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Abstract— We introduce an algorithm for autonomous con-
trol of multiple fast ground vehicles operating in close proximity
to each other. The algorithm is based on a combination of the
game theoretic notion of iterated best response, and an infor-
mation theoretic model predictive control algorithm designed
for non-linear stochastic systems. We test the algorithm on two
one-fifth scale AutoRally platforms traveling at speeds upwards
of 8 meters per second, while maintaining a following distance
of under two meters from bumper-to-bumper.

I. INTRODUCTION

Autonomous vehicles operating in the real world have

the potential to improve transportation safety and efficiency,

and convert human time currently spent on driving into

productive work or leisure time [1]. To achieve these goals,

autonomous vehicles must be able to interact with other

vehicles, which requires the ability to anticipate and react to

both human drivers and other autonomous vehicles operating

nearby. This is not only a safety requirement, it is also a

key benefit, as the ability to operate in tighter spaces than

is currently possible could significantly increase highway

capacity [2]. In order operate effectively in tight quarters,

these systems must have rapid reaction times, and must be

able to perform agile maneuvers in order to safely navigate

through crowded environments.

A basic issue for vehicle planning and control in crowded

environments is whether vehicles explicitly communicate

and coordinate with each other. The benefit of explicit

coordination [3]–[5] is that it yields a well-defined planning

and control problem, since if the vehicles all communicate

their internal plan or agree to a certain set of rules, then the

evolution of the system can be analyzed using standard tools

from control theory and optimization. However, communicat-

ing internal plans between vehicles is potentially problematic

in that the encrypted communication link becomes a safety-

critical component of the system, which if compromised

could be catastrophic. Additionally, communicating internal

plans at a high frequency requires high bandwidth, which

may not always be available. The alternative is to develop

methods which do not require explicit coordination [6]–

[8]. It is highly desirable to have a non-communicative

system which is capable of multi-vehicle interaction in close

quarters, as either a primary or back-up control method.

A problem with multi-vehicle interaction in a non-

communicative setting is that the robot must be able to

“guess” at the other vehicles’ current plans, and predict
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Fig. 1. Two AutoRally vehicles operating on the dirt test track at the
Georgia Tech Autonomous Racing Facility.

how the other vehicles might react to changes it makes

in its own policy. The usual methods for predicting the

behavior of other vehicles are to treat them as obstacles

moving at a constant speed subject to stochastic disturbances

[9], [10], or to use predefined behavior models [11], [12].

Although these methods can be effective, they both have

significant drawbacks: treating other intelligent vehicles as

unintelligent obstacles is inaccurate in many cases, and

predefined behavior models are computationally expensive

and require careful data collection and analysis to train [13].

A third approach, which we propose here, is to formulate

the problem as a differential game, and then use optimization

to approximately solve the problem. The game-theoretic ap-

proach treats each vehicle as an independent agent attempting

to optimize an objective, subject to their internal dynamic

constraints, and it can be viewed as the generalization of

optimal control to multiple, potentially competing, agents.

This approach can generate realistic predictions of the be-

havior of other vehicles, while only requiring knowledge

of the other vehicles’ dynamics, objectives, and current

state. This is advantageous because, in many cases, it is

fundamentally easier to infer intent than to predict behavior.

For example, during highway driving, activating a turn signal

almost always means that a vehicle would like to change

lanes. However, the precise behavior that results from that

intent is dependent on the density of traffic, geometry of

the road, etc. In the game theoretic approach the result

of this interaction between intent and environment can be

determined immediately by the optimization, whereas in a

behavioral model approach it would be necessary to collect

data and verify the model for each environmental sub-case.

The drawback of the game-theoretic approach is that the
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resulting optimization problem is very difficult to solve.

For example, it is not practical to develop even a general

numerical scheme which converges to a solution (a Nash

Equilibrium) in the case of non-linear stochastic differential

games. Instead, we propose to use a simple numerical

method, known as best-response iteration, which is an it-

erative system of equations with the solutions to the differ-

ential game as fixed points. We then combine best-response

iteration with information theoretic model predictive control,

and we demonstrate the ability of the resulting best response

model predictive control algorithm to independently control

two one-fifth scale autonomous ground vehicles operating in

close proximity. As a baseline for comparison, we utilize the

method of treating the other vehicle as an obstacle moving

in a straight line with constant velocity, and compare its

performance to that of the best response controller.

