

Greater than the Sum of its PARTs:
Expressing and Reusing Design Intent in 3D Models

Megan Hofmann,❇ Gabriella Hann,❇ Scott E. Hudson,❇ Jennifer Mankoff†

❇
Human Computer Interaction Institute

Carnegie Mellon University, Pittsburgh, Pennsylvania

{meganh, ghhann, scott.hudson}@cs.cmu.edu

†
Allen School of Computer Science and Engineering

University of Washington, Seattle, Washington

jmankoff@uw.edu

ABSTRACT

With the increasing popularity of consumer-grade 3D

printing, many people are creating, and even more using,

objects shared on sites such as Thingiverse. However, our

formative study of 962 Thingiverse models shows a lack of

re-use of models, perhaps due to the advanced skills needed

for 3D modeling. An end user program perspective on 3D

modeling is needed. Our framework (PARTs) empowers

amateur modelers to graphically specify design intent

through geometry. PARTs includes a GUI, scripting API and

exemplar library of assertions which test design expectations

and integrators which act on intent to create geometry.

PARTs lets modelers integrate advanced, model specific

functionality into designs, so that they can be re-used and

extended, without programming. In two workshops, we show

that PARTs helps to create 3D printable models, and modify

existing models more easily than with a standard tool.

Author Keywords: Fabrication; prototyping; 3D Printing
ACM Classification Keywords:

H.5.2 [User Interfaces]: Input devices and strategies,

Interaction styles

INTRODUCTION

Consumer-grade 3D printing allows the creation of

customized objects by nearly anyone. However, people are

limited by their modeling ability. Most modelers quickly

move beyond novice oriented tools for creating geometric

designs (e.g., TinkerCAD [47]) because expression of

geometric form is only one part of the modeling task.

Bridging the gap between geometry and function is a more

substantial challenge [34], even for experienced users.

Modelers would benefit from the equivalent of an end-user-

programming tool. This is what our Parameterized

Abstractions of Reusable Things (PARTs) framework

provides. It puts advanced methods for capturing 3D

modeling design intent in the hands of non-expert modelers.

This supports reuse, experimentation, and sharing.

PARTs’ basic abstraction, functional geometry, is analogous

to the programming concept of classes [9,22]. Like classes,

functional geometry encapsulates data and functionality,

making it easier to validate and mutate data and support

modularity. Functional geometry includes assertions that

test whether a model is used correctly, and integrators that

mutate the larger design context. These abstractions increase

model usability and re-usability.

The PARTs framework is an extension of the Autodesk

Fusion360 Computer Aided Design (CAD) tool. CAD tools

provide many helpful capabilities, including validation

methods [48], simple geometry operations [49], parameters,

constraints [50], and data structures for hierarchical

composition [51]. PARTs builds on this past work by uniting

this type of functionality within a single framework, making

this functionality easier to use and providing users with a

single, consistent mental model. It does this through small,

but important, additions to the Fusion360 GUI that provide

three important benefits. First, PARTs gives designers a way

to represent abstract design intent geometrically, so that less

skilled modelers can easily see, react to, iterate on, and

experiment with it. Second, PARTs facilitates description of

the modeling context with assertions of design expectations.

This makes model reuse simpler and more intuitive and is

particularly useful when a design is reused in a new context.

Third, PARTs enables encapsulation of design ideas. This

allows separation of concerns between aspects of a design. It

also makes it easy to combine and extend designs all in one

unified interface. By leveraging these unique features, a

designer can easily encapsulate information about how a

design should be used. This makes direct manipulation of

design intent possible, which, in turn, makes model reuse,

customization and recombination simpler and more intuitive.

When experts can share designs in a re-usable fashion,

amateurs can accomplish more [23] –a successful pattern

among programmers [15] and makers [17,29,35]. A study of

collaboration among professional CAD users shows that

programmers extend their tools to share their skills with less

skilled users [14]. Similarly, PARTs enables sharing of new

capabilities by designers (non-experts who create and share

complex designs) with modelers (amateurs who can use

basic CAD tools).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

CHI 2018, April 21–26, 2018, Montreal, QC, Canada

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5620-6/18/04…$15.00
https://doi.org/10.1145/3173574.3173875

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 301 Page 1

mailto:Permissions@acm.org
https://doi.org/10.1145/3173574.3173875

Scenario: Creating a Cup Holder Mount for a Bicycle

Consider a hypothetical modeler, Kavi, who is creating a

bike-cup holder. Kavi views a dialogue of available

functional geometry objects (FGOs) to find a cup holder and

bike mount (Figure 1A). FGOs capture design intent to make

it visible to the modeler (see the semi-transparent cup in

Figure 1B). Kavi selects the cup holder to add its geometry

to the Fusion360 model space and component hierarchy. He

adjusts the cup size to match his water bottle. Then he adds

the bike clamp and positions them so they overlap

(Figure1B). PARTs checks for violations of design intent

(failed assertions) and highlights them in red during

modeling. For example, when the bike handlebar would

block the cup, it is highlighted in red. Kavi changes the

model until he finds a valid position and then integrates the

cup holder to join them together (Figure 1C).

The cup holder and bike mount are fairly specific FGOs that

are not in the default PARTs library. PARTs can easily

import an FGO embedded in any Fusion360 file, to facilitate

sharing of FGOs. We travel back in time to when a more

experienced designer, Nisha, creates the cup holder FGO that

Kavi downloads. She specifies her design intent by adding

assertions and integrators. First, she models the geometry of

the cup holder. Nisha then uses PARTs to specify that this

should attach to any surrounding geometry by right clicking

on the geometry and associating it with a union integrator.

Next, she creates a cylinder representing the cup. She

attaches the cylinder to an assertion that tests for interference

using PARTs, specifying that it should always leave room

for the cup. This assertion automatically highlights violations

when Kavi positions the FGO.

Suppose a different designer, Lori, created Kavi’s handlebar

mount. Lori models the clamp and adds an assertion that

ensures space for the handle bar. She also adds a fastener to

close the clamp. The PARTs library includes a fastener FGO

with length and diameter parameters; assertions ensuring

there is enough material around the bolt and that the bolt has

a clear path; and an integrator to create a bolt hole. All of this

complexity is now encapsulated in the handlebar FGO.

This scenario highlights how the PARTs framework engages

multiple classes of users in a synergistic way. Similar to the

user types proposed in [30], PARTs supports the transfer of

designs between programmers, who extend the framework,

designers (Nisha, Lori), and modelers (Kavi). PARTs

supports reuse at multiple levels, and enables the creation of

complex, hierarchical objects.

Overview & Contributions

We first present an analysis of design patterns for reuse in

the wild derived from our survey of 962 Thingiverse models.

Next we describe our primary contribution, which supports

such re-use, the PARTs framework. PARTs provides a GUI

for creating new FGOs and showing real-time feedback,

without programming. PARTs includes a runtime

architecture and a small, but extensible, library of powerful

assertions and integrators. PARTs can also be accessed

through the Fusion360 scripting interface for adding even

more advanced capabilities.

