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Abstract The aim of this work is to present a sampling-based algorithm designed to solve

various classes of stochastic differential games. The foundation of the proposed approach

lies in the formulation of the game solution in terms of a decoupled pair of forward and

backward stochastic differential equations (FBSDEs). In light of the nonlinear version of the

Feynman–Kac lemma, probabilistic representations of solutions to the nonlinear Hamilton–

Jacobi–Isaacs equations that arise for each class are obtained. These representations are in

form of decoupled systems of FBSDEs, which may be solved numerically.

Keywords Stochastic differential games · Forward and backward stochastic differential

equations · Numerical methods · Iterative algorithms

1 Introduction

The origin of differential games dates back to the work of Isaacs [28]. Isaacs provided a

framework for the treatment of differential games for two strictly competitive players. He

associated the solution of a differential game with the solution to a HJB-like equation, namely

its min-max extension, also known as the Isaacs (or Hamilton–Jacobi–Isaacs, HJI) equation.

This equation was derived heuristically under the assumptions of Lipschitz continuity of

the cost and the dynamics, in addition to the assumption that both of them are separable in

terms of the maximizing and minimizing controls. Berkovitz [5] addressed differential games

using standard variational techniques, a framework which was later adopted by Bryson et al.
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[25] to treat a special case of differential games, namely games of pursuit and evasion. A

treatment of the stochastic extension of differential games was first provided by Kushner and

Chamberlain [34]. The authors of this reference provide a general definition of stochastic

differential games and derive the underlying PDE, which is similar to the one derived by

Isaacs, adjusted by a term owing to stochastic effects. They also present sufficient conditions

for the existence of a saddle point and propose a finite difference scheme as a numerical

procedure to solve the game. A series of papers exist investigating conditions for existence

and uniqueness of a value function in stochastic two-player zero-sum games, see for example

[8,10,20,24].

Despite the plethora of existing theoretic work in the area of differential games, the algo-

rithmic part has received significantly less attention. However, since the game formulation

leads to a HJI nonlinear PDE, several methods addressing the solution of general nonlinear

PDEs should be mentioned here. A most notable example is the seminal paper investigating

convergence of general numerical schemes by Barles and Souganidis [2]. Due to the inherent

difficulty in solving such problems, most of the efforts were focused on particular types of

PDEs, such as the Hamilton–Jacobi–Bellman (HJB) PDE in optimal control theory; therein,

several different methods and approaches exist, including [3,35,42] for deterministic control

problems, while a stochastic setting is considered in [22,26,27]. General PDE cases, that also

include the HJI PDE, are furthermore treated within the framework that arises through the

interplay between PDEs and forward and backward stochastic differential equations (FBS-

DEs). This interplay is exploited in both ways; for low-dimensional problems and smooth

FBSDE coefficients, the PDE problem is solved in lieu of the FBSDE problem, in order to

obtain a solution to the latter (see for example [13,18,40,41,43]). In contrast, for higher-

dimensional cases, the FBSDE problem is solved in order to obtain a PDE solution. The

literature in this latter case is very extensive, and a comprehensive coverage of it within the

limits of this introduction is rather difficult; we refer the reader to [6,56] for the most estab-

lished numerical schemes. (More details on their error analysis can be found in [7,21].) The

case of quadratic growth (see Remark 2 in Sect. 4.2) is also treated in [9,11,32,37]. A com-

prehensive treatment on the literature of FBSDEs is also included in the recently published

book by Zhang [57]. With respect to these results, the fundamental difference in our pro-

posed approach is the iterative character of our numerical scheme. Most previous publications

focus on the theoretic properties of the schemes and overlook their weaknesses during the

actual implementation. One particular such weakness is obtaining enough sample trajectories

in the vicinity of the game/state space that encompasses the sought-for optimal trajectory

solution. In fact, without some form of iterative accuracy improvement through importance

sampling, as it is the case in our method, none of these previously existing algorithms can

be successfully applied in problems of more complex structure/dynamics.

As far as algorithms that are specifically tailored, or are suitably modified, for differential

games are concerned, apart from results addressing special cases of differential games (such

as linear games with quadratic penalties, e.g., [14]), only but a few numerical approaches

have been suggested in the past, notably the Markov chain approximation method [33,51].

In general, however, these numerical procedures have found only limited applicability due

to the “curse of dimensionality.” Very recently, another specific class of minimax control

trajectory optimization methods has been proposed, based on the foundations of differential

dynamic programming (DDP) [44,45,52].

In this work, we focus on stochastic differential games in which the control effort of each

player is penalized using either an L2 type or L1 type of norm. In engineering, those penalties

are often related to energy, or fuel expenditure, respectively. By and large, the literature on

optimal control deals with the minimization of a performance index which penalizes control
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energy. Such L2 minimization problems have been studied extensively, in both deterministic

and stochastic settings [3,15,26,29,42,53]. Their widespread use is due to the fact that they

simplify the associated Hamilton–Jacobi–Bellman equation by imposing a structure that

facilitates desirable properties for optimization.

While L2 minimization can be useful in addressing several optimal control problems

in engineering (e.g., preventing engine overheating, avoiding high frequency control input

signals), there are practical applications in which the control input is bounded (e.g., due to

actuation constraints), and the L1 norm is a more suitable choice to penalize. These problems

are also called minimum fuel problems, due to the nature of the running cost, which involves

an integral of the absolute value of the input signal. Minimum fuel control appears as a

necessity in several settings, especially in spacecraft guidance and control [12,50], in which

fuel is a limited resource. The notion of L1-optimal control is also tightly related to Maximum

Hands-Off control [46,47]. The distinguishing characteristic of a hands-off controller is that

it tries to retain a zero control input value over an extended time interval. Thus, the objective

of “maximum hands-off” control is to accomplish a specific task while applying zero input

for the longest time duration possible. The “hands-off” property, especially in a discrete

context, is equivalent to sparsity of the signal, i.e., minimizing the total length of intervals

over which the signal takes nonzero values. The relationship between L1-optimality and the

“hands-off”, or sparsity, property is shown in [46,47].

In this paper, we propose an algorithm for solving stochastic differential games, which

employs a nonlinear Feynman–Kac-type formula. The algorithm is a sampling-based scheme

based on the theory of forward and backward stochastic differential equations (FBSDEs) and

their connection to backward PDEs [39,55]; a probabilistic representation of the HJI partial

differential equation is obtained in the form of a system of FBSDEs, which is then simulated

by employing linear regression.

