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Abstract— We consider the problem of finite-horizon optimal
control of a discrete linear time-varying system subject to a
stochastic disturbance and fully observable state. The initial
state of the system is drawn from a known Gaussian distri-
bution, and the final state distribution is required to reach
a given target Gaussian distribution, while minimizing the
expected value of the control effort. We derive the linear optimal
control policy by first presenting an efficient solution for the
diffusion-less case, and we then solve the case with diffusion
by reformulating the system as a superposition of diffusion-less
systems. We show that the resulting solution coincides with a
LQG problem with particular terminal cost weight matrix.

I. INTRODUCTION

The work in this paper is aimed at solving the problem

of the optimal steering of a discrete time varying stochastic

linear system, with a fully observable state, a known Gaus-

sian distribution of the initial state, and a state and input-

independent white-noise Gaussian diffusion. The goal is to

find the optimal input to steer the state of the system to

a pre-specified target Gaussian distribution in a given time,

while minimizing the expected value of the input signal �2-

norm. Unlike the classical LQG case [1], where the final

state covariance appears as a by-product of the solution, here

we are required to reach exactly the target covariance at the

given final time.

The covariance steering problem is relevant to a wide

range of control and path-planning applications, such as

decentralized control of swarm robots [2], closed-loop cool-

ing [3], and other areas, where it is more natural to specify

a distribution over the state rather than a fixed set of values.

The steady-state covariance control problem, (a.k.a. the

Covariance Assignment problem), has been extensively stud-

ied for both continuous and discrete-time stochastic linear

systems [4], [5], [6], [7]. A finite-time optimal solution for

the continuous case has been recently derived in [8], [9],

and [10], with a connection to the problems of Shrödinger

bridges [11] and the Optimal Mass Transfer [12]. In these

works the authors showed that, if the diffusion term affects

the system through all control input channels, the target

probability can always be achieved in finite time, and the so-

lution is given in state-feedback form. A more general case,

in which the control input and the diffusion channels are

different, can be solved using a soft constraint on the target

distribution (such as using the Wasserstein distance [13]), or

by numerical optimization methods [14].
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The discrete finite-time case has been addressed in [15],

in which the author used a relaxed formulation for the target

covariance in order to facilitate its numerical solution. In this

paper we treat a similar problem as in [15], but we impose

a hard equality constraint in the final distribution instead, so

the relaxation imposed in [15] is not needed. In addition, the

solution in [15] is based on a non-linear convex programming

with a large number of variables (O{n×m×N}, where n is

a state size, m is an input size, and N is the number of time

steps). The proposed method, on the other hand, requires

only n2/2+n decision variables.

Another special case of linear discrete finite-time Gaussian

stochastic systems was mentioned in [16], in which the

author shows a relation between the relative entropy and

the minimum energy LQG optimal control problems. The

system discussed in [16] has a full control authority and

the disturbance matrix is invertible. This paper extends the

results presented in [16] to a general linear system, In

addition, the conditions for the solvability presented in [16]

follow naturally from the analysis presented here.

Main Contribution: In this paper we first derive the

minimum-control-effort optimal steering solution for fully-

observable linear time-varying discrete stochastic systems,

subject to boundary conditions in terms of their Gaussian

distribution. The problem considered herein can be viewed

as a subset of the problems presented in [15], but with a

different solution formulation. We provide necessary con-

ditions for the existence of the solution, and proposes an

efficient numerical scheme for attaining it. Furthermore, we

show that the resulting controller coincides with solving a

LQG [1] problem, with the particular choice of the terminal

cost weight matrix.

The notation used throughout this paper is quite standard.

A unit matrix is denoted as I, and E[·] denotes the expectation

operator. A random variable x with normal distribution is

denoted as x ∼ N (µ,Σ), where µ is its mean, and Σ its

covariance matrix. The trace of a square matrix is denoted

by Tr [·]. The positive-definiteness of the square matrix R is

denoted as R > 0, and semi-definiteness is denoted as R ≥ 0.

A zero matrix with dimensions m×n is denoted as 0m×n. An

n×n diagonal matrix with (a1,a2, . . . ,an) on the diagonal is

denoted as diag[a1,a2, . . . ,an].

