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Abstract

The suitability of Kerstein’s One-Dimensional Turbulence (ODT) model in the representation of atmospheric boundary layer
(ABL) flows within and above plant canopies is investigated. The ODT model was adapted to represent a filtered version of flow
and scalar fields, equipped with a Smagorinsky-like sub-grid scale model, a wall model, and a parameterization of the canopy effects
on the flow. In the filtered ODT, the entire vertical extension of the ABL is modeled and the “resolved” vertical turbulent transport
is represented by stochastic eddies that effectively mix fluid parcels across a path length, representing non-local turbulent fluxes that
are a critical feature of the canopy roughness sublayer. Simulations for different canopies and stability conditions are performed
and vertical profiles of turbulence and scalar statistics are compared with observational and large-eddy simulation data. This new
filtered version of the ODT model yields grid-independent results. Model performance for plant canopies is consistent with previous
results from ODT for all cases tested without any case-specific parameter adjustment, generating reasonable agreement in profiles
of mean velocity, temperature and water vapor mixing ratio, as well as vertical fluxes of momentum and sensible and latent heat,
despite the underestimation of all velocity variances. Non-local transport is intrinsic to the formulation of ODT, which represents a
significant advantage compared to other reduced-model approaches employed for canopy flows.
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1. Introduction

The dynamic interaction between plant canopies and the flow
in the atmospheric boundary layer (ABL) leads to the forma-
tion of a turbulent flow with attributes that significantly differ
from those characteristic of classical surface-layer turbulence.
The drastic reduction in streamwise velocity inside the canopy
due to drag produces an inflection in the mean velocity pro-
file, leading to the production of coherent eddies via shear in-
stability that scale with the canopy height. The action of these
large eddies on mean profiles of momentum and scalars that dis-
play large changes across vertical distances comparable to the
canopy height lead to non-local turbulent fluxes that dominate
the transport in the canopy region (Finnigan, 2000). Such com-
plex turbulent flow presents a challenge for the development of
simple numerical models.

Most of the interest in modeling canopy flows is motivated
by the need of robust approaches to quantify land-atmosphere
exchanges of momentum, energy, gases, and particles. These
exchanges are needed, for example, when computing energy
and carbon budgets (Juang et al., 2008), chemical reactions
in forest environments (Bryan et al., 2012), and pollen and
spores emission rates and dispersion (Pan et al., 2014). In air-
quality, weather and climate models, the parameterization of
land-atmosphere exchanges depends on the appropriate repre-
sentation of flow inside the canopy. In the simplest cases, a
vertical profile of the mean wind velocity and scalar concen-
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tration within and above the canopy can be obtained by empiri-
cal models based on similarity theory and dimensional analysis,
such as the ones presented by Yamazaki et al. (1992), Harman
and Finnigan (2007) and Harman and Finnigan (2008). To rep-
resent more complex interactions, vertical profiles of higher-
order turbulence statistics (such as variances and fluxes) are
needed, and in this case the most common approach is to use
Reynolds-averaged Navier-Stokes (RANS) equations for the
flow field and Reynolds-averaged conservation equations for
temperature and any other scalars of interest. Under steady-
state and horizontally-homogeneous conditions, the equations
can be reduced to a set of coupled ODEs for the mean fields
and for variances and vertical fluxes of momentum and scalars.
Invoking a second-order closure scheme yields a set of equa-
tions that can be solved numerically or analytically, depending
on the assumptions adopted (Wilson and Shaw, 1977; Mass-
man and Weil, 1999). This approach has a low computational
cost and can provide useful results given the appropriate closure
and calibration (Katul and Albertson, 1998; Massman and Weil,
1999). However, the number of equations to be resolved and the
number of closure assumptions and parameters to be adjusted
increases fast if the transport of many scalar fields (e.g. tem-
perature, water vapor, carbon dioxide, etc.) are to be included
(Juang et al., 2008). For the case of transport of scalars inside
canopies, an alternative solution is obtained using a Lagrangian
stochastic methodology based on the Langevin equation (e.g.,
see Thomson, 1987; Wilson and Sawford, 1996). However, this
modeling approach is incomplete, as it requires specification of
the vertical profiles of turbulence statistics. These profiles are

Preprint submitted to Agricultural and Forest Meteorology December 15, 2017



typically obtained from experiments (e.g. Reynolds, 1998; Cas-
siani et al., 2007) or from RANS models described above (e.g.
Katul et al., 2011; Gleicher et al., 2014).

On the other end of the spectrum is Large-Eddy Simula-
tion (LES). Together with field and wind-tunnel experimental
data, LES results have been fundamental to the advancement
of knowledge of three-dimensional turbulence and dispersion
in the canopy environment. However, due to the high com-
putational cost, most LES of canopy flows have domain sizes
too small to represent the entire ABL (as found in Dwyer et al.
(1997); Su et al. (1998); Albertson et al. (2001); Huang et al.
(2013); Pan et al. (2014)), and only very recently a simulation
resolving the canopy flow and the entire ABL simultaneously
has been performed (Patton et al., 2016). With the increas-
ing demand for inclusion of complex processes (such as chem-
ical reactions and particle dispersion) combined with the use
of large domains and higher resolutions close to the surface,
the technique is currently limited by the computational power
available, creating an opportunity for the development of alter-
native modeling approaches.

In this work we investigated the suitability of Kerstein’s One-
Dimensional Turbulence (ODT) model (Kerstein, 1999) in the
representation of canopy turbulence in the ABL. In the context
of ABL simulations, ODT can be viewed as a single-column
model with a stochastic representation of turbulent transport.
In the ODT framework, unsteady, one-dimensional diffusion
equations for momentum, temperature and passive scalars are
solved numerically on a discrete grid, and the turbulent trans-
port is represented by stochastic eddy events. As a modeling
tool for canopy flows under horizontally-homogeneous condi-
tions, ODT has the potential to be an intermediate approach
between RANS and LES in terms of computational cost and
model applicability. When compared to LES, the main advan-
tage of ODT is the much lower computational cost, allowing
the simulation of larger vertical domains with better resolutions
in the canopy region, as well as its applicability as a sub-model
in complex geophysical numerical models. When compared to
simpler single column models, ODT has many advantages: (i)
it is not based on eddy-diffusivity closures and it explicitly rep-
resents non-local turbulence fluxes through non-local stochas-
tic eddies already present in its original formulation; (ii) it can
represent multiple scalar fields (including coupled source/sink
and concentration profiles) in a straight-forward way without
increasing the number of closure assumptions and adjustable
parameters; and (iii) it allows for the possibility of simulating
transient (non-equilibrium) conditions or converting the time
dimension into streamwise dimension, allowing the represen-
tation of two-dimensional steady-state flows (useful for plume-
growth studies, for example). The main limitation is that results
can only be evaluated in terms of ensemble averages due to the
stochastic nature of the turbulence in the model.

The ODT model studied here was first developed with a
single velocity component and temperature fields by Kerstein
(1999), and further extended to represent a three-component ve-
locity vector plus the temperature field by Kerstein et al. (2001).
ODT was shown to reproduce important characteristics of sev-
eral canonical turbulent flows including homogeneous turbu-

lence, shear layers, buoyancy-driven flows (Kerstein, 1999),
mixing-layer and wakes (Kerstein et al., 2001). Overall, ODT
provided results comparable do Direct Numerical Simulation
(DNS) for the profiles of mean velocity, temperature and pas-
sive scalar concentration, as well as profiles of momentum flux,
whereas profiles of velocity variances showed significant un-
derprediction. ODT also reproduces the correct inertial-range
spectral behavior in both homogeneous decaying and station-
ary turbulence, in addition to the correct cascade in the density
spectrum of a buoyancy-driven flow (Kerstein, 1999), show-
ing the ability of the stochastic representation of turbulence in
mimicking important three-dimension features of a true turbu-
lent flow. A smooth channel simulation with friction Reynolds
number Reτ = u∗H/ν = 590 (where u∗ is the friction velocity,
H is half of the channel width and ν is the kinematic viscosity)
also generated profiles of mean velocity and momentum flux
very close to DNS results, but velocity variances were under-
estimated for all three components (Schmidt et al., 2003). In
all these cases, two model parameters, one relating the occur-
rence of stochastic eddies with the amount of energy available
and another defining the timescale of viscous cutoff, had to be
adjusted.

