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1. Introduction

Solving an optimal control problem in a stochastic setting has
been typically associated with the solution of a second-order,
nonlinear partial differential equation (PDE), called the Hamilton-
Jacobi-Bellman (HJB) equation. By and large, the literature on
optimal control deals with the minimization of a performance
index which penalizes control energy, since the input appears in
quadratic form as part of the running cost. Such problems are
typically referred to as minimum energy or L? problems in optimal
control theory. While such [? formulation can be useful in many
engineering problems (e.g., preventing engine overheating, avoid-
ing high frequency control input signals etc.), there are practical
applications in which the control input is bounded (e.g. due to
actuation constraints), and the L' norm is a more suitable choice to
penalize. These problems are also called minimum fuel problems,
due to the nature of the running cost, which involves an integral
of the absolute value of the input signal. Minimum fuel control
appears as a necessity in several settings, especially in spacecraft
guidance and control [1,2], in which fuel is a limited resource.
Indeed, in such applications, using the L>-norm results in signifi-
cantly more propellant consumption as well as undesirable con-
tinuous thrusting. In some illustrative examples, this fuel penalty
can be as high as 50% [3].

The notion of L!-optimal control is also tightly related to Max-
imum Hands-Off control [4,5]. The distinguishing characteristic of
a hands-off controller is that it tries to retain a zero control
input value over an extended time interval. Thus, the objective
of “maximum hands-off” control is to accomplish a specific task
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while applying zero input for the longest time duration possible.
Applications of this type of control range from the automotive
industry (engine stop-start systems [6], hybrid vehicles [7]) to
networked and embedded systems [8,9]. The “hands-off” prop-
erty, especially in a discrete context, is equivalent to the spar-
sity of a signal, i.e., minimizing the total length of intervals over
which the signal takes non-zero values. The relationship between
L'-optimality and the “hands-off” property, or sparsity, is shown
in[4,5]. Specifically, if an L'-optimal control problem is normal (see
Remark 1 of Section 2, as well as [10]), then its optimal solution is
also the optimal sparse, “hands-off” solution.

Despite the aforementioned advantages, investigation of
L'-optimal control in the literature is not as widespread as L?
problems, since it leads to significantly more complicated optimal
control structures. These structures are usually a combination of
bang-bang control (i.e, the control signal switches between its
extrema) and singular control, in which the control input receives
intermediate values. Moreover, the particular structure often de-
pends on the specific initial condition or other parameter values,
and neither existence, nor uniqueness of solutions, can always be
guaranteed [10].

In this paper, we present a sampling-based algorithm designed
to solve L' stochastic optimal control problems, utilizing forward
and backward stochastic differential equations (FBSDEs). By means
of a nonlinear version of the Feynman-Kac lemma, we obtain
a probabilistic representation of the solution to the nonlinear
Hamilton-Jacobi-Bellman equation, expressed in the form of a sys-
tem of decoupled FBSDEs. This system of FBSDEs can be solved by
employing linear regression techniques. The scheme is enhanced
with importance sampling and trajectory blending, resulting in
an iterative algorithm that learns the optimal control without
requiring an initial guess. We validate the algorithm by applying
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it on a well-known minimum fuel problem, and demonstrate its
superiority against deterministic control laws in the presence of
stochastic disturbances.

The contributions of this paper are as follows:

e Theoretic: It is shown that L!-optimal control problems of
the form considered within this paper can be cast as a
specific FBSDE problem, by virtue of the nonlinear
Feynman-Kac lemma, and through a particular decompos-
ability condition presented herein. This FBSDE problem can
then be solved in lieu of the original PDE problem. Our
previous work on L%*-optimal control [11] does not cover
topic, as it requires separate derivation.

e Algorithmic: We present an algorithm utilizing a simplified
discretization scheme and importance sampling. In order
to address the numerical difficulties arising in L'-optimal
problems in particular, the algorithm in this paper is further
enhanced with a trajectory blending technique to improve
its convergence properties. The algorithm is validated on a
problem for which a known solution is available, and its per-
formance is also tested on a nonlinear system. To the best of
our knowledge, this paper is the first to present an algorithm
addressing stochastic L'-optimal control problems.