II. PROBLEM STATEMENT

A. Problem Formulation

Consider the discrete stochastic linear time-varying system

xk+1 = Akxk +Bkuk +Gkwk. k = 0,1, ...,N, (1)

where x∈R
n is the state, u∈R

m is the control input, and w∈
R

r is a zero-mean white Gaussian noise with unit covariance.
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Our objective is to steer the trajectories of system (1) from

a given initial Gaussian distribution having mean E[x0] = µ0

and covariance Σ0 to a final Gaussian distribution having

mean E[xN+1] = µF and covariance ΣF . That is, we wish the

initial and final states to be distributed according to

x0 ∼ N (µ0,Σ0), xN+1 ∼ N (µF ,ΣF), (2)

with µ0,Σ0,µF ,ΣF given, while minimizing the cost function

J(u0, ...,uN) = E[

N∑

k=0

u�kuk ]. (3)

B. System Dynamics

For each step k, the system state xk can be explicitly

calculated as follows. Let Ak1,k0
, Bk1,k0

, Gk1,k0
denote the

transition matrices of the state, the input, and the diffusion

term from step k0 to step k1 +1 (k1 > k0) as follows

Ak1,k0
= Ak1

Ak1−1 · · ·Ak0
, Ak,k = Ak, (4a)

Bk1,k0
= Ak1,k0+1Bk0

, Bk,k = Bk, (4b)

Gk1,k0
= Ak1,k0+1Gk0

, Gk,k = Gk. (4c)

Let also Uk1,k2
and Wk1,k2

(k1 ≤ k2) be the vectors

Uk1,k2
=

⎡
⎢⎢⎢⎢⎣

uk1

uk1+1

...

uk2

⎤
⎥⎥⎥⎥⎦
, Wk1,k2

=

⎡
⎢⎢⎢⎢⎣

wk1

wk1+1

...

wk2

⎤
⎥⎥⎥⎥⎦
, (5)

and, for simplicity, let Uk �U0,k and Wk �W0,k. For conve-

nience, define the matrices

Bk1,k0
�

[
Bk1,k0

Bk1,k0+1 · · · Bk1,k1

]
, (6a)

Gk1,k0
�

[
Gk1,k0

Gk1,k0+1 · · · Gk1,k1

]
, (6b)

and let Ak � Ak,0, Bk � Bk,0, Gk � Gk,0. The system state at

step k+1 is given by

xk+1 = Akx0 +BkUk +GkWk. (7)

Since E[Wk] = 0, the mean of the state obeys

µk+1 � E[xk+1] = Akµ0 +BkE[Uk]. (8)

Defining now Ũk �Uk −E[Uk], x̃k � xk −µk. It follows that

x̃k+1 = Akx̃0 +BkŨk +GkWk. (9)

The state covariance is given by1

Σk+1 � E[x̃k+1x̃�k+1]

= AkΣ0A�k +BkE[ŨkŨ
�
k ]B

�
k +GkE[WkW

�
k ]G

�
k

+BkE[Ũkx̃�0]A
�
k +AkE[x̃0Ũ�

k ]B
�
k

+BkE[ŨkW
�
k−1]G

�
k−1 +Gk−1E[Wk−1Ũ�

k ]B
�
k , (10)

1A causal state-feedback controller at step k is independent of the
diffusion term at step k′, with k′ ≥ k.

and the cost function (3) can be written as

J(UN) = E[U�
NUN ] = E[UN ]

�
E[UN ]︸ ︷︷ ︸

Jµ

+Tr [E[ŨNŨ�
N ]]︸ ︷︷ ︸

JΣ

. (11)

It will be assumed in this paper that the system (1) is

controllable, that is, if Gk ≡ 0, the reachable set at k = N +1

is R
n, that is, for any xS ∈ R

n and xF ∈ R
n, there exist a

set of controls {uk}
N
k=0 that brings the state from x0 = xS to

xN+1 = xF . From (7) it is straightforward to conclude that

system (1) is controllable if and only if BN is full row rank.

III. OPTIMAL COVARIANCE STEERING

As seen from (8), (10) and (11), the problem of steering

the mean and the covariance can be separated into two

independent subproblems: finding an optimal E[UN ] that min-

imizes Jµ satisfying the mean constraint (8) and the boundary

condition (2), and finding an optimal ŨN that minimizes JΣ

satisfying the covariance constraint (10) and the boundary

condition (2). This section presents an analytical solution to

both problems.

A. Steering the Mean

Since the dynamics of the state mean are governed by (8),

and the cost function that is influenced by the mean is given

in (11), the optimal solution for E[UN ] will not influence the

covariance part of the solution. The solution for the mean

steering is well known in the literature, and is given below

for the sake of completeness.