Simulations of a stably stratified ABL using ODT were pre-
sented by Kerstein and Wunsch (2006), where for the first time
the model was used in a “large-eddy simulation mode” in order
to keep the computational cost low. In this case, the model res-
olution did not resolve the Kolmogorov dissipative scales, and
a subgrid-scale (SGS) viscosity was invoked. Two approaches
were tested for the SGS model, one with fixed eddy viscosity
values and another with a variable eddy viscosity that depended
on the local resolved flow properties. Results showed the con-
sistent ODT behavior of correct profiles of mean velocity and
potential temperature, as well as profiles of momentum and heat
fluxes, but with underestimation of variances. Neither SGS clo-
sure proposed was considered satisfactory, given that they re-
quired the adjustment of a new parameter that was not indepen-
dent on grid resolution, leading the authors to the conclusion
that a better SGS closure is needed in order to yield a cost-
effective ABL simulation tool. To this end, a one-dimensional
adaptation of the classic Smagorinsky eddy viscosity model
(Smagorinsky, 1963) used in LES (Deardorff, 1970) is devel-
oped and tested here.

Section 2 presents a description of the ODT model, includ-
ing the new SGS model and the modifications introduced to
represent the canopy. A brief description of the experimental
and LES data sets used for comparison and the model setup are
given in Section 3. Simulation results for a smooth channel flow
with Reτ = 5200, a maize canopy and a model of waving wheat
crop under neutral conditions, and a deciduous case under neu-
tral, unstable and free-convection conditions are presented in
Section 4. Conclusions and potential uses for the ODT model
are discussed in Section 5.
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2. Model description

2.1. Kerstein’s One-Dimensional Turbulence model

In this subsection a short but complete description of the
ODT model is presented. For a more detailed discussion of the
modeling approach, the reader is referred to Kerstein (1999)
and Kerstein et al. (2001).

The ODT model represents the time evolution of the veloc-
ity vector, temperature and additional scalar fields along a line.
One-dimensional unsteady diffusion equations are discretized
and solved numerically while the effect of turbulence is mod-
eled by instantaneous stochastic eddy events. In the present
work, the ODT domain corresponds to a vertical line represent-
ing the time evolution of a horizontally homogeneous ABL col-
umn with zero mean vertical velocity (i.e., there is no mean ad-
vection). The continuity equation is not included in the model
due to its one-dimensional nature, and the governing equations
can be written as (Kerstein and Wunsch, 2006):

∂ui

∂t
= Fi + f (u2δi1 − u1δi2) + ν

∂2ui

∂x2
3

+ eddy events, (1)

∂θ

∂t
= Qθ +

ν

Pr
∂2θ

∂x2
3

+ eddy events, (2)

where xi is the vector representing the three spatial directions
(x3 is the vertical direction), t is time, ui(x3, t) is the veloc-
ity vector, θ(x3, t) is the potential temperature, Fi is a con-
stant mean pressure gradient force that drives the flow, f is
the Coriolis parameter, Qθ is a heat source/sink, ν is the kine-
matic viscosity, Pr is the Prandtl number, and δi j is the Kro-
necker delta. For simulations where the Coriolis force is not
present (such as the smooth channel flow presented here), the
flow is driven by a constant, streamwise mean pressure gradi-
ent force F1 (F2 = F3 = 0). When the Coriolis force is present,
geostrophic balance is assumed above the ABL and the mean
pressure gradient force is written as Fi = f

(
Ugδi2 − Vgδi1

)
,

where (Ug,Vg) is a constant horizontal geostrophic wind.
The time evolution of any additional passive scalar can be

represented in the model by an additional equation similar to
Equation (2), if all physical and chemical sources/sinks are rep-
resented by Qscalar and after replacing the Prandtl number Pr by
the appropriate Schmidt number Sc.

The instantaneous eddy events in Equations (1) and (2) con-
sist of two mathematical operations representing the effects of
advection, gravitational potential energy and pressure fluctua-
tions (Kerstein and Wunsch, 2006). In practice, when an eddy
event is selected, the variables at the position z (hereafter z cor-
responds to the vertical direction x3) are instantaneously re-
placed by the values at M(z) (a mapping function) in the fol-
lowing way:

ui(z)→ ui(M(z)) + ciK(z), (3)
θ(z)→ θ(M(z)). (4)

The first term on the right-hand side of Equations (3) and (4)
is a model for advection by a turbulent eddy based on a triplet

map. The mapping function is chosen so that it is conserva-
tive (i.e., it preserves the total amount of the quantity being
transported) and does not introduce discontinuities. In addi-
tion, it mimics the energy cascade in turbulence by transferring
energy from large to small scales in a scale-local fashion (via
stretching-folding approach). Defining zb as the position of the
bottom of the eddy and l as its vertical size, the triplet map can
be mathematically expressed as (Kerstein et al., 2001)

M(z) = zb +


3(z − zb), if zb ≤ z ≤ (zb + l/3),
2l − 3(z − zb), if (zb + l/3) ≤ z ≤ (zb + 2l/3),
3(z − zb) − 2l, if (zb + 2l/3) ≤ z ≤ (zb + l),
z − zb, otherwise.

(5)
As described by Kerstein and Wunsch (2006), the triplet map
“takes a line segment, shrinks it to a third of its original length,
and then places three copies on the original domain. The middle
copy is reversed, which maintains continuity of advected fields
and introduces the rotational folding effect of turbulent eddy
motion.”

The second term on the right-hand size of Equation (3) is a
kernel function that acts on the kinetic energy of the flow. It in-
creases/reduces the total kinetic energy of the region within the
eddy based on the local temperature profile (through a potential
energy quantification based on the Boussinesq approximation)
and it redistributes the final energy among the three velocity
components, mimicking a pressure-induced tendency towards
isotropy on the flow. In this term, K(z) = z − M(z) is the dis-
tance that the fluid parcel is displaced during an eddy event, and
ci corresponds to the amplitude of energy redistribution.

The variation of kinetic energy ∆Ei and potential energy ∆Eg

(per unit mass) during an eddy event can be written as

∆Ei =
1
2l

∫ zb+l

zb

[(ui(M(z)) + ciK(z))2 − u2
i (z)]dz, (6)

∆Eg = −
g
l

∫ zb+l

zb

[θ(M(z)) − θ(z)]
θ0

zdz, (7)

where g is the gravitational acceleration and θ0 is a reference
temperature. The coefficients ci in Equation (3) are determined
by requiring total energy conservation, i.e.

∑
i ∆Ei + ∆Eg = 0,

which gives ∑
i

[
l ci uK,i +

2
27

l2c2
i

]
− gl

θK

θ0
= 0, (8)

where the equality
∫ zb+l

zb
K2(z)dz = 4l3/27 was used, in addition

to the fact that the result of any integral over M(z) is equal to
the integral of the same function over z. Also, the new variable

nK ≡
1
l2

∫ zb+l

zb

n(M(z))K(z)dz (9)

was defined for n = ui or θ.
In addition to Equation (8), two extra conditions are needed

to close the system and determine values of ci. The first is a def-
inition of the maximum amount of energy that can be extracted
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from one velocity component during the eddy event, which is
obtained from a maximization of -∆Ei with respect to ci, re-
sulting in an amount of 27 l u2

K,i/8. The second condition deter-
mines the tendency towards isotropy of the model, by forcing
the total available energy to be equally distributed among the
velocity components (see Kerstein et al. (2001) for details and
a discussion on these final constrains). The final equation for ci

can be written as

ci =
27
4l

−uK,i ±

√
1
3

(
u2

K,1 + u2
K,2 + u2

K,3 +
8gl
27

θK

θ0

) , (10)

where the quantity inside the parenthesis represents the total
amount of energy available for redistribution, and the sign am-
biguity corresponds to the sign of uK,i.