The paper is organized as follows: In Sect. 2, we provide the mathematical formulation

of the game, with a presentation of the associated HJI equations that arise for each cost form

following in Sect. 3. Section 4 introduces some necessary background on FBSDE theory, the

nonlinear Feynman–Kac lemma, and demonstrates how the HJI equations of Sect. 3 satisfy

the requirements for this lemma, under a certain decomposability condition. This allows for

a probabilistic representation of the solution to the HJI equation using FBSDEs. Section 5

generalizes the framework to address games in which the time duration is not fixed and

specified a priori; instead, the game terminates as soon as a particular game state has been

reached (also known as terminal surface), with an upper bound on the duration of the game.

Section 6 presents the numerical scheme employed in the process of solving FBSDEs, while

Sect. 7 introduces importance sampling in order to refine the results in an iterative manner.

A few remarks concerning the various error sources in the numerical scheme are given in

Sect. 8. Finally, Sect. 9 offers a few application examples, while conclusions are presented

in Sect. 10.

2 Game Formulation

Let (Ω, F , {Ft }t≥0, P) be a complete, filtered probability space on which a p-dimensional

standard Brownian motion Wt is defined, such that {Ft }t≥0 is the natural filtration of Wt

augmented by all P-null sets. Consider a differential game-theoretic setting, in which the

expected game payoff is defined by the functional
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P(u(·), v(·); τ, xτ ) = E

⎡

⎣g(x(T )) +
T

∫

τ

q(t, x(t)) + Lu(u(t)) − Lv(v(t))dt

⎤

⎦ , (1)

where T > τ ≥ 0, T is a fixed time of termination (games in which the duration is not

fixed a priori will be addressed in Sect. 5) , and x ∈ R
n represents the game state vector. The

minimizing player seeks to minimize the payoff by controlling the vector u ∈ U ⊂ R
ν , while

the maximizing player seeks to maximize the payoff (1) by controlling the vector v ∈ V ⊂
R

µ. The functions g(·) and q(·) represent a terminal payoff and a state-dependent running

payoff, respectively, while Lu(·) and Lv(·) represent the penalties paid by the minimizing

and maximizing player, respectively. It is assumed that the payoff functional is either of L2

type (minimum energy) or of L1 type (minimum fuel), that is, the functions Lu and Lv satisfy

either one of the following two forms:

L2 : L(s) =
1

2
s� Rs,

L1 : L(s) = p�|s|,

where R is a positive definite real-valued matrix, p is a vector of positive weights, and | · |
denotes the element-wise absolute value. The game state obeys the dynamics of a stochastic

controlled system which is represented by the Itô stochastic differential equation (SDE)
{

dx(t) = f (t, x(t))dt + G(t, x(t))u(t)dt + B(t, x(t))v(t)dt + Σ(t, x(t))dWt ,

t ∈ [τ, T ], x(τ ) = xτ ,
(2)

in which dWt are standard Brownian motion increments.

2.1 Standing Assumptions

Herein we assume that g : R
n → R, q : [τ, T ] × R

n → R, f : [0, T ] × R
n → R

n, G :
[0, T ] × R

n → R
n×ν, B : [0, T ] × R

n → R
n×µ and Σ : [0, T ] × R

n → R
n×p are

deterministic functions, that is, they do not depend explicitly on ω ∈ Ω . Furthermore, in

order to guarantee existence and uniqueness of solutions to (2), and a well-defined payoff

(1), the following conditions hold:

1. The functions g, q, f, G, B and Σ are continuous with respect to time t (in case there is

explicit dependence), Lipschitz (uniformly in t) with respect to the state variables, and

satisfy standard growth conditions over the domain of interest; namely, for a function

f (t, x), the last condition imposes that there exists C ∈ R+ such that ‖ f (t, x)‖ ≤
C(1 + ‖x‖) for all (t, x) in the domain of f .

2. The square-integrable1 processes u : [0, T ] × Ω → U ⊂ R
ν and v : [0, T ] × Ω →

V ⊂ R
µ are {Ft }t≥0-adapted, which essentially translates into the control inputs being

non-anticipating, i.e., relying only on past and present information.

3. If the control penalty for the maximizing or minimizing player is of the L2 type, then

U and/or V can be any compact subsets of R
ν and R

µ, respectively. Otherwise, for

an L1 type of penalty, the respective domain is a compact subset of the form U =
[−umin

1 , umax
1 ] × [−umin

2 , umax
2 ] × · · · × [−umin

ν , umax
ν ], with umin

i ≥ 0, umax
i > 0, and

similarly for V . Note that the assumption about the signs of umin
i and umax

i is without loss

of generality. The subsequent analysis can be performed for any umin
i < umax

i regardless

of their sign. In this setting, p�|s| represents a positively weighted summation of the

1 A process Hs is called square-integrable if E
[ ∫ T

t H2
s ds

]

< ∞ for any T > t .
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element-wise absolute values of the control input. If the “fuel consumption” penalty is to

be applied on all control channels equally, then p reduces to a vector of ones. Note that

one could also consider a time-/state-dependent weight vector p(t, x), without modifying

the analysis significantly.

The intuitive idea behind the game-theoretic setting is the existence of two players of

conflicting interests. The first player controls u and wishes to minimize the payoff P over

all choices of v, while the second player wishes to maximize P over all choices of u of his

opponent. At any given time, the current state is known to both players, and instantaneous

switches in both controls are permitted, rendering the problem difficult to solve, in general.

3 The Value Function and the HJI Equation

Given any initial condition (τ, xτ ), the goal is to solve the game of conflicting control actions

u, v that maximize (1) under all admissible non-anticipating strategies assigned to v(·),
while minimizing (1) over all admissible non-anticipating strategies assigned to u(·). The

structure of this problem, due to the form of the dynamics and cost at hand, satisfies the Isaacs

condition2 [19,20,28,49], and the payoff is a saddle point solution to the following terminal

value problem of a second-order partial differential equation, known as the Hamilton–Jacobi–

Isaacs (HJI) equation

⎧

⎪

⎨

⎪

⎩

Vt + inf
u∈U

sup
v∈V

{

1

2
tr(VxxΣΣ�) + V �

x ( f + Gu + Bv) + q + Lu(u) − Lv(v)

}

= 0,

(t, x) ∈ [0, T ) × R
n, V (T, x) = g(x), x ∈ R

n .