Proposition 1: Given the controllable system (1), the op-

timal control E[U�
N ] that minimizes the cost

Jµ = E[UN ]
�
E[UN ] =

N∑

k=0

E[uk]
�
E[uk],

subject to the constraint

AN µ0 +BNE[UN ] = µF , (12)

is given by

E[U�
N ] = B�N(BNB�N)

−1
(µF −AN µ0). (13)

Now that we have the mean steering solution, the rest

of the paper will concentrate on solving the covariance

steering problem, using the deviation-from-mean dynamics

given by (9), and the covariance-part cost JΣ given in (11).

For simplicity, we will assume that the original system has

zero-mean constraints for the initial and final states.

B. Steering the Covariance

In this section we present the covariance steering controller

by first deriving a necessary condition for the solution, and

then presenting a numerical scheme to find a controller that

satisfies these necessary conditions.

To this end, assume a controller of the form

ŨN = Lx̃0, (14)
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where L ∈ R
(Nr)×n. The covariance-related part of the cost

function (11) can now be rewritten as:

JΣ = Tr [E[ŨNŨ�
N ]] = Tr [LΣ0L�]. (15)

1) Diffusion-less Case: Suppose that Gk = 0 for all k ∈
[0,N] in (1). In this case, the final state covariance (10)

becomes

ΣF = ΣN+1 = ANΣ0A�N +BNE[ŨNŨ�
N ]B

�
N

+BNE[ŨN x̃�0]A
�
N +ANE[x̃0Ũ�

N ]B
�
N . (16)

Applying the controller (14) results in the final covariance

given by

ΣN+1 =(AN +BNL)Σ0(AN +BNL)
�
= ΣF . (17)

The following proposition describes the diffusionless lin-

ear discrete covariance steering control algorithm:

Proposition 2: Let the controllable system (1), with zero

diffusion, and positive definite initial state covariance Σ0 > 0,

and let

V0S0V�
0 = Σ0, VF SFV�

F = ΣF , UΩSΩV�
Ω = Ω, (18)

be the singular value decompositions (SVDs) of the respec-

tive matrices, where

Ω � SF

1
2 V�

F(BNB�N)
−1

ANV0S0
1
2 . (19)

Then the optimal control gain L ∈R
(Nr)×n that minimizes

(15) subject to a constraint ΣN+1 = ΣF , is given by

L� = B�N(BNB�N)
−1
(VF SF

1
2 UΩV�

ΩS0
− 1

2 V�
0 −AN). (20)

Proof: Please see the Appendix.

The proof of Proposition 2 reveals that the optimal control

can also be obtained from

L� =−B�NΛ(I+BNB�NΛ)
−1

AN , (21)

where Λ is the solution of a matrix Riccati equation.

Proposition 3: The matrix Λ in (21) that satisfies the

constraint (17), and minimizes the cost function (15), satisfies

the matrix Riccati equation

(ΘΣF)Λ+Λ(ΘΣF)
�+ΛΣF Λ+Θ(ΣF −ANΣ0A�N)Θ = 0, (22)

where Θ =(BNB�N)
−1

.

Proof: Substituting L from (51) into the constraint (45),

and using matrix inversion identity, yields

ΣF =(I+BNB�NΛ)
−1

ANΣ0A�N(I+ΛBNB�N)
−1
, (23)

which can be rewritten as (22).

Note that the previous approach can be generalized to the

case where it is required that the final covariance is only

partially constrained, i.e., given D ∈ R
np×n with np ≤ n and

final partial covariance matrix ΣF ∈ R
np×np , the boundary

condition for the state covariance at step N+1 is defined as

DE[x̃N+1x̃�N+1]D
�= DΣN+1D�= ΣF . (24)

Rewriting the above equation for a linear controller gain

yields

D(BNL+AN)Σ0(BNL+AN)
�

D�= ΣF , (25)

which can be seen as the covariance-steering for diffusion-

less system having transition matrices DBN and DAN , with

the solution given by Proposition 2.

2) Non-zero Diffusion Case: Consider now the complete

system given by (1), including the diffusion term (Gk 	= 0).