Equations (3), (4), (5) and (10) describe the effect of the oc-
currence of an eddy event on the velocity and temperature pro-
files. Another key feature that determines the success of the
model is the choice of the sequence of eddy events that occur
during a simulation. The probability distribution that governs
the occurrence of stochastic eddies in ODT is linked to the in-
stantaneous velocity and temperature fields being simulated. At
a given time t, λ is defined as the probability of occurrence of
eddies with a size l at the location zb. From dimensional argu-
ments, λ is proportional to (l2τ)−1, where τ(zb, l, t) is the eddy
turnover time scale,

λ(zb, l, t) ≡
Cλ

l2τ(zb, l, t)
, (11)

and Cλ is a constant of proportionality. Furthermore, the time
scale τ(zb, l, t) can be related to the total amount of energy avail-
able by dimensional arguments via

l2

τ2 ∼ u2
K,1 + u2

K,2 + u2
K,3 +

8gl
27

θK

θ0
−

Zλν2

l2
. (12)

For simulations resolving the Kolmogorov scales, the last term
of Equation (12) represents the damping effect of viscosity, be-
cause any eddy with a time scale much longer than the viscous
time scale should be prohibited (Zλ is an adjustable parame-
ter). For simulations that do not resolve the Kolmogorov scales,
Zλ = 0. The final form of the distribution λ is

λ(zb, l, t) =
Cλ

l3

√
1
3

(
u2

K,1 + u2
K,2 + u2

K,3 +
8gl
27

θK

θ0

)
−

Zλν2

l2
,

(13)
where the 1/3 in front of the available energy is kept for consis-
tency with the results presented by Schmidt et al. (2003), which
will be used as a starting point for the present study. Note that
the 1/3 factor is sometimes included in the definition of the
constants Cλ and Zλ (as in Kerstein and Wunsch (2006), for ex-
ample). The value of Cλ in Equation (13) is used to regulate the
number of eddies allowed for a given energy availability in the
flow, effectively setting the turbulent intensity. Finally, this for-
mulation gives the correct critical Richardson number of 1/4 for
the suppression of eddy events by stable stratification (Kerstein
and Wunsch, 2006).

Some important characteristics of ODT deserve clarification.
First, due to the one-dimensional nature of the model, conti-
nuity cannot be invoked and the three velocity components re-
main uncorrelated throughout the simulation. In other words,
each velocity component evolves in time as an independent
scalar field. If all velocity components are subject to the same
forcing, initial and boundary conditions, their statistics remain
identical. Furthermore, the velocity components do not collec-
tively represent a physical evolving flow feature such as a three-
dimensional turbulence structure, and although the stochastic
eddies mimic the effect of a three-dimensional turbulent eddy,
the velocity components are not associated with a specific eddy
event. Consequently, even though the velocity vector defines
the probability distribution of eddy events, vertical velocity
fluctuations are not directly responsible for vertical advection.
Instead, vertical advection is caused by each eddy event (i.e. the
instantaneous shuffling produced by the triplet map). Thus, the
role of the velocity vector in the simulation is to convert the in-
formation about the body forces and boundary conditions into
a time evolving probability distribution of eddy events whose
accumulated effect resembles that of the real turbulent flow.

The kinetic energy associated with each velocity component
can originate from two sources: imposed forces acting along
that direction and pressure redistribution. In the ABL simula-
tions presented here, both horizontal components are subject to
external forcing via mean pressure gradient and Coriolis. Thus,
both u1 and u2 are impacted by shear production of turbulent
kinetic energy (TKE). However, it is important to point out that
because buoyancy effects are introduced in the stochastic eddy
formulation without actually accelerating the flow in the verti-
cal direction, the only source of vertical velocity variance is the
pressure redistribution effect, making vertical velocity statistics
less realistic than those for the other two velocity components.
Nevertheless, the vertical velocity component still carries part
of the TKE of the flow and should therefore be taken into ac-
count as part of the velocity field (it should enter the subgrid-
scale model formulation, for example).

A consequence of the way velocity impacts the evolution of
the simulation in ODT is the possibility of using only one ve-
locity component when simulating flows in which TKE is pro-
duced in only one direction, as was done by Kerstein (1999).
In this case, this single velocity drives the probability distri-
bution from which the eddy events are selected, creating all
the turbulence of the flow. The main motivation for intro-
ducing the vector formulation is the possibility of implement-
ing an energy transfer among velocity components, mimicking
the tendency towards isotropy on the flow (one of the conse-
quences of continuity) and increasing the reality of the simu-
lation (Kerstein et al., 2001). Furthermore, having the three
velocity components enables the representation of flows with
forcing in more than one direction, as it is the case of Coriolis
and drag forces in the ABL, for example. In addition, the ve-
locity vector representation facilitates the coupling of ODT to
other three-dimensional models.

Another consequence of ODT formulation is the fact that all
vertical turbulent transport is caused by the eddy events, rather
than by the fluctuating vertical velocity directly. Therefore, the
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vertical turbulent fluxes are estimated from the accumulated
transport caused by a series of stochastic eddy events. For a
time interval ∆t, the mean vertical turbulent flux of any quan-
tity n (n = ui or θ) is obtained from the sum of changes on its
value due to stochastic eddies, calculated as

eddy fluxn(z) =
1
∆t

∫ H

z

t+∆t∑
t

[nafter(z′) − nbefore(z′)]dz′ (14)

where H is the height of the domain and nbefore(z) and nafter(z)
correspond to the values of n at given position z before and
after the occurrence of an eddy event. Note that, because of
this ODT characteristic, the vertical flux of a variable n, which
is commonly represented by u′3n′, will be denoted here by the
term “eddy fluxn”. A consequence of this decoupling between
vertical velocity fluctuations and vertical transport is that cor-
rect flux predictions can be obtained even if the vertical velocity
variance is not correct.

Equations (1) to (14) represent the basis of the ODT model,
which has been used to reproduce multiple types of turbulent
flows (Kerstein, 1999; Kerstein et al., 2001). In summary, the
simulation evolves in time with Equations (1) and (2), and in
each time step the current velocity and temperature profiles de-
termine the probability distribution of eddies λ (Equation (13)).
This distribution is used to randomly select eddies that act in-
stantaneously on the velocity and temperature fields through
Equations (3), (4), (5) and (10), after which the simulation ad-
vances to the next time step. Next subsections describe the new
subgrid-scale parameterization and the modifications required
to represent the canopy drag in the ODT.

2.2. Subgrid-scale and wall models

In most of the previous applications, the ODT model has
been used to represent turbulent flows down to the Kolmogorov
scale (e.g. Kerstein, 1999; Schmidt et al., 2009). However, in
channel flow simulations that resolve the viscous layer (using
approximately 15 grid points) the computational cost of ODT
simulations increases at a rate proportional to approximately
Re2

τ (based on numerical tests with 325 ≤ Reτ ≤ 5200). This
large increase is, in part, caused by the required reduction in
time step with increasing Reynolds number. Thus, while the
simulation for Reτ = 5200 runs in one or two hours on a per-
sonal computer, a simulation for the entire ABL with Reτ ∼ 107

would have a prohibitive computational cost. Furthermore, the
relevance of molecular transport in the ABL is restricted to the
near-surface region, whose rough nature requires a bulk param-
eterization anyway. Therefore, following the common practice
in LES, we introduce a filter to formally separate resolved and
sub-grid scales. In this filtered ODT model, resolved scales can
be defined by filtering the velocity and temperature fields at the
scale ∆ = dz. Equations (1) and (2) become

∂ũi

∂t
= Fi + f (ũ2δi1 − ũ1δi2) −

∂τi3

∂x3
+ eddy events, (15)

∂θ̃

∂t
= Qθ −

∂χ3

∂x3
+ eddy events, (16)

where ũi and θ̃ are the resolved velocity and temperature fields,
τi3 is the SGS vertical stress vector and χ3 is the SGS verti-
cal heat flux. The molecular/viscous terms are removed as they
are negligible at the Reynolds numbers of the atmosphere. In
the present approach the numerical grid dictates the smallest
resolved eddy size and thus effectively sets the scale ∆, as typi-
cally done in most LES models.

The SGS terms τi3 and χ3 are modeled using a one-
dimensional analogy to the eddy-viscosity model

τi3 = −νSGS
∂ũi

∂x3
, (17)

χ3 = −
νSGS

PrSGS

∂θ̃

∂x3
, (18)

where PrSGS is the SGS Prandtl number (a constant value
PrSGS = 0.4 is adopted in all simulations) and νSGS is the SGS
eddy-viscosity represented using a one-dimensional version of
the Smagorinsky model (Smagorinsky, 1963)

νSGS = (Cs∆)2
[
∂ũi

∂z
∂ũi

∂z

]1/2

, (19)

where Cs is the Smagorinsky coefficient. A minimum value
of 1.5 × 10−5 m2s−1 is imposed for νSGS, a necessary condition
for situations where velocity gradients are zero (such as in the
inversion layer above the ABL). For three-dimensional homo-
geneous isotropic turbulence, Lilly (1967) obtained Cs ≈ 0.17
as the optimal value for simulations where the filter cutoff was
in the inertial subrange. For channel flows, Deardorff (1970)
and Piomelli et al. (1988) used Cs = 0.1. In true Navier-Stokes
turbulence it is known that this value should be smaller for re-
gions of high shear such as near a wall (Deardorff, 1970), and
that significant model performance can be accomplished by us-
ing dynamically determined coefficients (Germano et al., 1991;
Porté-Agel et al., 2000). In this study, the wall-damping func-
tion proposed by Mason and Thomson (1992) of the form

1
(Cs∆)

=
1

(Cs,0∆)
+

1
κ(z + z0)

(20)

is used, with Cs,0 = 0.1 and ∆ = dz (z0 is the roughness length).
Dynamically evaluated coefficients following the approaches of
Germano et al. (1991) and Porté-Agel et al. (2000) were also
implemented, but they did not improve significantly the results
in ODT simulations.