(3)

Herein, Vx and Vxx denote the gradient and the Hessian of V , respectively. The term within

the brackets is the Hamiltonian. Depending on the form of Lu(u) and Lv(v), we distinguish

three cases; a) both cost terms are of L2 type, b) both terms are of L1-type, and c) mixed

L2, L1-type cost terms. We shall investigate each case separately in what follows.

3.1 Case I: L
2–L

2

Let Lu(u) = 1
2 u� Ruu and Lv(v) = 1

2v� Rvv, with u and v taking values in U ⊂ R
ν and

V ⊂ R
µ, respectively. Assuming that the optimal controls lie in the interiors of U and V , we

may carry out the infimum and supremum operations in (3) explicitly, by taking the gradient

of the Hamiltonian with respect to u and v and setting it equal to zero to obtain

Ruu + G�(t, x)Vx (t, x) = 0,

−Rvv + B�(t, x)Vx (t, x) = 0.

Therefore, for all (t, x) ∈ [0, T ] × R
n , the optimal controls are given by

u∗(t, x) = −R−1
u G�(t, x)Vx (t, x), (4)

v∗(t, x) = R−1
v B�(t, x)Vx (t, x). (5)

2 The Isaacs condition renders the viscosity solutions of the upper and lower value functions equal, thus
making the order of maximization/minimization inconsequential.
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Inserting the above expression back into HJI equation (3) and suppressing function arguments

for notational brevity, we obtain the equivalent characterization
⎧

⎪

⎨

⎪

⎩

Vt +
1

2
tr(VxxΣΣ�) + V �

x f + q −
1

2
V �

x

(

G R−1
u G� − B R−1

v B�
)

Vx = 0,

(t, x) ∈ [0, T ) × R
n, V (T, x) = g(x), x ∈ R

n .

(6)

3.2 Case II: L
1–L

1

Let Lu(u) = p�
u |u| and Lv(v) = p�

v |v|, with u and v taking values in U = [−umin
1 , umax

1 ]×
[−umin

2 , umax
2 ] × · · · × [−umin

ν , umax
ν ], and V = [−vmin

1 , vmax
1 ] × [−vmin

2 , vmax
2 ] × · · · ×

[−vmin
µ , vmax

µ ], respectively. Then, HJI equation (3) can be written as

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Vt + inf
u∈U

sup
v∈V

{

1

2
tr(VxxΣΣ�) + V �

x f +
(

V �
x G + p�

u D(sgn(u))
)

u

+
(

V �
x B − p�

v D(sgn(v))
)

v + q0

}

= 0, (t, x) ∈ [0, T ) × R
n,

V (T, x) = g(x), x ∈ R
n,

(7)

in which D(x) ∈ R
n×n denotes the diagonal matrix with the elements of x ∈ R

n in its

diagonal, and sgn(·) denotes the signum function.

Again, we may carry out the infimum and supremum operations over u and v explicitly.

To this end, let ui be the i-th element of u and consider the following cases:

– Case ui > 0, that is, sgn(ui ) = +1. Then, if (V �
x G)i + (p�

u )i > 0, the Hamiltonian

is minimized for ui = −umin
i ≤ 0, which leads to a contradiction. On the other hand,

if (V �
x G)i + (p�

u )i < 0, the Hamiltonian is minimized for ui = umax
i > 0, which is

consistent with the hypothesis.

– Case ui < 0, that is, sgn(ui ) = −1. This is a valid case if −umin
i is strictly less than zero.

Then, if (V �
x G)i − (p�

u )i < 0, the Hamiltonian is minimized for ui = umax
i > 0 which

leads to a contradiction. On the other hand, if (V �
x G)i − (p�

u )i > 0, the Hamiltonian is

minimized for ui = −umin
i < 0, which is consistent with the hypothesis.

Thus, the optimal control law for the minimizing player is given by

u∗
i =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

umax
i ,

(

V �
x G

)

i
< −

(

p�
u

)

i

− umin
i ,

(

V �
x G

)

i
>

(

p�
u

)

i
, i = 1, . . . , ν,

0, −
(

p�
u

)

i
<

(

V �
x G

)

i
<

(

p�
u

)

i
,

(8)

namely the optimal control law turns out to be bang-off-bang control. A similar analysis for

the supremum yields the optimal control law for the maximizing player:

v∗
i =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

vmax
i ,

(

V �
x B

)

i
>

(

p�
v

)

i

− vmin
i ,

(

V �
x B

)

i
< −

(

p�
v

)

i
, i = 1, . . . , µ,

0, −
(

p�
v

)

i
<

(

V �
x B

)

i
<

(

p�
v

)

i
.

(9)
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Remark 1 We note that the control laws given by (8)–(9) are not uniquely defined whenever

(V �
x G)i = −(p�

u )i or (V �
x G)i = (p�

u )i (and similarly for v), as any value in [0, umax
i ] and

[−umin
i , 0], respectively, attains the same infimum value in (7). A problem in which either

one of these equalities is satisfied over a non-trivial time interval is a singular fuel-optimal

problem [1]. In this work, we shall assume that the minimum fuel problem is normal, in the

sense that the aforementioned equalities are not satisfied over a non-trivial time interval.

We may insert the optimal control laws (8)–(9) back into HJI equation (7), to obtain the

equivalent expression
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Vt +
1

2
tr

(

VxxΣΣ�
)

+ V �
x f + q

+
ν

∑

i=1

min

{

(V �
x G + p�

u

)

i
umax

i , 0,−(V �
x G − p�

u

)

i
umin

i

}

+
µ

∑

i=1

max

{

(V �
x B − p�

v

)

i
vmax

i , 0,−(V �
x B + p�

v

)

i
vmin

i

}

= 0,

(t, x) ∈ [0, T ) × R
n, V (T, x) = g(x), x ∈ R

n,

(10)

that is, the min and max operations are performed over three values for each control channel.