2. Problem statement

Let (£2, #, {Zt}>0, P) be a complete, filtered probability space
on which a p-dimensional standard Brownian motion W, is de-
fined, such that {#;};>¢ is the natural filtration of W, augmented
by all P-null sets. Our goal is to minimize the expected cost defined
by

T
J(t,xr;u(-))ZE[g(X(T))Jr / qo(t. X(1))

+ qa(t, x(t)) " u(t)] dt}, (1)

wherein T is a fixed time of termination, x € R" is the state
vector and u € U C R’ is the control vector. The dynamics
are assumed to obey an Ito drift-diffusion process, given by the
stochastic differential equation (SDE)

dx(t) = f(t, x(t))dt + G(t, x(t))u(t)dt + 2(t, x(t))dW,,
telr,T], x(t) = x,. (2)

Here, the control is restricted to U = [—u™", uT¥] x [—uln, yMax]
X eeox [—umin yma] with u™M > 0, uM™* > 0. Note that
the assumption about the signs of u}“i“ and uf"™ is without loss
of generality. Furthermore, |-| denotes the element-wise absolute
value, g1 : [0, T] x R" — R} is a (possibly time/state dependent)
vector of nonnegative weights, and qo : [0, T] x R" — R is the
state-depended part of the running cost. If the “fuel consumption”
penalty is to be applied on all control channels equally, indepen-
dently of time or state, then q; reduces to a constant vector of ones.
Finally, all aforementioned functions, as well as g : R" — R,
f [0, T] xR" - R, G : [0,T] x R" - R™", and ¥
[0, T] x R" — R™P, are deterministic functions, continuous w.r.t.
time t (in case there is explicit dependence), uniformly bounded
w.r.t time t, and Lipschitz (uniformly in t) with respect to the state
variables. These standard assumptions [ 12] guarantee that the SDE
solution is unique and does not have a finite escape time, similar
to the case of ordinary differential equations, in addition to a well-
defined cost functional (1). Furthermore, the square-integrable'
processu : [0,T] x 2 — U < R is {%#};>o-adapted, which

Ta process H; is called square-integrable if]E[ftT Hszds] <ooforanyT > t.

essentially requires the control input to be non-anticipating, i.e., to
rely only on past and present information.

Our goal is to minimize (1) for any given initial condition (7, x. ),
and under all admissible functions u(-). The value function V is
defined as

V(t,x,)= inf  J(z,x.;u(-)), Y(z,x;) €[0,T) x R",
u(-)e? [0,T]
V(T, x) = g(x), Vx € R". (3)

Through Bellman’s principle of optimality, it is shown [12,13]
that if the value function is in C12([0, T] x R"), then it satisfies
the Hamilton-Jacobi-Bellman (HJB) equation, which - omitting
function arguments for brevity — assumes for the case at hand the
following form

1
v + inf{ —tr(vx 22 ") + v, f + (v, G+ q{ D(sgn(u)))u
ueu | 2

+ qo} =0, (t,x)e[0,T)xR", u(T,x)=g(x), (4)

wherein vy and vy, denote the gradient and the Hessian of v,
respectively, D(x) € R™" denotes the diagonal matrix with the
elements of x € R" in its diagonal, and sgn(-) denotes the signum
function. This result can also be extended to include cases in which
the smoothness condition of the value function is not satisfied.
Specifically, if one also considers viscosity solutions of (4), then the
value function is proven to be a viscosity solution of (4), which is
furthermore equal to the classical solution, if such a classical solu-
tion exists. For the chosen forms of cost integrand and dynamics at
hand, we may carry out the infimum operation over u explicitly. To
this end, letting u; be the ith element of u, it is easy to show that
the optimal control law is given by

u™x, (v, G < —(q] )
uf =1 —um™ ]G> (q)) i=1,...,v, (5
0, —(q]) < (v G)<I(a)

namely, the optimal control law turns out to be bang-off-bang
control.

Remark 1. Notice that in the control law given by (5), we do not
assign a value for u* whenever (v G); = —(q{) or (v{G); =
(q1T),', because in those two cases the control input is not uniquely
defined. In fact, any value in [0, u[™*] and [—u{“i“, 0], respectively,
attains the same infimum value in (4). A problem in which either
one of these equalities is satisfied over a nontrivial time interval
is a singular fuel-optimal problem [10]. In what follows, we shall
assume that the minimum fuel problem is normal, in the sense that
the aforementioned equalities are not satisfied over a nontrivial
time interval, P-almost surely.