Our technical validation demonstrates that PARTs has the

flexbility to address a wide variety of 3D modeling

challenges for non-experts. The PARTs framework supports

many tasks in-situ that are normally handled in special

dialogues where non-experts may not find them or

understand how to use them. While PARTs intentionally

uses simple concepts to accomplish this, many model-

specific design goals can be encapsulated using its assertions

and integrators. We show the value of PARTs in creating

complex objects, making a common CAD fastener tool

easier to use, and reproducing existing research [19].

We studied PARTs’ impact on modelers and designers in

two workshops. Ten participants with an average of five

years of experience with CAD tools were asked to create cup

holders, similar to the scenario above. Participants could

successfully create and reuse objects using PARTs more

effectively than with the standard Fusion360 tool set.

RELATED WORK

Personal-scale fabrication techniques have given rise to new

communities of makers and prototyping methods [4,33].

However previous research suggests that experts and

A) Specification and Instantiation B) Iterative Modeling with Error Visualization C) Integration to prepare for Fabrication

Figure 1. Modelers combine geometry and logic to define FGOs as a set of assertions and integrators. For example, to create a cup

holder that attaches to a bike handlebar, the modeler instantiates cup-holder and bike-clamp FGOs from the PARTs library (A),

and iteratively modifies them in Fusion360 while the FGO assertions help to visualize potential errors (B). When the modeler is

ready, he can integrate the cup-holder and bike-clamp to create one design (C). The printed result is from our second workshop.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 301 Page 2

amateurs struggle to use CAD tools to express their designs.

Amateur modelers have difficulty with issues such as

uncertain measurements [19], spatial reasoning [7],

understanding how parameters affect overlap and fit [21] and

relating 3D models to real world geometry and objects [2,8].

While non-experts avoid some of these difficulties by using

existing models found on sites such as Thingiverse, often

such models need to be modified to be useful.

The extensive component libraries available in tools such as

SolidWorks are limited in applicability to mechanical

settings. Broader libraries such as SketchUp’s 3D

Warehouse do not necessarily support re-use. Studies find

that modelers struggle to make design modifications [17,39].

Even where customization is possible, modelers do not

engage in much reuse or innovation [35]. Although

experienced designers may create and share parameterized

models, designers struggle to anticipate the future use of

those parameters, making correct reuse more difficult [21].

Even for expert modelers there is a gulf of execution [34]

between a modeler’s real world design intent and the

geometry of most 3D models. Manufacturing experts have

developed methods for documenting design intent in a

separate process from 3D modeling [13,20,37]. Because of

these common professional practices, there is a connection

between geometric features and professional modular design

intent [27], but this connection is lost in standard tools [13].

Further, although these connections are based on the

common norms, there remains disagreement on terminology

and best practice [26]. It is likely that expert amateurs have

difficulty uncovering these norms. Indeed, a key challenge in

the domain of non-expert rapid prototyping is to develop

systematic engineering practices which require low cognitive

effort [1].

Kim et al. have proposed a standardized format for CAD

models that relates design intent more closely to geometric

features and preserves this information for reuse [20].

However designs using this format are likely unusable to

modelers, and even designers, without appropriate training.

These practices and issues have influenced the features

available in CAD tools (e.g., composability [24], and support

for assessing manufacturability [43], assembly [25], and

strength [28]). However, non-experts may not be aware of,

or find it easy to use such features because they do not share

the norms and knowledge of professionals.

There is a long history of interactive systems research aimed

at increasing the expressiveness of modeling tools. ThingLab

used objects and decomposition to support specification of

graphical simulations [6]. SketchPad [40] introduced

constraints for expressing design intent and are used for

manufacturing [10], graphics [5,40,41] and user interface

design [16,31,36,46]. Xia et al. added object oriented

structure and modularity to a 2D sketching tool [44]. This

work shows the positive value of objects and modularity in

design, but provides limited extensibility for end users

through the interface, which limits the ability of modelers to

define their own modular features. Many tools already aim

to express specific forms of design intent, such as:

connecting to physical objects [12,38,45], or assembling

modular components [18,23,25]. These tools illustrate the

power of attaching design intent to models, however none

focus on recombination and reuse of such designs.

A SURVEY OF REPEATED PATTERNS IN THE WILD

We begin with a survey of 3D printable designs found on the

Thingiverse 3D model sharing website, which is used by our

target non-expert population. We explore design patterns for

reuse among successful examples of complex 3D models.

Method: We surveyed 10,560 designs on Thingiverse,

gathered in two phases in 2016 and 2017. Each year, we

gathered 40 pages of 12 Things from Thingiverse’s 11
categories (5,280). We collected 20 pages of the most

popular designs at search time, and 20 of the newest designs.

Of these, we kept the 962 designs that met all of the

following requirements for further review:

Success: Fabricated, or marked as ‘made’ by a different
Thingiverse user (8,839, 83.70%).

3D Printable: Intended for 3D printing (9,257, 87.66%).

Non-Trinket: Images and descriptions show interaction with

existing objects. (1,246, 11.81%)

For each design, we collected photographs, descriptions,

popularity metrics, and file types (coded as static or

parameterizable). We used affinity diagramming [3,45] to

group designs. Although modelers express design intent

using many different approaches and software tools, we

found a few very common design patterns for incorporating

existing objects into models. As suggested by Flath et al.

[11], these design patterns are important building blocks for

reuse. Patterns we found, shown in Figure 2, included:

approximating (682), molding (219), holding flexible objects

bent to fit the model (51), connecting multiple similar objects

(225), connecting multiple distinct objects (159), and

hanging (10).

Findings: Reuse of parametric designs is common (74% of

the reuse graph in [35] comes from parametric designs). Our

data show a similar pattern. Of the 962 designs, 536 (56%)

have been reused at least once. Parametric models are more

likely to be reused than non-parametric models. Most reused

designs (89%) were made available through the Thingiverse

Customizer tool, a simple GUI for modifying parameters.

Surrounding Objects: Approximation, Molding and Holding.

The majority of designs (578) use 3D printed materials to

augment a single object. Most of these use two similar

patterns: Approximations of the object’s shape made with

cylinders or boxes, or molds that exactly match the object

geometry. Approximations are loose-fitting holes for simple

objects like pens, usually made with cylinders or boxes (e.g.,

T:73489). Molds more exactly match the geometry of the

object, meaning the design is molded to fit the object like an

iPhone case (T:40703). A similar and rarer design pattern is

to hold objects that are flexible, where the modeler intends

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 301 Page 3

to bend the real-world object to fit into the space. This is

usually seen with objects like cables and wires (T:13678).

Connecting and Organizing Objects: Many designs (N=384)

use 3D printed models to connect and organize multiple

objects, such as a pegboard tool organizer (T:1322545). Less

common were designs that connect different types of objects

such as a smartphone and game controller (T:2457666)

Discussion: Similar to findings in [11,35], our analysis

suggests that people are interested in reuse, but only if they

can easily modify a design (as with OpenSCAD or

Customizer). If 3D modeling tools made customization as

easy as parameter modification, we should see examples of

reuse that leveraged those capabilities in our data. Yet,

similar to [35], we find most reuse to be relatively minor

parameter variation and reproductions. We disagree with

Flath et al’s [11] assessment that the models on Thingiverse

are all combinable; rather modelers in our study struggled to

create compositions of multiple distinct triangular mesh 3D

models (the most common type on Thingiverse).

