CHI 2018 Paper

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

Greater than the Sum of its PARTSs:
Expressing and Reusing Design Intent in 3D Models

Megan Hofmann,* Gabriella Hann,* Scott E. Hudson,* Jennifer Mankoff'

*Human Computer Interaction Institute

Carnegie Mellon University, Pittsburgh, Pennsylvania
{meganh, ghhann, scott.hudson}@cs.cmu.edu

ABSTRACT

With the increasing popularity of consumer-grade 3D
printing, many people are creating, and even more using,
objects shared on sites such as Thingiverse. However, our
formative study of 962 Thingiverse models shows a lack of
re-use of models, perhaps due to the advanced skills needed
for 3D modeling. An end user program perspective on 3D
modeling is needed. Our framework (PARTSs) empowers
amateur modelers to graphically specify design intent
through geometry. PARTs includes a GUI, scripting API and
exemplar library of assertions which test design expectations
and integrators which act on intent to create geometry.
PARTSs lets modelers integrate advanced, model specific
functionality into designs, so that they can be re-used and
extended, without programming. In two workshops, we show
that PARTS helps to create 3D printable models, and modify
existing models more easily than with a standard tool.

Author Keywords: Fabrication; prototyping; 3D Printing
ACM Classification Keywords:

H.5.2 [User Interfaces]: Input devices and strategies,
Interaction styles

INTRODUCTION

Consumer-grade 3D printing allows the creation of
customized objects by nearly anyone. However, people are
limited by their modeling ability. Most modelers quickly
move beyond novice oriented tools for creating geometric
designs (e.g., TinkerCAD [47]) because expression of
geometric form is only one part of the modeling task.
Bridging the gap between geometry and function is a more
substantial challenge [34], even for experienced users.

Modelers would benefit from the equivalent of an end-user-
programming tool. This is what our Parameterized
Abstractions of Reusable Things (PARTs) framework
provides. It puts advanced methods for capturing 3D

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

CHI 2018, April 21-26, 2018, Montreal, QC, Canada

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5620-6/18/04...815.00
https://doi.org/10.1145/3173574.3173875

Paper 301

T Allen School of Computer Science and Engineering

University of Washington, Seattle, Washington
jmankoff@uw.edu

modeling design intent in the hands of non-expert modelers.
This supports reuse, experimentation, and sharing.

PARTS’ basic abstraction, functional geometry, is analogous
to the programming concept of classes [9,22]. Like classes,
functional geometry encapsulates data and functionality,
making it easier to validate and mutate data and support
modularity. Functional geometry includes assertions that
test whether a model is used correctly, and integrators that
mutate the larger design context. These abstractions increase
model usability and re-usability.

The PARTs framework is an extension of the Autodesk
Fusion360 Computer Aided Design (CAD) tool. CAD tools
provide many helpful capabilities, including validation
methods [48], simple geometry operations [49], parameters,
constraints [50], and data structures for hierarchical
composition [51]. PARTsS builds on this past work by uniting
this type of functionality within a single framework, making
this functionality easier to use and providing users with a
single, consistent mental model. It does this through small,
but important, additions to the Fusion360 GUI that provide
three important benefits. First, PARTSs gives designers a way
to represent abstract design intent geometrically, so that less
skilled modelers can easily see, react to, iterate on, and
experiment with it. Second, PARTS facilitates description of
the modeling context with assertions of design expectations.
This makes model reuse simpler and more intuitive and is
particularly useful when a design is reused in a new context.
Third, PARTSs enables encapsulation of design ideas. This
allows separation of concerns between aspects of a design. It
also makes it easy to combine and extend designs all in one
unified interface. By leveraging these unique features, a
designer can easily encapsulate information about how a
design should be used. This makes direct manipulation of
design intent possible, which, in turn, makes model reuse,
customization and recombination simpler and more intuitive.

When experts can share designs in a re-usable fashion,
amateurs can accomplish more [23] —a successful pattern
among programmers [15] and makers [17,29,35]. A study of
collaboration among professional CAD users shows that
programmers extend their tools to share their skills with less
skilled users [14]. Similarly, PARTSs enables sharing of new
capabilities by designers (non-experts who create and share
complex designs) with modelers (amateurs who can use
basic CAD tools).

Page 1

mailto:Permissions@acm.org
https://doi.org/10.1145/3173574.3173875

CHI 2018 Paper

@ CREATE PAAT © CREATE ADJUSTABLE C

PARTType Hone / PART Name
Adjustable_Cup_Heldér uncertainty

Eolt
Pipe_Clamp
Part
Mut_Bolt_Assemb
Mut

Mone

cup diameter

Cup Holder
FGO

cup_height

4G (B Adustable_Cup_Hodder:t
> & E1 orgn
> |3 () cup_adustable_Cup_oider:1
> @ (0 Fexsie_Ring_adusiatie_Cup.
» 4 [) Sokd_Ring Adpustable_Cup_H

4 Pipe_Clamg:1 2
—y Bike Clamp
> & 7 Orgn : -~ —p——

FGO Component Hierarchy £ Cance FGO

A) Specification and Instantiation

B) Iterative Modeling with Error Visualization

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

Printed Result

Invalid Position

C) Integration to prepare for Fabrication

Figure 1. Modelers combine geometry and logic to define FGOs as a set of assertions and integrators. For example, to create a cup
holder that attaches to a bike handlebar, the modeler instantiates cup-holder and bike-clamp FGOs from the PARTS library (A),
and iteratively modifies them in Fusion360 while the FGO assertions help to visualize potential errors (B). When the modeler is
ready, he can integrate the cup-holder and bike-clamp to create one design (C). The printed result is from our second workshop.

Scenario: Creating a Cup Holder Mount for a Bicycle
Consider a hypothetical modeler, Kavi, who is creating a
bike-cup holder. Kavi views a dialogue of available
functional geometry objects (FGOs) to find a cup holder and
bike mount (Figure 1A). FGOs capture design intent to make
it visible to the modeler (see the semi-transparent cup in
Figure 1B). Kavi selects the cup holder to add its geometry
to the Fusion360 model space and component hierarchy. He
adjusts the cup size to match his water bottle. Then he adds
the bike clamp and positions them so they overlap
(FigurelB). PARTSs checks for violations of design intent
(failed assertions) and highlights them in red during
modeling. For example, when the bike handlebar would
block the cup, it is highlighted in red. Kavi changes the
model until he finds a valid position and then integrates the
cup holder to join them together (Figure 1C).

The cup holder and bike mount are fairly specific FGOs that
are not in the default PARTs library. PARTs can easily
import an FGO embedded in any Fusion360 file, to facilitate
sharing of FGOs. We travel back in time to when a more
experienced designer, Nisha, creates the cup holder FGO that
Kavi downloads. She specifies her design intent by adding
assertions and integrators. First, she models the geometry of
the cup holder. Nisha then uses PARTS to specify that this
should attach to any surrounding geometry by right clicking
on the geometry and associating it with a union integrator.
Next, she creates a cylinder representing the cup. She
attaches the cylinder to an assertion that tests for interference
using PARTS, specifying that it should always leave room
for the cup. This assertion automatically highlights violations
when Kavi positions the FGO.