II. RELATED WORK

The application of the theory of differential games for min-

max problems is popular in several areas of robotics: single

player games where system noise is considered adversarial

[14], pursuit evasion games [15], [16], and cooperative games

where control of a robot is shared [17]. Although the methods

described in these works are effective in their own domains,

we consider a more general problem formulation which does

not fall under the umbrella of min-max differential games.

This inspires our usage of best-response iteration, which is

one of the oldest methods in game theory [18], and can be

applied to any game. Although the idea of best response

iteration is old, its use in the control of autonomous robotic

systems is novel, and it is only possible because of recent

advances in computing power and fast online optimization

schemes.

The most similar framework to the one we present here is

[8], where a best-response type iteration is used with deter-

ministic model predictive control in order to study human-

robot behavior in a variety of simulated driving scenarios

with simplified vehicle dynamics. The main algorithmic

difference between [8] and our work is the formulation of

the problem as a semi-stochastic game, and the subsequent

use of stochastic optimal control to compute a best-response.

Taking stochasticity in the dynamics into account during the

optimization enables the method to automatically determine

a safe operating margin between itself and the other vehicles

in the system, which results in a high level of performance

despite the presence of significant model uncertainty and

external disturbances.

The stochastic model predictive control method that we

use as the basis for our best-response mechanism is based on

our previous work on information theoretic model predictive

control [19]. This work has its origins in path integral control

theory [20], and is also closely related to the cross-entropy

method for motion planning [21].

III. PROBLEM SETUP

Our primary motivation is the problem of two autonomous

ground vehicles operating in close proximity. However, we

begin by describing the differential1 game problem formu-

lation for a general two-player system (the generalization to

more than two is straight-forward). Let Fa and Fb be the

dynamics of player A and player B respectively. We assume

that the equations of motions for the players are stochastic,

discrete time equations of the form:

x
t+1
i = fi(x

t
i,v

t
i) (1)

v
t+1
i ∼ N (ut

i,Σi) (2)

i ∈ {a, b} (3)

where u
t
i is the commanded input for player i at time t, and

v
t
i is the input perturbed by a Gaussian disturbance. This

type of control-dependent noise is a common assumption in

robotics control. Next x0
a ∈ R

na and x
0
b ∈ R

nb denotes the

initial conditions of the two players, Ua and Ub denotes the

set of admissible control inputs for the systems, and Ca and

Cb are the cost functions for the two players. It is assumed

that both cost functions take the form:

Ci = EFa,Fb

[

φi(x
T
a ,x

T
b ) +

T−1
∑

t=0

Li(x
t
a,x

t
b,u

t
a,u

t
b)

]

(4)

Li = ci(x
t
a,x

t
b) + λ(ut

i)
TΣ−1

i u
t
i (5)

where t ∈ {0, 1, . . . T} and i ∈ {a, b}. Note that although

both players cost functions have the same general structure,

the two cost functions need not be the same. The resulting

differential game can then be described by the tuple:

G = {Fa, Fb,x
0
a,x

0
b , Ca, Cb,Ua,Ub} (6)

Each players’ objective is to minimize their cost function

subject to their own dynamical constraints. However, since

the costs are functions of both players, and each players’

costs may not be aligned, it may be impossible to find

a set of control which minimizes the cost functions for

both players simultaneously. This creates the need for an

alternative solution concept to functional minimization. The

most appropriate notion of solution for our setting is the

Nash equilibrium. Let X denote the concatenated states of

both players Xt = (xt
a x

t
b)

T, and let πa(Xt) and πb(Xt)
denote policies for players A and B respectively, we then

have the following definition:

Definition 1: A set of policies πa(Xt) and πb(Xt) are said

to be in a Nash Equilibrium, for the game G, if:

∀i ∈ {a, b}, Ci(πa, πb) = min
π

[

Ci

(

π, π(a,b)\i
)]

That is, each players policy is optimal given that the policy

of the other player is fixed.