3.3 Case III: Mixed L
2–L

1

As it is evident from the previous two cases, each player’s optimality analysis is done inde-

pendently. Thus, we may combine the analysis performed in the two previous cases and

consider a third case in which one player pays a L2-type penalty, while the other pays an L1

type. For example, the case in which the minimizing player is subject to an L2-type penalty,

while the maximizing player is subject to an L1 type would yield control laws (4) and (9) for

the minimizing and maximizing player, respectively, while the HJI equation would assume

the form
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Vt +
1

2
tr(VxxΣΣ�) + V �

x f + q −
1

2
V �

x G R−1
u G�Vx

+
µ

∑

i=1

max

{

(V �
x B − p�

v

)

i
vmax

i , 0,−(V �
x B + p�

v

)

i
vmin

i

}

= 0,

(t, x) ∈ [0, T ) × R
n, V (T, x) = g(x), x ∈ R

n .

(11)

Expressions for the case in which the penalty-type assignment is switched between the two

players are also readily available.

4 A Solution Representation via a Feynman–Kac Formula

The cornerstone of the proposed approach is the nonlinear Feyman–Kac lemma, which estab-

lishes a close relationship between stochastic differential equations (SDEs) and second-order

partial differential equations (PDEs) of parabolic or elliptic type. Specifically, this lemma

demonstrates that solutions to a certain class of PDEs can be represented by solutions to SDEs

or systems of forward and backward stochastic differential equations (FBSDEs). There is a

plethora of similar theoretic results in the literature, all of which are referred to as Feynman–

Kac-type formulas, since the earliest result of this type was due to Feynman and Kac (see
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[30]). In this work, we propose to employ a nonlinear Feynman–Kac-type formula, which

links the solution of a nonlinear PDE to a system of FBSDEs. In what follows, we will

briefly review the theory of forward and backward processes and then present the nonlinear

Feynman–Kac formula.

4.1 The Forward and Backward Process

The forward process is defined as the square-integrable, {Fs}s≥0-adapted process Xs ,3 which,

for any given initial condition (t, x) ∈ [0, T ] × R
n , satisfies the Itô FSDE

{

dXs = b(s, Xs)ds + Σ(s, Xs)dWs, s ∈ [t, T ],
X t = x .

(12)

In the literature, forward process (12) is referred to as the state process. We denote the solution

to FSDE (12) as X
t,x
s , wherein (t, x) are the initial condition parameters. The solution is then

written in integral form as

X t,x
s = x +

∫ s

t

b(τ, X t,x
τ )dτ +

∫ s

t

Σ(τ, X t,x
τ )dWτ , s ∈ [t, T ], (13)

wherein the second integral of the right-hand-side is the Itô integral and τ is a dummy variable

of integration.

The associated backward process is the square-integrable, {Fs}s≥0-adapted pair (Ys, Zs)

defined via a BSDE satisfying a terminal condition
{

dYs = −h(s, X t,x
s , Ys, Zs)ds + Z�

s dWs s ∈ [t, T ],
YT = g(XT ).

(14)

The function h(·) is referred to as generator or driver. The initial condition parameters (t, x)

implicitly define the solution of the BSDE due to the terminal condition g(X
t,x
T ), and thus

we will similarly use the notation Y
t,x
s and Z

t,x
s for the solution associated with a particular

initial condition parameter (t, x). The integral form of (14) is simply

Y t,x
s = g

(

X
t,x
T

)

+
∫ T

s

h
(

τ, X t,x
τ , Y t,x

τ , Z t,x
τ

)

dτ −
∫ T

s

(

Z t,x
τ

)�
dWτ , s ∈ [t, T ]. (15)

Whenever the forward SDE does not depend on Ys or Zs , the resulting FBSDEs are decoupled.

The difficulty in dealing with BSDEs is that, in contrast to FSDEs, and due to the presence

of a terminal condition, integration must be performed backwards in time, i.e., in a direction

opposite to the evolution of the filtration. If we do not impose the solution to be adapted (i.e.,

non-anticipating, obeying the evolution direction of the filtration), we must require new defini-

tions such as the backward Itô integral or, more generally, the so-called anticipating stochastic

calculus [39]. In this work, we will restrict the analysis to adapted—non-anticipating—

solutions. As shown in [39], an adapted solution is obtained if the conditional expectation of

the process is back-propagated, by setting Ys � E[Ys |Fs]. In a sense, systems of FBSDEs

describe two-point boundary value problems involving SDEs, with the extra requirement that

their solution is adapted to the forward filtration.

The following lemma states that, under the assumptions of Sect. 2.1, imposed on b,Σ, g,

and h, the adapted solution (Y, Z) can be written as deterministic functions of time and the

state process [16]:

3 While X is a function of s and ω, we shall use Xs for notational brevity.
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Lemma 1 (The Markovian Property): Under the assumptions of Sect.2.1, there exist deter-

ministic functions V : [0, T ] × R
n → R and d : [0, T ] × R

n → R
n , such that the solution

(Y t,x , Z t,x ) of BSDE (14) is

Y t,x
s = V

(

s, X t,x
s

)

, Z t,x
s = Σ�(s, X t,x

s )d
(

s, X t,x
s

)

, (16)

for all s ∈ [t, T ].

4.2 The Nonlinear Feynman–Kac Lemma

The following lemma, which links the solution of a class of PDEs to that of FBSDEs, can be

proven by an application of Itô’s formula (see [16,39,55]):

Lemma 2 (Nonlinear Feynman–Kac): Consider the Cauchy problem
⎧

⎨

⎩

Vt +
1

2
tr(VxxΣ(t, x)Σ�(t, x)) + V �

x b(t, x) + h(t, x, V,Σ�(t, x)Vx ) = 0,

(t, x) ∈ [0, T ) × R
n, V (T, x) = g(x), x ∈ R

n,

(17)

wherein the functions Σ, b, h and g satisfy mild regularity conditions (see Remark 2). Then

(17) admits a unique (viscosity) solution V : [0, T ] × R
n → R, which has the following

probabilistic representation:

V (t, x) = Y
t,x
t , ∀(t, x) ∈ [0, T ] × R

n, (18)

wherein (Xs, Ys, Zs) is the unique adapted solution of FBSDE system (12), (14). Further-

more,

(Y t,x
s , Z t,x

s ) =
(

V (s, X t,x
s ), Σ�(s, X t,x

s )Vx (s, X t,x
s )

)

, (19)

for s ∈ [t, T ], and if (17) admits a classical solution, then (18) provides that classical

solution.