Suppose a different designer, Lori, created Kavi’s handlebar
mount. Lori models the clamp and adds an assertion that
ensures space for the handle bar. She also adds a fastener to
close the clamp. The PARTs library includes a fastener FGO
with length and diameter parameters; assertions ensuring
there is enough material around the bolt and that the bolt has
a clear path; and an integrator to create a bolt hole. All of this
complexity is now encapsulated in the handlebar FGO.

Paper 301

This scenario highlights how the PARTSs framework engages
multiple classes of users in a synergistic way. Similar to the
user types proposed in [30], PARTSs supports the transfer of
designs between programmers, who extend the framework,
designers (Nisha, Lori), and modelers (Kavi). PARTs
supports reuse at multiple levels, and enables the creation of
complex, hierarchical objects.

Overview & Contributions

We first present an analysis of design patterns for reuse in
the wild derived from our survey of 962 Thingiverse models.
Next we describe our primary contribution, which supports
such re-use, the PARTs framework. PARTSs provides a GUI
for creating new FGOs and showing real-time feedback,
without programming. PARTs includes a runtime
architecture and a small, but extensible, library of powerful
assertions and integrators. PARTs can also be accessed
through the Fusion360 scripting interface for adding even
more advanced capabilities.

Our technical validation demonstrates that PARTSs has the
flexbility to address a wide variety of 3D modeling
challenges for non-experts. The PARTSs framework supports
many tasks in-sifu that are normally handled in special
dialogues where non-experts may not find them or
understand how to use them. While PARTSs intentionally
uses simple concepts to accomplish this, many model-
specific design goals can be encapsulated using its assertions
and integrators. We show the value of PARTSs in creating
complex objects, making a common CAD fastener tool
easier to use, and reproducing existing research [19].

We studied PARTS’ impact on modelers and designers in
two workshops. Ten participants with an average of five
years of experience with CAD tools were asked to create cup
holders, similar to the scenario above. Participants could
successfully create and reuse objects using PARTs more
effectively than with the standard Fusion360 tool set.

RELATED WORK

Personal-scale fabrication techniques have given rise to new
communities of makers and prototyping methods [4,33].
However previous research suggests that experts and

Page 2

CHI 2018 Paper

amateurs struggle to use CAD tools to express their designs.
Amateur modelers have difficulty with issues such as
uncertain measurements [19], spatial reasoning [7],
understanding how parameters affect overlap and fit [21] and
relating 3D models to real world geometry and objects [2,8].
While non-experts avoid some of these difficulties by using
existing models found on sites such as Thingiverse, often
such models need to be modified to be useful.

The extensive component libraries available in tools such as
SolidWorks are limited in applicability to mechanical
settings. Broader libraries such as SketchUp’s 3D
Warehouse do not necessarily support re-use. Studies find
that modelers struggle to make design modifications [17,39].
Even where customization is possible, modelers do not
engage in much reuse or innovation [35]. Although
experienced designers may create and share parameterized
models, designers struggle to anticipate the future use of
those parameters, making correct reuse more difficult [21].

Even for expert modelers there is a gulf of execution [34]
between a modeler’s real world design intent and the
geometry of most 3D models. Manufacturing experts have
developed methods for documenting design intent in a
separate process from 3D modeling [13,20,37]. Because of
these common professional practices, there is a connection
between geometric features and professional modular design
intent [27], but this connection is lost in standard tools [13].
Further, although these connections are based on the
common norms, there remains disagreement on terminology
and best practice [26]. It is likely that expert amateurs have
difficulty uncovering these norms. Indeed, a key challenge in
the domain of non-expert rapid prototyping is to develop
systematic engineering practices which require low cognitive
effort [1].

Kim et al. have proposed a standardized format for CAD
models that relates design intent more closely to geometric
features and preserves this information for reuse [20].
However designs using this format are likely unusable to
modelers, and even designers, without appropriate training.
These practices and issues have influenced the features
available in CAD tools (e.g., composability [24], and support
for assessing manufacturability [43], assembly [25], and
strength [28]). However, non-experts may not be aware of,
or find it easy to use such features because they do not share
the norms and knowledge of professionals.

There is a long history of interactive systems research aimed
at increasing the expressiveness of modeling tools. ThingLab
used objects and decomposition to support specification of
graphical simulations [6]. SketchPad [40] introduced
constraints for expressing design intent and are used for
manufacturing [10], graphics [5,40,41] and user interface
design [16,31,36,46]. Xia et al. added object oriented
structure and modularity to a 2D sketching tool [44]. This
work shows the positive value of objects and modularity in
design, but provides limited extensibility for end users
through the interface, which limits the ability of modelers to

Paper 301

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

define their own modular features. Many tools already aim
to express specific forms of design intent, such as:
connecting to physical objects [12,38,45], or assembling
modular components [18,23,25]. These tools illustrate the
power of attaching design intent to models, however none
focus on recombination and reuse of such designs.

A SURVEY OF REPEATED PATTERNS IN THE WILD

We begin with a survey of 3D printable designs found on the
Thingiverse 3D model sharing website, which is used by our
target non-expert population. We explore design patterns for
reuse among successful examples of complex 3D models.

Method: We surveyed 10,560 designs on Thingiverse,
gathered in two phases in 2016 and 2017. Each year, we
gathered 40 pages of 12 Things from Thingiverse’s 11
categories (5,280). We collected 20 pages of the most
popular designs at search time, and 20 of the newest designs.
Of these, we kept the 962 designs that met all of the
following requirements for further review:

Success: Fabricated, or marked as ‘made’ by a different
Thingiverse user (8,839, 83.70%).

3D Printable: Intended for 3D printing (9,257, 87.66%).

Non-Trinket: Images and descriptions show interaction with
existing objects. (1,246, 11.81%)

For each design, we collected photographs, descriptions,
popularity metrics, and file types (coded as static or
parameterizable). We used affinity diagramming [3,45] to
group designs. Although modelers express design intent
using many different approaches and software tools, we
found a few very common design patterns for incorporating
existing objects into models. As suggested by Flath et al.
[11], these design patterns are important building blocks for
reuse. Patterns we found, shown in Figure 2, included:
approximating (682), molding (219), holding flexible objects
bent to fit the model (51), connecting multiple similar objects
(225), connecting multiple distinct objects (159), and
hanging (10).

Findings: Reuse of parametric designs is common (74% of
the reuse graph in [35] comes from parametric designs). Our
data show a similar pattern. Of the 962 designs, 536 (56%)
have been reused at least once. Parametric models are more
likely to be reused than non-parametric models. Most reused
designs (89%) were made available through the Thingiverse
Customizer tool, a simple GUI for modifying parameters.

Surrounding Objects: Approximation, Molding and Holding.
The majority of designs (578) use 3D printed materials to
augment a single object. Most of these use two similar
patterns: Approximations of the object’s shape made with
cylinders or boxes, or molds that exactly match the object
geometry. Approximations are loose-fitting holes for simple
objects like pens, usually made with cylinders or boxes (e.g.,
T:73489). Molds more exactly match the geometry of the
object, meaning the design is molded to fit the object like an
iPhone case (T:40703). A similar and rarer design pattern is
to hold objects that are flexible, where the modeler intends

Page 3

CHI 2018 Paper

T:73489 T:40703

T:13678
Approximate Mold Hold

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

T:1322545

Connect Similar Objects

7 o
[i#, T:2457666
Connect Different Objects

Figure 2. Example Thingiverse Designs for each design pattern. Labels show ‘Thing’ number.

to bend the real-world object to fit into the space. This is
usually seen with objects like cables and wires (T:13678).