Substituting the control law given by (5), the HJB equation (4)
assumes the equivalent form

1
vt S ZET) + vl + ot

3 min{ (v) G +aq] ) uP™, 0, —(vy G — qlT)l.u{“i“} =0, (6
i=1

(t,x) € [0,T) x R", u(T,x) =g(x), xeR.

3. A solution representation via a Feynman-Kac formula

The cornerstone of the proposed approach is the nonlinear
Feyman-Kac lemma, which establishes a close relationship be-
tween stochastic differential equations (SDEs) and second-order
partial differential equations (PDEs) of parabolic or elliptic type.
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Specifically, this lemma demonstrates that solutions to a certain
class of PDEs can be represented by solutions to SDEs or systems of
forward and backward stochastic differential equations (FBSDEs).
There is a plethora of similar theoretic results in the literature, all
of which are referred to as Feynman-Kac-type formulas, since the
earliest result of this type was due to Feynman and Kac [14]. In
this work, we propose to employ a nonlinear Feynman-Kac-type
formula, which links the solution of a nonlinear PDE to a system
of FBSDEs. In what follows, we will briefly review the theory of
forward and backward processes, and then present the nonlinear
Feynman-Kac formula.

3.1. The forward and backward process

The forward process is defined as the square-integrable,
{Z}s>0-adapted process X(-), which satisfies the Itd FSDE

dXs = b(s, X;)ds + X(s, X )dWs, se [t T],
X[ =X,

(7)

wherein (t,x) € [0,T] x R" is a given initial condition. In the
literature, the forward process (7) is referred to as the state process.
We denote the solution to the FSDE (7) as X!*, wherein (¢, x) are the
initial condition parameters.

The associated backward process is the square-integrable,
{Z}s>0-adapted pair (Y(-), Z(-)) defined via a BSDE satisfying a
terminal condition

{dYS = —h(s, X'*, Yy, Z)ds + Z]dW; s e [t, T],

X0,
Yr = g(Xr).

The function h(-) is referred to as generator or driver. The initial con-
dition parameters (t, x) implicitly define the solution of the BSDE
due to the terminal condition g(X;"‘), and thus we will similarly
use the notation Y/* and Z%* for the solution associated with a
particular initial condition parameter (t, x). Whenever the forward
SDE does not depend on Y or Zg, the resulting FBSDEs are decoupled.

The difficulty in dealing with BSDEs is that, in contrast to FSDEs,
and due to the presence of a terminal condition, integration must
be performed backwards in time, i.e., in a direction opposite to
the evolution of the filtration. If we do not impose the solution to
be adapted (i.e, non-anticipating, obeying the evolution direction
of the filtration), we must require new definitions such as the
backward It6 integral or, more generally, the so-called anticipating
stochastic calculus [15]. In this work we will restrict the analysis
to adapted -non-anticipating - solutions. As shown in [15], an
adapted solution is obtained if the conditional expectation of the
process is back-propagated, by setting Y; 2 E[Y;|.%]. In a sense,
systems of FBSDEs describe two-point boundary value problems
involving SDEs, with the extra requirement that their solution is
adapted to the forward filtration.

(8)

3.2. The nonlinear Feynman-Kac lemma

The following lemma, which links the solution of a class of PDEs
to that of FBSDEs, can be proven by an application of It6’s formula
(see [12,16,15]):

Lemma 1 (Nonlinear Feynman-Kac). Consider the Cauchy problem

1 T T
v + itr(vxe](t, X)X ' (t,x)) 4+ v, b(t, x)
+ h(t,x, v, ZT(6,x)u) =0, (£,x)€[0,T) X R", )
u(T,x)=g(x), xeR"

wherein the functions X, b, h and g satisfy mild regularity conditions
(see Remark 2). Then (9) admits a unique (viscosity) solution v :

[0,T] x R" — R, which has the following probabilistic represen-
tation:

o(t,x) =Y*,  W(t,x)e[0,T] x R", (10)

wherein (X(-), Y(-), Z(+)) is the unique adapted solution of the FBSDE
system (7),(8). Furthermore,

(YE*, 20 = (v(s, XE%), 2 T(s, X uls, Xf’*)), (11)

fors € [t, T], and if (9) admits a classical solution, then (10) provides
that classical solution.