Remark 2 Concerning the regularity conditions of Lemma 2, [55] requires the functions

Σ, b, h and g to be continuous, Σ and b to be uniformly Lipschitz in x , and h to be Lipschitz in

(y, z), uniformly w.r.t (t, x). However, the nonlinear Feynman–Kac lemma has been extended

to cases in which the driver is only continuous and satisfies a quadratic growth in z; see

References [9,11,32,37]. Concerning existence of solutions to the HJI equation in this case,

see [10].

Remark 3 The viscosity solution is to be understood in the sense of V (t, x)= limε→0 V ε(t, x),

uniformly in (t, x) over any compact set, where V ε is the classical solution of the non-

degenerate PDE
⎧

⎨

⎩

Vt +
1

2
tr(VxxΣε(t, x)Σ�

ε (t, x)) + V �
x bε(t, x) + hε(t, x, V,Σ�

ε (t, x)Vx ) = 0,

(t, x) ∈ [0, T ) × R
n, V (T, x) = gε(x), x ∈ R

n,

in which Σε, bε, hε and gε are smooth functions that converge to Σ, b, h and g uniformly

over compact sets, respectively, and Σε(t, x)Σ�
ε (t, x) ≥ ε I +Σ(t, x)Σ�(t, x) for al (t, x).

By comparing the PDEs in Sects. 3.1, 3.2 and 3.3 with Cauchy problem (17), we may

conclude that Lemma 2 can be applied to each HJI equation of these sections under a certain

decomposability condition:
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Assumption 1 There exist matrix-valued functions Γ : [0, T ] × R
n → R

p×ν and Λ :
[0, T ]×R

n → R
p×µ such that G(t, x) = Σ(t, x)Γ (t, x) and B(t, x) = Σ(t, x)Λ(t, x) for

all (t, x) ∈ [0, T ] × R
n .

Assumption 1 restricts the range of G and B to be a subset of the range of Σ and therefore

excludes cases wherein a channel containing control input does not contain noise. Notice

however that the converse is allowed. Under Assumption 1, the HJI equations in Sects. 3.1,

3.2 and 3.3 (Eqs. 6, 10 and 11, respectively) satisfy Cauchy problem (17) standard form. We

readily obtain the following SDE coefficients b(·) and h(·):

b(t, x) ≡ f (t, x) (20)

and

Case I : h(t, x, z) ≡ q −
1

2
z�

(

Γ R−1
u Γ � − ΛR−1

v Λ�
)

z, (21)

Case II : h(t, x, z) ≡ q +
ν

∑

i=1

min

{

(

z�Γ + p�
u

)

i
umax

i , 0, − (z�Γ − p�
u

)

i
umin

i

}

+
µ

∑

i=1

max

{

(z�Λ − p�
v

)

i
vmax

i , 0,−
(

z�Λ + p�
v

)

i
vmin

i

}

,

(22)

Case III : h(t, x, z) ≡ q −
1

2
z�Γ R−1

u Γ �z

+
µ

∑

i=1

max

{

(

z�Λ − p�
v

)

i
vmax

i , 0,−
(

z�Λ + p�
v

)

i
vmin

i

}

.

(23)

The (viscosity) solution of PDEs (6), (10) or (11) are thus obtained by simulating the FBSDE

systems given by (12) and (14) per definitions (20) and (21), (22) or (23), respectively. Notice

that the drift of the forward process corresponds to that of the uncontrolled (u = v = 0)

system dynamics.

5 Games Without a Fixed Time of Termination

The game formulation presented in Sect. 2 assumes that the game has a fixed, prespecified

duration. Nevertheless, in many games this is not the case; rather, the game terminates when a

particular state (or set of states) is reached. Since the presented approach is a sampling-based

method, allowing the game to continue without imposing an upper bound on its duration may

yield trajectory samples that have an infinite time duration, and thus cannot be simulated.

However, we may combine the two aforementioned game formulations to obtain a fixed final

time/first exit problem, in which the game terminates as soon as the state of termination has

been reached, or a fixed time duration has passed, whichever event occurs first. The fixed final

time in this case essentially acts as an upper bound on the duration of the game. To formulate

the problem in this setting, let G be the domain of the game space and let ∂G ∈ C1 be its

boundary, the crossing of which signals game termination, i.e., ∂G represents the terminal

surface. We may replace the payoff in (1) by



Dyn Games Appl

P(u(·), v(·); x0) = E

⎡

⎣Ψ (T , x(T )) +
T

∫

0

q(t, x(t)) + Lu(u(t)) − Lv(v(t))dt

⎤

⎦ , (24)

in which T and Ψ (·) are defined as follows:

T � min{τexit, T }, with τexit � inf{s ∈ [0, T ] : x(s) ∈ ∂G}, (25)

that is, τexit is the first hitting time at which a trajectory reaches the boundary ∂G, and

Ψ (t, x) �

{

g(x), (t, x) ∈ {T } × G,

ψ(t, x), (t, x) ∈ [0, T ) × ∂G.
(26)

Here, g(·) is the terminal payoff of (1), while ψ(·) is a function assigning a terminal payoff

for time instants t < T , whenever the trajectories hit the terminal surface. Following the

same procedure as in Sect. 2, and under Assumption 1, the resulting HJB PDE is [19]

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Vt +
1

2
tr(VxxΣΣ�) + V �

x b + h(t, x,Σ�Vx ) = 0, (t, x) ∈ [0, T ) × G,

V (T, x) = g(x), x ∈ G,

V (t, x) = ψ(t, x), (t, x) ∈ [0, T ) × ∂G,

(27)

in which b(·) and h(·) may take any of the forms given by Eqs. (20)–(23). The corresponding

FBSDEs that yield a probabilistic solution to this problem are [55]
{

dXs = b(s, Xs)ds + Σ(s, Xs)dWs, s ∈ [t, T ]
X t = x .

(28)

and
{

dYs = −h(s, Xs, Zs)ds + Z�
s dWs, s ∈ [t, T ],

YT = Ψ (XT ).
(29)

6 Obtaining a Numerical Solution to FBSDE Systems

FBSDEs have received a lot of attention in the literature, and their solution has been studied,

by and large, independently from their connection to PDEs. Several results appear within

the field of mathematical finance, and a few generic numerical schemes have been proposed

[4,6,36]. In this paper, we employ a scheme proposed in previous work by the authors [17],

which capitalizes on the regularity present whenever systems of FBSDEs are linked to PDEs.