Connecting and Organizing Objects: Many designs (N=384)
use 3D printed models to connect and organize multiple
objects, such as a pegboard tool organizer (T:1322545). Less
common were designs that connect different types of objects
such as a smartphone and game controller (T:2457666)

Discussion: Similar to findings in [11,35], our analysis
suggests that people are interested in reuse, but only if they
can ecasily modify a design (as with OpenSCAD or
Customizer). If 3D modeling tools made customization as
easy as parameter modification, we should see examples of
reuse that leveraged those capabilities in our data. Yet,
similar to [35], we find most reuse to be relatively minor
parameter variation and reproductions. We disagree with
Flath et al’s [11] assessment that the models on Thingiverse
are all combinable; rather modelers in our study struggled to
create compositions of multiple distinct triangular mesh 3D
models (the most common type on Thingiverse).

Our data set is limited by our focus on Thingiverse, which is
known to include few parameterized designs [32]. However,
this is a representative sample of the design efforts of a non-
expert population. Another limitation is lack of information
about what happens to the same designs outside Thingiverse.
Because our analysis was done in a bottom up fashion, it does
not call out what is missing in the data. It is possible that
reuse is happening, but is not visible in our data set. We did
not identify what design tools modelers who post STLs use,
what design features modelers used, and how these features
may have connected to design intent. However, if the
original model is not shared, this intent is lost during reuse.

THE PARTS FRAMEWORK

The PARTs framework allows models to include design
intent, making them easier to reuse. Through small changes
to the Fusion360 GUI, PARTSs supports creation and use of
functional geometry. In this section we describe the PARTSs
architecture, including the modeler’s experience in using
Fusion360 to instantiate and customize functional geometry
and an overview of the PARTs library.

Overview of Functional Geometry

The purpose of functional geometry is to capture design
intent in ways that can be easily visualized so that the
modeler can work to avoid problems as models are combined
to build up more complex designs. From a modeler’s
perspective, functional geometry is similar to other
Fusion360 components. Just as some Fusion360 commands
take a surface or other geometry as input, functional

Paper 301

geometry makes use of geometric parameters. Fusion360
allows the specification of model constraints, but functional
geometry goes further than standard parameters and
constraints to visualize violations of assertions that represent
semantic expectations about models (Figure 1B).

A critical feature of PARTS is that a designer uses FGOs to
express semantic concepts geometrically and without
programming. An example is adding a cup model to a cup
holder. When shared with a modeler, this reveals important
considerations: 1) do not interfere with the cup, 2) size the
hole to match the cup. The ability to use standard
constructive geometry operations to document design intent
is a powerful, unique feature of PARTs that positively
impacted ease of use in our workshops.

From a programmer’s perspective, an FGO is a data structure
that inherits from the PARTSs base FGO class hierarchy. It
includes code for generating geometry and for operating on
the geometry based on design intent. Each FGO includes two
special types of components. Assertions check that the FGO
is valid, i.e., not violating some part of the design intent.
Unlike constraints or parameters, assertions do not enforce a
set of rules. Instead, they visually highlight violations. For
example, an assertion might check that the model is not
intersected by other geometry. Integrators mutate the model,
such as cutting a hole for the FGO or generating a connection
between the FGO and the surrounding model. Assertions and
integrators can act on standard model geometry as well as
other FGOs. Assertions and integrators are complementary
in that assertions check and report on design intent
violations, while infegrators enact aspects of that intent.

Each FGO is composed of assertions, integrators, and
related child FGOs. The FGO base class also includes a
constructor that can be programmatically overwritten to
generate geometry based on user specified parameters.

The PARTSs Architecture and Implementation

The PARTs framework is implemented using Fusion360’s
scripting API. Because PARTSs is deeply integrated with
Fusion360, using it involves using standard Fusien360
capabilities for creating and manipulating geometry, such as
the component hierarchy and interference and using PARTSs
commands embedded in the GUI.

Instantiation (Figure 1A)

Modelers instantiate a new FGO by opening a dialog
showing the PARTs library from the Fusion360 create menu.
At instantiation the default elements’ geometry is generated
and added to the Fusion360 component hierarchy. A
dialogue is shown if parameters are needed to generate

Page 4

CHI 2018 Paper

geometry used by the FGO’s assertions and integrators. The
FGO’s geometry can also be customized using standard
Fusion360 features, and the modeler can add new assertions
and integrators from the PARTSs library.

A designer can create a novel FGO without programming.
The designer starts with an FGO containing no assertions or
integrators, and progressively adds them.

Internally, PARTSs keeps a look up table that associates the
component and FGO. When the user right clicks on a
component, PARTs uses this table to find the associated
FGO. If an FGO is found the menu displays commands to
copy, delete, add functionality to, and integrate the FGO.

Assertion Checking (Figure 1B)

The PARTs framework automatically tracks changes to
geometry and checks any assertions that intersect the
changed geometry. Failed assertions are highlighted in red
(Figure 1B). PARTS listens for Fusion360 timeline events
which signal model changes, triggering a test for each
Assertions that intersects modified geometry. This reduces
the computation needed after changes in a complex model.

Importantly, PARTs does not impose solutions, interrupt
modelers, prevent errors, or optimize designs to solve
problems. Instead, PARTSs provides visual information about
design intent. Stronger design requirements can be captured
using Fusion360 tools such as parameters or constraints.
PARTSs’ complementary approach allows non-experts to
understand and manipulate design intent, as we show in our
workshops. By not strictly enforcing assertions, PARTS
allows experimentation with design intent, something
workshop participants praised.

Integration (Figure 1C)

Integrators are defined by the designer of an FGO. Prior to
integration, the integration geometry helps to indicate design
intent. Modelers activate integrators by right clicking in an
FGO and selecting the integrate command. This converts the
integration geometry into a feature of the surrounding model
(e.g., cutting a hole for a bolt).

Although integration mutates the model, Fusion360 has
sophisticated support for undo, which PARTSs leverages. A
modeler can delete/edit the integration actions, which are
labeled in the Fusion360 timeline, or re-invoke integration.

The PARTSs Library

The PARTs Library contains base classes for assertions,
integrators and functional geometry. After describing the
base classes, we present assertions and integrators derived
from our Thingiverse study. Changing the geometry
connected to these library elements helps generalize it to a
wide variety of new use cases without programming.

Assertions

The purpose of assertions is to test whether a design meets
the original designer’s expectations, even when a new
modeler alters the model in the future. For example, an
assertion might test for space for an object, path for tools
needed in assembly, or the presence of a related part.

Paper 301

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

Table 1. Design patterns used to create sample objects.
FGO Survey Example PARTSs Model Printed Result

Bounding Box
T: 512797 | “
Lé o
Scaled Mold e
T: 31741 '
Swept-Path B,
T:1 182945
Connector 7
T:1734510 “

Base Assertions: The assertion base class takes a geometric
parameter as input and runs a Boolean function against that
parameter. PARTSs includes two subclasses, which test
interference, and overlap of the geometric parameter against
the surrounding geometry. Interference fails if there is an
intersection, such as when a path for a tool is blocked.
Overlap fails if any part of a geometric parameter is not
intersected. For example, a privacy cover for a camera might
associate an overlap assertion to check that there is no
geometry in front of a camera lens.

Integrators

While assertions test design expectations, integrators use
geometry and other parameters to enact design intent.
Integrators can be combined, so that an FGO might include
one integrator that puts a mold around a phone and another
that attaches the phone holder to the surrounding geometry.