If the players’ policies are in Nash equilibrium then neither

player has an incentive to unilaterally change their policy,

thus the Nash equilibrium acts as a natural solution concept

for multi-player games. Our goal will therefore be to find a

Nash equilibrium for our game. In this work, we use open-

loop control laws πi = {u0
i ,u

1
i , . . .u

T−1
i } as the policy

parameterization, although it is theoretically possible to work

with more powerful policy parameterizations.

1Technically a difference game, since we will consider discrete time
dynamics.
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A. Semi-Stochastic Game

In our problem formulation, we assumed that both of the

systems under consideration have stochastic dynamics. This

is a realistic assumption, however it creates a very difficult

objective function from an optimization standpoint. When

both systems have stochastic dynamics, the objective takes

the form of an expectation over the joint distribution of

Fa and Fb, which then needs to be estimated in order to

approximate a solution.

A more tractable approach is to treat the problem as semi-

stochastic, where each player assumes the other player acts

in a noise-free manner, but treats their own dynamics as

stochastic. The underlying assumption behind this approach

is that the other player will be able to effectively correct for

any stochastic disturbances that they encounter, with minimal

changes to their trajectory. This semi-stochastic game set-up

can be described using dynamics and costs for each player

that take the form:

Fa(x
t
a,v

t
a,u

t
a) =

(

fa(x
t
a,n,v

t
a)

fa(x
t
a,d,u

t
a)

)

, v
t
a ∼ N (ut

a,Σa) (7)

Fb(x
t
b,v

t
b,u

t
b) =

(

fb(x
t
b,n,v

t
b)

fb(x
t
b,d,u

t
b)

)

, v
t
b ∼ N (ut

b,Σb) (8)

The state of each player consists of a noisy copy of the

state, x
t
i,n and a deterministic copy x

t
i,d, with i ∈ {a, b}.

The objective functions then take the form:

Ca = Efa

[

φ(xT
a,n,x

T
b,d) +

T−1
∑

t=0

L(xt
a,n,x

t
b,d,u

t
a,u

t
b)

]

(9)

Cb = Efb

[

φ(xT
b,n,x

T
a,d) +

T−1
∑

t=0

L(xt
b,n,x

t
a,d,u

t
a,u

t
b)

]

(10)

Note how each players’ objective function only considers

the stochastic copy of their own state, and the deterministic

copy of the other player’s state. This eliminates the need to

compute the expectation over the joint distribution, but still

enables some stochasticity to enter into the problem through

the dynamics.

IV. BEST RESPONSE MODEL PREDICTIVE

CONTROL

Our problem formulation results in a differential game

with non-linear stochastic dynamics, and a potentially non-

convex cost function. This type of problem generality is re-

quired for controlling ground vehicles in agile close-quarters

maneuvers, however it makes finding a solution in an online

optimization framework extremely difficult. In this section,

we propose a simple iterative solution method which has

Nash equilibrium as fixed points. Our algorithm is based

on the combination of the game-theoretic notion of iterated

best-response, and information theoretic model predictive

control, which has been demonstrated as a powerful tool

for controlling stochastic non-linear systems subject to non-

convex costs.

A. Iterated Best Response

The fundamental object that we consider in iterated best

response is the best response set:

Definition 2: Assume that player B follows the policy πb,

then the best response set for player A is the set:
{

πa | Ca(πa, πb) = min
π

[Ca(π, πb)]
}

(11)

A similar definition applies for best response set for player

B. Observe how if both players are playing policies that are

best responses to each other, than the game is in a Nash

equilibrium. Now let Ha(X , πb) and Hb(X , πa) be functions

which take the current state of the game and the opponents

strategy, and returns a strategy from the best-response set.

The iterative best response system is then defined by the

dynamical system:

πk+1
a = Ha(X , πk

b ) (12)

πk+1
b = Hb(X , πk

a) (13)

At each iteration of this system, each player responds by

playing their best-response to the other players current policy,

and a point is a fixed point in the system if and only if it is

a Nash equilibrium. For certain classes of games exhibiting

cooperative properties (e.g. potential games), the iterated best

response system converges to a Nash Equilibrium. However,

in general the system may not converge, but instead cycle

between policies. Our key assumption is that the dynamic

constraints of the system combined with the stochastic nature

of the environment are enough to either prevent cycling, or

quickly break it in the event that it does occur. This is similar

to the well-established phenomenon of symmetry breaking in

standard stochastic optimal control theory [22].