6.1 Time Discretization of FBSDEs

On a time grid {t = t0 < · · · < tN = T } for the interval [t, T ], we denote by ∆ti � ti+1 − ti
the (i+1)-th interval of the grid (which can be selected to be constant) and ∆Wi � Wti+1 −Wti

the (i + 1)-th Brownian motion increment; here, ∆Wi is simulated as
√

∆tiξi , where ξi ∼
N (0, I ). We also denote X i � X ti for notational brevity. The simplest scheme for the FSDE

is the Euler–Maruyama scheme [31]:
{

X i+1 ≈ X i + b(ti , X i )∆ti + Σ(ti , X i )∆Wi , i = 0, . . . , N − 1,

X0 = x .
(30)
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Note that several higher-order schemes exist that can be used alternatively. The interested

reader is referred to [31] for a detailed presentation.

The backward process is discretized by introducing the notation Yi � Yti and Zi � Z ti .

Recalling that adapted BSDE solutions impose a back-propagation of conditional expecta-

tions, i.e., Ys � E[Ys |Fs] and Zs � E[Zs |Fs], Eq. (14) is approximated by

Yi = E[Yi |Fti ] ≈ E[Yi+1 + h(ti+1, X i+1, Yi+1, Zi+1)∆ti |X i ], (31)

for i = N − 1, . . . , 0. We note that the term Z�
i ∆Wi in (14) vanishes in the last equality

because of the conditional expectation. (∆Wi is zero mean and independent of Zi , X i .)

Furthermore, Fti is replaced by X i in (31) by virtue of Lemma 1. In light of Eq. (19), the

Z -process in (14) corresponds to the term Σ�(s, X
t,x
s )Vx (s, X

t,x
s ). Thus, we may write

Zi = E[Zi |Fti ] = E[Σ�(ti , X i )∇x V (ti , X i )|X i ]
= Σ�(ti , X i )∇x V (ti , X i ). (32)

The above expression requires knowledge of the solution on a neighborhood x at time ti , that

is, V (ti , x). The back-propagation is initialized at

YT = g(XT ), ZT = Σ(T, XT )�∇x g(XT ), (33)

assuming that g(·) is differentiable almost everywhere. Several ways exist to numerically

approximate the conditional expectation in (31). In this work, we employ the least squares

Monte Carlo (LSMC) method, which is briefly reviewed in what follows.

6.2 Conditional Expectation Approximation and Its Application

The least squares Monte Carlo (LSMC) method for approximating conditional expectations

was initially introduced within the field of financial mathematics by Longstaff and Schwartz

[38]. Given two square-integrable random variables X and Y for which we can sample M

independent copies of (X, Y ) pairs, the method enables estimating conditional expectations

of the form E[Y |X ], based on the principle that the conditional expectation of a random

variable is a function of the variable on which it is conditioned on: E[Y |X ] = φ∗(X), where

φ∗ is the solution to the infinite-dimensional minimization problem

φ∗ = arg min
φ

E[|φ(X) − Y |2], (34)

and φ ranges over all measurable functions with E[|φ(X)|2] < ∞. In practice, this problem is

substituted by a finite-dimensional approximation by decomposing φ(·) ≈
∑k

i=1 ϕi (·)αi =
ϕ(·)α, with ϕ(·) being a row vector of k predetermined basis functions and α a column vector

of constants, and replacing the expectation operator with its empirical estimator [23]. Thus,

one obtains the following least squares problem:

α∗ = arg min
α∈Rk

1

M

M
∑

j=1

|ϕ(X j )α − Y j |2, (35)

wherein (X j , Y j ), j = 1, . . . , M are independent copies of (X, Y ). The final expression for

the LSMC estimator is simply E[Y |X = x] = φ∗(x) ≈ ϕ(x)α∗. In order to numerically

solve FBSDEs, the LSMC method is used to approximate the conditional expectation in

Eq. (31) for each time step. We begin by sampling M independent trajectories of the FSDE,

{Xm
i }i=1,...,N , m = 1, . . . , M . The BSDE numerical scheme is initialized at the terminal



Dyn Games Appl

time T and is iterated backwards along the time grid. At any given time step ti , M pairs

of data (Y m
i , Xm

i )4 are available, on which linear regression is performed to estimate the

conditional expectation of Yi as a function of x at the time step ti . Thus, we obtain an

approximation of the Value function V at time ti , which is valid for the neighborhood of

the state space that has been explored by the sample trajectories at that time instant, since

V (ti , x) = E[Yi |X i = x] ≈ ϕ(x)αi . The Y m
i sample values calculated before the regression

are then replaced by their projection: Y m
i = ϕ(Xm

i )αi . Finally, the associated values for

Zi are obtained by taking the gradient with respect to x on the choice of basis functions

(assuming that they are differentiable almost everywhere), as follows:

Zm
i ≈ Σ(ti , Xm

i )�∇xϕ(Xm
i )αi . (36)

The aforementioned process is repeated for ti−1, . . . , t0. The proposed algorithm is then

summarized as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Initialize : YT = g(XT ), ZT = Σ(T, XT )�∇x g(XT ),

αi = arg min
α

1

M

∥

∥

∥
Φ(X i )α −

(

Yi+1 + ∆ti h(ti+1, X i+1, Yi+1, Zi+1)

)

∥

∥

∥

2
,

Yi = Φ(X i )αi , Zm
i = Σ(ti , Xm

i )�∇xϕ(Xm
i )αi ,

(37)

where m = 1, . . . , M and the matrix Φ contains all basis function evaluations for all data

points X i .
5 The minimizer in (37) can be obtained by directly solving the normal equation,

or by performing gradient descent. The algorithm output is essentially the collection of αi ’s,

i.e., the basis function coefficients for each time instant, allowing for an approximation of

the value function which is valid for the area of the state space explored by the FSDE.

7 Iterative Schemes Based on Importance Sampling

The method presented thus far suffers from a significant practical limitation. Specifically, an

approximation to the HJI PDE solution is obtained, which is accurate for those areas of the

game space that are visited by trajectories of uncontrolled dynamics (Eq. 12), i.e., trajectories

in which the players do not apply any control input. Nevertheless, the optimal, saddle point

trajectory may lie on a different area of the state space, an area which uncontrolled trajectories

might not access. In this case, simply extrapolating the locally obtained solution to cover the

rest of the game space may not be accurate. This is a practical limitation, because in theory, if

one could sample infinitely many trajectories, they would cover the entire game space, thus

eliminating this issue. While generating infinitely many sample trajectories is not a practical

solution, the issue can be effectively addressed if one is given the ability to alter the drift

term of these sampled trajectories. By changing the drift during sampling, we can essentially

select the area of the game space for which the obtained solution is accurate.