Base Integrators: The base class for integrators takes a
geometric parameter as input and runs a function that
modifies the surrounding model against that parameter. We
provide two subclasses: union and cut. By combining
multiple integrators, FGOs can execute a wide range of
mutations to integrate with the surrounding model.

Implementing Support for Higher Level Design Patterns
Based on common constructs found in our Thingiverse
survey, we identified four higher-level design patterns that
we support with the PARTs library (Table 1). In three cases,
the design pattern is supported by an integrator that cuts a
hole for an existing object and two related assertions that test
that the hole remains empty, and is surrounded by a
minimum amount of material. These inherit from the cut
integrator, interference assertion, and overlap assertion,
respectively. The fourth case, connect, uses a single
integrator, which generates material connecting two faces.

Bounding Box: Many designs in our survey approximate
real-world objects using rectangular holes. To support this,
we developed a box-cut integrator, interfered-box assertion,
and minimum-boundary box assertion. Each generates an

Page 5

CHI 2018 Paper

object’s bounding box, with either manually entered
dimensions, or Fusion360’s bounding box functionality, if
the user provides the real-world object geometry. Table 1,
Row 1 shows a thumb drive/ smartphone holder from our
survey, (left), the PARTs model (middle), and the printed
result (right).

Scaled Model: Following the mold design pattern in our
survey we developed a scaled-hole integrator, interfered-
model assertion, and minimum-surrounding material
assertion. The scaled-hole integrator cuts space (a hole) for
a real-world object and the interfered-model assertion
ensures it stays clear. Each takes a model of the real-world
object as a parameter (which a modeler could import or
create). The minimum-surrounding material assertion checks
that material surrounds the hole. This takes the same
geometry as input, but scales it to a thickness defined by the
user, using Fusion360’s scale feature. Row 2 of Table 1,
shows a drawing tool modeled with these elements.

Swept-path: Some designs in our survey define paths to
hold flexible objects. We support this with a path-cut
integrator, interfered-path assertion, and minimum-
boundary around path assertion that use Fusion360’s swept
path feature to create paths for an object based on a user
defined curve and orthogonal profile. These elements are
more difficult to use because they require the definition of a
curve and profile that match the object. Row 3 of Table 1
shows a cable organizer modeled using these elements.

Connection Integrator: The final design pattern found in
our survey is connecting multiple objects. The Connection
Integrator is parameterized by a starting and ending face, and
grows a structure between them using the an adapted Steiner
Tree algorithm [42]. In our adaptation, the connector grows
from a set of points uniformly distributed across the starting
face towards the target face. Starting with the furthest point
from the target, each Steiner point searches its neighbors and
creates a new point at the intersection of two cones directed
at the target. If the new point is closer than the target, a
connecting structure is generated between the first point and
the new point. The new point is added to the set of Steiner
points. Otherwise, a support is generated that connects the
Steiner point to the target. This is repeated while there are
unconnected points. As with [42], our algorithm does not
account for weight. However, Table 1, row 4 shows that it
holds a hefty mug full of coffee. Future work should examine
how to model physical properties in PARTs.

While the design concepts behind these library elements
could, in model-specific ways, be implemented without

Figure 3. Models and printed results of a PARTS tool organizers to hang from a Pegboard (Left) and fit in a Drawer (Right).

Paper 301

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

PARTs, it is PARTSs that imbues them with both usability and
re-usability through encapsulation. These powerful library
elements can express a wide range of design intentions.

TECHNICAL VALIDATION

We demonstrate the power of PARTSs through examples of
complex FGOs created without programming. We then show
how PARTSs’ ability to extend to and improve on common
tools by creating a fastener wizard that tests for proper
placement of the bolt. We next demonstrate PARTSs’ ability
to support new types of tools by adding support for uncertain
measurements [19]. Each of these new library elements can
be accessed through the PARTs interface.

Composing Functional Geometry to Create an Organizer
In this demonstration, our hypothetical designer, Nisha,
creates a tool organizer, like the 54 models found in our
survey, using functional geometry to define her design intent.
This example starts with a high-level goal: organizing tools
by hanging them from a pegboard. Nisha breaks this problem
into a series of simpler tasks: build a pegboard hook;
incorporate a bolt and nut into the hook; build an organizer;
add hooks to the organizer; arrange tools in the organizer;
add multiple tools to the organizer. The entire design is done
in the Fusion360 GUI and only requires basic modeling
skills, creating boxes and cylinders.

Nisha first defines a pegboard-hook FGO with a union
integrator parameterized by a small box to cover a peg hole.
She also defines one assertion that ensures nothing in the
model interferes with a thin box, representing the pegboard,
behind the integrator. Next, Nisha adds a fastener FGO as a
child of the pegboard-hook. She positions the nut inside the
box while the head of the bolt protrudes. The bolt head will
function like a peg (Figure 3, left). At integration time,
integrators associated with the fastener FGO will cut holes
for the bolt and nut. Having created a hook, Nisha solves the
larger problem of using many hooks to hang an object from
the pegboard. She creates a box to hold tools and attach
hooks to. Using Fusion360 features, she makes multiple
copies of the pegboard hook and spaces them on the back of
the box so the box can hang from the pegboard.

Next, Nisha defines a tool FGO using a Scaled-Hole
integrator and interference assertion parameterized by an
approximation of the tool’s shape. She makes slightly altered
copies of this FGO to represent different tools. Then she
positions the tool FGOs in the organizer box. When they are
instantiated, tool-shaped holes will be created.

This example demonstrates that PARTs supports
decomposition of a problem into subtasks: create a pegboard

Page 6

CHI 2018 Paper

hook; use a fastener, efc. As we will show next, one of the
advantages of composing a design from subcomponents is
the ease with which design intent can be changed or reused.

From Pegboard to Tool Drawer Organizer

Suppose that our modeler, Kavi, wishes to reuse the tool
organizer to fit into a drawer rather than hang from a
pegboard (Figure 3C&D). He first creates a hollow box,
representing the drawer, with an interference assertion. This
ensures that the organizer fits completely within the drawer.
He places the organizer inside the box, which triggers an
error highlighting the pegboard hooks that intersect the
drawer. This prompts him to remove the unnecessary hooks.
With these two small changes, Kavi has repurposed the
existing design.

Expressing Design Intent in Complex Assemblies

The tool organizer demonstrates the benefits of composing
relatively simple geometry to express design intent. Going
further, PARTs is powerful enough to describe complex
objects. To illustrate this, we recreate an example from our
Thingiverse survey, a lamp composed of CDs, bike spokes,
a bulb, and 3D printed components. Although this design
involves many real-world objects, the Thingiverse model
includes just the 3D printed geometry. In contrast, PARTs
describes the whole design, including the use of the non-
printed objects. This makes the final model easier to
understand and reuse (Figure 4).

The designer, Lori, first creates FGOs for a CD and bike
spoke. She models the CD as a thin disk and finds bike spoke
geometry to import online. She uses the scaled-hole
integrator and a matching interfered model assertion to
reserve space for the spoke. Next Lori creates a new FGO, a
connector, which attaches the CD to the bike spoke. To this
she adds, as children, the spoke FGO and a fastener FGO.
She customizes the fastener FGO by adding a washer to
connect the cylinder to the CD. These FGOs will cut holes in
the connector, creating an assembly of the spoke and CD.