For ABL simulations over rough surfaces, the no-slip bound-
ary condition for the horizontal velocities cannot be enforced
directly, and a wall model is needed. For simplicity, the equilib-
rium wall-model used in LES of ABL flows is also used here.
The specific implementation employed here uses the Monin-
Obukhov similarity functions to determine the wall stress as a
function of the resolved velocity at the first grid point following
the approach described in Kumar et al. (2006):

τw = −

[
κ

ln(dz/z0)
− ψM

]2

[ũ2
1(dz) + ũ2

2(dz)], (21)

τwall
i3 = τw

 ũi(dz)
[ũ2

1(dz) + ũ2
2(dz)]1/2

 , (22)
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where τw is the total wall shear stress, τwall
i3 is the partitioning

of the total shear stress into x1 and x2 directions, ũi(dz) are the
horizontal velocities at the first grid point, and ψM is defined in
terms of the Monin-Obukhov similarity function for the mean
velocity gradient as ψM =

∫ z/L
z0/L

(1 − φM(x))x−1dx. The same
set of similarity functions adopted by Kumar et al. (2006) is
employed here.

2.3. Canopy parameterization
Air flow through the vegetation is subjected to interactions

with the vegetation elements (leaves, branches, etc.), which re-
sult in viscous and pressure drag forces on the flow. The pres-
sure drag is the dominant component and the viscous drag is
neglected here (as usually done in LES – Shaw and Schumann
(1992); Pan et al. (2014); Patton et al. (2016)). Distinct mod-
els are employed to represent the effect of pressure drag on the
resolved flow and on the stochastic eddies. The former is done
through the inclusion of a body force di on the right-hand side
of Equation (15). Following the usual approach in LES, the
force is proportional to the leaf area density a(z) and the square
of the local velocity, with the constant of proportionality being
the drag coefficient Cd, resulting in

di = −CdaPi jũ j(ũkũk)1/2. (23)

Here, Pi j is the projection matrix, included to create an effective
partition of the leaf area density facing the three spatial direc-
tions (Pan et al., 2014).

To model the effects of pressure drag on the stochastic ed-
dies, we use a simple parameterization based on the approach
developed by Shaw and Patton (2003) to represent the loss of
subgrid scale energy to pressure drag. Eddy events that pene-
trate into the canopy region no longer conserve total energy and
the energy loss is given by the total work against pressure drag,
modeled as

Ed =
8
3

CdP
∫ zb+l

zb

a(z)e(z)dz, (24)

where P = Pii/3 and e = (ũ2
1 + ũ2

2 + ũ2
3)/2 is the resolved ki-

netic energy. Equation (24) assumes isotropic and non-skewed
kinetic energy (Shaw and Patton, 2003), assumptions that are
used here for simplicity. Note that by using the average drag
over the entire eddy instead of a purely local drag effect, the
flow within the entire eddy will be impacted by the canopy,
even if only part of the eddy penetrated into the canopy region.

In terms of the ODT modeling framework, now the energy
equation is replaced by

∑
i ∆Ei + ∆Eg = Ed, which in practice

results in a new equation for ci that replaces Equation (10)

ci =
27
4l

{
− uK,i±√

1
3

[
u2

K,1 + u2
K,2 + u2

K,3 +
8

27

(
gl
θK

θ0
−

8
3

CdP
∫ zb+l

zb

a(z)e(z)dz
)]}

.

(25)

Equations (12) and (13) are not modified, so the energy loss
given by (24) does not impact directly the probability of oc-
currence of eddies. Once an eddy event is chosen, if that eddy
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Figure 1: Example of the effect of a stochastic eddy on the streamwise velocity
profile. Illustrative case assuming initial profile of ũ1 (black) equal to the mean
streamwise velocity in a maize canopy, and ũ2 = ũ3 = 0. Profile after map-
ping function (blue), and after the energy redistribution without (orange) and
with (red) loss of energy to canopy drag. Vertical arrow indicates the size and
location of the stochastic eddy.

penetrates into the canopy region it looses energy to the drag
force exerted by the canopy.

Figure 1 illustrates the impact of a stochastic eddy that scales
with canopy height in the streamwise velocity profile. For illus-
tration purposes the mean velocity profile was used (i.e. ũ1 = u1
and ũ2 = ũ3 = 0), even though stochastic eddies act on the in-
stantaneous profiles that deviate from the mean state during the
simulation. First, as described in subsection 2.1, the mapping
function (Equation (5)) causes mixing and vertical transport
without changing the total momentum inside the eddy and with-
out creating discontinuities on the profile (blue curve). Subse-
quently, the kernel function redistributes the total energy among
the three velocity components, which in this example reduced
the streamwise velocity by transferring energy to the other two
components (yellow curve). In the newly implemented canopy
formulation, an additional loss of energy due to canopy drag is
introduced, reducing the total amount of energy available for re-
distribution and consequently the final amount of momentum in
streamwise direction (red curve). The final streamwise velocity
profile is significantly different from the original one, incorpo-
rating the effects of non-local turbulent transport and canopy
drag.

3. Simulations setup, observational and Large-Eddy Simu-
lation data

3.1. Smooth channel flow

As a first test of the filtered ODT with the new SGS and
wall models, simulations of a smooth channel flow with Reτ =

u∗H/ν = 5200 were performed and compared with DNS re-
sults obtained by Lee and Moser (2015). For comparison, re-
sults were obtained from a simulation with the ODT version
presented by Schmidt et al. (2003), in which ODT was used in
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“DNS mode”, i.e., resolving all scales down to the Kolmogorov
scales (Equations (1) and (2)). The domain corresponded to
2H, the number of grid points was set to 10400 and the flow
was driven by a constant streamwise mean pressure gradient
force F1H/u2

∗ = 1. No-slip boundary conditions (ui = 0) were
imposed on both ends of the domain. The values of Cλ = 12.73
and Zλ = 98 selected by Schmidt et al. (2003) were used. No
temperature or scalar fields were included. Initial conditions
were zero velocity vector plus small (∼ 10−8) random fluctu-
ations, and the simulation ran for 1000 seconds. Results pre-
sented here correspond to an average over the last 990 seconds.
No ensemble average was performed, as the large averaging pe-
riod was sufficient to ensure statistical convergence.

The comparison of ODT results in “LES mode” (i.e., not re-
solving the Kolmogorov scales and including the SGS and wall
models) with this reference ODT simulation in “DNS mode”
was performed with a simulation using the same domain and
pressure gradient force, but with 200 grid points. Because the
lowest grid point was in the inertial region of the flow where
the log-law is valid, the wall model described in Section 2 was
invoked as boundary conditions in the horizontal directions (the
value of z0/H = 2.4 × 10−5, equivalent to the law-of-the-wall
u1/u∗ = (1/κ) ln(zu∗/ν)+5.1, was adopted). The boundary con-
dition for the vertical velocity was ũ3 = 0 at both walls. The
value of Zλ was set to zero as the viscous scales were not re-
solved, and all the other simulation parameters (including the
adjustable parameter Cλ) were set to the same values of the
ODT simulation in “DNS mode”. Three additional simulations
of ODT in “LES mode” with different number of grid points
(100, 400 and 600) were performed to evaluate possible grid-
dependence of the SGS model.

3.2. Maize canopy

The first set of canopy simulations were designed to match
the Mahomet maize canopy experiment described by Gleicher
et al. (2014). Here, we used as a reference the profiles of mean
flow and turbulence statistics from a 2.1 m tall maize canopy,
obtained during near-neutral atmospheric stability conditions in
the period between 9:30 and 17:00 local time (broken into fif-
teen 30-min runs) on 10 July 2011.