In previous work by the authors [17], a scheme involving a drift term modification has

been constructed through Girsanov’s theorem on the change of measure [30,48]. Indeed, the

system of FBSDEs given by Eqs. (12) and (14) is equivalent, in the sense explained below,

to one with modified drift

4 Here, Y m
i

denotes the quantity Y m
i+1 +∆ti h(ti+1, Xm

i+1, Y m
i+1, Zm

i+1), which is the Y m
i

sample value before
the conditional expectation operator has been applied.
5 Whenever the m index is not present, the entirety with respect to this index is to be understood.
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{

d X̃s = [b(s, X̃s) + Σ(s, X̃s)Ks]ds + Σ(s, X̃s)dWs, s ∈ [t, T ],
X̃ t = x,

(38)

along with the compensated BSDE

{

dỸs = [−h(s, X̃s, Ỹs, Z̃s) + Z̃�
s Ks]ds + Z̃�

s dWs, s ∈ [t, T ],
ỸT = g(X̃T ),

(39)

for any measurable, bounded and adapted process Ks : [0, T ] → R
p . We note that this

equivalence is not path-wise, since different paths are realized by both the forward as well

as the backward process, under the modified drift dynamics. Nevertheless, the solution at

starting time t , i.e., (Yt , Z t ), remains the same. The formal proof which involves Girsanov’s

theorem on the change of measure can be found in [17]. Additionally, one can explain why

the modified system of FBSDEs (38) and (39) may substitute the original FBSDE system

by examining the associated PDEs. Indeed, the FBSDE problem defined by (38) and (39)

corresponds to the PDE problem

⎧

⎨

⎩

Vt +
1

2
tr(VxxΣΣ�) + V �

x (b + Σ K ) + h(t, x, V,Σ�Vx ) − V �
x Σ K = 0,

(t, x) ∈ [0, T ) × R
n, V (T, x) = g(x),

(40)

which is identical to PDE (17), since the term V �
x Σ K is both added and subtracted. Therefore,

the FBSDEs, while being different, are associated with the same PDE problem.

To implement importance sampling for the problem at hand, we may apply any nominal

controls ū, v̄ in the game dynamics given by (2), which, in light of the definition of Γ (·) and

Λ(·) in Assumption 1, exhibit the form

dx(t) = [ f (t, x(t)) + Σ(t, x(t)) (Γ (t, x(t))ū(t) + Λ(t, x(t))v̄(t))]dt + Σ(t, x(t))dWt .

(41)

By comparison with the forward process (38), we thus have

Ks = Γ (s, Xs)ū(s) + Λ(s, Xs)v̄(s), s ∈ [t, T ], (42)

while b(s, Xs) ≡ f (s, Xs) per (20). We note that, while the nominal controls ū, v̄ may be

any controls, we are especially interested in the case in which we assign controls calculated

at a previous run of the algorithm. Thus, one arrives at an iterative scheme, in which a more

accurate approximation of the saddle point solution is obtained at each iteration. On the time

grid of Sect. 6, we define Ki � Kti and use the Euler–Maruyama scheme. Similarly, the most

straightforward way to embed importance sampling in the backward process is to simply

define

h̃(s, x, y, z, k) � h(s, x, y, z) − z�k, (43)

and utilize the discretized scheme of Sect. 6 using h̃ instead of h. The modified procedure is

summarized in Algorithm 1.

Note that one can also terminate this algorithm when the evaluation of payoff (1) in

successive iterations does not exhibit significant change, in lieu of a predetermined number

of iterations Nit.
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Algorithm 1 NFK-FBSDE Algorithm with Importance Sampling

Input: Initial condition x0, initial control inputs ū, v̄ if available (otherwise zero or random), terminal time
T , number of Monte Carlo samples M , number of iterations Ni t .
Output: Basis function coefficients for the value function, αi .

1: procedure NFK_FBSDE(x0, ū, v̄, T , M , γ , N , Nit)
2: Assign M control inputs ū, v̄ using either initial, zero, or random values, to generate collections Uc , Vc .
3: Sample a collection X of M state trajectories by applying discretization (30) on equation (41), using

the control sequences of Uc , Vc;
4: for 1 : Nit do

5: Using X and Uc , repeat backward scheme (37) for N − 1 time steps, using h̃ of equation (43) to
obtain αi for each time step i = 0, . . . , N − 1;

6: Sample M new trajectories per discretization (30), using the calculated optimal controls u∗ and v∗,
to replace the trajectories of X , and evaluate payoff (1);

7: end for

8: return αi .
9: end procedure

8 Error Analysis

The main sources of errors in the proposed numerical algorithm consist of (a) the time

discretization scheme, and (b) the LSMC method of approximating conditional expectations.

The time discretization error in most schemes in the literature decreases at a rate
√

N , where

N is the number of (equidistant) time steps [36]. Convergence of the LSMC method of

approximating conditional expectations (Sect. 6.2) is straightforward: the error obtained by

projecting the unknown function φ in (34) to a set of basis functions vanishes as their number

tends to infinity, thereby spanning the entire space in which the original unknown function

lies. Furthermore, the empirical estimator in (35) of the expectation operator converges as

the Monte Carlo samples tend to infinity; the error in this case is inversely proportional to

the square root of the number of realizations,
√

M [54]. Note that the PDE-FBSDE problem

equivalence, illustrated by the nonlinear Feynman–Kac lemma (Sect. 4), being exact does

not introduce any errors. Similarly, the importance sampling component which is based on

Girsanov’s theorem (Sect. 7) is also exact; numerical differences appear only for finite number

of samples. Proving the overall convergence of the proposed discretization scheme however

is more involved and is part of our ongoing research.

9 Simulation Results

To demonstrate the algorithm’s performance, we present simulations performed on two dif-

ferent systems. First, a linear system is presented in Sect. 9.1, in which the game can have

either a fixed duration, or is terminated when the game state reaches a particular value, as

described in Sect. 5. The algorithm is able to address both cases. Next, a stochastic differential

game of a double integrator plant is presented in Sect. 9.2.