Next, Lori creates a hub FGO with an arm for each spoke.
To this hub, she adds an interference assertion to reserve
space for a bulb socket also found online, and adds a swept-
path interference assertion and the corollary integrator to
represent the cable. Lori creates and adds a lightbulb FGO.
The bulb FGO uses an interference assertion and a sphere
around the bulb to ensure that no meltable plastic is too close
to the hot bulb.

This example illustrates how functional geometry not only
improves modularity and specifies components for 3D
printing (the connectors and central hub), but also shows how
the components interoperate with real-world objects (CDs,
bike spokes, nuts, bolts, washers, lightbulb, socket, and
cable). The FGO hierarchy created by the designer, Lori, lays
out the relationships between the various objects, making it
easy to alter the design while maintaining her design intent
and expectations. In addition, this demonstrates PARTS’
flexibility, including an ability to incorporate models found
online, in the library, and to create custom geometry.

Paper 301

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

Connector /
Thmgl.verse Full Model Printed and
Design

Assembled

S 2 .. _a— i
Figure 4. Functional geometry contextualizes the modeled
components among existing objects.

Extensibility of PARTs through Scripting

Many CAD tools can already be extended with scripted
plugins, indeed PARTs is one such extension. PARTSs
supports the encapsulation of new features by programmers
because it provides a simple framework that enables
programmers to create new library elements that express
general concepts, are accessible through a unified interface,
and can be shared widely. The connector integrator
described earlier is an example of this. Here we illustrate the
concept with a fastener FGO, based on standard existing
tools, and an uncertainty buffer FGO based on prior research.

Fastener Wizard FGO: Fastener Wizards are common in
CAD programs. For example, Solidworks has two tools
similar to the fastener implementation in PARTSs. The
Solidworks “Hole Wizard” [52] helps modelers create holes
that fit to a library of standard hardware. A separate
Solidworks tool is the “Smart Fasteners” [53] which insert
representations of the needed fasteners into an assembly (a
separate stage from modeling) and validates the
configuration. An advantage of PARTSs is its ability to
validate and integrate the fastener in one modeling stage.

The fastener FGO is specific to nuts and bolts. It consists of
child FGOs for the nut and for the bolt. Each child FGO has
an interference assertion that reserves space for the
hardware, a cut integrator that cuts holes with surrounding
clearance for the hardware to slip into, and an additional
overlap assertion that checks for material surrounding the
resulting holes. By sharing a parent FGO, the bolt and nut
FGO are able to share parameters (bolt diameter and length)
and be moved through the design as one component,
maintaining their respective alignment.

The fastener FGO overrides the standard FGO class to add
the bolt and nut FGOs. The bolt and nut similarly override
the standard FGO class to add interference and overlap
assertions and a cut integrator. The implementation generates
geometry for the bolt and nut parameterized by shared
information about the fastener size.

Like a conventional fastener wizard, the fastener FGO can
integrate itself into the surrounding model by cutting an

Page 7

CHI 2018 Paper

appropriately size hole. Unlike traditional tools, the fastener
FGO can be extended to express new design intent, such as
a test that reserves space above the bolt and ensures a tool
could reach it during assembly.

Uncertainty Buffer FGO: Our final example is the
replication of a research result exploring a novel modeling
construct that does not exist in current CAD packages:
support for measurement uncertainty caused by modeler
error [19]. We implement support for a flexible buffer that
can accommodate small errors in diameter measurements of
real-world objects.

The ring buffer FGO approximates a real-world object given
a measure of uncertainty about that object. For example, a
modeler could measure a cup three times and enter the
diameter range they found.

The ring buffer uses two integrators to create this
mechanism. The first integrator generates a ring around the
body model that has a radius of the uncertainty parameter.
The ring remains separate from the model and would be
printed with flexible materials. The second FGO uses a union
integrator to generate a hard ring that surrounds the buffer.
The FGO creates a cup holder that accommodates mugs of
different sizes and shapes.

This shows the power of PARTSs to describe a designer’s
intent with respect to objects that do not have fixed or known
dimensions, and thus break the assumptions of standard
parametric modeling tools.

EVALUATION: MODELING WITH DESIGN INTENT

To validate that the PARTs framework would allow non-
expert modelers to create reusable and validatable designs,
we held two workshops with a total of ten participants who
each had previous CAD experience.

Participants

Participants were sampled from non-professional 3D
modeling and rapid prototyping communities. The first
workshop was conducted with six members of a makerspace
(ID’s starting with A). The second workshop was conducted
in a research lab with 4 graduate students (ID’s starting with
B). Demographic and experiential data for participants is
shown in Table 2. Participants averaged 5.1 years of
informal CAD experience with a wide range of tools
including: SolidWorks (A2,A3,A6,B1,B2,B3), Blender
(A3,A4,A5,B2), OpenSCAD (A3,A6,B4), and Fusion360
(A2,B1). No participants had formal training in 3D
modeling, qualifying them as expert-amateurs.

Method

The workshops consisted of four phases: discussion (~20
minutes), training (~20 minutes), think-aloud modeling (~60
minutes), and review (~20 minutes). Audio recording
devices were distributed throughout the room to capture the
discussion and participants’ thoughts during the various
stages. Researchers also took photographs and videos of the
participants during the modeling stage. We asked

Paper 301

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

Table 2. Participant Demographics

ID Gender Age Experience Profession

Al| Male 36 3 Software Engineer
A2| Male 31 10 Graphic Artist
A3| Other 40 20 Startup Owner
Ad4| Female 30 1/12 Cosplay Designer
A5| Male 33 1 Defense Contractor
A6| Male 28 4 Software Engineer
B1| Male 28 1 Design Student
B2| Other 23 2 CS Student

B3| Male 26 8 CS Student
B4| Male 33 2 CS Student

participants about their expertise with 3D modeling, their
goals, previous struggles, and prototyping/ modeling habits.

Prior to attending the workshop all participants were given
links to Fusion360’s tutorials with notes on which tutorials
would be most valuable for the workshop. Six of ten
participants used these tutorials, and two participants had
pre-existing experience with Fusion360. A3 and B3 were the
remaining participants without any Fusion360 experience
prior to attending the workshops, and they had more CAD
experience than most other participants.

Workshops had three phases — training, modeling and
review. During the training phase, a researcher demonstrated
the interfaces of PARTSs and Fusion360 by running through
the simple example of joining two blocks with a bolt and nut.
The PARTSs demonstration included: using an FGO from the
library (fastener), checking assertions (from the bolt), and
invoking integration (to cut the bolt hole). The researcher
also gave quick descriptions of the other FGOs available in
the library. The Fusion360 demonstration showed the same
task with only the standard features of Fusion360.

During the modeling phase, participants were given a
modeling goal, example objects, and measurement tools.
While completing their tasks, researchers walked around the
space asking participants to describe their actions.
Participants were allowed to speak to one another and ask
researchers for assistance with the Fusion360 and PARTs Ul
or for clarification on the design task. Researchers did not
give advice on how participants could complete the task, but
merely supported using the tools.

During the review phase, participants gathered into a group
to discuss their experience. They were prompted to discuss
how the PARTs framework differed from their previous
experience with CAD tools, what criticisms of the tool they
had, and if it affected their modeling behavior. Participants
in the later workshops were also asked to compare their
experiences using FGOs versus standard geometry.

