Reeks, 1983), and the fourth term on the left hand side represents409

correlations between concentration fluctuations and vertical accelerations. It410



14 David Richter, Marcelo Chamecki

-5 -4 -3 -2 -1 0 1

!
=p

C0U0
hCi @hw02i

@z
#10 -3

0

0.2

0.4

0.6

0.8

1

z
=
H

(a)

St = 0
St = 0.1
St = 0.3
St = 1.0

-2 -1 0 1 2

!
=p

C0U0

D
c0 Dw0

Dt

E
#10 -3

0

0.2

0.4

0.6

0.8

1

z
=
H

(b)

Fig. 6 Additional, inertia-based flux terms in Eq. 11 as a function of height. Different lines
refer to different Stokes numbers ranging between 0 and 1.0 (see legend). (a) turbophore-

sis term: −τp 〈C〉
∂〈w′2〉
∂z

, (b) correlation between concentration fluctuations and vertical

accelerations: −τp
〈
c′Dw

′

Dt

〉
. Both terms normalized by C0U0.

can be easily shown that the sum of these two terms is simply −τp
〈
CDw′

Dt

〉
,411

i.e., the correlation of the total concentration with vertical acceleration.412

With this formulation in mind, we perform a new simulation in which vj413

in Eq. 3 is replaced by Eq. 10 in order to compare its predictions with the true414

behavior of the inertial Lagrangian particles (here “true” indicates that we415

expect the theory to match the Lagrangian simulations exactly if the theory416

were correct). From these calculations, Fig. 6 presents the two extra flux terms417

in Eq. 11 as a function of height for a range of St, which shows that each of418

the inertial corrections to the vertical flux are of the same order of magnitude.419

As expected, the turbophoretic term in Fig. 6(a) is largest in the regions near420

the lower wall where the gradients of the turbulent kinetic are the highest.421

These profiles are related to one another, in the sense that the gradient
∂〈w′2〉
∂z422

is the same in all cases since the underlying turbulence has not changed with423

particle Stokes number.424

In the range where molecular diffusion is unimportant (above z/H ≈ 0.1),425

the concentration fluctuation/vertical acceleration correlation term (Fig. 6(b))426

is dominant and negative, suggesting that inertia tends to reduce the vertical427

flux. This is in agreement with the Lagrangian-based fluxes computed in Fig. 5,428

and provides an Eulerian interpretation of this suppression of the concentration429

flux. It is noteworthy that the dominance of this term over the turbophoretic430

term indicates that inertial corrections to vertical dispersion must include431

additional effects beyond turbophoretic drift. As the particle Stokes number432

increases, these flux corrections generally become larger since they are pro-433

portional to τp, although the correlation saturates around St = 0.5. We note434

that the corrections for St = 5.0 are not shown since the inertia-corrected ad-435
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Fig. 7 Turbulent fluxes with inertial correction to Eulerian advection velocity. Uncorrected
turbulent flux 〈c′w′〉 (dashed), Lagrangian turbulent flux (dash-dotted), and the corrected
turbulent flux 〈c′w′〉corr (solid). Line colors refer to legend in Fig. 6. Axes have been zoomed
in to better highlight agreement between the Lagrangian-based fluxes and the corrected
Eulerian fluxes.

vection velocity causes the numerical simulations to become unstable at such436

high values of τp.437

If one interprets the last two terms of Eq. 11 as a correction to the iner-438

tialess turbulent flux, then a corrected turbulent flux can be defined:439

〈c′w′〉corr = 〈c′w′〉 − 〈C〉 τp
∂
〈
w′2
〉

∂z
− τp

〈
c′
Dw′

Dt

〉
(12)

which should approach the Lagrangian-computed turbulent flux for the iner-440

tial particles presented in Fig. 5. Figure 7 shows that this is indeed the case,441

however beginning at St ≈ 0.3 the linear correction begins to break down. In442

this figure, the turbulent flux 〈c′w′〉 (“uncorrected” in Fig. 7) far overpredicts443

the vertical turbulent flux over much of the domain when vj is modified to444

include the inertia. When adding the additional flux terms of Eq. 11 to 〈c′w′〉445