B. Information Theoretic Model Predictive Control

In order to utilize iterated best response in an online

optimization scheme, we need a method for rapidly approxi-

mating a best-response. In order to perform this computation

we use information theoretic model predictive control [19].

Information theoretic model predictive control (IT-MPC)

is a sampling-based approach to model predictive control

which has been successfully applied to controlling non-linear

systems, including agile ground vehicles. In IT-MPC the

trajectory optimization problem is treated as a probability

matching problem. Let U = {u0,u1, . . .uT−1} be a se-

quence of commanded inputs, and define V as a sequence

of perturbed inputs with mean U such that:

V = U + E (14)

E = {ε0, ε1, . . . εT }, εt ∼ N (0,Σ) (15)

Next, using an information theoretic lower bound, it is

possible to show that there exists an optimal distribution

over controls, which is optimal in the sense that trajectories

sampled from that distribution have a lower cost than any

other control distribution. This distribution takes the form:

q∗(V ) ∝ exp

(

−
1

λ
S(V )

)

p(V ) (16)
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where S(V ) is the state-dependent cost of a trajectory and

p(V ) is the probability density of V from some prior distri-

bution (e.g. zero mean Gaussian) which implicitly defines a

control cost. The goal is to then minimize the KL-Divergence

between the controlled and optimal distribution, which in

turn leads to the following surrogate objective:

U∗ = argmin

[

1

2

T−1
∑

t=0

(

u
T
t Σ

−1

(

ut −

∫

q∗(V )vtdV

))

]

(17)

which can be optimized by sampling trajectories from the

(simulated) system dynamics, and computing a weighted

average over sampled trajectories.

In a model predictive control setting, the algorithm starts

with a planned control sequence:

(u0,u1, . . .uT−1) = U ∈ R
m×T (18)

It then samples a set of random control sequences,

(V1, V2 . . . VK), where:

Vk =
(

v
0
k, . . .v

T−1
k

)

, v
t
k ∼ N (ut,Σ) (19)

Then the IT-MPC algorithm updates the control sequence as:

η =

K
∑

k=1

exp

(

−
1

λ

(

S(Vk) + γ

T−1
∑

t=0

u
T
t Σ

−1
v
t
k

))

(20)

U =
1

η

K
∑

k=1

[

exp

(

−
1

λ

(

S(Vk) + γ

T−1
∑

t=0

u
T
t Σ

−1
v
t
k

))

Vk

]

(21)

The parameter λ determines the selectiveness of the weighted

average, and γ modulates the importance of the control cost.

In order to be effective, the IT-MPC algorithm must perform

millions of dynamics evaluations per second. This can be

done in a fast control loop using the parallel processing

power of a GPU. In our implementation we sample 1200

trajectories that are each 2 seconds long and sampled at

a control frequency of 40 Hz. An outline of the IT-MPC

algorithm specific to the game-theoretic setup in our problem

formulation is given in Alg. 1, note that the algorithm is given

from player A’s perspective. The algorithm for player B can

be obtained simply by switching the {a, b} subscripts.

C. Best Response MPC

The best response model predictive control algorithm

combines the concept of iterated best response from IV-A

with the information theoretic optimization procedure from

IV-B. The algorithm starts with an initial guess of the other

vehicle's control plan, and then estimates the current state

of both vehicles. Then, it uses the IT-MPC optimization

procedure to simultaneously compute an estimate of the

control sequences for both itself and the other agent. Next, it

executes the first element in the control sequence, and lastly

it slides down the remaining elements in the sequence by

one timestep and uses that sequence to start the optimization

on the next round.

A key detail in the best response MPC algorithm is that the

best responses for both players are computed simultaneously.