Modeling Tasks

The first workshop tested the usability of PARTs by
designers. Participants were tasked with creating a cup-
holder using PARTSs. Modelers had access to all assertions
and integrators, but no pre-existing FGOs to reuse in their
design. Successful completion of the task required that the
resulting model fit the provided cup, and that the holder was
stable when the cup was filled.

Page 8

CHI 2018 Paper

The second workshop focused on modelers, comparing
PARTs to Fusion360. Participants were asked to reuse
models to create cup-holders that could be mounted on a
bike. They were placed in two conditions, Fusion360 (alone)
or PARTs (Fusion360 with PARTSs). Condition ordering was
randomly assigned to ensure that participants were not
primed by the first task to perform better in the second. In the
Fusion360 condition, we provided parameterized models
based on a cup-holder (T:2271973) and bike-mount
(T:1012573) found in our Thingiverse survey. In the PARTs
condition, we provided a parameterized cup-holder and bike-
mount FGO through the PARTS library. Participants could
also use any Fusion360 capabilities they wished.

The necessary tasks participants had to complete in both
conditions to create a successful model were: correctly
parameterize the cup-holder, bike-mount, and fastener to fit
the corresponding real world objects; position the cup-holder
and bike-mount components; position and cut space for the
fastener. If these tasks were successfully completed,
researchers attempted to print and test the resulting model by
fitting it to the bike and cup filled with water.

Findings

Anecdotes from participants in both studies show a perceived
benefit of the PARTS’ approach. For example, Al noted that
he often modeled real world objects to help with his
modeling process. His process was manual and informal and
he appreciated the automated support for capturing these
process ideas, saying “it needs to be in your model for the
design or simulation to mean anything”. A5 commented on
the value of sharing such process information with other
users: “here’s your spec, and you send them around.”

The ability to delay integration was also valued, in
comparison to a standard process where “you really have to
know what you intend to build everything right” [A6]. In
A2’s words, “It’s essentially a 3D version of layers. It’s like
a non-destructible field on one side and a visual debugger on
the other” He was excited by the idea that he could use
integrators as place holders for changes he wanted to make
later, just as he uses layers in photo editing to prepare
changes to the final image.

Workshop 1 Outcomes

4 of 6 participants completed the PARTSs design task in the
first workshop, and 3 of those models were completely
stable. All participants used similar design patterns to create
their model: each represented their cup as an interference
assertion. They also created cut integrators with a copy of the

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

same geometry. The three failure cases diverged when
creating a base for the cup holder. Participants A3 and A6
both failed because they spent the majority of their time
creating an accurate representation of the cup, requiring
more time to learn Fusion360. A4 completed the design task
but did not accurately measure the cup, causing a slightly
unstable print. Images of the resulting cup holders are shown
in Table 4, Row 1.

Workshop 2

We broke the second workshop up into 6 sub task related to
setting parameters, positioning, and combining components
and finally resulting in a failed model. Participant failure
rates are shown in Table 3. Under the Fusion360 condition,
no participant created a printable model, and participants
averaged completion of 1.5/6 steps. Under the PARTSs
condition, B2 and B3 were able to create printable and
functional models, and participants averaged 5/6 steps.
Within subjects, they improved by an average of 3.5 steps.

All participants in the second workshop voiced frustration or
confusion about Fusion360 because it lacked information
included in PARTS’ assertions: B3 complained about the
Fusion360 cup holder model, “I guess that’s where the cup
goes, I’'m not sure how to fit it to this cup”. No similar
questions arose while using PARTS.

Participants also noted the lack of integration geometry and
its associated benefits in Fusion360. B4 asked, “Where do
you get that bolt thing in Fusion?” when they assumed the
fasteners FGO had been taken from Fusion360; they were
frustrated when told that it did not exist and they must find
some other way to create the same result.

Parameterization: The main source of failure for
participants under the Fusion360 condition was adjusting the
parameters of the pre-existing models to fit the new objects.
This was a challenge for two reasons. First, despite being
shown parameter definitions in the tutorials, participants
could not figure out how to change the dimensions of the
models and instead used a scaling feature to adjust the model
size as a whole. Second, participants did not think about
other effects on the parameters besides the objects
dimensions, such as leaving space for the bolt causing each
participant to fail at that task. Neither of these were
challenges for the PARTSs condition, where all participants
succeeded in all parameterization tasks. This is likely
because parameters are more salient with FGOs. They are
displayed at instantiation and broken down into relevant
components including clearance and object size.

Table 3. Participant success and failure in modeling tasks broken down by participant and condition (Fusion 360 or PARTS).

Participant Condition Fits Cup Fits Bolt Fits Bike Component placement

Fastener Placement Printable and Functional

B1 PARTSs Pass Pass Pass Pass Fail Fail
Fusion 360 Fail Fail Fail Pass Fail Fail
B2 PARTSs Pass Pass Pass Pass Pass Pass
Fusion 360 Fail Fail Pass Pass Pass Fail
B3 PARTSs Pass Pass Pass Pass Pass Pass
Fusion 360 | Pass Fail Fail Fail Fail Fail
B4 PARTSs Pass Pass Pass Pass Fail Fail
Fusion 360 Pass Fail Fail Fail Fail Fail
Paper 301 Page 9

CHI 2018 Paper

Table 4. Workshop model and print results. Failures are
shown with a red halo and the partially functional model from
W1 has a black frame (A4). Unsuccessful designs by A3 and
A6 are not shown because they could not be printed.

Al A2 A4
W1: w
Successful
Prints
B1 B2
% 3 P
PARTS Q a 0 C}
: S
Succesful
Prints

Positioning: B3 and B4 were further challenged by attaching
the cup holder and handlebar mount and ran out of time
trying to join the two models together. Compounding errors
and a rush to complete the tasks in time resulted in B3 and
B4 not attempting to place their bolts, and B1 placing the bolt
in an infeasible position. These challenges were not
completely surmounted with PARTSs but all participants were
able to position and combine the cup-holder and bike-mount
FGOs. This is likely because they did not feel rushed,
because the parameterization tasks were easier and quicker.
B1 and B4 found it difficult to position the fastener in both
conditions. These participants struggled with Fusion360’s
move command, which is used in both conditions.

Discussion

Participants found the following features of PARTs most
accessible: adjusting parameters, integrating models, and
making functional changes to another modeler’s design.
While PARTS helped participants complete their task more
effectively, it was not without frustrations. Participants
complained that assertions were only occasionally helpful
and wanted to turn the visualizations off. Since these
workshops, we have made control of assertion visualization
and instantiated FGO parameters more salient.

There are some limitations to the second workshop that may
affect our results. For instance, participants struggled to
contextualize the Fusion360 models, which may not be true
if they had discovered them online, as they would in the real
world. Further, users with more Fusion360 experience may
have shown less of a difference between conditions, or had
we given participants more time they may not have rushed
and compounded their errors.

CONCLUSIONS AND FUTURE WORK

3D printing enables users to fabricate new objects. However,
creating geometry that will function in the real-world is
difficult, and so many users print models that others have
created. Unfortunately, as shown in our workshop, non-
experts can find it difficult to customize such models, even

Paper 301

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

when they are carefully parameterized. Standard tools do not
explicitly express design intent, leaving a gap between form
and function.

PARTSs is at its essence one of the first 3D modeling tools to
support end-user programming concepts, thus helping to
bridge this gap. PARTSs brings design intent to the forefront
of the design process. With functional geometry, designers
can create reusable designs that capture design intent and
support future modelers.