Our data set is limited by our focus on Thingiverse, which is

known to include few parameterized designs [32]. However,

this is a representative sample of the design efforts of a non-

expert population. Another limitation is lack of information

about what happens to the same designs outside Thingiverse.

Because our analysis was done in a bottom up fashion, it does

not call out what is missing in the data. It is possible that

reuse is happening, but is not visible in our data set. We did

not identify what design tools modelers who post STLs use,

what design features modelers used, and how these features

may have connected to design intent. However, if the

original model is not shared, this intent is lost during reuse.

THE PARTS FRAMEWORK

The PARTs framework allows models to include design

intent, making them easier to reuse. Through small changes

to the Fusion360 GUI, PARTs supports creation and use of

functional geometry. In this section we describe the PARTs

architecture, including the modeler’s experience in using
Fusion360 to instantiate and customize functional geometry

and an overview of the PARTs library.

Overview of Functional Geometry

The purpose of functional geometry is to capture design

intent in ways that can be easily visualized so that the

modeler can work to avoid problems as models are combined

to build up more complex designs. From a modeler’s
perspective, functional geometry is similar to other

Fusion360 components. Just as some Fusion360 commands

take a surface or other geometry as input, functional

geometry makes use of geometric parameters. Fusion360

allows the specification of model constraints, but functional

geometry goes further than standard parameters and

constraints to visualize violations of assertions that represent

semantic expectations about models (Figure 1B).

A critical feature of PARTs is that a designer uses FGOs to

express semantic concepts geometrically and without

programming. An example is adding a cup model to a cup

holder. When shared with a modeler, this reveals important

considerations: 1) do not interfere with the cup, 2) size the

hole to match the cup. The ability to use standard

constructive geometry operations to document design intent

is a powerful, unique feature of PARTs that positively

impacted ease of use in our workshops.

From a programmer’s perspective, an FGO is a data structure

that inherits from the PARTs base FGO class hierarchy. It

includes code for generating geometry and for operating on

the geometry based on design intent. Each FGO includes two

special types of components. Assertions check that the FGO

is valid, i.e., not violating some part of the design intent.

Unlike constraints or parameters, assertions do not enforce a

set of rules. Instead, they visually highlight violations. For

example, an assertion might check that the model is not

intersected by other geometry. Integrators mutate the model,

such as cutting a hole for the FGO or generating a connection

between the FGO and the surrounding model. Assertions and

integrators can act on standard model geometry as well as

other FGOs. Assertions and integrators are complementary

in that assertions check and report on design intent

violations, while integrators enact aspects of that intent.

Each FGO is composed of assertions, integrators, and

related child FGOs. The FGO base class also includes a

constructor that can be programmatically overwritten to

generate geometry based on user specified parameters.

The PARTs Architecture and Implementation

The PARTs framework is implemented using Fusion360’s
scripting API. Because PARTs is deeply integrated with

Fusion360, using it involves using standard Fusien360

capabilities for creating and manipulating geometry, such as

the component hierarchy and interference and using PARTs

commands embedded in the GUI.

Instantiation (Figure 1A)

Modelers instantiate a new FGO by opening a dialog

showing the PARTs library from the Fusion360 create menu.

At instantiation the default elements’ geometry is generated

and added to the Fusion360 component hierarchy. A

dialogue is shown if parameters are needed to generate

Approximate Mold Hold Connect Similar Objects Connect Different Objects

Figure 2. Example Thingiverse Designs for each design pattern. Labels show ‘Thing’ number.

T:73489 T:40703 T:13678 T:1322545 T:2457666

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 301 Page 4

geometry used by the FGO’s assertions and integrators. The

FGO’s geometry can also be customized using standard

Fusion360 features, and the modeler can add new assertions

and integrators from the PARTs library.

A designer can create a novel FGO without programming.

The designer starts with an FGO containing no assertions or

integrators, and progressively adds them.

Internally, PARTs keeps a look up table that associates the

component and FGO. When the user right clicks on a

component, PARTs uses this table to find the associated

FGO. If an FGO is found the menu displays commands to

copy, delete, add functionality to, and integrate the FGO.

Assertion Checking (Figure 1B)

The PARTs framework automatically tracks changes to

geometry and checks any assertions that intersect the

changed geometry. Failed assertions are highlighted in red

(Figure 1B). PARTs listens for Fusion360 timeline events

which signal model changes, triggering a test for each

Assertions that intersects modified geometry. This reduces

the computation needed after changes in a complex model.

Importantly, PARTs does not impose solutions, interrupt

modelers, prevent errors, or optimize designs to solve

problems. Instead, PARTs provides visual information about

design intent. Stronger design requirements can be captured

using Fusion360 tools such as parameters or constraints.

PARTs’ complementary approach allows non-experts to

understand and manipulate design intent, as we show in our

workshops. By not strictly enforcing assertions, PARTS

allows experimentation with design intent, something

workshop participants praised.

Integration (Figure 1C)

Integrators are defined by the designer of an FGO. Prior to

integration, the integration geometry helps to indicate design

intent. Modelers activate integrators by right clicking in an

FGO and selecting the integrate command. This converts the

integration geometry into a feature of the surrounding model

(e.g., cutting a hole for a bolt).

Although integration mutates the model, Fusion360 has

sophisticated support for undo, which PARTs leverages. A

modeler can delete/edit the integration actions, which are

labeled in the Fusion360 timeline, or re-invoke integration.

The PARTs Library

The PARTs Library contains base classes for assertions,

integrators and functional geometry. After describing the

base classes, we present assertions and integrators derived

from our Thingiverse study. Changing the geometry

connected to these library elements helps generalize it to a

wide variety of new use cases without programming.

Assertions

The purpose of assertions is to test whether a design meets

the original designer’s expectations, even when a new

modeler alters the model in the future. For example, an

assertion might test for space for an object, path for tools

needed in assembly, or the presence of a related part.

Base Assertions: The assertion base class takes a geometric

parameter as input and runs a Boolean function against that

parameter. PARTs includes two subclasses, which test

interference, and overlap of the geometric parameter against

the surrounding geometry. Interference fails if there is an

intersection, such as when a path for a tool is blocked.

Overlap fails if any part of a geometric parameter is not

intersected. For example, a privacy cover for a camera might

associate an overlap assertion to check that there is no

geometry in front of a camera lens.

Integrators

While assertions test design expectations, integrators use

geometry and other parameters to enact design intent.

Integrators can be combined, so that an FGO might include

one integrator that puts a mold around a phone and another

that attaches the phone holder to the surrounding geometry.

Base Integrators: The base class for integrators takes a

geometric parameter as input and runs a function that

modifies the surrounding model against that parameter. We

provide two subclasses: union and cut. By combining

multiple integrators, FGOs can execute a wide range of

mutations to integrate with the surrounding model.

Implementing Support for Higher Level Design Patterns

Based on common constructs found in our Thingiverse

survey, we identified four higher-level design patterns that

we support with the PARTs library (Table 1). In three cases,

the design pattern is supported by an integrator that cuts a

hole for an existing object and two related assertions that test

that the hole remains empty, and is surrounded by a

minimum amount of material. These inherit from the cut

integrator, interference assertion, and overlap assertion,

respectively. The fourth case, connect, uses a single

integrator, which generates material connecting two faces.