Algorithm 1: IT-MPC Optimization for Player A

Given: Ua: Control sequence for player A;

Ub: Control sequence for player B;

xa,xb: Current state estimates;

Ca: Cost function for player A;

fa, fb: System dynamics for both vehicles;

K,T : Number of samples and timesteps;

λ, γ: Cost functions/parameters;

umin,umax: Actuator limits;

SF: Convolutional smoothing filter;

x
0
b,d ← xb;

for t ← 1 to T do

x
t
b,d ← fb(x

t−1
b,d ,ut−1

b );

for k ← 0 to K − 1 do

x
0
a,b ← xa;

Sample Ek =
(

εk0 . . . ε
k
T−1

)

, εkt ∈ N (0,Σ);
for t ← 1 to T do

x
t
a,n ← f(xt−1

a,n ,u
t−1
a + εkt−1);

Sk +=
ca(x

t
a,n,x

t
b,d) + γ(ut−1

a )TΣ−1(ut−1
a + εkt−1);

Sk += φ(xT
a,n,x

T
b,d);

β ← mink[Sk)];

η ←
∑K−1

k=0 exp
(

− 1
λ
(Sk − β)

)

;

for k ← 1 to K do

wk ← 1
η
exp

(

− 1
λ
(Sk − β)

)

;

Ua ← Ua + SF ∗
(

∑K

k=1 wkE
k
)

;

This is important, because it enables calling the two IT-

MPC optimizers in parallel, which significantly reduces

the run time of a single best response iteration. The best

response MPC (BR-MPC) algorithm is given in Alg. 2. Also,

notice how the semi-stochastic game formulation enables

the IT-MPC algorithm to run with only a single sampling

loop, if the game were formulated as fully stochastic, there

would need to be a sampling loop for both players. This

would either significantly increase the number of samples

required, or drastically increase the variance of the stochastic

optimization.

We want to emphasize that the algorithm described in this

section (Alg. 2) is meant for a single vehicle, and that the two

vehicles are not iteratively transmitting any internal planning

information to each other. Even though in the BR-MPC

algorithm two control plans are computed, one is simply an

informed guess at the other vehicles motion, and only one

of the control plans is actually used to control a vehicle.

V. IMPLEMENTATION DETAILS

The goal in our experiments was to have two one-fifth

scale ground vehicles autonomously operate in close prox-

imity to each other, and to test the limits of the best response

MPC algorithm as the target speed was increased. In order to

implement the BR-MPC controller for this task, we require
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Algorithm 2: BR-MPC for Player i

Given: G: Differential game description;

IT-MPC-OPT: Information theoretic MPC optimizer;

Ua, Ub: Initial control sequences;

θIT-MPC: IT-MPC hyper-parameters;

while task not completed do

X ← GameStateEstimator();

U ′
a = IT-MPC-OPT(Ua, Ub,X , Ca, fa, fb, θIT-MPC);

U ′
b = IT-MPC-OPT(Ub, Ua,X , Cb, fb, fa, θIT-MPC);

Ua = U ′
a;

Ub = U ′
b;

Execute(u0
i );

for t ← 0 to T − 2 do

U t
a ← U t+1

a ;

U t
b ← U t+1

b ;

UT−1
a = 0;

UT−1
b = 0;

two key components: a cost function encoding the task, and

vehicle dynamics models.

A. Cost Function Design

The state-dependent cost for the task that we are trying to

achieve has three main components: (1) Stay on the track,

(2) Go close to the set target speed, and (3) Stay 1 meter

away from the other vehicle, but do not hit the other vehicle.

This last condition is particularly challenging since at 1 meter

distance between center of masses, the vehicles are nearly

touching, so the algorithm has to balance this objective with

the stochastic dynamics of the system. We describe the cost

from player A’s perspective, the cost for player B is the

same, but with the a and b subscripts swapped. Recall that

the state of the game is Xt = (xt
a x

t
b). For player A, the

cost components encoding the first two instructions are only

concerned with the xa portion of the state and the control

input ut
a. This part of the cost takes the form:

Cind
a = w1M(xpos

a , yposa ) + w2‖v
x
a − vxa,des‖

2 − w3 tan
−1

(

vy
a

vx
a

)2

(22)

where xpos
a and yposa are the position of player A, vxa

and vya are the body-frame forward and lateral velocities

respectively. The function − arctan
(

vy
a

vx
a

)

is the slip angle

of the vehicle and the quadratic penalty on slip angle helps

stabilize the vehicle. The function M(xpos
a , yposa ) is a cost-

map of the track which returns 0 if the vehicle is on the

centerline and 1 if the vehicle is on the boundary, it smoothly

interpolates in between those values.