(“corrected” in Fig 7), the vertical turbulent flux nearly exactly matches the446

true flux predicted from the Lagrangian particles. While the corrected Eu-447

lerian flux diverges from the Lagrangian beginning at St ≈ 0.3, the flux is448

fairly accurate through St = 0.5, suggesting that the key inertial effects on449

vertical fluxes have been captured by the linear correction to vj . The resulting450

predictions of the vertical concentration profiles are likewise accurate up to451

St ≈ 0.3, as shown in Fig. 8. The degree of success of inertial correction to vj452
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Fig. 8 Concentration profiles as predicted by the Lagrangian particles (solid lines) and the
corrected Eulerian field (dashed lines). (a) Linear axes, (b) Logarithmic axes.

is in complete agreement with previous uses of the Equlibrium Eulerian model453

(Ferry and Balachandar, 2001).454

3.4 Revisiting the Prandtl theory455

The Prandtl solution for concentration (Eq. 9) was derived assuming a balance456

between turbulent suspension and gravitational settling. Furthermore, it uses457

a parabolic form of the eddy diffusivity, i.e., KC = κu∗z (1− z/H), which458

is the eddy diffusivity predicted by MO similarity theory in the presence of a459

linear momentum flux. As a first step, therefore, we compute KC in the case of460

inertial particles to see how well a parabolic function compares with the eddy461

diffusivity implied by the ratio of the turbulent flux to the mean concentration462

gradient. For the corrected Eulerian flux this follows:463

KC,E = −
〈c′w′〉corr

∂〈C〉
∂z

, (13)

while for the Lagrangian-computed turbulent flux KC is computed as:464

KC,L = − (〈wp〉+ ws) 〈C〉
∂〈C〉
∂z

, (14)

where the numerator is the turbulent flux measured from the Lagrangian par-465

ticles, and inherently includes all true inertial effects.466

Figure 9 shows both KC,E and KC,L, and compares them to the parabolic467

solution assumed by MO theory. It is clear that the inertialess case (St = 0, red468

lines) follows the parabolic solution fairly closely, which is expected since the469

Prandtl solution was successful at predicting the mean concentration profiles470
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Fig. 9 Eddy diffusivities normalized by the molecular diffusivity ΓC . Dotted black line
represents the parabolic solution KC = κu∗z (1− z/H). Solid lines represent KC,E and
dash-dotted lines represent KC,L. Both profiles have been smoothed with an averaging
filter. Colors follow legend of Fig. 8.

in Fig. 4. As St increases, however, not only do the computed eddy diffusiv-471

ities deviate from the parabolic approximation, the Eulerian and Lagrangian472

predictions deviate from one another. Again, this is expected given the devi-473

ation between the corrected Eulerian and Lagrangian profiles shown in Fig.474

7 and Fig. 8, since the Eulerian correction is only valid at low St. We note475

that the difference between KC,L and the parabolic solution is not simply a476

result of the so-called crossing trajectories effect: the correction proposed by477

Csanady (1963) for the vertical eddy diffusivity results in a vertical dispersion478

coefficient that is less than 1% different than the parabolic solution.479

While the shape of both KC,E and KC,L is still somewhat parabolic at480

St = 0.3 (yellow lines in Fig. 9), the emergence of an inflection point in the481

concentration profile at St = 1.0 (see Fig. 8) causes KC,L to spike to very large482

and even negative numbers near z/H ≈ 0.8. This behavior indicates that iner-483

tial particles violate the basic flux-gradient relationship assumed when defin-484