Bounding Box: Many designs in our survey approximate

real-world objects using rectangular holes. To support this,

we developed a box-cut integrator, interfered-box assertion,

and minimum-boundary box assertion. Each generates an

Table 1. Design patterns used to create sample objects.

FGO Survey Example PARTs Model Printed Result

Bounding Box

Scaled Mold

Swept-Path

Connector

T:512797

T:31741

T:1182945

T:1734510

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 301 Page 5

object’s bounding box, with either manually entered
dimensions, or Fusion360’s bounding box functionality, if

the user provides the real-world object geometry. Table 1,

Row 1 shows a thumb drive/ smartphone holder from our

survey, (left), the PARTs model (middle), and the printed

result (right).

Scaled Model: Following the mold design pattern in our

survey we developed a scaled-hole integrator, interfered-

model assertion, and minimum-surrounding material

assertion. The scaled-hole integrator cuts space (a hole) for

a real-world object and the interfered-model assertion

ensures it stays clear. Each takes a model of the real-world

object as a parameter (which a modeler could import or

create). The minimum-surrounding material assertion checks

that material surrounds the hole. This takes the same

geometry as input, but scales it to a thickness defined by the

user, using Fusion360’s scale feature. Row 2 of Table 1,
shows a drawing tool modeled with these elements.

Swept-path: Some designs in our survey define paths to

hold flexible objects. We support this with a path-cut

integrator, interfered-path assertion, and minimum-

boundary around path assertion that use Fusion360’s swept
path feature to create paths for an object based on a user

defined curve and orthogonal profile. These elements are

more difficult to use because they require the definition of a

curve and profile that match the object. Row 3 of Table 1

shows a cable organizer modeled using these elements.

Connection Integrator: The final design pattern found in

our survey is connecting multiple objects. The Connection

Integrator is parameterized by a starting and ending face, and

grows a structure between them using the an adapted Steiner

Tree algorithm [42]. In our adaptation, the connector grows

from a set of points uniformly distributed across the starting

face towards the target face. Starting with the furthest point

from the target, each Steiner point searches its neighbors and

creates a new point at the intersection of two cones directed

at the target. If the new point is closer than the target, a

connecting structure is generated between the first point and

the new point. The new point is added to the set of Steiner

points. Otherwise, a support is generated that connects the

Steiner point to the target. This is repeated while there are

unconnected points. As with [42], our algorithm does not

account for weight. However, Table 1, row 4 shows that it

holds a hefty mug full of coffee. Future work should examine

how to model physical properties in PARTs.

While the design concepts behind these library elements

could, in model-specific ways, be implemented without

PARTs, it is PARTs that imbues them with both usability and

re-usability through encapsulation. These powerful library

elements can express a wide range of design intentions.

TECHNICAL VALIDATION

We demonstrate the power of PARTs through examples of

complex FGOs created without programming. We then show

how PARTs’ ability to extend to and improve on common

tools by creating a fastener wizard that tests for proper

placement of the bolt. We next demonstrate PARTs’ ability

to support new types of tools by adding support for uncertain

measurements [19]. Each of these new library elements can

be accessed through the PARTs interface.

Composing Functional Geometry to Create an Organizer

In this demonstration, our hypothetical designer, Nisha,

creates a tool organizer, like the 54 models found in our

survey, using functional geometry to define her design intent.

This example starts with a high-level goal: organizing tools

by hanging them from a pegboard. Nisha breaks this problem

into a series of simpler tasks: build a pegboard hook;

incorporate a bolt and nut into the hook; build an organizer;

add hooks to the organizer; arrange tools in the organizer;

add multiple tools to the organizer. The entire design is done

in the Fusion360 GUI and only requires basic modeling

skills, creating boxes and cylinders.

Nisha first defines a pegboard-hook FGO with a union

integrator parameterized by a small box to cover a peg hole.

She also defines one assertion that ensures nothing in the

model interferes with a thin box, representing the pegboard,

behind the integrator. Next, Nisha adds a fastener FGO as a

child of the pegboard-hook. She positions the nut inside the

box while the head of the bolt protrudes. The bolt head will

function like a peg (Figure 3, left). At integration time,

integrators associated with the fastener FGO will cut holes

for the bolt and nut. Having created a hook, Nisha solves the

larger problem of using many hooks to hang an object from

the pegboard. She creates a box to hold tools and attach

hooks to. Using Fusion360 features, she makes multiple

copies of the pegboard hook and spaces them on the back of

the box so the box can hang from the pegboard.

Next, Nisha defines a tool FGO using a Scaled-Hole

integrator and interference assertion parameterized by an

approximation of the tool’s shape. She makes slightly altered

copies of this FGO to represent different tools. Then she

positions the tool FGOs in the organizer box. When they are

instantiated, tool-shaped holes will be created.

This example demonstrates that PARTs supports

decomposition of a problem into subtasks: create a pegboard

Figure 3. Models and printed results of a PARTs tool organizers to hang from a Pegboard (Left) and fit in a Drawer (Right).

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 301 Page 6

hook; use a fastener, etc. As we will show next, one of the

advantages of composing a design from subcomponents is

the ease with which design intent can be changed or reused.

From Pegboard to Tool Drawer Organizer

Suppose that our modeler, Kavi, wishes to reuse the tool

organizer to fit into a drawer rather than hang from a

pegboard (Figure 3C&D). He first creates a hollow box,

representing the drawer, with an interference assertion. This

ensures that the organizer fits completely within the drawer.

He places the organizer inside the box, which triggers an

error highlighting the pegboard hooks that intersect the

drawer. This prompts him to remove the unnecessary hooks.

With these two small changes, Kavi has repurposed the

existing design.

Expressing Design Intent in Complex Assemblies

The tool organizer demonstrates the benefits of composing

relatively simple geometry to express design intent. Going

further, PARTs is powerful enough to describe complex

objects. To illustrate this, we recreate an example from our

Thingiverse survey, a lamp composed of CDs, bike spokes,

a bulb, and 3D printed components. Although this design

involves many real-world objects, the Thingiverse model

includes just the 3D printed geometry. In contrast, PARTs

describes the whole design, including the use of the non-

printed objects. This makes the final model easier to

understand and reuse (Figure 4).

The designer, Lori, first creates FGOs for a CD and bike

spoke. She models the CD as a thin disk and finds bike spoke

geometry to import online. She uses the scaled-hole

integrator and a matching interfered model assertion to

reserve space for the spoke. Next Lori creates a new FGO, a

connector, which attaches the CD to the bike spoke. To this

she adds, as children, the spoke FGO and a fastener FGO.

She customizes the fastener FGO by adding a washer to

connect the cylinder to the CD. These FGOs will cut holes in

the connector, creating an assembly of the spoke and CD.

Next, Lori creates a hub FGO with an arm for each spoke.

To this hub, she adds an interference assertion to reserve

space for a bulb socket also found online, and adds a swept-

path interference assertion and the corollary integrator to

represent the cable. Lori creates and adds a lightbulb FGO.

The bulb FGO uses an interference assertion and a sphere

around the bulb to ensure that no meltable plastic is too close

to the hot bulb.