In addition to the individual portion of the cost function,

the two vehicles have an interaction cost which forces them

to stay close to each other:

Cmix
a = w4 (‖(x

pos
a , yposa )− (xpos

b , y
pos
b )‖ −D)

2
(23)

where D is the target distance (set to 1 meter in all of

our experiments). Lastly, a crashing cost is added which is

TABLE I

DYNAMICS MODELS PERFORMANCE

Basis Function Model Neural Network Model

R2 Score .68 .78
Mean Squared Error 2.07 1.39
Mean Absolute Error .93 .76

activated if the vehicle either collides with the other vehicle

or leaves the track:

Ccrash
a = w5β

tI (24)

here β is a time-decay rate, and I is an indicator variable

which is 1 is the vehicle crashed and 0 otherwise. The

time-decay is added to the crash variable so that, if a

crash is unavoidable, the vehicle chooses to wait until the

last possible moment to crash. In addition to the state-

dependent cost there is a quadratic control cost which is

proportional to the sampling variance introduced by the IT-

MPC optimization. The hyper-parameters for the cost and

optimization were then set as: (w1, w2, w3, w4, w5, λ, γ) =
(100, 4.25, 100.0, 1.0, 10000.0, 0.0015, 0.1).

B. Vehicle Dynamics Models

Pushing the vehicles to their limits while operating nearby

each other requires precise agile maneuvering. This means

that we need a high-fidelity, non-linear model capable of cap-

turing sliding dynamics, and therefore rules out using simple

kinematic models. Additionally, the nature of the dirt track

that we perform experiments on makes traditional system

identification difficult, so we use a data-driven approach and

model the dynamics of the vehicle with a multi-layer neural

network. This is the same network from [19].

Although the neural network that we trained is highly

accurate, a drawback is that it is computationally expensive,

and running two simultaneous IT-MPC optimizations with

the neural network is too slow to operate in real-time. As

a solution we use two dynamics models, the more accurate

neural network is used for the optimization of the vehicle

actually being controlled, and a faster, less accurate model

is used to predict the motion of the other vehicle. The faster

model is a non-linear basis function model described in [23].

The idea behind this double model approach is that, since

we do not actually have to control the other vehicle, a less

accurate model can be effective as long as it captures the

dynamics constraints of the other vehicle. Table I summarizes

the performance difference, on a AutoRally driving test set,

between the two dynamics models.

VI. EXPERIMENTAL SETUP

Experimental data was collected using a pair of AutoRally

robots at the Georgia Tech Autonomous Racing Facility (GT-

ARF). Each AutoRally robot ran the BR-MPC algorithm

on-board in order to control the vehicle and estimate the

future motion of the other vehicle. In principle, no vehicle to

vehicle communication is required for BR-MPC where the

requisite information can be inferred from onboard sensor

information. However, in order to simplify the experiments
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TABLE II

AUTORALLY COMPUTE BOX COMPUTING AND POWER COMPONENTS.

Component Detail

Motherboard Asus Z170I Pro Gaming, Mini-ITX
CPU Intel i7-6700, 3.4 GHz quad-core 65 W
RAM 32 GB DDR4, 2133 MHz
GPU Nvidia GTX-1050ti SC, 768 cores, 4 GB, 1354 MHz
Battery 22.2 V, 11 Ah LiPo, 244 Wh

Fig. 2. Vehicle to vehicle system for broadcasting state estimates at 10 Hz
from one robot to all other robots within communications range.

we chose to enable the AutoRally robots to share their pose

estimates over low-bandwidth XBee Radios. This removes

the requirement of estimating the other vehicles pose using

on-board sensors, which is a difficult perception problem by

itself.

A. AutoRally Robot

The AutoRally robot is a robust, all-electric autonomous

vehicle testbed that is 1:5 the size of a passenger vehicle.