9.1 An L
2–L

2 Linear System Example With/Without Fixed Time of Termination

We consider the L2–L2 payoff form and simulate the algorithm for dx = (0.5x + 0.5u +
0.25v)dt + 0.5dw, with q(t, x) = 0, Ru = 1, Rv = 2, x(0) = 1, and g(x(T )) = 10x2(T ),

thus penalizing deviation from the origin at the time of termination, T . We distinguish two

cases: in case (a), the time of termination is specified a priori to be T = 2, whereas in case
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Fig. 1 Trajectories of the system of the. Uncontrolled sample trajectories are depicted in blue while optimally
controlled trajectories in red. a The game terminates after a fixed, prespecified time duration T = 2, with a
payoff of 3.66. b The game terminates as soon as the state x = 0 is reached, or a time duration of t = 2 has
passed, whichever event occurs first. The payoff value is 3.01 (Color figure online)

(b), the game terminates when the x-axis (x = 0) is crossed, or the time reaches t = 2,

whichever event occurs first. Two thousand trajectories were generated on a time grid of

∆t = 0.005. The use of importance sampling for this problem is not necessary. Figure 1

shows the results for both cases (a) and (b), depicting uncontrolled sample trajectories in

blue and optimally controlled trajectories in red, after the optimal controls u and v have been

applied. The respective mean payoff values are 3.66 and 3.01, respectively.

9.2 The L
1–L

2 Double Integrator

In this section, we consider a stochastic differential game inspired by the fuel-optimal double

integrator problem. The deterministic, one-player case of this problem offers a closed form

solution; see [1, Ch. 8–6]. Specifically, the deterministic problem reads as follows: Given the

system equations

ẋ1(t) = x2(t), ẋ2(t) = u(t), |u(t)| ≤ 1, (44)

we wish to find the control which forces the system from an initial state (x10, x20) to the goal

state (0, 0), and which minimizes the fuel

J =
∫ T

0
|u(t)| dt, (45)

where T is a fixed (i.e., prespecified) response time. Existence of solutions is guaranteed

if T satisfies a number of conditions depending on the values of the initial state. For an

initial state (x10, x20) in the upper right quadrant of the plane, the condition reads T ≥
x20 +

√

4x10 + 2x2
20 and guarantees the existence of a unique solution. The corresponding

fuel-optimal control sequence is {−1, 0,+1}, in which the control switching times t1 and t2
are

t1 = 0.5

(

T + x20 −
√

(T − x20)2 − 4x10 − 2x2
20

)

, (46)

t2 = 0.5

(

T + x20 +
√

(T − x20)2 − 4x10 − 2x2
20

)

, (47)
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Fig. 2 Simulation results for β = 10−8. a The mean of the controlled system trajectories of each iteration
(grayscale) and after the final iteration (red). The black dot represents the origin. b The minimizing and
maximizing control input for the mean system trajectory for each iteration (colored) and after the final iteration
(black). We see that the optimal minimizing control sequence {−1, 0,+1} is finally recovered (Color figure
online)

that is,

u∗(t) =

⎧

⎨

⎩

−1, t ∈ [0, t1),

0, t ∈ [t1, t2),

1, t ∈ [t2, T ].
(48)

Herein, we consider a stochastic differential game based on this problem, in which the

minimizing player has a control restricted to |u(t)| ≤ 1 and pays an L1 penalty, while the

maximizing player has no control constraints and pays an L2 penalty. The dynamics are given

by

dx1(t) = x2(t) dt, dx2(t) = (u(t) + β v(t)) dt + σ dw(t), |u(t)| ≤ 1, (49)

i.e., stochasticity enters in form of perturbations in the control input channel. Here, β is a

constant, the assigned value of which we may vary. An alternative stochastic counterpart

could feature noise in the first channel as well. The payoff functional is given by:

P = E

[

10 (x2
1 (T ) + x2

2 (T )) +
∫ T

0
|u(t)| − 2.5 v2(t) dt

]

. (50)

For the purposes of simulation, 3,000 trajectories were generated on a time grid of ∆t =
0.01, with σ = 0.1, T = 4 and (x10, x20) = (0.8, 1.2). The proposed algorithm was run

for 50 iterations, using importance sampling. We run the algorithm for a very small value

of β, (e.g., β = 10−8), to investigate whether the solution of the stochastic differential

game resembles the solution of the deterministic optimal control problem, in particular with

respect to the optimal control sequence {−1, 0,+1}. Indeed, as shown in Fig. 2b, this optimal

control sequence is recovered. Increasing β = 0.1, Fig. 3a depicts the mean of the controlled

trajectories in phase-plane after each iteration of the algorithm (gray scale). The trajectory

that corresponds to the final iteration is marked in red. Figure 3b depicts the payoff mean

± 3 standard deviations per iteration of the algorithm. Interestingly enough, the optimal

minimizing control now differs, as shown in Fig. 3c.

10 Conclusions

In this work, we have presented a sampling-based algorithm designed to solve various classes

of stochastic differential games, namely games in which the dynamics are affine in control,
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Fig. 3 Simulation results for β = 0.1. a The mean of the controlled system trajectories of each iteration
(grayscale) and after the final iteration (red). The black dot represents the origin. b Cost mean ± 3 standard
deviations per iteration. c The minimizing and maximizing control input for the mean system trajectory for each
iteration (colored) and after the final iteration (black). We see that the optimal minimizing control sequence
has now changed (Color figure online)

and the payoff involves either an L2 or an L1 type of control penalty. The time duration of

the game can either be fixed and specified a priori, or the game may terminate as soon as a

terminal surface in the game space is crossed (along with an upper bound on the maximum

time duration). The cornerstone of the proposed approach is the formulation of the prob-

lem in terms of a decoupled pair of forward and backward stochastic differential equations

(FBSDEs). This is done by means of a nonlinear version of the Feynman–Kac lemma, which

suggests a probabilistic representation of the solution to the nonlinear Hamilton–Jacobi–

Isaacs equations that arise for each class, expressed in the form of this decoupled system of

FBSDEs. This system of FBSDEs can then be simulated using linear regression. In our paper,

we embed these techniques within an iterative scheme based on Girsanov’s theorem on the

change of measure, to effectively address stochastic differential games. The applicability of

the proposed method is demonstrated by means of numerical examples.
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