The system (1) at time step N+1 can be viewed as a sum of

N+1 uncorrelated (E[x
(i)
k x

( j)
m

�
] = 0, k,m, i, j ∈ [0,N+1], i 	=

j), diffusion-less sub-systems as follows

xN+1 =

N∑

i=0

x
(i)
N+1 +GNwN , (26)

where x
(i)
N+1 for all i= 0, . . . ,N are computed, for all k ∈ [i,N],

from

x
(i)
k+1 = Akx

(i)
k +Bku

(i)
k , x

(i)
i =

{
x0, for i = 0,
Gi−1wi−1, otherwise,

(27)

and x(i) and u(i) denote the state and the input of the i’th

sub-system. The final state can therefore be expressed as

xN+1 = ANx0 +BNU
(0)
0,N +

N∑

i=1

AN,iGi−1wi−1 +BN,iU
(i)
i,N +GNwN ,

(28)

where,

U
(i)
k1,k2

�

⎡
⎢⎢⎢⎢⎢⎢⎣

u
(i)
k1

u
(i)
k1+1
...

u
(i)
k2

⎤
⎥⎥⎥⎥⎥⎥⎦
, 0 ≤ k1 ≤ k2 ≤ N. (29)

We assume control laws with a linear dependence on x
(i)
i ,

that is, similarly to (14), we let L(k) ∈ R
(m(N−k+1))×n, k ∈

[0,N], be a set of matrices, such that

U
(i)
i,N =

{
L(i)x

(i)
i , i ∈ [1,N],

L(0)x0 +E[UN ], i = 0.
(30)

Since all states x(i) for i ∈ [1,N] have zero mean, the mean

of xN+1 is governed by equation (8). The covariance of the

final state derived from (28) is then given by

ΣN+1 = (AN +BNL(0))Σ0(AN +BNL(0))�

+

N∑

i=1

(AN,i +BN,iL
(i))Gi−1G�

i−1(AN,i +BN,iL
(i))�

+GNG�
N . (31)
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Theorem 1: Let the system (1), initial and final state

means µ0 and µF , and initial and final state covariance

matrices Σ0 ≥ 0 and ΣF ≥ 0. Let y0 = x0 − µ0 and define,

for k ∈ [0,N],

yk = xk − (Ak−1xk−1 +Bk−1uk−1). (32)

Furthermore, let Φk ∈ R
n×n be given by

Φk =(I+BN,kB�N,kΛ)
−1

AN,k, (33)

where Λ = Λ
�∈ R

n×n is the solution of the matrix equation

N∑

k=1

ΦkGk−1G�
k−1Φ

�
k +Φ0Σ0Φ

�
0 = ΣF −GNG�

N . (34)

The optimal linear control law that minimizes the cost func-

tion (15) subject to a constraints ΣN+1 = ΣF and µN+1 = µF ,

and with the initial state mean µ0 and covariance Σ0, is given

by

uk = B�N,k(BNB�N)
−1
(µF −AN µ0)+

k∑

i=0

L
(i)
k yi , (35)

where,

L
(i)
k =−B�N,kΛΦk. (36)

Proof: Since the mean of the state is governed by (8),

the mean-steering solution E[UN ] is given by Proposition 1,

equation (13).
The second part of the controller, ŨN , having the linear

form (14) is directed to minimizing the covariance-related

cost (15), while adhering to the constraint E[x̃N+1x̃�N+1] =ΣF .
The Lagrangian of the minimization problem (15) subject

to the constraint (2) is given by

L(u,Λ) = Tr [E[ŨNŨ�
N ]]+Tr [Λ(E[x̃N+1x̃�N+1]−ΣF)]. (37)

Using (30), and (31), the Lagrangian can be rewritten in

terms of L(i), i ∈ [0,N] as follows

L(u,Λ) = Tr
{

L(0)
Σ0(L

(0))�−ΛΣF

+Λ(AN +BNL(0))Σ0(AN +BNL(0))�

+
N∑

i=1

L(i)Gi−1G�
i−1(L

(i))�

+Λ(AN,i +BN,iL
(i))Gi−1G�

i−1(AN,i +BN,iL
(i))�

}
,

(38)

yielding the first and second order necessary conditions

for a minimizer L(i) + B�N,iΛ(AN,i +BN,iL
(i)) = 0, and I+

B�N,iΛBN,i > 0, respectively. Following a similar derivation as

in Proposition 2, the resulting optimal control gain is given

by (36), with Φk given by (33). Substituting this control back

into the constraint equation (31), results in the closed-loop

covariance equation (34).
Therefore, the matrix Λ that satisfies the constraint (34)

provides the optimal gains for the optimal controller (35).