The robot is equipped with an onboard Mini-ITX computer

housed in a rugged enclosure. The computer configuration is

shown in Table II. The sensor package on AutoRally includes

2 forward facing Point Grey USB3.0 cameras with 70 deg

FOV lenses, a Lord Microstrain 3DM-GX4-25 IMU, an RTK

corrected Hemisphere GPS receiver, and Hall Effect wheel

speed sensors. The entire robot weighs approximately 22

kg, measures 0.9 meters in length, and has a top speed of

27 m/s. AutoRally allows for the self-contained testing of all

algorithms, with no reliance on external position systems or

computation beyond a GPS receiver. Complete instructions to

build, configure, and operate AutoRally are available online,

as well as a Gazebo simulation environment, ROS interface,

and reference controllers [24], [25].

B. Vehicle to Vehicle Communication

We bypass the problem of estimating the pose of the

other vehicle by transmitting the state estimate of each

vehicle (current position, velocity, heading, and heading

rate) over an Xbee wireless radio on each AutoRally robot.

The 900 MHz XBee radios provide a high-reliability, low

bandwidth network for all vehicles at the test site. Each

robot runs a standalone state estimator that fuses IMU and

GPS information using the factor graph based optimization

packages GTSAM and iSAM2 [26] to produce an accurate

state estimate at 200 Hz. The high rates are necessary

for high speed, real time control, but would saturate the

XBee network with even two vehicles within communication

range. For that reason, we implemented a configurable rate,

Fig. 3. View from the rear vehicle exiting a turn with BR-MPC at the 10
m/s target.

currently set at 10Hz, to down sample pose estimates before

transmission over the XBee network. Figure 2 shows the

wireless pose communication system for two vehicles and

the routing of signals within each robot between the state

estimator, XBee interface software, and each robots BR-MPC

controller.

C. Baseline Algorithm

As a baseline comparison, we implemented the IT-MPC

algorithm treating the other vehicle as a “dumb” obstacle

with a constant velocity. All of the other implementation

details are the same, but instead of using a second IT-MPC

optimizer to simulate the motion of the other vehicle, it is

simulated according to the linear extrapolation:

x
pos
i (t) = x

pos
i (0) + t (dxpos

i (0)) (25)

y
pos
i (t) = y

pos
i (0) + t (dyposi (0)) (26)

This type of model is reasonably accurate on the straight-

aways, and on the corners at slow speeds. However, it quickly

starts to become inaccurate around corners as the vehicle

speed is increased. We refer to this method as Velocity-

Obstacle Model Predictive Control (VO-MPC for short).

VII. RESULTS

We tested both the BR-MPC algorithm and the VO-MPC

algorithm at the task of maneuvering two AutoRally vehicles

around an elliptical dirt track. The desired distance between

the two vehicles center of mass was one meter, and the target

speed was varied between 5, 6, 7, 8, 9, and 10 m/s. Each

speed setting was tested for 10 laps around the test track,

except for the 7 m/s VO-MPC setting which was only run

for four laps due to safety concerns. This amounts to a total

of 84 laps, which is roughly 3.5 miles worth of driving data

for each robot. Figure 4 and Table III show the change in

distance between the two vehicles as the desired speed is

increased from 5 to 10 m/s.
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Fig. 4. Following distance and standard deviation for best response
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mass, so a distance of less than one meter indicates a collision if the two
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TABLE III

FOLLOWING DISTANCE PERFORMANCE

Method Target Min Dist.(m) Max Dist.(m) Avg. Dist (m)

BR-MPC 5 m/s 2.04 3.40 2.52
BR-MPC 6 m/s 1.92 3.22 2.54
BR-MPC 7 m/s 2.03 3.09 2.56
BR-MPC 8 m/s 1.80 3.80 2.46
BR-MPC 9 m/s 1.83 4.91 2.73
BR-MPC 10 m/s 1.59 10.65 3.16

VO-MPC 5 m/s 1.79 3.25 2.45
VO-MPC 6 m/s 0.58 5.09 1.93
VO-MPC 7 m/s 0.22 7.03 2.01

At the slowest speed setting of 5 m/s, there is min-

imal performance difference between the simple baseline

method, and the BR-MPC method. This is expected, since

the distances the AutoRally vehicles travel during the two

second time horizon are very short, and can roughly be

approximated with straight lines. They both maintain a

distance of approximately 2.5 m between the two vehicles,

even though the desired distance is 1 m, this extra cushion

is automatically included due to the collision penalty and

the stochastic dynamics. As the desired speed is increased,

the VO-MPC method quickly degrades. At the 6 m/s target,

VO-MPC results in 4 distinct collision events during the 10

lap trial run, with one collision requiring a manual take-over

of the system. Then, at the 7 m/s target, the two vehicles

consistently collide with each other when controlled using

VO-MPC.