ing an eddy diffusivity KC , although the inertial correction to the Eulerian485

advection velocity compensates for this up to St ≈ 0.2, as noted earlier.486

It is instructive therefore to repeat the Prandtl analysis and attempt to487

predict the concentration profile while incorporating the inertial corrections488

to the Eulerian concentration field. The goal here is to determine whether or489

not a parabolic eddy diffusivity can be utilized for the uncorrected turbulent490

flux 〈c′w′〉 while capturing the inertial effects separately and explicitly. If this491

fails (which it indeed does), it would indicate that inertial effects must be492
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accounted for in the eddy diffusivity itself and not as a series of correction493

terms to the overall flux balance. If Eq. 11 is written as:494

〈c′w′〉 − 〈C〉ws + β(z) = 0, (15)

where β(z) represents the inertial corrections to the turbulent flux,495

β(z) = −〈C〉 τp
∂
〈
w′2
〉

∂z
− τp

〈
c′
Dw′

Dt

〉
, (16)

the analog to Eq. 8 assuming the parabolic form of the eddy diffusivity KC is:496

κu∗z (1− z/H)
d 〈C〉
dz

+ 〈C〉ws = β(z). (17)

The solution to this inhomogeneous equation takes the following form:497

〈C〉 (z)
Cr

=

(
z

zr

)−ws/κu∗ ( z −H
zr −H

)ws/κu∗

+

(
z

H − z

)−ws/κu∗ ∫ z

zr

(
z

H − z

)ws/κu∗ β(z)

Crκu∗z (1− z/H)
dz.

(18)

Equation 18 contains the original Prandtl solution of Eq. 9 as the first term,498

followed by a correction which involves an integral of the inertial correction499

term β(z). Since we do not have a closure for this term, we must integrate500

this term numerically, and its solution is presented in Fig. 10. Note that since501

〈C〉 appears in the definition of β(z), the numerical solution must be iterative;502

since the term containing 〈C〉 is small above zr = 0.3 (Fig. 6(a)), however, the503

solution converges very rapidly.504

Figure 10 shows that the correction indicated by Eq. 18 does not adequately505

modify the original Prandtl solution to account for inertia. This is of course506

true at the highest values of St (since again the inertial correction only is valid507

at low St), but even at St = 0.3 the additional term in Eq. 18 overcorrects508

the Prandtl solution substantially.509

The reason behind this discrepancy is that the similarity-based, parabolic510

form of the eddy diffusivity KC is no longer valid as St increases. If Eq. 8 is511

written using the Lagrangian-based KC,L as:512

−KC,L
d 〈C〉
dz
− 〈C〉ws = 0, (19)

then the solution for 〈C〉 can be computed numerically using the KC,L profiles513

presented in Fig. 9 (i.e. the dash-dotted lines). Note that Eq. 19 does not514

contain the inertial correction term β(z) since the Lagrangian-based KC,L515

inherently includes all inertial effects. Figure 10 shows that when solving Eq.516

19, the predicted concentration profile very closely matches the Lagrangian-517

based concentration profiles, except for regions near the inflection points in518

〈C〉 where KC,L is ill-defined. Thus, the effects of particle inertia on vertical519

dispersion must not be limited to corrections to the turbulent flux (e.g. using520
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Fig. 10 Vertical concentration profiles computed from the inertial Lagrangian particles
(solid lines) compared to the prediction of Eq. 18 (dashed lines). As before, zr = 0.3H and
Cr is the concentration at this height, so the solution to Eq. 18 only exists above z/H = 0.3.
Dash-dotted lines are the numerical solutions to Eq. 19, which uses the Lagrangian-based
KC,L, illustrating that the parabolic KC becomes insufficient at high St. Colors refer to the
legend in Fig. 8.