Remark 2. Concerning the regularity conditions of Lemma 1, [12]
requires the functions X, b, h and g to be continuous, ¥ and
b to be uniformly Lipschitz in x, and h to be Lipschitz in (y, z),
uniformly with respect to (t, x). However, the nonlinear Feynman-
Kac lemma has been extended to cases imposing less restrictions;
see for example [17,18].

Remark 3. The viscosity solution is to be understood in the sense
of v(t, x) = lim._ov*(t, x), uniformly in (t, x) over any compact
set, where v® is the classical solution of the nondegenerate PDE
satisfying the form of (9), with X, b, h and g replaced by X,
b., h. and g, the latter being smooth functions that converge
to X, b, h and g uniformly over compact sets, respectively, and
Z(t, X)X, (£, %) > el + 2(t, X)X 7 (¢t, x) for all (¢, x).

By comparing Eqs. (6) and (9) we conclude that Lemma 1 can
be applied to the HJB equation given by (6) under a certain decom-
posability condition, stated in the following assumption:

Assumption 1. There exists a matrix-valued function I" : [0, T] x
R" — RP*Y such that G(t,x) = X(t,x)I"(t,x) for all (t,x) €
[0, T] x R".

This assumption implies that the range of G must be a subset
of the range of X, thus excluding the case of a channel containing
control input but no noise, although the converse is allowed. Under
this assumption, the H]B equation given by (6) satisfies the format
of (9) with

b(t, x) = f(t, x), (12)
h(t, x,z) = qo(t, x)+
> min{ (' +qf)u™ 0, ("I - qlT)l.u{"i“}. (13)
i=1

We thus obtain the (viscosity) solution of (6) by simulating the
system of FBSDEs given by (7) and (8) using the definitions (12)
and (13).

4. Obtaining a numerical solution to FBSDE systems

FBSDEs have received a lot of attention in the literature, and
their solution has been studied independently, by and large, from
their connection to PDEs. Several results appear within the field
of mathematical finance, and a few generic numerical schemes
have been proposed [19-21]. In this paper we employ a scheme
proposed in previous work by the authors [11], which capitalizes
on the regularity present whenever systems of FBSDEs are linked
to PDEs.

4.1. Time discretization of FBSDEs

Onatimegrid {t = tp < --- < ty = T} for the interval
[t, T], we denote by At; £ ti.q — t; the (i + 1)th interval of the
grid (which can be selected to be constant) and AW; £ W, , — W,

1
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the (i4+1)th Brownian motion increment; here, AW; is simulated as
JAtig;, where & ~ N(0, I). We also denote X; £ X;, for notational
brevity. The simplest scheme for the FSDE is the Euler—-Maruyama
scheme [22]:

Xiv1 &~ Xi + b(ti, X)) At; + X(t;, X;) AW;,
i=0,...,N—1, (14)
Xo = x.

Note that several higher order schemes do exist that can be used
alternatively. The interested reader is referred to [22] for a detailed
presentation.

The backward process is discretized by introducing the notation
Y; £Y; and Z; £ Z,,. Recalling that adapted BSDE solutions impose
a back-propagation of conditional expectations, i.e., Yy £ E[Y;|.%]
and Z; £ E[Z|.%], Eq. (8) is approximated by

Y; = E[Yi|#;] ~ E[Yi11 + h(tiv1, Xiv1, Yie1, Zip) AGIX], (15)

fori=N—1,...,0.We note that the term Z,.TAW,' in (8) vanishes
in the last equality because of the conditional expectation (AW; is
zero mean). Furthermore, .%; is replaced by X; in (15) by virtue of
Lemma 1. In light of Eq. (11), the Z-process in (8) corresponds to
the term X7 (s, X5 )vy(s, X5¥). Thus, we may write

Zi = E[Z| 7] = E[Z (£, Xi) Vio(ti, Xi)IXi]

= 2 (ti, X;) Vv (ti, Xp). (16)
The above expression requires knowledge of the solution on a
neighborhood x at time t;, that is, V(t;, x). We initialize the back-
propagation at

Yr =g(Xr),  Zr = 2(T,Xr)" Vag(Xr), (17)

assuming that g(-) is a.e. differentiable. Several ways exist to nu-
merically approximate the conditional expectation in (15). Here,
we employ the Least Squares Monte Carlo (LSMC) method, which
is briefly reviewed in what follows.