Two distinct simulations of the maize canopy were per-
formed. The first is similar to the LES performed by Pan
et al. (2014), where the domain corresponded to a a 42 m-tall
half-channel flow, driven by a constant mean streamwise pres-
sure gradient force F1 = 5 × 10−3 m s−2. A total of 480 grid
points were used (twice the number used in the vertical direc-
tion by Pan et al. (2014)), and no temperature or scalar fields
were included. Top boundary conditions were zero-flux in the
horizontal directions and zero-velocity in the vertical direction
(∂ũi,i=1,2/∂x3 = 0, ũ3 = 0 at x3 = H), and the bottom boundary
condition was the wall model with z0 = 0.001 m in the hori-
zontal direction and ũ3 = 0. As in the LES from Pan et al.
(2014), canopy height h was set to 2.1 m, and the leaf area den-
sity data provided by Wilson et al. (1982) corrected for a small
leaf area index difference (rescaled to match the slightly dif-
ferent LAI measured in the field experiment) was used, with

a drag coefficient Cd = 0.25 and a diagonal projection ma-
trix P11 = P22 = 0.25, P33 = 0.48. Initial conditions were
ũ1 = 10 m s−1, ũ2 = ũ3 = 0 in the entire domain, plus the
same small fluctuations mentioned in the smooth channel setup.
Simulation were evolved for a period of 1 hour, and statistics
were obtained by averaging over the last 50 minutes, with addi-
tional averaging over 15 realizations to improve statistical con-
vergence. The same ODT parameters from the smooth channel
simulations were employed (Cλ = 12.73 and Zλ = 0).

In order to demonstrate the ODT ability in simulating short
canopies and the entire ABL at the same time, a second simula-
tion was performed. It corresponded to the ABL with a domain
of 1 km, driven by a Coriolis force with f = 1 × 10−4 s−1 and
capped by a temperature inversion of 3 K km−1 above 900 m.
The temperature field is included only to create a region of very
low turbulence above the ABL, and temperature is set initially
as constant (equal to 300 K) below 900 m with zero heat flux
at the surface and no heat source or sink within the canopy to
keep the neutral stability condition. A total of 5000 grid points
were used, creating a simulation with half the resolution inside
the canopy compared to the half-channel simulation described
above. All the remaining simulation parameters were equal to
the half-channel simulation.

In Section 4, ODT results from the two maize canopy sim-
ulations are also compared to results from a one-dimensional
RANS model with a second-order closure reported by Gleicher
et al. (2014) and to the LES results reported by Pan et al. (2014).
In all canopy simulation results, u∗ is defined as (eddy flux2

u1
+

eddy flux2
u2

)1/4 evaluated at canopy top.

3.3. Wind tunnel with waving canopy
The second case used as a reference for ODT with canopy is

the wind tunnel experiment presented by Brunet et al. (1994), in
which flow statistics within and above a model of waving wheat
crop (represented by cylindrical nylon stalks) were measured.
The experiment was designed to mimic a neutral surface layer,
and a boundary layer of 0.50±0.05 m height with a free-stream
velocity of 10.2 m s−1 was generated. The canopy had an effec-
tive height of 0.047 m, corresponding to stalks of 0.050 m with
a natural tendency to bend. The square grid or stalk spacing was
0.005 m, and measurements of vertical profiles of flow statistics
were taken at 4.08 m from the leading edge of the canopy (the
total canopy length in the streamwise direction was 5.15 m).
Profiles of turbulence statistics were calculated over 71 runs,
each run with about 17 s of duration.

The ODT simulation designed to mimic this experiment cor-
responded to a neutral half channel with a domain of 0.55 m,
120 grid points and driven by a constant mean streamwise pres-
sure gradient force F1 = 1.5 m s−2. Top and bottom bound-
ary conditions and ODT parameters were the same as in the
half channel with maize canopy (Cλ = 12.73, Zλ = 0, with
z0 = 5×10−4 m). Canopy parameters were set to the values pro-
vided by Brunet et al. (1994), namely h = 0.047 m, a = 10 m−1

and Cd = 0.675 (note that the drag force is defined with a 1/2
factor by Brunet et al. (1994), which has been incorporated into
Cd here), with a diagonal projection matrix P11 = P22 = 1,
P33 = 0. Initial conditions were ũi = 0 plus small fluctuations
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in the entire domain, and simulation evolved for 600 s. The
last 500 s of simulation plus 15 realizations were used for esti-
mation of flow statistics. Two extra simulations with different
values of Cλ (Cλ = 6 and 20) are also discussed in Section 4.

3.4. LES of unstable ABL with canopy

The third set of canopy simulations corresponds to the LES
setup presented by Patton et al. (2016), where changes in
canopy turbulence due to the variation in atmospheric stabil-
ity from neutral to free convection were investigated. The LES
was coupled to a multilayer land surface model representing
the hydrological cycle through soil and vegetation, in addition
to radiation and photosynthesis models that provide, through an
energy budget, vertically resolved sources and sinks of potential
temperature θ and water vapor mixing ratio q inside the canopy.
The land surface model was implemented as a one-dimensional
vertical model inside each grid where canopy was present. Five
separate steady-state simulations were performed, one for each
atmospheric stability considered (near neutral, weakly unstable,
moderately unstable, strongly unstable and free convection).

In order to match the five cases studied by Patton et al.
(2016), five ODT simulations with a setup very similar to the
LES were performed. As in the LES, all simulations had a ver-
tical domain of 2048 m, with 1024 grid points, driven by a mean
pressure gradient which is in geostrophic equilibrium above the
ABL (Fi = f

(
Ugδi2 − Vgδi1

)
, where f = 1 × 10−4 s−1). Top

boundary conditions were an imposed horizontal geostrophic
wind (Ug,Vg), which varied across simulations (see Table 1)
and also corresponded to the initial conditions (set as constant
across the entire domain). Other initial conditions were ũ3 = 0
everywhere, θ̃ = 300 K between the surface and 40 m with an
inversion with strength of 3 K km−1 above it, and q̃ = 1 g kg−1

everywhere (plus small fluctuations for all variables except
q̃). For simplicity, instead of including a coupled land surface
model, imposed source profiles Qθ(z) and Qq(z) were used, as-
sumed constant in time and equal to the mean source profiles
obtained from the LES and presented in Figure 10 of Patton
et al. (2016). In addition, different values of constant heat and
water vapor fluxes at the surface were imposed in each simula-
tion (see Table 1). Canopy height was h = 20 m, z0 = 0.001 m
was used in the wall model and a drag coefficient Cd = 0.15
with Pαα = 1 were applied in the drag force. A leaf area den-
sity profile representative of a deciduous canopy was used (see
Figure 2 of Patton et al. (2016)). Simulations were carried out
for 2 hours, and an averaging over the second hour plus fifteen
ensembles were performed. All remaining simulation parame-
ters and boundary conditions were the same as in the previous
canopy cases.

Even though the ODT model includes non-local fluxes by
definition (i.e. as a direct consequence of the mixing across the
entire length of the stochastic eddies), it is hard to demonstrate
this feature because there is no clear methodology to separate
the turbulent flux into local and non-loca components. The ap-
proach taken here is to create an extreme, but still relevant, sit-
uation in which the non-local flux is clearly dominant. This
happens in the presence of fluxes associated with nearly local

Table 1: Geostrophic wind and surface fluxes of potential temperature and wa-
ter vapor mixing ratio applied as boundary conditions in the simulations of the
Patton et al. (2016) LES canopy case. NN: near neutral, WU: weakly unstable,
MU: moderately unstable, SU: strongly unstable, FC: free convection.

(Ug,Vg) u′3θ
′
0 u′3q′0

(m s−1) (K m s−1) (g kg−1 m s−1)

NN (20,0) 0.072 1.3 × 10−6

WU (10,0) 0.077 1.2 × 10−6

MU (5,0) 0.057 6.2 × 10−6

SU (2,0) 0.057 4.8 × 10−6

FC (0,0) 0.071 1.3 × 10−6

zero gradients and when the flux is clearly counter-gradient, sit-
uations observed in canopy flows when there are more than one
concentrated source of passive scalar inside the canopy (Rau-
pach, 1987). We simulate a passive scalar emitted from a bi-
modal source inside the canopy under near-neutral conditions.
This scenario was simulated using an artificial source profile
based on the tests by Raupach (1987) with a peak close to
canopy top (see Figure 10-a) and a constant surface flux equal
to 3 × 10−6 g kg−1 m s−1.