This example illustrates how functional geometry not only

improves modularity and specifies components for 3D

printing (the connectors and central hub), but also shows how

the components interoperate with real-world objects (CDs,

bike spokes, nuts, bolts, washers, lightbulb, socket, and

cable). The FGO hierarchy created by the designer, Lori, lays

out the relationships between the various objects, making it

easy to alter the design while maintaining her design intent

and expectations. In addition, this demonstrates PARTs’
flexibility, including an ability to incorporate models found

online, in the library, and to create custom geometry.

Extensibility of PARTs through Scripting

Many CAD tools can already be extended with scripted

plugins, indeed PARTs is one such extension. PARTs

supports the encapsulation of new features by programmers

because it provides a simple framework that enables

programmers to create new library elements that express

general concepts, are accessible through a unified interface,

and can be shared widely. The connector integrator

described earlier is an example of this. Here we illustrate the

concept with a fastener FGO, based on standard existing

tools, and an uncertainty buffer FGO based on prior research.

Fastener Wizard FGO: Fastener Wizards are common in

CAD programs. For example, Solidworks has two tools

similar to the fastener implementation in PARTs. The

Solidworks “Hole Wizard” [52] helps modelers create holes

that fit to a library of standard hardware. A separate

Solidworks tool is the “Smart Fasteners” [53] which insert

representations of the needed fasteners into an assembly (a

separate stage from modeling) and validates the

configuration. An advantage of PARTs is its ability to

validate and integrate the fastener in one modeling stage.

The fastener FGO is specific to nuts and bolts. It consists of

child FGOs for the nut and for the bolt. Each child FGO has

an interference assertion that reserves space for the

hardware, a cut integrator that cuts holes with surrounding

clearance for the hardware to slip into, and an additional

overlap assertion that checks for material surrounding the

resulting holes. By sharing a parent FGO, the bolt and nut

FGO are able to share parameters (bolt diameter and length)

and be moved through the design as one component,

maintaining their respective alignment.

The fastener FGO overrides the standard FGO class to add

the bolt and nut FGOs. The bolt and nut similarly override

the standard FGO class to add interference and overlap

assertions and a cut integrator. The implementation generates

geometry for the bolt and nut parameterized by shared

information about the fastener size.

Like a conventional fastener wizard, the fastener FGO can

integrate itself into the surrounding model by cutting an

Thingiverse

Design
Full Model

Printed and

Assembled

Figure 4. Functional geometry contextualizes the modeled

components among existing objects.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 301 Page 7

appropriately size hole. Unlike traditional tools, the fastener

FGO can be extended to express new design intent, such as

a test that reserves space above the bolt and ensures a tool

could reach it during assembly.

Uncertainty Buffer FGO: Our final example is the

replication of a research result exploring a novel modeling

construct that does not exist in current CAD packages:

support for measurement uncertainty caused by modeler

error [19]. We implement support for a flexible buffer that

can accommodate small errors in diameter measurements of

real-world objects.

The ring buffer FGO approximates a real-world object given

a measure of uncertainty about that object. For example, a

modeler could measure a cup three times and enter the

diameter range they found.

The ring buffer uses two integrators to create this

mechanism. The first integrator generates a ring around the

body model that has a radius of the uncertainty parameter.

The ring remains separate from the model and would be

printed with flexible materials. The second FGO uses a union

integrator to generate a hard ring that surrounds the buffer.

The FGO creates a cup holder that accommodates mugs of

different sizes and shapes.

This shows the power of PARTs to describe a designer’s

intent with respect to objects that do not have fixed or known

dimensions, and thus break the assumptions of standard

parametric modeling tools.

EVALUATION: MODELING WITH DESIGN INTENT

To validate that the PARTs framework would allow non-

expert modelers to create reusable and validatable designs,

we held two workshops with a total of ten participants who

each had previous CAD experience.

Participants

Participants were sampled from non-professional 3D

modeling and rapid prototyping communities. The first

workshop was conducted with six members of a makerspace

(ID’s starting with A). The second workshop was conducted

in a research lab with 4 graduate students (ID’s starting with
B). Demographic and experiential data for participants is

shown in Table 2. Participants averaged 5.1 years of

informal CAD experience with a wide range of tools

including: SolidWorks (A2,A3,A6,B1,B2,B3), Blender

(A3,A4,A5,B2), OpenSCAD (A3,A6,B4), and Fusion360

(A2,B1). No participants had formal training in 3D

modeling, qualifying them as expert-amateurs.

Method

The workshops consisted of four phases: discussion (~20

minutes), training (~20 minutes), think-aloud modeling (~60

minutes), and review (~20 minutes). Audio recording

devices were distributed throughout the room to capture the

discussion and participants’ thoughts during the various

stages. Researchers also took photographs and videos of the

participants during the modeling stage. We asked

participants about their expertise with 3D modeling, their

goals, previous struggles, and prototyping/ modeling habits.

Prior to attending the workshop all participants were given

links to Fusion360’s tutorials with notes on which tutorials

would be most valuable for the workshop. Six of ten

participants used these tutorials, and two participants had

pre-existing experience with Fusion360. A3 and B3 were the

remaining participants without any Fusion360 experience

prior to attending the workshops, and they had more CAD

experience than most other participants.

Workshops had three phases – training, modeling and

review. During the training phase, a researcher demonstrated

the interfaces of PARTs and Fusion360 by running through

the simple example of joining two blocks with a bolt and nut.

The PARTs demonstration included: using an FGO from the

library (fastener), checking assertions (from the bolt), and

invoking integration (to cut the bolt hole). The researcher

also gave quick descriptions of the other FGOs available in

the library. The Fusion360 demonstration showed the same

task with only the standard features of Fusion360.

During the modeling phase, participants were given a

modeling goal, example objects, and measurement tools.

While completing their tasks, researchers walked around the

space asking participants to describe their actions.

Participants were allowed to speak to one another and ask

researchers for assistance with the Fusion360 and PARTs UI

or for clarification on the design task. Researchers did not

give advice on how participants could complete the task, but

merely supported using the tools.

During the review phase, participants gathered into a group

to discuss their experience. They were prompted to discuss

how the PARTs framework differed from their previous

experience with CAD tools, what criticisms of the tool they

had, and if it affected their modeling behavior. Participants

in the later workshops were also asked to compare their

experiences using FGOs versus standard geometry.

Modeling Tasks

The first workshop tested the usability of PARTs by

designers. Participants were tasked with creating a cup-

holder using PARTs. Modelers had access to all assertions

and integrators, but no pre-existing FGOs to reuse in their

design. Successful completion of the task required that the

resulting model fit the provided cup, and that the holder was

stable when the cup was filled.

Table 2. Participant Demographics

ID Gender Age Experience Profession

A1 Male 36 3 Software Engineer

A2 Male 31 10 Graphic Artist

A3 Other 40 20 Startup Owner

A4 Female 30 1/12 Cosplay Designer

A5 Male 33 1 Defense Contractor

A6 Male 28 4 Software Engineer

B1 Male 28 1 Design Student

B2 Other 23 2 CS Student

B3 Male 26 8 CS Student

B4 Male 33 2 CS Student

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 301 Page 8

The second workshop focused on modelers, comparing

PARTs to Fusion360. Participants were asked to reuse

models to create cup-holders that could be mounted on a

bike. They were placed in two conditions, Fusion360 (alone)

or PARTs (Fusion360 with PARTs). Condition ordering was

randomly assigned to ensure that participants were not

primed by the first task to perform better in the second. In the

Fusion360 condition, we provided parameterized models

based on a cup-holder (T:2271973) and bike-mount

(T:1012573) found in our Thingiverse survey. In the PARTs

condition, we provided a parameterized cup-holder and bike-

mount FGO through the PARTs library. Participants could

also use any Fusion360 capabilities they wished.