In the future, we hope to build on lessons learned and explore
how PARTSs can support different modelers by creating
customized domain specific libraries and implement more
complex systems. By building more complex ways of
expressing and acting on design intent, we hope to increase
the engineering quality of results in parts. At the moment,
PARTSs is a powerful first step in enabling non-experts to
make use of their common practices in a reusable fashion.

ACKNOWLEDGEMENTS

We thank: our reviewers, participants, and HiCapacity
Makerspace. This work was funded in part by NSF grants
IIS-1718651 and DGE1745016, by DoD Contract No.
FA8721-05-C-0003 (or FA8702-15-D-0002) with CMU for
the operation of the Software Engineering Institute, a
federally funded research and development center, by a
Google Faculty Research Award, a gift from Autodesk, and
the Distributed Research Experiences for Undergraduates
program, a project of the CRA-W and the Coalition to
Diversify Computing (NSF BPC-A #1246649).

REFERENCES

1. Mathieu Acher, Benoit Baudry, Olivier Barais, and
Jean-Marc Jézéquel. 2014. Customization and 3D
Printing: A Challenging Playground for Software
Product Lines. In Proceedings of the 18th
International Software Product Line Conference -
Volume 1 (SPLC ’14), 142—-146.
https://doi.org/10.1145/2648511.2648526

2. Daniel Ashbrook, Shitao Stan Guo, and Alan Lambie.
2016. Towards Augmented Fabrication: Combining
Fabricated and Existing Objects. In The 2016 CHI
Conference Extended Abstracts, 1510—1518.

3. Hugh Beyer and Karen Holtzblatt. 1997. Contextual
Design: Defining Customer-Centered Systems.
Elsevier.

4. P Blikstein. 2013. Digital fabrication and making’in
education: The democratization of invention. FabLabs:
Of machines.

5. A Boating. 1979. Thinglab-a constraint-oriented
simulation laboratory. SSL-79-3, Xerox PARC, Palo
Alto, CA.

6. Alan Borning. 1981. The programming language
aspects of ThinglLab, a constraint-oriented simulation
laboratory. ACM Transactions on Programming
Languages and Systems (TOPLAS) 3, 4: 353-387.

7. Erin Buehler, Niara Comrie, Megan Hofmann,
Samantha McDonald, and Amy Hurst. 2016.

Page 10

CHI 2018 Paper

10.

11.

12.

13.

14.

15.

16.

17.

18.

Investigating the Implications of 3D Printing in Special
Education. ACM Trans. Access. Comput. 8, 3: 11:1—
11:28. https://doi.org/10.1145/2870640

Erin Buehler, Shaun K. Kane, and Amy Hurst. 2014.
ABC and 3D: Opportunities and Obstacles to 3D
Printing in Special Education Environments. In
Proceedings of the 16th International ACM
SIGACCESS Conference on Computers & Accessibility
(ASSETS ’14), 107-114.
https://doi.org/10.1145/2661334.2661365

Jack B Dennis. 1973. Modularity. In Software
Engineering. Springer, 128—182.

Chang-Xue Feng and Andrew Kusiak. 1995.
Constraint-based design of parts. Computer-Aided
Design 27, 5: 343-352.

Christoph M. Flath, Sascha Friesike, Marco Wirth, and
Frédéric Thiesse. 2017. Copy, transform, combine:
exploring the remix as a form of innovation. Journal of
Information Technology 32, 4: 306-325.
https://doi.org/10.1057/s41265-017-0043-9

Sean Follmer, David Carr, Emily Lovell, and Hiroshi
Ishii. 2010. CopyCAD: Remixing Physical Objects
with Copy and Paste from the Real World. In Adjunct
Proceedings of the 23Nd Annual ACM Symposium on
User Interface Software and Technology (UIST ’10),
381-382. https://doi.org/10.1145/1866218.1866230
Rajaram Ganeshan, James Garrett, and Susan Finger.
1994. A framework for representing design intent.
Design Studies 15, 1: 59-84.

Michelle Gantt and Bonnie A. Nardi. 1992. Gardeners
and Gurus: Patterns of Cooperation Among CAD
Users. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI °92), 107—
117. https://doi.org/10.1145/142750.142767

Bjorn Hartmann, Daniel MacDougall, Joel Brandt, and
Scott R. Klemmer. 2010. What Would Other
Programmers Do: Suggesting Solutions to Error
Messages. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’10),
1019-1028. https://doi.org/10.1145/1753326.1753478
Tyson R Henry and Scott E Hudson. 1988. Using
active data in a UIMS. In Proceedings of the 1st
annual ACM SIGGRAPH symposium on User
Interface Software, 167—178.

Nathaniel Hudson, Celena Alcock, and Parmit K
Chilana. 2016. Understanding Newcomers to 3D
Printing: Motivations, Workflows, and Barriers of
Casual Makers. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems,
384-396.

Michael D. Jones, Kevin Seppi, and Dan R. Olsen.
2016. What You Sculpt is What You Get: Modeling
Physical Interactive Devices with Clay and 3D Printed
Widgets. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems (CHI ’16),
876—886. https://doi.org/10.1145/2858036.2858493

Paper 301

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

Jeeeun Kim, Anhong Guo, Tom Yeh, Scott Hudson,
and Jennifer Mankoff. 2017. Understanding
Uncertainty in Measurement and Accommodating its
Impact in 3D Modeling and Printing. In Proceedings of
the 2017 ACM Conference on Designing Interactive
Systems.

Fumihiko Kimura and Hiromasa Suzuki. 1989. A CAD
system for efficient product design based on design
intent. CIRP Annals-Manufacturing Technology 38, 1:
149-152.

Sinisa Kolari¢, Halil Erhan, Robert Woodbury, and
Bernhard E. Riecke. 2010. Comprehending Parametric
CAD Models: An Evaluation of Two Graphical User
Interfaces. In Proceedings of the 6th Nordic
Conference on Human-Computer Interaction:
Extending Boundaries (NordiCHI ’10), 707-710.
https://doi.org/10.1145/1868914.1869010

FB Kong, Xin Guo Ming, L Wang, XH Wang, and PP
Wang. 2009. On modular products development.
Concurrent Engineering 17, 4: 291-300.

Yuki Koyama, Shinjiro Sueda, Emma Steinhardt,
Takeo Igarashi, Ariel Shamir, and Wojciech Matusik.
2015. AutoConnect: Computational Design of 3D-
printable Connectors. ACM Trans. Graph. 34, 6:
231:1-231:11.
https://doi.org/10.1145/2816795.2818060

Vladislav Kreavoy, Dan Julius, and Alla Shefter. 2007.
Model Composition from Interchangeable
Components. In Proceedings of the 15th Pacific
Conference on Computer Graphics and Applications
(PG ’07), 129-138.
https://doi.org/10.1109/PG.2007.43

Manfred Lau, Akira Ohgawara, Jun Mitani, and Takeo
Igarashi. 2011. Converting 3D Furniture Models to
Fabricatable Parts and Connectors. In ACM
SIGGRAPH 2011 Papers (SIGGRAPH ’11), 85:1—
85:6. https://doi.org/10.1145/1964921.1964980

Ghang Lee, Charles M Eastman, Tarang Taunk, and
Chun-Heng Ho. 2010. Usability principles and best
practices for the user interface design of complex 3D
architectural design and engineering tools.
International Journal of Human-Computer Studies 68,
1-2: 90-104.