4. Results and Discussion

4.1. Smooth channel flow
Figure 2 presents vertical profiles of mean flow and turbu-

lence statistics for the ODT simulations of a smooth channel
flow with Reτ = 5200 in “DNS mode” and “LES mode”, as well
as DNS results for the same flow obtained by Lee and Moser
(2015). The choice of the parameters Cλ and Zλ performed by
Schmidt et al. (2003) was based on a match of the ODT mean
streamwise velocity profile with DNS results for Reτ = 395
and 590. Here, similar results for the mean flow between DNS
and ODT were obtained using the same parameters, indicating
that ODT does not need to be adjusted for different values of
Reynolds number. By keeping the same choice of Cλ, ODT in
“LES mode” is capable of producing the correct log-law pro-
file, indicating that the choice of the SGS model is appropriate.
Furthermore, different from the SGS models proposed by Ker-
stein and Wunsch (2006), the one used here does not alter the
relation between number of stochastic eddies and the available
energy (governed by Cλ) of the original flow.

Due to the model’s formulation, variances of ũ2 and ũ3 are
identical in the “DNS mode” case, as the two variables are
treated identically (they have the same forcing and boundary
conditions, and they are affected equally by the energy redistri-
bution process). A small difference between them is observed
in the lowest grid points in the “LES mode” due to the different
boundary conditions used (wall model for ũ2 and zero veloc-
ity for ũ3), but this difference decreases rapidly with increasing
distance from the wall. All three velocity variances are under-
estimated by ODT in the entire domain with respect to DNS
results, a problem that seems to be inherent to the ODT model
formulation and that has been consistently observed for differ-
ent types of flows (Kerstein et al., 2001; Schmidt et al., 2003;
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Figure 2: Smooth-channel simulation results: DNS from Lee and Moser (2015)
(LM15, black), ODT in “DNS mode” (blue) and in “LES mode” for dz = 1/200
(red). (a) Mean streamwise velocity; (b) variance of streamwise velocity; and
(c) variance of vertical velocity. In panel (b), the dashed line corresponds to
the logarithmic scaling for σ2

u1
proposed by Townsend (1976) (σ2

u1
/u2
∗ = D1 +

D2 ln(z/H)). Panel (c) also presents the variance of spanwise velocity for ODT
in “LES mode” (yellow).

Kerstein and Wunsch, 2006). For ODT in “LES mode”, the
total variance corresponds only to the “resolved” part (caused
by the stochastic model), which are similar to the results from
ODT in “DNS mode” in most of the domain except close to the
wall, where the size of the eddies eliminated by the use of a
much coarser grid impacts the resolved variance.

ODT in “LES mode” with the Smagorinsky-like SGS model
produces grid-independent results (Figure 3) without the need
of any parameter adjustment, a significant improvement com-
pared to the SGS models proposed by Kerstein and Wunsch
(2006). As expected, the SGS model appropriately compen-
sates the lack of momentum flux from stochastic eddies close to
the wall when decreasing the model resolution (see Figure 3-c),
through the increase in SGS viscosity (Figure 3-d). Variances
are similar across different resolutions in most of the domain
(Figure 3-b), and the increased contribution from the stochas-
tic model to the resolved variance can be observed close to the
wall when resolution is increased. Even though the variance
is severely underestimated, the logarithmic scaling for σ2

u first
proposed by Townsend (1976) and observed in the DNS is cor-

rectly captured by ODT. When the resolution is decreased to
dz = 1/100, the resolved variance of streamwise velocity starts
to reduce in the entire domain. This is likely because, in this
specific example, dz = 1/100 already corresponds to a value in
which the eddies eliminated by the coarser resolution are rele-
vant in the entire domain, as they are responsible for most of
the streamwise velocity variance. Spanwise and vertical veloc-
ity variances, on the other hand, are dominated by the energy
redistribution process, making the variance similar in most of
the domain even for dz = 1/50.

4.2. Maize canopy
Canopy flow simulations using ODT are first tested for a

maize canopy under neutral atmospheric stability. Figure 4
presents the profiles of flow statistics for the two ODT sim-
ulations performed (half channel and full ABL). As observed
in the smooth channel case, ODT generates acceptable results
(error within 25%) of mean streamwise velocity and momen-
tum flux, combined with significant underestimation (errors be-
tween 25 and 50%) of standard deviations of all three velocity
components, when compared with field data. Nevertheless, the
most interesting aspect of ODT when simulating canopy flows
is ODT’s ability to represent the vertical transport caused by the
mixing-layer eddies originated from shear instability present at
canopy top. As the drag force (23) added to (15) produces an
inflected profile for streamwise velocity (Figure 4-a), the prob-
ability of eddies centered around canopy top with size scaling
with h increases significantly. These eddies shuffle properties
across a distance that scales with h via the triplet map, produc-
ing non-local transport that carries some characteristics of that
in real canopy flows.

In the canopy region, non-gaussian velocity statistics are cre-
ated by sweeps of fast moving air that penetrate the canopy
from above, driven by coherent vortical structures present at
canopy top (Finnigan, 2000). The sweeps generate positively
skewed streamwise velocity statistics, and the vertical asym-
metry between the sweeps and ejections due to the loss of ki-
netic energy to canopy drag results in vertical velocity statistics
that are negatively skewed. In addition, the presence of these
extreme events results in high kurtosis of both streamwise and
vertical velocity. In ODT, the stochastic eddies that scale with
canopy height “mix” high-momentum air into the canopy (see
Figure 1) resulting in non-gaussian streamwise velocity statis-
tics similar to those observed in the upper canopy and above
it (Figures 4-e,f). While the agreement in skewness and kurto-
sis are fairly good in the upper half of the canopy, in the lower
half ODT overestimates the deviations from the Gaussian dis-
tribution. This can be understood in the light of the modeling
approach adopted here and illustrated in Figure 1. While in the
true flow the sweep gradually looses momentum to the canopy,
reaching the deep canopy region much weaker than when it en-
ters the canopy, in ODT the reduction is uniform over the en-
tire extension of the eddy, causing the fluctuations in the lower
half to be too strong. In addition, the modeling approach in
ODT severely impacts the statistics of the vertical velocity fluc-
tuations. Because all the energy in the vertical velocity origi-
nates from pressure redistribution (i.e. the second term on the
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Figure 3: Smooth-channel simulation results: ODT in “LES mode” with
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from stochastic eddies (dashed lines); and (d) SGS viscosity. In panels (a) and
(b) the DNS results from Lee and Moser (2015) are included using thin lines.

right hand side of Equation (3)), ODT cannot capture asymme-
tries between positive and negative vertical velocity fluctuations
(thus having near zero Sku3 ). However, even-order moments
such as the kurtosis do not depend on the sign distinction and
are captured by the model. The large overestimation of the kur-
tosis is originated from the same mechanism described above in
addition to possible errors originated from the simple treatment
of the pressure redistribution.

For a more rigorous test of ODT, probability density func-
tions (PDFs) of normalized streamwise and vertical velocity
components from ODT are compared to observations reported
by Chamecki (2013) in Figure 5. The agreement between ob-
servations and modeled PDFs for streamwise velocity is very
good in the upper canopy and reasonable in the lower canopy
(where the excessive skewness is clear). With the exception of
the lowest level (z/h = 1/3), ODT results are better than recon-
structions based on the observed values of skewness and kurto-
sis obtained from the Gram-Charlier expansion or the Hermi-
tian polinomial transformation presented in Chamecki (2013).
For the vertical velocity, the negative side of the PDF is reason-
able well predicted, while the positive side is overestimated as a
result of the lack of skewness in the vertical velocity produced
by ODT.

Profiles of mean flow and turbulence statistics are similar be-
tween the simulation of a 1 km-high ABL with a capping inver-
sion and the simulation of the ABL surface layer (simulated as
a half-channel flow of 42 m, see Figure 4). An increase in stan-
dard deviations and streamwise skewness above the canopy is
observed in the ABL case, likely due to the existence of larger
eddies. The ABL simulation has a grid spacing that is twice
that of the half-channel simulation, requiring a larger contri-
bution from the SGS model. The SGS eddy flux (Figure 4-b)
peaks at canopy top as in LES of canopy flows, reaching 18%
of the total flux in the ABL case.