4.2. Conditional expectation approximation and its application

The Least Squares Monte Carlo (LSMC) method for approxi-
mating conditional expectations was initially introduced within
the field of financial mathematics by Longstaff and Schwartz in
2001 [23]. Given two square-integrable random variables X and Y
for which we can sample M independent copies of (X, Y) pairs, the
method enables estimating conditional expectations of the form
E[Y|X], based on the principle that the conditional expectation
of a random variable is a function of the variable on which it is
conditioned on: E[Y|X] = ¢*(X), where ¢* is the solution to the
infinite-dimensional minimization problem

¢ = arg rrgﬂE[|¢(X) - Y%, (18)

and ¢ ranges over all measurable functions with E[|¢(X)?] < oo.
In practice, this problem is substituted by a finite-dimensional
R . . K .
approximation by decomposing ¢(-) ~ Y _._,¢i(-)oi = ¢(-)o, with
¢(-) being a row vector of k predetermined basis functions and « a
column vector of constants, and replacing the expectation operator
with its empirical estimator [24]. Thus, one obtains the following
least squares problem:

M
1 ; P2

* : d v
ot = arg;’r;i{rl} v jgl lo(X)a — Y|, (19)

wherein (X/, Y/),j = 1,..., M are independent copies of (X, Y).
The final expression for the LSMC estimator is simply E[Y|X =
x] = ¢*(x) & @p(x)a*. In order to numerically solve FBSDEs, the

LSMC method is used to approximate the conditional expectation
inEq. (15) for each time step. We begin by sampling M independent
_____ N, m = 1,... M. The BSDE
numerical scheme is initialized at the terminal time T and is
iterated backwards along the time grid. At any given time step t;,
M pairs of data (Y™, X" )’ are available, on which linear regression
is performed to estimate the conditional expectation of Y; as a
function of x at the time step t;. Thus we obtain an approximation of
the Value function V at time t;, which is valid for the neighborhood
of the state space that has been explored by the sample trajectories
at that time instant, since V(t;, x) = E[Y;|X; = x] ~ ¢(x)a;. The Y"
sample values calculated before the regression are then replaced
by their projection: Y® = ¢(X")o;. Finally, the associated values
for Z; are obtained by taking the gradient with respect to x on
the choice of basis functions (assuming that they are differentiable
almost everywhere), as follows:

Z" = (6 X" Vap(X" . (20)
The aforementioned process is repeated for t;_1, ..., to. The pro-
posed algorithm can be summarized as
Initialize : Yr = g(X7), Zr = X(T, X7)" Vag(Xr),
o1
o = argmin —
« M
) (21)

)

X H‘P(Xi)a - (YH—] + Atih(tit1, Xiy, Yi+1,Zi+1))'

Y = o(Xi)ai, Zlm = E(ti,X{n)Tngo(Xim)Oli,

where m = 1, ..., M and the matrix @ contains all basis function
evaluations for all data points X;. The minimizer in (21) can be
obtained by directly solving the normal equation, or by performing
gradient descent. The algorithm output is essentially the collection
of «;’s, i.e., the basis function coefficients for each time instant,
allowing for an approximation of the Value function which is valid
for the area of the state space explored by the FSDE. We note
that the number of basis functions needed for an accurate solution
largely depends on the application, the spread of the sample trajec-
tories in the state space, and the type of basis functions used; the
PDE boundary condition v(x, T) = g(x) is perhaps the most helpful
clue as to what basis functions should be chosen.

5. Iterative schemes: Importance sampling and trajectory
blending

The method presented thus far suffers from a significant practi-
cal limitation. Specifically, an approximation to the HJB PDE solu-
tion is obtained, which is accurate for those areas of the state space
that are visited by trajectories of uncontrolled dynamics (Eq. (7)),
i.e., trajectories in which no control input is applied. Nevertheless,
the optimal trajectory may lie on a different area of the state space,
an area which uncontrolled trajectories might not access. In this
case, simply extrapolating the locally obtained solution to cover
the rest of the state space may be inaccurate. This is a practi-
cal limitation, because in theory, if one could sample infinitely
many trajectories, they would cover the entire state space, thus
eliminating this issue. While generating infinitely many sample
trajectories is not a practical solution, the issue can be effectively
addressed if one is given the ability to alter the drift term of these
sampled trajectories. By changing the drift during sampling, we can
essentially select the area of the state space for which the obtained
solution is accurate.