Ming Li, Frank C Langbein, and Ralph R Martin.
2010. Detecting design intent in approximate CAD
models using symmetry. Computer-Aided Design 42,
3:183-201.

Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei,
Qingnan Fan, Xuelin Chen, Yann Savoye, Changhe
Tu, Daniel Cohen-Or, and Baoquan Chen. 2014. Build-
to-last: strength to weight 3D printed objects. ACM
Transactions on Graphics (TOG) 33, 4: 97-10.
Thomas Ludwig, Oliver Stickel, Alexander Boden, and
Volkmar Pipek. 2014. Towards sociable technologies:
an empirical study on designing appropriation
infrastructures for 3D printing. In DIS ’14:

Page 11

CHI 2018 Paper

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Proceedings of the 2014 conference on Designing
interactive systems.

Allan MacLean, Kathleen Carter, Lennart Lovstrand,
and Thomas Moran. 1990. User-tailorable Systems:
Pressing the Issues with Buttons. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI *90), 175-182.
https://doi.org/10.1145/97243.97271

Satoshi Matsuoka, Shin Takahashi, Tomihisa Kamada,
and Akinori Yonezawa. 1992. A general framework
for bidirectional translation between abstract and
pictorial data. ACM Transactions on Information
Systems (TOIS) 10, 4: 408—437.

Jarkko Moilanen, Angela Daly, Ramon Lobato, and
Darcy Allen. 2014. Cultures of sharing in 3D printing:
What can we learn from the licence choices of
Thingiverse users?

Catarina Mota. 2011. The rise of personal fabrication.
In C&C ’11: Proceedings of the 8th ACM conference
on Creativity and cognition.

Don Norman. 1988. The Psychology of Everyday
Things. Basic Books, New York, NY, USA.

Lora Oechlberg, Wesley Willett, and Wendy E.
Mackay. 2015. Patterns of Physical Design Remixing
in Online Maker Communities. In Proceedings of the
33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI *15), 639-648.
https://doi.org/10.1145/2702123.2702175

Dan R Olsen Jr and Kirk Allan. 1990. Creating
interactive techniques by symbolically solving
geometric constraints. In Proceedings of the 3rd
annual ACM SIGGRAPH symposium on User interface
software and technology, 102—107.

Colin Potts and Glenn Bruns. 1988. Recording the
reasons for design decisions. In Software Engineering,
1988., Proceedings of the 10th International
Conference on, 418-427.

Valkyrie Savage, Sean Follmer, Jingyi Li, and Bjorn
Hartmann. 2015. Makers’ Marks: Physical Markup for
Designing and Fabricating Functional Objects. In
Proceedings of the 28th Annual ACM Symposium on
User Interface Software &, Technology (UIST
’15), 103-108.
https://doi.org/10.1145/2807442.2807508

R Shewbridge, A Hurst, and S K Kane. 2014.
Everyday making: identifying future uses for 3D
printing in the home. ACM Conference on Designing
Interactive Technology.

Ivan E Sutherland. 1964. Sketchpad a man-machine
graphical communication system. Transactions of the
Society for Computer Simulation 2, 5: R-3.

Robert W Taylor, Allan Heydon, and Greg Nelson.
1994. The Juno-2 constraint-based drawing editor. In
Technical Report 131a, Digital Systems Research.
Juraj Vanek, Jorge AG Galicia, and Bedrich Benes.
2014. Clever support: Efficient support structure

Paper 301

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

CHI 2018, April 21-26, 2018, Montréal, QC, Canada

generation for digital fabrication. In Computer
graphics forum, 117-125.

AR Venkatachalam. 1994. Automating
manufacturability evaluation in CAD systems through
expert systems approaches. Expert Systems with
Applications 7, 4: 495-506.

Haijun Xia, Bruno Araujo, Tovi Grossman, and Daniel
Wigdor. 2016. Object-Oriented Drawing. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16), 4610-4621.
https://doi.org/10.1145/2858036.2858075

Xiang “Anthony” Chen, Jeeeun Kim, Jennifer
Mankoff, Tovi Grossman, Stelian Coros, and Scott E.
Hudson. 2016. Reprise: A Design Tool for Specifying,
Generating, andCustomizing 3D Printable Adaptations
on Everyday Objects. In Proceedings of the 29th
Annual ACM Symposium on User Interface Software
and Technology.
https://doi.org/10.1145/2984511.2984512

Brad Vander Zanden, Brad A Myers, Dario Giuse, and
Pedro Szekely. 1991. The importance of pointer
variables in constraint models. In Proceedings of the
4th annual ACM symposium on User interface
software and technology, 155—164.

Tinkercad.com Features | Tinkercad. Retrieved March
21,2016 from
https://www.tinkercad.com/about/features
Interference Check | 3D CAD Solutions |
SOLIDWORKS. Retrieved April 4, 2017 from
http://www.solidworks.com/sw/products/3d-
cad/interference-check.htm

Start a solid body using basic shapes. Retrieved August
29,2017 from
http://help.autodesk.com/view/fusion360/ENU/?guid=
GUID-9DECFD77-D3AF-4EA8-98D6-
CABAG47ESBA4

Design Intent | Fusion 360 | Autodesk Knowledge
Network. Retrieved August 29, 2017 from
https://knowledge.autodesk.com/support/fusion-
360/learn-
explore/caas/CloudHelp/cloudhelp/ENU/Fusion-
Form/files/GUID-CE02E095-6A90-4DCC-B89F-
4D70185BC69D-htm.html

Learning | How to create components. Retrieved
August 29, 2017 from
http://help.autodesk.com/view/fusion360/ENU/?guid=
GUID-5966BF6B-4135-49B3-B5BF-29A6577C9E72
2016 SOLIDWORKS Help - Hole Wizard Overview.
Retrieved September 13, 2017 from
http://help.solidworks.com/2016/english/solidworks/sl
dworks/c_hole wizard overview.htm

Smart Components and Smart Fasteners |
SOLIDWORKS. Retrieved August 30, 2016 from
http://www.solidworks.com/sw/products/3d-cad/smart-
components-and-smart-fasteners.htm

Page 12

	Greater than the Sum of its PARTs: Expressing and Reusing Design Intent in 3D Models
	ABSTRACT
	Author Keywords: Fabrication; prototyping; 3D Printing
	ACM Classification Keywords:
	INTRODUCTION
	Scenario: Creating a Cup Holder Mount for a Bicycle
	Overview & Contributions

	Related Work
	A Survey of repeated patterns in the Wild
	The PARTs Framework
	Overview of Functional Geometry
	The PARTs Architecture and Implementation
	Instantiation (Figure 1A)
	Assertion Checking (Figure 1B)
	Integration (Figure 1C)

	The PARTs Library
	Assertions
	Integrators
	Implementing Support for Higher Level Design Patterns

	Technical Validation
	Composing Functional Geometry to Create an Organizer
	From Pegboard to Tool Drawer Organizer
	Expressing Design Intent in Complex Assemblies
	Extensibility of PARTs through Scripting

	Evaluation: Modeling With Design Intent
	Participants
	Method
	Modeling Tasks

	Findings
	Workshop 1 Outcomes
	Workshop 2

	Discussion

	Conclusions and Future Work
	Acknowledgements
	REFERENCES