At the 6 m/s and 7 m/s targets, the BR-MPC method

performs nearly identically, in terms of following distance,

as the 5 m/s target. As the desired speed is further increased

from 7 m/s to 10 m/s, the mean and variance of the following

TABLE IV

BR-MPC PERFORMANCE STATISTICS (LEAD / TRAIL)

Target Avg. Lap Time (s) Max Speed (m/s) Max Slip (Deg.)

5 m/s 20.85 / 20.84 3.8 / 4.3 5.6 / 8.8
6 m/s 15.53 / 15.51, 5.1 / 5.4 9.0 / 10.3
7 m/s 12.82 / 12.79 6.0 / 6.2 11.6 / 15.2
8 m/s 11.06 / 11.07 7.2 / 7.3 18.6 / 20.4
9 m/s 9.96 / 9.94 8.0 / 7.9 19.0 / 25.6

10 m/s 9.66 / 9.65 8.2 / 8.1 23.9 / 26.0

distance both increase. However, the two vehicles avoid ever

colliding with each other during the trial runs. Table IV

shows the lap statistics for the lead and trail vehicles with the

BR-MPC method during the trial runs. At the highest speed

target, the vehicles obtain maximum speeds over 8 m/s, while

maintaining an average distance of 3.16 meters between their

center of mass (this is 2.16 meters from bumper-to-bumper).

Additionally, at the highest speed target both vehicles attain

a significant side-slip angle, which is the difference between

the heading angle and the vehicle’s velocity vector, indicating

highly dynamic maneuvers. One of the key benefits of the

stochastic optimization approach is that only the high level

objective needs to be specified, and the precise method for

achieving that objective is left to the autonomy system. This

is illustrated by Fig. 5, at the 5 m/s target the two vehicles

follow nearly the same track with the trail vehicle directly

behind the lead vehicle. However, at the 10 m/s target, the

behavior looks considerably different, with the two vehicles

entering the turns in a staggered formation. This formation

enables there to be more room for error in the estimate of

the other vehicles longitudinal direction, which is critical for

operating at high speeds.

VIII. CONCLUSION

In this work we have introduced a best response model

predictive control algorithm capable of controlling fast

ground vehicles operating in close proximity to each other.

The method combines iterated best response with infor-

mation theoretic stochastic optimal control, in order to try

and find a Nash equilibrium for semi-stochastic differential

games. We demonstrated the algorithm operating on two one-

fifth scale AutoRally robots, and showed that it outperformed

a simple baseline method based on linearly extrapolating the

other vehicles current position into the future from its initial

heading and velocity.

Finding algorithmic solutions to the problem of controlling

autonomous ground vehicles, with little or no ability to

communicate to the other vehicles around them, is key to

getting safe autonomous vehicles deployed in the real world.

Our algorithm is one of the first methods which takes a

game-theoretic optimization approach to the problem, and

which is able to anticipate and react to the other vehicles in

the environment only using knowledge of the other vehicles

pose, dynamics, and objective. The result is that the two

vehicles are able to perform agile maneuvers in close prox-

imity to each other, without sharing any internal planning

information.

2409



15 10 5 0 5 10 15

Y-Position (m)

20

15

10

5

0

5

X
-P

o
s
it
io

n
(m

)
Under 5.5 m/s

15 10 5 0 5 10 15

Y-Position (m)

20

15

10

5

0

5

X
-P

o
s
it
io

n
(m

)

5.5 - 7.0 m/s

Under 5.5 m/s

Over 7.0 m/s

Fig. 5. Top: Following behavior at the 5 m/s target. Bottom: Following
behavior at 10 m/s target. The blue marker indicates the lead vehicle, and
the red the trail vehicle, with the dashed line showing which markers are
synced in time. Colors on the trajectory traces indicate vehicle speed range.
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