the Equilibrium Eulerian model to correct the particle advection velocity),521

but must also consider the fact that the eddy diffusivity, and therefore the522

relationship between the flux and the mean concentration gradient, is modified523

by inertia as well.524

3.5 Reynolds number525

Before demonstrating the effect of the inertial resistance layer in larger-scale526

models, we provide a comment upon the usage of direct numerical simulation,527

and thus the limitation in Reynolds number, of the current work. As the528

Reynolds number of this type of simulation increases towards the types of529

atmospheric flows we aim to investigate, the primary effect is to reduce the530

region over which molecular momentum and scalar diffusion dominate; indeed531

it is only outside of this region that the present work has focused. To this532

end, two additional simulations were run at a Reynolds number of Reτ = 700533

in order to demonstrate that the primary conclusions of this work remain534

intact. Figure 11 shows the counterparts to Figs. 4(b) and 9 for an inertialess535

and a St = 0.1 particle at the same dimensionless settling velocity. Figure536

11(a) shows that again, the inclusion of particle inertia causes a reduction in537

the concentration profile, and that the deviation from the Prandtl solution538
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Fig. 11 (a) Concentration profiles and (b) eddy diffusivity profiles for Reτ = 700 cases
for St = 0 (cyan) and St = 0.1 (dark red) particles. The trends are nearly identical to
those presented in Figs. 4(b) and 9, respectively, illustrating the robustness of the present
conclusions with increasing Re.

propagates from the lower wall upwards, beginning in regions with high local539

St. The only difference with the increased Reynolds number is that the range540

of agreement of the St = 0 case with the Prandtl solution extends further541

towards the lower surface, to z/H ≈ 0.02 as opposed to z/H ≈ 0.08 as before.542

The same is true in Fig. 11(b): the presence of inertia begins to alter the eddy543

diffusivity profile in a similar way to that of the lower Re cases, only in this544

case the magnitude of KC is larger (as expected). Thus we argue that the545

methodology of using DNS as a tool for studying inertial particle fluxes in the546

lowest regions of the atmospheric surface layer is justified in that the effects547

of Reynolds number do not appreciably alter our basic findings.548

3.6 Consequence of the inertial resistance layer549

We argue above that within the first few meters above the emission layer, par-550

ticles often experience inertial effects as they are carried upwards by turbulent551

motions. In the DNS this is manifested as a reduction of the concentration552

profile at steady state, but can also be described as a reduction in the vertical553

turbulent flux above a particle source, similar to classic descriptions of depo-554

sition velocity resistance via molecular diffusion or vegetation canopies (Slinn555

and Slinn, 1980). In practice, this reduction in turbulent flux near the surface556

effectively reduces the emission flux felt by the boundary layer as compared557

to the true source flux. In this study we use DNS to resolve these near-wall558

motions to study their effect, but in practice these motions cannot be resolved559

and thus their effect must be parameterized.560

To demonstrate this process, we perform a representative large eddy simu-561

lation (LES) using the unstable convective PBL studied in Freire et al. (2016).562
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Fig. 12 (a) Concentration profiles of dp = 10µm (blue) and dp = 30µm (red) particles for
the unstable convective PBL of Freire et al. (2016). Solid curves represent full surface fluxes
of 0.2µg m-2!s-1 and dashed lines represent surface fluxes corrected for inertial transport
between the first grid point and the emission layer. (b) Stokes numbers of dp = 10µm and
dp = 30µm particles, as computed by the subgrid dissipation of the LES scheme. From the
perspective of LES, these particles are nearly inertialess, but can have significant inertial
effects near the surface.