Note that the controller in (35) can be efficiently calculated

by updating the vector Uk,N at every step k (starting from

k = 0) by U0,N = B�N(BNB�N)
−1
(µF −AN µ0), Uk,N = Uk,N +

L(k)(xk − x̂k), where x̂0 = µ0 and x̂i+1 = Aix̂i+Biui. The non-

negativity of the left-hand side of (34) yields

ΣF −GNG�
N ≥ 0, (39)

which is exactly the condition for solvability for the covari-

ance steering problem provided in [16, Proposition 5.1].

IV. RELATION WITH LQG

The stochastic control problem formulated in Section II-A

can be also viewed as a special case of the standard discrete

LQG [1, p.264]. This similarity will be detailed in this

section, focusing on the covariance control, thus assuming

a zero-mean state.

Theorem 2: Let the system (1), with zero-mean states, and

initial and final state covariance matrices Σ0 and ΣF . Let

Q f ∈ R
n×n be a symmetric matrix. Assume that the LQG

controller that minimizes the cost function

J(u0, ...,uN) = E[

N∑

k=0

u�kuk + x�N+1Q f xN+1], (40)

subject to the dynamics (1), results in the final state co-

variance being equal to ΣF . Then, this controller coincides

with the optimal controller given by the problem described

in Theorem 1, with Λ = Q f .

Proof: The Lagrangian of the original problem can be

written as

L= E[

N∑

k=0

u�kuk + x�N+1ΛxN+1]−Tr [ΛΣF ]. (41)

Given that Λ = Q f , minimizing the Lagrangian (41) yields

the same result as minimizing (40), and the optimal solution

is given by the LQG controller. Since, by construction, this

solution agrees with the boundary conditions, it is also a

solution of the covariance steering problem.

Corollary 1: Assume Λ, which solves the optimal control

problem given by (3), is unique. Then, the controller (35)

coincides with the LQG controller that minimizes the cost

function:

J(u0, ...,uN) = E[

N∑

k=0

u�kuk + x�N+1ΛxN+1] (42)

Proof: Recall that the Lagrangian of the optimal control

problem given by (3) can be written as (41). Since Λ = Λ
�

is given,

UN = argmin
UN

E[

N∑

k=0

u�kuk + x�N+1ΛxN+1]−Tr [ΛΣF ]

= argmin
UN

E[

N∑

k=0

u�kuk + x�N+1ΛxN+1], (43)

subject to the dynamics (1). The solution to (43) is given by

the LQG controller,and minimizes the cost (40) with QF =Λ.
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Note that the presented results coincide with the results

in [16]. In fact, equation (5.5) in [16] is exactly equation (34),

with the right closed-loop transition matrices.

V. NUMERICAL EXAMPLE

In this section the performance of the algorithm is tested

using a simple example of a fourth-order linear time-varying

system, which is derived from linearizing and discretizing a

non-linear cart-pole dynamics along a particular trajectory.

Let y denote the cart’s position, let u denote the force

pushing the cart, and let θ denote the pole’s angle measured

from vertical axis so that θ = 0 indicates the configuration

when the pole points vertically downwards. The equations

of the of the cart-pole system are

θ̈ =
−(u+mplθ̇ 2 sinθ)cosθ −(mc +mp)gsinθ

l(mc +mp sin2 θ)
,

ÿ =
u+mp sinθ(lθ̇ 2 +gcosθ)

mc +mp sin2 θ
. (44)

The following parameters were used in the numerical

simulations: mp = 0.01[kg],mc = 1[kg], � = 0.25[m],g =
9.81[m/sec2]. The equations of motion were linearized about

a trajectory that brings the pole rom the downward position

θ0 = 0 to the upward position θF = π in 1 second , and then

discretized using Euler’s method with sampling time of Ts =
0.001 sec, resulting in a linear discrete time-varying system

with states defined as x �
[
δθ δ θ̇ δy δ ẏ

]�
, where δθ ,

δ θ̇ , δy, and δ ẏ denote deviations from the nominal values

of θ , θ̇ , y, and ẏ respectively. To this model, a disturbance

noise was added, with G =
[
0 0.004 0 0.008

]�
.

The initial and the final states are chosen as µ0 = µF =
04×1,Σ0 = ΣF = diag [0.01,0.01,0.01,0.01].