The necessary tasks participants had to complete in both

conditions to create a successful model were: correctly

parameterize the cup-holder, bike-mount, and fastener to fit

the corresponding real world objects; position the cup-holder

and bike-mount components; position and cut space for the

fastener. If these tasks were successfully completed,

researchers attempted to print and test the resulting model by

fitting it to the bike and cup filled with water.

Findings

Anecdotes from participants in both studies show a perceived

benefit of the PARTs’ approach. For example, A1 noted that
he often modeled real world objects to help with his

modeling process. His process was manual and informal and

he appreciated the automated support for capturing these

process ideas, saying “it needs to be in your model for the

design or simulation to mean anything”. A5 commented on

the value of sharing such process information with other

users: “here’s your spec, and you send them around.”
The ability to delay integration was also valued, in

comparison to a standard process where “you really have to
know what you intend to build everything right” [A6]. In
A2’s words, “It’s essentially a 3D version of layers. It’s like
a non-destructible field on one side and a visual debugger on

the other” He was excited by the idea that he could use

integrators as place holders for changes he wanted to make

later, just as he uses layers in photo editing to prepare

changes to the final image.

Workshop 1 Outcomes

4 of 6 participants completed the PARTs design task in the

first workshop, and 3 of those models were completely

stable. All participants used similar design patterns to create

their model: each represented their cup as an interference

assertion. They also created cut integrators with a copy of the

same geometry. The three failure cases diverged when

creating a base for the cup holder. Participants A3 and A6

both failed because they spent the majority of their time

creating an accurate representation of the cup, requiring

more time to learn Fusion360. A4 completed the design task

but did not accurately measure the cup, causing a slightly

unstable print. Images of the resulting cup holders are shown

in Table 4, Row 1.

Workshop 2

We broke the second workshop up into 6 sub task related to

setting parameters, positioning, and combining components

and finally resulting in a failed model. Participant failure

rates are shown in Table 3. Under the Fusion360 condition,

no participant created a printable model, and participants

averaged completion of 1.5/6 steps. Under the PARTs

condition, B2 and B3 were able to create printable and

functional models, and participants averaged 5/6 steps.

Within subjects, they improved by an average of 3.5 steps.

All participants in the second workshop voiced frustration or

confusion about Fusion360 because it lacked information

included in PARTS’ assertions: B3 complained about the
Fusion360 cup holder model, “I guess that’s where the cup
goes, I’m not sure how to fit it to this cup”. No similar
questions arose while using PARTs.

Participants also noted the lack of integration geometry and

its associated benefits in Fusion360. B4 asked, “Where do
you get that bolt thing in Fusion?” when they assumed the
fasteners FGO had been taken from Fusion360; they were

frustrated when told that it did not exist and they must find

some other way to create the same result.

Parameterization: The main source of failure for

participants under the Fusion360 condition was adjusting the

parameters of the pre-existing models to fit the new objects.

This was a challenge for two reasons. First, despite being

shown parameter definitions in the tutorials, participants

could not figure out how to change the dimensions of the

models and instead used a scaling feature to adjust the model

size as a whole. Second, participants did not think about

other effects on the parameters besides the objects

dimensions, such as leaving space for the bolt causing each

participant to fail at that task. Neither of these were

challenges for the PARTs condition, where all participants

succeeded in all parameterization tasks. This is likely

because parameters are more salient with FGOs. They are

displayed at instantiation and broken down into relevant

components including clearance and object size.

Table 3. Participant success and failure in modeling tasks broken down by participant and condition (Fusion 360 or PARTS).

Participant Condition Fits Cup Fits Bolt Fits Bike Component placement Fastener Placement Printable and Functional

B1 PARTs Pass Pass Pass Pass Fail Fail

Fusion 360 Fail Fail Fail Pass Fail Fail

B2 PARTs Pass Pass Pass Pass Pass Pass

Fusion 360 Fail Fail Pass Pass Pass Fail

B3 PARTs Pass Pass Pass Pass Pass Pass

Fusion 360 Pass Fail Fail Fail Fail Fail

B4 PARTs Pass Pass Pass Pass Fail Fail

Fusion 360 Pass Fail Fail Fail Fail Fail

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 301 Page 9

Positioning: B3 and B4 were further challenged by attaching

the cup holder and handlebar mount and ran out of time

trying to join the two models together. Compounding errors

and a rush to complete the tasks in time resulted in B3 and

B4 not attempting to place their bolts, and B1 placing the bolt

in an infeasible position. These challenges were not

completely surmounted with PARTs but all participants were

able to position and combine the cup-holder and bike-mount

FGOs. This is likely because they did not feel rushed,

because the parameterization tasks were easier and quicker.

B1 and B4 found it difficult to position the fastener in both

conditions. These participants struggled with Fusion360’s
move command, which is used in both conditions.

Discussion

Participants found the following features of PARTs most

accessible: adjusting parameters, integrating models, and

making functional changes to another modeler’s design.

While PARTs helped participants complete their task more

effectively, it was not without frustrations. Participants

complained that assertions were only occasionally helpful

and wanted to turn the visualizations off. Since these

workshops, we have made control of assertion visualization

and instantiated FGO parameters more salient.

There are some limitations to the second workshop that may

affect our results. For instance, participants struggled to

contextualize the Fusion360 models, which may not be true

if they had discovered them online, as they would in the real

world. Further, users with more Fusion360 experience may

have shown less of a difference between conditions, or had

we given participants more time they may not have rushed

and compounded their errors.

CONCLUSIONS AND FUTURE WORK

3D printing enables users to fabricate new objects. However,

creating geometry that will function in the real-world is

difficult, and so many users print models that others have

created. Unfortunately, as shown in our workshop, non-

experts can find it difficult to customize such models, even

when they are carefully parameterized. Standard tools do not

explicitly express design intent, leaving a gap between form

and function.

PARTs is at its essence one of the first 3D modeling tools to

support end-user programming concepts, thus helping to

bridge this gap. PARTs brings design intent to the forefront

of the design process. With functional geometry, designers

can create reusable designs that capture design intent and

support future modelers.

In the future, we hope to build on lessons learned and explore

how PARTs can support different modelers by creating

customized domain specific libraries and implement more

complex systems. By building more complex ways of

expressing and acting on design intent, we hope to increase

the engineering quality of results in parts. At the moment,

PARTs is a powerful first step in enabling non-experts to

make use of their common practices in a reusable fashion.

ACKNOWLEDGEMENTS

We thank: our reviewers, participants, and HiCapacity

Makerspace. This work was funded in part by NSF grants

IIS-1718651 and DGE1745016, by DoD Contract No.

FA8721-05-C-0003 (or FA8702-15-D-0002) with CMU for

the operation of the Software Engineering Institute, a

federally funded research and development center, by a

Google Faculty Research Award, a gift from Autodesk, and

the Distributed Research Experiences for Undergraduates

program, a project of the CRA-W and the Coalition to

Diversify Computing (NSF BPC-A #1246649).