For an initial boundary layer height of zi = 570 m, a surface heat flux of563

0.24 K m s-1, and a geostrophic wind of Ug = 10 m s-1, Eulerian concentration564

fields of dp = 10µm and dp = 30µm particles are solved, only taking into565

account gravitational settling and not explicitly accounting for inertia.566

In Fig. 12(a), the solid curves represent the concentration profiles averaged567

between hours 3 and 4 for the same surface emission flux of 0.2µg m-2 s-1.568

As expected, the heavier particles have lower concentrations throughout the569

PBL. To account for inertial effects at and beneath the first LES grid point,570

we estimate a surface Stokes number based on LES dissipation at the first grid571

point, and use Fig. 7 to provide a corresponding reduction in the surface flux572

due to the inertial resistance layer. For the case of dp = 10µm particles, the573

local Stokes number at the bottom grid point is St ≈ 0.01 and the corrected574

flux is estimated to be 99% of the original surface flux; the dashed blue line575

in Fig. 12(a) reflects this small difference. For the case of dp = 30µm (dashed576

red line), however, the surface Stokes number is St ≈ 0.1 and the reduction in577

surface flux is roughly 22%. Figure 12(a) highlights the fact that, as a result of578

this near-surface reduction of turbulent flux, mean concentrations throughout579

the entire PBL can be influenced by inertia near the surface. Furthermore,580

Fig. 12(b) shows that while inertial effects can lead to substantial changes in581

the predicted large-scale concentrations, particles in these regions do indeed582

appear nearly inertialess at these scales, as computed by their local Stokes583

number. Only near the surface do they begin to experience inertial effects, even584

possibly throughout the surface layer (see for example Nemes et al. (2017)).585

We again emphasize that the region of interest in this study, as simulated by586
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DNS, is within several meters of the surface (Fig. 3). By definition, LES in587

general cannot resolve the observed inertial behavior of the particles because588

it is a processes which occurs at the smallest scales of the turbulent flow.589

4 Conclusions590

In this work we seek to better understand the influence of particle inertia591

on vertical concentration profiles, and in particular the shortcomings of tra-592

ditional relationships that work well in low- or zero-inertia conditions (e.g.593

Prandtl (1952)). We utilize direct numerical simulations and Lagrangian point594

particles in turbulent open channel flow to explore the ability of inertial correc-595

tions to the Eulerian transport equation (i.e. the Equilibrium Eulerian model596

(Ferry and Balachandar, 2001)) to capture changes in the turbulent fluxes597

and concentration profiles. This numerical setup is meant to provide insight598

into the lowest O(1 m) portion of the atmospheric surface layer, where wa-599

ter droplets or sand/dust grains will experience inertial influences on their600

trajectories between the time they are emitted and the subsequent transport601

throughout the whole PBL.602

We find that while the primary balance governing the concentration of603

suspended particles remains between turbulent flux and gravitational settling,604

both fluxes are reduced in magnitude and cause a reduction of particle con-605

centration at a specific height. This reduction in concentration increases with606

particle Stokes number, and reflects an inability of the particle to be instan-607

taneously transported with the local fluid motion. Up to a Stokes number608

of approximately St ≈ 0.3, the Equilibrium Eulerian framework provides a609

viable means for correcting the turbulent flux, and thus can reproduce iner-610

tial particle profiles accurately. Above this threshold, however, this first-order611

correction fails to reproduce behavior seen by the Lagrangian particles. In612

all cases, as the Stokes number is increased, the turbulent flux becomes less613

well represented by a similarity-based eddy diffusivity, and any attempt at614

parameterizing the vertical turbulent flux must begin with a more accurate615

description of the effective, inertia-influenced eddy diffusivity.616

The result is that atmospheric weather prediction or large eddy simulation617

models, which attempt to predict the transport of spray, dust, snow, etc.,618

may overestimate airborne concentrations if an inertialess, similarity-based619

theory is used to link traditional emission schemes (e.g., saltation models,620

sea spray generation functions) to the flux at the first grid point above the621

lower surface. Likewise in practice, surface emission parameterizations may622

underestimate true emission if airborne concentration observations are used623

to infer surface fluxes. Since particles must traverse through the first several624

meters of the surface layer before arriving at elevations corresponding to the625

first grid point in numerical models, they have necessarily experienced some626

inertial transport along the way. The present results suggest that this inertial627

behavior may result in a decrease in vertical fluxes compared to traditional628

predictions.629
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