In previous work by the authors [11], a scheme involving a
drift term modification has been constructed through Girsanov’s

2 Here, Y/" denotes the quantity YT, + Ath(tiy1, X[}, Y14, Z{1,), which is the

Y™ sample value before applying the conditional expectation operator.
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theorem on the change of measure [14,25]. Indeed, the system
of FBSDEs given by Egs. (7) and (8) is equivalent, in the sense
explained below, to one with modified drift

dX = [b(s, Xs) + 2(s, X )Ks1ds + X (s, X)dWs, s € [t, T1, (22)
X =x,
along with the compensated BSDE
an?S = [th(s, X, Yo, Zs) + Z Kilds + Z dW;, s e [t,T], (23)
= g(Xr),

for any measurable, bounded and adapted process K; : [0, T] —
RP. We note that this equivalence is not path-wise, since different
paths are realized by both the forward as well as the backward pro-
cess, under the modified drift dynamics. Nevertheless, the solution
at starting time t, i.e., (Y¢, Z¢), remains the same. The formal proof,
which involves Girsanov’s theorem on the change of measure can
be found in [11]. Additionally, one can explain why the modified
system of FBSDEs (22) and (23) may substitute the original FBSDE
system by examining the associated PDEs. Indeed, the FBSDE prob-
lem defined by (22) and (23) corresponds to the PDE problem

1
v+ 5tr(uxxsz) + v, (b+ ZK)+ h(t,x,V, ZTV)

—v] ZK =0, (24)

(t,x) €[0,T) x R", u(T, x) = g(x),

which is identical to the PDE (9), since the term vXTEK is both
added and subtracted. Therefore, the FBSDEs, while being different,
are associated with the same PDE problem.

To implement importance sampling for the problem at hand,
we may apply any nominal control i, in the dynamics given by (2),
which, in light of the definition of I'(-) in Assumption 1, exhibit the
form

dx(t) = [f(t, x(t)) + X(t, x(t))(¢t, x(t))u(t)]dt
+2(t, x(t))dW,. (25)

By comparison with the forward process (22), we thus have

Ks = I'(s, X;)u(s), se|[t,T], (26)

while b(s, X;) = f(s, X;) per (12). We note that, while the nominal
control u may be any control, we are especially interested in the
case in which we assign a control calculated at a previous run of
the algorithm. Thus, one arrives at an iterative scheme, in which
a more accurate approximation of the solution is obtained at each
iteration. On the time grid of Section 4, we define K; = Kj;, and use
the Euler-Maruyama scheme. Similarly, the most straightforward
way to embed importance sampling in the backward process is to
simply use the definition

h(s,x,y,z,k) 2 h(s, x,y,z) — 2"k, (27)

and then utilize the discretized scheme of Section 4 using h instead
of h.

Convergence of this procedure is typical in an L? setting [11],
but harder to achieve in the L'. The underlying cause seems to be
the algorithm’s sensitivity to changes in the control law between
iterations. However, good performance can be achieved through
blending of the sample trajectories used by the algorithm. Specif-
ically, instead of generating all sample trajectories for the next
iteration using solely the obtained control law, we may sample
only a short percentage of the total number of them (typically 2%-
5%). Thus, the new pool of sampled trajectories consists mainly
(95%-98%) of the same trajectories as in previous iterations, with
only a few new, resulting from the newly obtained control law.
Furthermore, we may choose the old trajectories to correspond

to lowest cost realizations, thereby discarding the least favorable
ones in favor of new realizations generated using a new control
law. It can be easily shown that the computational complexity per
iteration is O(NMn) for the forward process and O(NMk?) for the
backward process.