Simulations of LES (Pan et al., 2014) and second-order clo-
sure RANS (Gleicher et al., 2014) for the same maize canopy
are also shown in Figure 4. As expected, LES results show
the closer agreement with field data. RANS with a second-
order closure provides first- and second-order statistics, and
good agreement with observations is obtained. The agreement
between ODT results and observations, although not as good
as for the two other models, were generated without any case-
specific model adjustment (except for the canopy height, drag
coefficient and leaf area density, which need to be provided to
all models). Furthermore, the ODT simulation of the surface
layer took approximately one hour to run all 15 ensembles,
whereas the LES with the same domain and half of the ver-
tical resolution from Pan et al. (2014) took approximately one
week to run the same simulation time of one ODT ensemble us-
ing 24 parallel processors. This approximate comparison helps
illustrate where ODT stands in the context of most used canopy
modeling tools, with a computational cost that allows the sim-
ulation of cases with a larger vertical domain and resolution
compared to LES, and with a more general approach in terms
of adjustable parameters compared to typical closures of RANS
models.

10



0

0.5

1

1.5

2

0 2 4 6 8

z/
h

u1/u∗

(a)

0.2 0.6 1
-eddy fluxu1

/u2∗

(b)

0

0.5

1

1.5

2

0 1 2 3

z/
h

σu1
/u∗

(c)

0.2 0.6 1 1.4
σu3

/u∗

(d)

0

0.5

1

1.5

2

-2 0 2

z/
h

Sku3
, Sku1

(e)

-20 0 20
−Kuu3

,Kuu1

(f)

SOCM
LES

ODT
field data

Figure 4: Maize canopy simulation results: field data (circles), RANS with
second-order closure model (SOCM) by Gleicher et al. (2014) (blue lines), LES
by Pan et al. (2014) (black lines) and ODT results with H = 42 m and mean
pressure gradient force (red lines) and zi = 900 m and Coriolis force (dark-red
lines), where H is the domain size and zi is the height of the ABL. (a) Mean
streamwise velocity; (b) vertical flux of streamwise momentum; (c) standard
deviation of streamwise velocity; (d) standard deviation of vertical velocity; (e)
skewness of streamwise (solid lines, filled circles) and vertical (dashed lines,
open circles) velocity; and (f) kurtosis of streamwise (solid lines, filled circles)
and vertical (dashed lines, open circles) velocity. In (b), thin lines correspond to
the SGS part of the vertical momentum flux. In all canopy results, u∗ is defined
as (eddy flux2

u1
+ eddy flux2

u2
)1/4 at canopy top.

10−4

10−2

100

102

104

106

108

-8 -6 -4 -2 0 2 4 6 8

PD
F(
û
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4.3. Wind tunnel with waving canopy
Overall, the agreement between ODT results and observa-

tions for the waving canopy are very similar to those for the
maize (Figure 6, red lines): ODT generated reasonable mean
profiles of velocity and momentum flux (error lower than 25%),
and significantly underestimated (by more than 25%) standard
deviations. Skewness and kurtosis measured in the wind tunnel
are lower than the ones obtained in the maize field, resulting
in a more significant overestimation by ODT in the wind tun-
nel case. This result indicates that skewness and kurtosis in
ODT are highly related to the strength of the streamwise shear
(which is similar between wind tunnel and maize canopy cases)
whereas in the reality these statistics are results of the complex
interaction between turbulent eddies and the canopy.

Figure 6 also presents results from the same simulation us-
ing different values for the ODT tunable parameter Cλ. Re-
ducing Cλ reduces the number of eddies and it significantly
increases the velocity variances, improving agreement in the
second-order moments. However, it compromises the predic-
tion of the mean velocity profile. Increasing Cλ beyond 12.72
causes only very small changes in flow statistics, suggesting
that the ODT simulation has already converged to its asymp-
totic state independent of the number of eddies. Thus, the value
of 12.72 is optimal as increasing the value of Cλ increases the
number of eddies and the computational cost of the simulation
without improving results.

As already mentioned, the underestimation of velocity vari-
ances does not imply that turbulent transport is being under-
estimated. Another test of ODT capabilities in estimating flow
statistics using stochastic eddies (despite the low variances) can
be seen in the turbulent kinetic energy (TKE) budget terms (Fig-
ure 7). The budget for the resolved portion of the TKE in the
canopy simulations can be written as

Ps + Tt + Wd = εSGS. (26)

In this equation, which assumes steady-state conditions, Ps is
the shear production, Tt is the turbulent transport, Wd is the
work done by the resolved velocity field against canopy drag,
and εSGS is the SGS dissipation rate (e.g., see Dwyer et al.,
1997). In the present ODT simulations, these terms are cal-
culated from

Ps = −eddy fluxui

∂ui

∂z
(27)

Tt = −
∂(eddy fluxuiui

)
∂z

(28)

Wd = ũ′id
′
i (29)

εSGS = τi∂ũi/∂z, (30)

where ũ′i and d′i are the fluctuation part of the resolved velocity
and drag force, respectively (see Appendix in Kerstein et al.
(2001) for a detailed description of the TKE budget in ODT).

All the terms in the TKE budget estimated from ODT are in
reasonable agreement with observations, in the sense that the
shape of the profiles are similar and the order of magnitude
of all quantities are correctly predicted my the model. Small
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discrepancies, such as the position of peaks in production and
work against drag, are likely related to the waving nature of
the experimental canopy versus the static canopy simulated in
ODT (this causes difficulties even in the definition of a canopy
height for normalization of the vertical coordinate). The shear
production and turbulent transport terms in ODT are defined
based on the transport caused by stochastic eddies, rather than
vertical velocity fluctuations, which explains the overall agree-
ment despite the severe underestimation of the variances. Due
to its inclusion in the energy redistribution term, drag dissipa-
tion associated with eddy events is embedded in all terms and
cannot be evaluated separately, which may also be a cause for
the differences observed between ODT results and wind-tunnel
estimations. The work against drag is estimated as a correlation
between the velocity fluctuations and the drag force, and its un-
derestimation is likely related to the underestimation of veloc-
ity variances. The SGS dissipation is estimated from the SGS
model, and it behaves similarly to the energy dissipation from
the wind-tunnel data especially inside the canopy, a promising
result given that profiles of TKE dissipation rate are needed
in several applications, such as Lagrangian Dispersion Mod-
els (Poggi et al., 2006), and are particularly difficult to estimate
from measurements. The overall qualitative agreement between
ODT and wind-tunnel observations suggests that even the com-
plex TKE budget within and above the canopy is reasonable
well reproduced by ODT.

4.4. LES with canopy by Patton et al. (2016)

The impact of unstable atmospheric conditions in canopy
flows was investigated using LES for the first time by Patton
et al. (2016), and it is reproduced here using ODT. This is a
challenge for LES because it requires the model domain to rep-
resent the entire depth of the ABL with fine enough resolution
to represent in-canopy processes. Profiles of mean flow and
turbulence statistics for five different stabilities, ranging from
near neutral to free convection, are shown in Figure 8. Under
near-neutral conditions, ODT has a performance comparable to

the previous canopies: reasonable agreement for mean stream-
wise velocity and vertical momentum flux, underestimation of
velocity standard deviations. The overestimation of streamwise
velocity skewness is more accentuated than in the maize case,
as this deciduous-like canopy presents a lower skewness with
a peak higher in the canopy compared with the maize, whereas
ODT results are similar for both canopies.

LES results showed that increasing thermal instability (ob-
tained mainly through a reduction in the imposed geostrophic
wind), resulted in a reduction in normalized mean streamwise
velocity, momentum flux and skewness, combined with a de-
crease in normalized velocity standard deviations between near
neutral, weakly unstable and moderately unstable conditions
and a less significant decrease between moderately unstable,
strongly unstable and free convection. ODT simulations were
able to capture this patterns, reaching values of vertical velocity
standard deviations that are closer to LES results (error smaller
than 25%) under more unstable conditions. This result suggests
that, for ABL conditions, ODT has more difficulty in reproduc-
ing shear-driven variance than buoyancy-driven variance.