REFERENCES

1. Mathieu Acher, Benoit Baudry, Olivier Barais, and

Jean-Marc Jézéquel. 2014. Customization and 3D

Printing: A Challenging Playground for Software

Product Lines. In Proceedings of the 18th

International Software Product Line Conference -

Volume 1 (SPLC ’14), 142–146.

https://doi.org/10.1145/2648511.2648526

2. Daniel Ashbrook, Shitao Stan Guo, and Alan Lambie.

2016. Towards Augmented Fabrication: Combining

Fabricated and Existing Objects. In The 2016 CHI

Conference Extended Abstracts, 1510–1518.

3. Hugh Beyer and Karen Holtzblatt. 1997. Contextual

Design: Defining Customer-Centered Systems.

Elsevier.

4. P Blikstein. 2013. Digital fabrication and ’making’in
education: The democratization of invention. FabLabs:

Of machines.

5. A Boating. 1979. Thinglab-a constraint-oriented

simulation laboratory. SSL-79-3, Xerox PARC, Palo

Alto, CA.

6. Alan Borning. 1981. The programming language

aspects of ThingLab, a constraint-oriented simulation

laboratory. ACM Transactions on Programming

Languages and Systems (TOPLAS) 3, 4: 353–387.

7. Erin Buehler, Niara Comrie, Megan Hofmann,

Samantha McDonald, and Amy Hurst. 2016.

Table 4. Workshop model and print results. Failures are

shown with a red halo and the partially functional model from

W1 has a black frame (A4). Unsuccessful designs by A3 and

A6 are not shown because they could not be printed.

 A1 A2 A4 A5

W1:

Successful

Prints

 B1 B2 B3 B4

W2:

F360

W2:

PARTS

W2:

Succesful

Prints

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 301 Page 10

Investigating the Implications of 3D Printing in Special

Education. ACM Trans. Access. Comput. 8, 3: 11:1–
11:28. https://doi.org/10.1145/2870640

8. Erin Buehler, Shaun K. Kane, and Amy Hurst. 2014.

ABC and 3D: Opportunities and Obstacles to 3D

Printing in Special Education Environments. In

Proceedings of the 16th International ACM

SIGACCESS Conference on Computers & Accessibility

(ASSETS ’14), 107–114.

https://doi.org/10.1145/2661334.2661365

9. Jack B Dennis. 1973. Modularity. In Software

Engineering. Springer, 128–182.

10. Chang-Xue Feng and Andrew Kusiak. 1995.

Constraint-based design of parts. Computer-Aided

Design 27, 5: 343–352.

11. Christoph M. Flath, Sascha Friesike, Marco Wirth, and

Frédéric Thiesse. 2017. Copy, transform, combine:

exploring the remix as a form of innovation. Journal of

Information Technology 32, 4: 306–325.

https://doi.org/10.1057/s41265-017-0043-9

12. Sean Follmer, David Carr, Emily Lovell, and Hiroshi

Ishii. 2010. CopyCAD: Remixing Physical Objects

with Copy and Paste from the Real World. In Adjunct

Proceedings of the 23Nd Annual ACM Symposium on

User Interface Software and Technology (UIST ’10),
381–382. https://doi.org/10.1145/1866218.1866230

13. Rajaram Ganeshan, James Garrett, and Susan Finger.

1994. A framework for representing design intent.

Design Studies 15, 1: 59–84.

14. Michelle Gantt and Bonnie A. Nardi. 1992. Gardeners

and Gurus: Patterns of Cooperation Among CAD

Users. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (CHI ’92), 107–
117. https://doi.org/10.1145/142750.142767

15. Björn Hartmann, Daniel MacDougall, Joel Brandt, and

Scott R. Klemmer. 2010. What Would Other

Programmers Do: Suggesting Solutions to Error

Messages. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems (CHI ’10),
1019–1028. https://doi.org/10.1145/1753326.1753478

16. Tyson R Henry and Scott E Hudson. 1988. Using

active data in a UIMS. In Proceedings of the 1st

annual ACM SIGGRAPH symposium on User

Interface Software, 167–178.

17. Nathaniel Hudson, Celena Alcock, and Parmit K

Chilana. 2016. Understanding Newcomers to 3D

Printing: Motivations, Workflows, and Barriers of

Casual Makers. In Proceedings of the 2016 CHI

Conference on Human Factors in Computing Systems,

384–396.

18. Michael D. Jones, Kevin Seppi, and Dan R. Olsen.

2016. What You Sculpt is What You Get: Modeling

Physical Interactive Devices with Clay and 3D Printed

Widgets. In Proceedings of the 2016 CHI Conference

on Human Factors in Computing Systems (CHI ’16),
876–886. https://doi.org/10.1145/2858036.2858493

19. Jeeeun Kim, Anhong Guo, Tom Yeh, Scott Hudson,

and Jennifer Mankoff. 2017. Understanding

Uncertainty in Measurement and Accommodating its

Impact in 3D Modeling and Printing. In Proceedings of

the 2017 ACM Conference on Designing Interactive

Systems.

20. Fumihiko Kimura and Hiromasa Suzuki. 1989. A CAD

system for efficient product design based on design

intent. CIRP Annals-Manufacturing Technology 38, 1:

149–152.

21. Siniša Kolarić, Halil Erhan, Robert Woodbury, and
Bernhard E. Riecke. 2010. Comprehending Parametric

CAD Models: An Evaluation of Two Graphical User

Interfaces. In Proceedings of the 6th Nordic

Conference on Human-Computer Interaction:

Extending Boundaries (NordiCHI ’10), 707–710.

https://doi.org/10.1145/1868914.1869010

22. FB Kong, Xin Guo Ming, L Wang, XH Wang, and PP

Wang. 2009. On modular products development.

Concurrent Engineering 17, 4: 291–300.

23. Yuki Koyama, Shinjiro Sueda, Emma Steinhardt,

Takeo Igarashi, Ariel Shamir, and Wojciech Matusik.

2015. AutoConnect: Computational Design of 3D-

printable Connectors. ACM Trans. Graph. 34, 6:

231:1–231:11.

https://doi.org/10.1145/2816795.2818060

24. Vladislav Kreavoy, Dan Julius, and Alla Sheffer. 2007.

Model Composition from Interchangeable

Components. In Proceedings of the 15th Pacific

Conference on Computer Graphics and Applications

(PG ’07), 129–138.

https://doi.org/10.1109/PG.2007.43

25. Manfred Lau, Akira Ohgawara, Jun Mitani, and Takeo

Igarashi. 2011. Converting 3D Furniture Models to

Fabricatable Parts and Connectors. In ACM

SIGGRAPH 2011 Papers (SIGGRAPH ’11), 85:1–
85:6. https://doi.org/10.1145/1964921.1964980

26. Ghang Lee, Charles M Eastman, Tarang Taunk, and

Chun-Heng Ho. 2010. Usability principles and best

practices for the user interface design of complex 3D

architectural design and engineering tools.

International Journal of Human-Computer Studies 68,

1–2: 90–104.

27. Ming Li, Frank C Langbein, and Ralph R Martin.

2010. Detecting design intent in approximate CAD

models using symmetry. Computer-Aided Design 42,

3: 183–201.

28. Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei,

Qingnan Fan, Xuelin Chen, Yann Savoye, Changhe

Tu, Daniel Cohen-Or, and Baoquan Chen. 2014. Build-

to-last: strength to weight 3D printed objects. ACM

Transactions on Graphics (TOG) 33, 4: 97–10.

29. Thomas Ludwig, Oliver Stickel, Alexander Boden, and

Volkmar Pipek. 2014. Towards sociable technologies:

an empirical study on designing appropriation

infrastructures for 3D printing. In DIS ’14:

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 301 Page 11

Proceedings of the 2014 conference on Designing

interactive systems.

30. Allan MacLean, Kathleen Carter, Lennart Lövstrand,

and Thomas Moran. 1990. User-tailorable Systems:

Pressing the Issues with Buttons. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems (CHI ’90), 175–182.

https://doi.org/10.1145/97243.97271

31. Satoshi Matsuoka, Shin Takahashi, Tomihisa Kamada,

and Akinori Yonezawa. 1992. A general framework

for bidirectional translation between abstract and

pictorial data. ACM Transactions on Information

Systems (TOIS) 10, 4: 408–437.

32. Jarkko Moilanen, Angela Daly, Ramon Lobato, and

Darcy Allen. 2014. Cultures of sharing in 3D printing:

What can we learn from the licence choices of

Thingiverse users?

33. Catarina Mota. 2011. The rise of personal fabrication.

In C&C ’11: Proceedings of the 8th ACM conference
on Creativity and cognition.

34. Don Norman. 1988. The Psychology of Everyday

Things. Basic Books, New York, NY, USA.

35. Lora Oehlberg, Wesley Willett, and Wendy E.

Mackay. 2015. Patterns of Physical Design Remixing

in Online Maker Communities. In Proceedings of the

33rd Annual ACM Conference on Human Factors in

Computing Systems (CHI ’15), 639–648.

https://doi.org/10.1145/2702123.2702175

36. Dan R Olsen Jr and Kirk Allan. 1990. Creating

interactive techniques by symbolically solving

geometric constraints. In Proceedings of the 3rd

annual ACM SIGGRAPH symposium on User interface

software and technology, 102–107.

37. Colin Potts and Glenn Bruns. 1988. Recording the

reasons for design decisions. In Software Engineering,

1988., Proceedings of the 10th International

Conference on, 418–427.

38. Valkyrie Savage, Sean Follmer, Jingyi Li, and Björn

Hartmann. 2015. Makers’ Marks: Physical Markup for
Designing and Fabricating Functional Objects. In

Proceedings of the 28th Annual ACM Symposium on

User Interface Software & Technology (UIST

’15), 103–108.

https://doi.org/10.1145/2807442.2807508

39. R Shewbridge, A Hurst, and S K Kane. 2014.

Everyday making: identifying future uses for 3D

printing in the home. ACM Conference on Designing

Interactive Technology.

40. Ivan E Sutherland. 1964. Sketchpad a man-machine

graphical communication system. Transactions of the

Society for Computer Simulation 2, 5: R–3.

41. Robert W Taylor, Allan Heydon, and Greg Nelson.

1994. The Juno-2 constraint-based drawing editor. In

Technical Report 131a, Digital Systems Research.

42. Juraj Vanek, Jorge AG Galicia, and Bedrich Benes.

2014. Clever support: Efficient support structure

generation for digital fabrication. In Computer

graphics forum, 117–125.

43. AR Venkatachalam. 1994. Automating

manufacturability evaluation in CAD systems through

expert systems approaches. Expert Systems with

Applications 7, 4: 495–506.

44. Haijun Xia, Bruno Araujo, Tovi Grossman, and Daniel

Wigdor. 2016. Object-Oriented Drawing. In

Proceedings of the 2016 CHI Conference on Human

Factors in Computing Systems (CHI ’16), 4610–4621.

https://doi.org/10.1145/2858036.2858075

45. Xiang “Anthony” Chen, Jeeeun Kim, Jennifer
Mankoff, Tovi Grossman, Stelian Coros, and Scott E.

Hudson. 2016. Reprise: A Design Tool for Specifying,

Generating, andCustomizing 3D Printable Adaptations

on Everyday Objects. In Proceedings of the 29th

Annual ACM Symposium on User Interface Software

and Technology.

https://doi.org/10.1145/2984511.2984512

46. Brad Vander Zanden, Brad A Myers, Dario Giuse, and

Pedro Szekely. 1991. The importance of pointer

variables in constraint models. In Proceedings of the

4th annual ACM symposium on User interface

software and technology, 155–164.

47. Tinkercad.com Features | Tinkercad. Retrieved March

21, 2016 from

https://www.tinkercad.com/about/features

48. Interference Check | 3D CAD Solutions |

SOLIDWORKS. Retrieved April 4, 2017 from

http://www.solidworks.com/sw/products/3d-

cad/interference-check.htm

49. Start a solid body using basic shapes. Retrieved August

29, 2017 from

http://help.autodesk.com/view/fusion360/ENU/?guid=

GUID-9DECFD77-D3AF-4EA8-98D6-

CA8A647E5BA4

50. Design Intent | Fusion 360 | Autodesk Knowledge

Network. Retrieved August 29, 2017 from

https://knowledge.autodesk.com/support/fusion-

360/learn-

explore/caas/CloudHelp/cloudhelp/ENU/Fusion-

Form/files/GUID-CE02E095-6A90-4DCC-B89F-

4D70185BC69D-htm.html

51. Learning | How to create components. Retrieved

August 29, 2017 from

http://help.autodesk.com/view/fusion360/ENU/?guid=

GUID-5966BF6B-4135-49B3-B5BF-29A6577C9E72

52. 2016 SOLIDWORKS Help - Hole Wizard Overview.

Retrieved September 13, 2017 from

http://help.solidworks.com/2016/english/solidworks/sl

dworks/c_hole_wizard_overview.htm

53. Smart Components and Smart Fasteners |

SOLIDWORKS. Retrieved August 30, 2016 from

http://www.solidworks.com/sw/products/3d-cad/smart-

components-and-smart-fasteners.htm

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 301 Page 12

	Greater than the Sum of its PARTs: Expressing and Reusing Design Intent in 3D Models
	ABSTRACT
	Author Keywords: Fabrication; prototyping; 3D Printing
	ACM Classification Keywords:
	INTRODUCTION
	Scenario: Creating a Cup Holder Mount for a Bicycle
	Overview & Contributions

	Related Work
	A Survey of repeated patterns in the Wild
	The PARTs Framework
	Overview of Functional Geometry
	The PARTs Architecture and Implementation
	Instantiation (Figure 1A)
	Assertion Checking (Figure 1B)
	Integration (Figure 1C)

	The PARTs Library
	Assertions
	Integrators
	Implementing Support for Higher Level Design Patterns

	Technical Validation
	Composing Functional Geometry to Create an Organizer
	From Pegboard to Tool Drawer Organizer
	Expressing Design Intent in Complex Assemblies
	Extensibility of PARTs through Scripting

	Evaluation: Modeling With Design Intent
	Participants
	Method
	Modeling Tasks

	Findings
	Workshop 1 Outcomes
	Workshop 2

	Discussion

	Conclusions and Future Work
	Acknowledgements
	REFERENCES