6. Simulation results

The aim of the simulations presented in this section is twofold.
First, the proposed algorithm is validated by means of an applica-
tion to a linear problem for which an open loop control law is avail-
able in closed-form for the deterministic setting of that problem.
This is the double integrator problem in Section 6.1. We demon-
strate that the algorithm is able to recover the optimal control
sequence, using only importance sampling. For this problem, sam-
ple trajectory blending is not necessary. Furthermore, the obtained
stochastic feedback control law is shown to outperform both the
deterministic open loop as well as the deterministic closed-loop
control law in the presence of noise. Finally, in Section 6.2, the
ability of the algorithm to handle nonlinear dynamics, as well
as the significance of the sample trajectory blending technique,
are demonstrated through simulations on an inverted pendulum
system.

6.1. The double integrator

To validate the proposed algorithm, we tested it on the fuel-
optimal control problem of a stochastic double integrator plant.
The deterministic case offers a closed form solution; see [10], Ch. 8-
6. Specifically, the deterministic problem reads: Given the system
equations

x1(6) = x(t),  Xa(t) = u(t),

we wish to find the control which forces the system from an initial
state (X1g, X20) to the goal state (0, 0), and which minimizes the fuel

lu(t)l < 1, (28)

J= flu )l dt, (29)

where T is a fixed (i.e., prespecified) response time. Existence
of solutions is guaranteed if T satisfies a number of conditions
depending on the values of the initial state. For an initial state
(10, X20) in the upper right quadrant of the plane, the condition

reads T > Xp0 + (/4X10 + 2x§0, and guarantees the existence of a

unique solution. The corresponding fuel-optimal control sequence
is {—1, 0, +1}, in which the control switching times t; and t; are

t = 0.5<T + X0 — \/(T — X20)% — 4X10 — 2X§0>, (30)
t) = 0.5<T+X20+\/(T—X20)2 —4X10 —2X§O>, (31)
that is,
-1, t €0, ty),
us(t) = 0, telt, ), (32)
1, t € [tp, T].

We are interested in solving a stochastic version of this problem,
in which the system equations are modeled in the following form:
dx(t) = xo(t) dt,

dxo(t) = u(t)dt + o dw(t), (33)

i.e., modeling stochasticity in form of perturbations in the control
input u. The introduction of the deterministic problem (28), (29)
is done merely to demonstrate that the numerical solution of the
stochastic problem obtained by the algorithm exhibits obvious
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Fig. 1. (a) The mean of the controlled system trajectories of each iteration (grayscale) and after the final iteration (red). (b) Cost mean =+ 3 standard deviations per iteration.
(c) The control input for the mean system trajectory for each iteration (colored) and after the final iteration (black). We see that the optimal control sequence {—1, 0, +1} is
finally recovered. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

similarity to the closed form solution of the deterministic problem.
An alternative stochastic counterpart could feature noise in the
first channel as well. Terminal state conditions are not meaning-
ful in a stochastic setting, since whenever the system dynamics
are modeled by controlled diffusions, the probability of hitting a
particular point in state space exactly is zero. Therefore, instead of
the final condition (x{(T), x,(T)) = (0, 0), we introduce a “soft”
constraint in the cost function by adding a terminal cost:

T
J =E[q(x§(r)+x§(r))+ /0 |u(r)|dt], (34)
where ¢ is a large enough constant, thus penalizing deviation
from the origin at the time of termination. We simulated 2000
trajectories using At = 0.01, with o = 0.1, T = 4 and
(x10, X20) = (0.8, 1.2), and selected [1, x, x*] for the basis of the
value function approximation. The proposed algorithm was run
for 15 iterations, using solely importance sampling. The use of
sample trajectory blending was not necessary for the convergence
of the algorithm. Fig. 1(a) depicts the mean of the controlled
trajectories in phase-plane after each iteration of the algorithm
(gray scale). The trajectory that corresponds to the final iteration
is marked in red. Fig. 1(b) depicts the cost mean +3 standard
deviations per iterations of the algorithm. Lastly, Fig. 1(c) shows
the corresponding controls for these mean trajectories in various
colors, each color representing an algorithm iteration. The control
that corresponds to the final algorithm iteration is marked in black
and illustrates that the optimal control sequence {—1, 0, +1} is
indeed finally recovered.