The results are shown in Figures 1-3. Figure 1 exhibits

10 randomly-generated closed-loop trajectories (states and

control), and the 3σ bounds calculated from 20,000 Monte-

Carlo runs. The controller costs are shown in Figure 3.

Figure 2 depicts evaluation of state covariance singular

values through time.

Similarly to the LTI example, the results show that the two

algorithms give exactly the same results.

VI. CONCLUSIONS

In this work we have derived a minimum-control-effort

optimal steering solution for linear time-varying discrete

stochastic systems, subject to boundary conditions in the

form of Gaussian distribution parameters. Having presented

the influence of the diffusion at each time-step on the final

covariance, we have formulated a condition for calculating

the optimal control law from a class of linear-state-dependent

control laws. The resulting controller set consists of “open-

loop” inputs, which are recalculated at each step based on

the diffusion term reconstruction from the previous step.

In addition, we have shown that the solution to the

covariance steering problem coincides with the solution to a

specially-formulated LQG problem. This similarity allowed

an efficient calculation of the controller values using a

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

δ
θ
[r
ad

]

0 0.2 0.4 0.6 0.8 1
-5

0

5

δ
θ̇
[r
ad

/s
ec
]

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

δ
y
[m

]

0 0.2 0.4 0.6 0.8 1
-1

0

1

δ
ẏ
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backward-propagated discrete-time dynamic Riccati equa-

tion, as well as a justification for using a linear feedback

controller for the covariance steering.

Future work will address a case with a state-dependent

cost function, the conditions for the existence of the solution,

and the algorithm applicability for the covariance steering of

non-linear systems.
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APPENDIX

PROOF OF PROPOSITION 2

Let Ξ� AN +BNL. Then the constraint (17) can be written

as

ΞΣ0Ξ
�= ΣF . (45)

First we show feasibility. Substituting (20) into (45) yields

Ξ = AN +BNB�N(BNB�N)
−1
(VF SF

1
2 UΩV�

ΩS0
− 1

2 V�
0 −AN)

=VF SF

1
2 UΩV�

ΩS0
− 1

2 V�
0 , (46)

and hence

ΞΣ0Ξ
�=VF SF

1
2 UΩV�

ΩS0
− 1

2 V�
0 V0S0V�

0 V0S0
− 1

2 VΩU�
ΩSF

1
2 V�

F

=VF SFV�
F = ΣF . (47)

To show optimality, introduce the Lagrangian of the equal-

ity constraint minimization problem (15) and (17)

L(L,Λ) = Tr [LΣ0L�]+Tr [Λ(ΞΣ0Ξ
�−ΣF)] (48)

where Λ ∈ R
n×n. Without loss of generality we assume that

Λ = Λ
�. The first-order optimality condition LL(L,Λ) = 0

yields:

L+B�NΛ(AN +BNL) = L+B�NΛΞ = 0, (49)

whereas the second order condition LLL(L,Λ) = 0 yields

I+B�NΛBN > 0. (50)

It follows that

L =−B�NΛ(I+BNB�NΛ)
−1

AN . (51)

Substituting this value of L into the constraint (17) yields

Ξ = AN −BNB�NΛ(I+BNB�NΛ)
−1

AN

=(I+BNB�NΛ)
−1

AN . (52)

Using the SVDs (18) we can rewrite the constraint (45) as

ΞV0S
1
2
0 R�=VF S

1
2
F , (53)

where R is an orthogonal matrix. Combining (53) with (52)

yields

BNB�NΛ = ANV�
0 S

1
2
0 R�S

− 1
2

F V�
F − I, (54)

and the resulting optimal gain is

L� = B�N(BNB�N)
−1
(VF SF

1
2 RS0

− 1
2 V�

0 −AN). (55)

In order to find R, the optimal gain equation is substituted

into the cost function JΣ, resulting in

JΣ = Tr [B�N(BNB�N)
−1
(VF S

1
2
F RS

− 1
2

0 V�
0 −AN)V0S0V�

0 L��]

= Tr [(BNB�N)
−1
(ΣF +ANΣ0A�N)]−2Tr [R�UΩSΩV�

Ω] (56)

where Ω was defined in (19). The minimum of the cost (56)

is attained by maximizing the term Tr [R�UΩ], yielding

R� = arg min
R∈U n

JΣ = arg max
R∈U n

Tr [R�UΩSΩV�
Ω] =UΩV�

Ω, (57)

where the last equation follows from the von Newmann trace

inequality [21]. Substituting R� into the optimal gain L�

yields (20).

3611