Despite the poor agreement in vertical velocity variance,
mean vertical turbulent transport can still be successfully repre-
sented by ODT. An example of this situation is shown in Figure
9, where the profiles of mean concentration, vertical flux and
standard deviation of an active scalar (potential temperature)
and a passive scalar (water vapor mixing ratio) are presented.
As expected, vertical fluxes show good agreement as they are a
direct consequence of the source terms imposed in the simula-
tion. The mean profiles also show reasonable agreement with
LES results for all stabilities considered. Standard deviations
are around the correct values, with some discrepancies in the
shape of the profiles. For example, in the lower half of the
canopy for the more unstable cases, LES generated lower val-
ues of potential temperature standard deviation than ODT. The
values of σq/q∗ presented a peak closer to the canopy top and
lower values at canopy bottom in LES than in ODT. In spite
of that, overall the transport of scalars inside and immediately
above the canopy is well reproduced by ODT in all the range
of stabilities between neutral and free convection, without any
model adjustment or specific closure, only by defining the ap-
propriate forcing, sources and boundary conditions.

Finally, results for the simulation with a bimodal scalar
source designed to test non-local fluxes are shown in Figure
10. The presence of two strong localized sources produces a
mean concentration profile with large variations on vertical dis-
tances comparable to the extent of shear layer eddies. The ver-
tical fluxes produced by ODT show both counter-gradient and
nearly zero-gradient flux regions (see blue and red regions in
Figure 10). The counter-gradient flux is the result of large ed-
dies that carry low concentrations from above the canopy deep
into the vegetation, overwhelming the local negative flux pro-
duced by the localized peak in concentration. This result can
be compared to Figure 9 in Raupach (1987), which shows a
qualitatively similar result using a Lagrangian approach for ho-
mogeneous turbulence. We conclude that ODT is capable of
qualitatively reproducing one of the most challenging aspects
of canopy turbulence, the non-local transport by shear layer ed-
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dies in the near-field of localized sources (Chamecki, 2013).

4.5. Summary of ODT performance in canopy flows

For the types of canopies tested here, most of the mean
streamwise velocity generated by ODT was within 25% from
the reference values (direct measurements or LES), and no clear
tendency of under or over estimation was observed (Figure 11-
a). Similarly, the vertical momentum flux was mostly around
or below 25% error (Figure 11-b), except for significant er-
rors (more than 50%) when flux values were very low (close
to the ground and under free convection for the LES with de-
ciduous case). The ODT tendency of underestimating velocity
standard deviation can be clearly seen in Figures 11-c,d, which
shows that ODT errors reached values up to ∼50% in most of
cases and canopy regions, and the error was higher than 50%
in the region closer to the ground for the streamwise direction.
The vertical velocity standard deviation presented significant
underestimation (error higher than 50%) in the maize case in
the upper canopy and above canopy regions, and presented a
systematic error reduction with increasing instability in the case
of LES with deciduous canopy. The overestimation of stream-
wise skewness (Figure 11-e) was of more than 50% in the lower
canopy and in some regions of upper canopy (especially in the
LES with deciduous case, in which peaks in skewness were
lower in the canopy in ODT compared to LES). Overall, the
ODT performance is consistent across different canopies, and
the only clear variation on the error observed here is the impact
of atmospheric stability on σu3 . However, as in the skewness of

streamwise velocity case (which was close to reference values
in the maize case but not in the other two canopies), the good
performance of σu3 in ODT under high instability may be dif-
ferent for other canopies, so more tests are needed in order to
provide a conclusion on this matter.

5. Conclusions

In this work, Kertein’s One-Dimensional Turbulence (ODT)
model was modified and used to perform simulations of canopy
flows. In order to preserve the low computational cost that
makes ODT advantageous for ABL simulations, a filtered ver-
sion of the ODT model was developed. In this approach, only
the large scales of turbulence are represented by stochastic ed-
dies, and an eddy-viscosity SGS model is used to represent the
effects of unresolved turbulence. In addition, the energetics of
the stochastic eddies that penetrate the canopy were modified
to account for the fact that these eddies loose energy by per-
forming work against the drag force imposed by the canopy
elements.

Model results are consistent with previous performances of
ODT without the SGS model and canopy: reasonable mean
field profiles and vertical fluxes of momentum and scalars and
underestimated profiles of variances. All results presented here
were obtained with values of the ODT adjustable parameter
Cλ and canopy drag coefficients defined in previous studies,
i.e., no case-specific adjustment was performed here. Differ-
ent ways of representing SGS turbulence have been tested and
could be proposed, but the fact that the simple approach pro-
posed here maintains ODT performance for several grid resolu-
tions without the need of parameter adjustments indicates that
the Smagorinsky-like model is a suitable approach.

Despite its one-dimensional nature, ODT is deemed capa-
ble of reproducing a number of non-trivial features of canopy
flows that originate in the complex interaction between the tur-
bulent field and the vegetation. Some of these features are
quantitatively accurate and others are qualitatively correct but
over/underpredicted. The combination of reasonable predic-
tions of mean velocity and momentum flux profiles (as well
as mean profiles for scalars and their corresponding vertical
fluxes) indicates that ODT is capable of representing the non-
local fluxes that dominate the dynamics of canopy flows and
that impose severe limitations in the use of eddy-viscosity and
eddy-diffusivity approaches. This is a direct consequence of
the stochastic eddy formulation of the model, which appropri-
ately converts the direct effect of body forces acting on the flow
into turbulent transport through the probability distribution of
non-local eddies. The strongly non-Gaussian PDFs of stream-
wise velocity fluctuations is fairly well predicted by ODT. To
put this result in perspective, note that even models that pre-
dict the PDF from observed values of skewness and kurtosis
based on the Gram-Charlier expansion or on Hermite polyno-
mial transformations have difficulties (Chamecki, 2013). ODT
also does a reasonable job in reproducing vertical profiles of the
TKE budget terms (including the TKE dissipation rate) and the
main effects of buoyancy on canopy flows. Although in these
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cases the agreement is less satisfactory from a quantitative per-
spective, they are good examples of an important characteris-
tic of ODT: the ability in representing non-trivial flow features
through a general phenomenological approach.

In order to improve ODT performance in simulating canopy
flows, it would be desirable to fix the issues related to the un-
derestimation of total TKE and the lack of asymmetry in the
vertical velocity distributions (characterized by the negligible
odd-order moments). The TKE produced in the flow is a di-
rect consequence of how the triplet map (Equation 5) acts in
converting mean shear into TKE. In principle, the triplet map
could be replaced by another formulation, although at this point
there is no evidence that this approach would necessarily im-
prove the total TKE. The triplet map is a good choice because it
creates a uniform strain rate and length-scale reduction, in ad-
dition to having the smallest possible eddy size (equal to 6 dz)
when compared to other mapping functions (such as the “quin-
tuplet map” tested by Kerstein (1991) in a precursor of the ODT
model). In ODT, all the energy in the vertical velocity origi-
nates from the model for pressure redistribution. In its current
formulation, this approach renders the vertical velocity predic-
tions incapable of asymmetries between positive and negative
fluctuations (i.e. zero odd-order moments) despite the fact that
the fat tails in the PDF of vertical velocity are present (although
severely over predicted). This is problematic in canopy flows
and, likely, also in simulations of convective ABLs. It is pos-
sible that different energy redistribution formulations that take
into account differences in vertical velocity fluctuations gener-
ated by buoyancy and canopy drag, for example, would signifi-
cantly improve model performance.

The use of ODT to simulate stable ABL has been previ-
ously shown to be feasible (Kerstein and Wunsch, 2006), and
although it has not been tested here, there is no specific reason
to expect a different outcome in the simulation of stable flows
with canopy. The model may not be appropriate, however, to
represent flows with very low or intermittent turbulence condi-
tion, which can be also the case of very dense and tall forests
where the turbulence inside the canopy is extremely low.

Finally, we note that ODT can also be used to simulate tran-
sient conditions or a two-dimensional steady-state flow (by con-
verting the time dimension into streamwise direction through a
bulk streamwise velocity), and these capabilities still need to
be explored in the context of canopy flows. In addition, ODT
can be coupled to large scale models instead of being used as a
stand-alone single column model. ODT has been used as a wall-
model for LES of high-Reynolds number turbulence in channel
flow (Schmidt et al., 2003). In the context of LES of ABL flows,
one can certainly envision ODT as a wall model used to resolve
complex physical phenomena close to the ground that cannot be
resolved in the numerical grid. As an example, one could use
ODT to resolve a crop canopy that cannot be resolved in the
LES grid of an ABL simulation. In the same line of reasoning,
one could envision the use of ODT as an alternative to the tradi-
tional surface exchange parameterizations or canopy/urban sub-
models used in regional models such as the Weather Research
and Forecasting (WRF) model or even in climate models.
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