Some interesting insights are obtained if one compares the
performance of the proposed stochastic control law against the
deterministic control law (32), if both laws are applied in a system
influenced by noise. Specifically, for the same noise profile, we used
the three following approaches:

e application of the deterministic control law (32), calculated
once (at the initial condition) and applied in an open-loop
fashion (D-OL),

e the same control law, applied in a feedback fashion, in which
for each time instant and state (t;, x;) of the sampled trajec-
tories, the controls are recalculated® using the current state
as initial condition and T —t; as a new fixed final time (D-CL),

e the proposed stochastic feedback control law, obtained by
our algorithm (S-CL).

3 Note that the control law in (32) is valid for initial conditions in the upper right
quadrant. See [10] for more details.

The results of each approach are depicted in Fig. 2(a), (b), and (c),
respectively. As expected, in D-OL, noise results in large variation
between trajectories, causing failure in reaching the goal state.
Performance is improved in the case of D-CL, as the deterministic
controls are recalculated at each iteration, however the improve-
ment is rather minor. This is because in D-CL, even though the
control law is applied in a feedback fashion, it does not account
for the noise, and thus the resulting trajectories are allowed to
drift to areas of the state space for which a new fixed final time
T — t; no longer guarantees existence of a solution that leads to
the goal state. The S-CL law obtained by the proposed algorithm
does not suffer from this phenomenon. A comparison of the cost
mean and variance of these three approaches is shown in Fig. 3.
Specifically, D-OL, D-CL and S-CL result in a cost mean of 5.36, 4.75
and 2.97, respectively, and a cost variance of 14.00, 2.49 and 0.07,
respectively. Note that here we evaluate the cost given by Eq. (34)
for all approaches. In the deterministic setting, and in presence
of the fixed final state conditions, the two costs (29) and (34)
are equivalent. Finally, by assigning a higher terminal cost than
control cost (and vice versa), the proposed framework allows for
a systematic way of shaping optimal trajectories to achieve the
desired robustness-to-fuel-cost trade-off.

6.2. The inverted pendulum

The equations of motion for the inverted pendulum are given,
for angle and angular velocity x; = 0, x, = 6, by

bx
dx; = x,dt, dx, = —( 2 gsinx1 +u>dt+adw,

me2 ¢
i.e., stochasticity enters the system in form of perturbations in the
torque u. The constraint u™* = y™" = mg¢ makes this prob-
lem nontrivial, since the controller is forced to generate enough
momentum by swinging back and forth to successfully invert the
pendulum. We simulated 2000 trajectories, using At = 0.005, and
T = 1.5. The blending ratio was set to y = 0.98, and the system
noise covariance was set to 0.1. No initial guess for the control input
was necessary. We used the same polynomial basis functions as
Section 6.1. The task is achieved after approximately 55 iterations,
as shown in Fig. 4. These results highlight the importance of sample
trajectory blending as a technique to smoothen changes in the
optimal control between successive algorithm iterations.

7. Error analysis

The main sources of errors in the proposed numerical algorithm
consist of (a) the time discretization scheme, and (b) the LSMC
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time step) (b), and the stochastic feedback bang-bang control of the proposed algorithm (c). In (a) and (b), the red trajectory is the optimal trajectory of the deterministic
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of the references to color in this figure legend, the reader is referred to the web version of this article.)
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reader is referred to the web version of this article.)

method of approximating conditional expectations. The time dis-
cretization error in most schemes decreases at a rate /N, where
N is the number of (equidistant) time steps [21]. The error due to
the LSMC scheme can be reduced as the number of basis functions
tends to infinity and is inversely proportional to the square root
of the number of realizations, ~/M [26]. Note that the PDE-FBSDE
problem equivalence, illustrated by the nonlinear Feynman-Kac
lemma (Section 3), being exact does not introduce any errors.
Similarly, the importance sampling component, which is based on
Girsanov's theorem (Section 5) is also exact; numerical differences

appear only for finite number of samples. Proving the overall con-
vergence of the proposed discretization scheme however is more
involved, and is part of our on-going research.

8. Conclusion

In this paper we have developed a novel algorithm for non-
linear stochastic control problems in which the objective is to
minimize a generalized L! norm of the control input. In light of a
nonlinear version of the Feynman-Kac formula, and by utilizing the
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connection between certain PDEs and SDEs, we were able to obtain
a probabilistic representation of the solution to the Hamilton-
Jacobi-Bellman equation, expressed as a system of FBSDEs. This
system is then simulated using linear regression techniques.
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