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Abstract— We introduce an algorithm for autonomous con-
trol of multiple fast ground vehicles operating in close proximity
to each other. The algorithm is based on a combination of the
game theoretic notion of iterated best response, and an infor-
mation theoretic model predictive control algorithm designed
for non-linear stochastic systems. We test the algorithm on two
one-fifth scale AutoRally platforms traveling at speeds upwards
of 8 meters per second, while maintaining a following distance
of under two meters from bumper-to-bumper.

I. INTRODUCTION

Autonomous vehicles operating in the real world have
the potential to improve transportation safety and efficiency,
and convert human time currently spent on driving into
productive work or leisure time [1]. To achieve these goals,
autonomous vehicles must be able to interact with other
vehicles, which requires the ability to anticipate and react to
both human drivers and other autonomous vehicles operating
nearby. This is not only a safety requirement, it is also a
key benefit, as the ability to operate in tighter spaces than
is currently possible could significantly increase highway
capacity [2]. In order operate effectively in tight quarters,
these systems must have rapid reaction times, and must be
able to perform agile maneuvers in order to safely navigate
through crowded environments.

A basic issue for vehicle planning and control in crowded
environments is whether vehicles explicitly communicate
and coordinate with each other. The benefit of explicit
coordination [3]-[5] is that it yields a well-defined planning
and control problem, since if the vehicles all communicate
their internal plan or agree to a certain set of rules, then the
evolution of the system can be analyzed using standard tools
from control theory and optimization. However, communicat-
ing internal plans between vehicles is potentially problematic
in that the encrypted communication link becomes a safety-
critical component of the system, which if compromised
could be catastrophic. Additionally, communicating internal
plans at a high frequency requires high bandwidth, which
may not always be available. The alternative is to develop
methods which do not require explicit coordination [6]—
[8]. It is highly desirable to have a non-communicative
system which is capable of multi-vehicle interaction in close
quarters, as either a primary or back-up control method.

A problem with multi-vehicle interaction in a non-
communicative setting is that the robot must be able to
“guess” at the other vehicles’ current plans, and predict
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Fig. 1.
Georgia Tech Autonomous Racing Facility.

Two AutoRally vehicles operating on the dirt test track at the

how the other vehicles might react to changes it makes
in its own policy. The usual methods for predicting the
behavior of other vehicles are to treat them as obstacles
moving at a constant speed subject to stochastic disturbances
[9], [10], or to use predefined behavior models [11], [12].
Although these methods can be effective, they both have
significant drawbacks: treating other intelligent vehicles as
unintelligent obstacles is inaccurate in many cases, and
predefined behavior models are computationally expensive
and require careful data collection and analysis to train [13].

A third approach, which we propose here, is to formulate
the problem as a differential game, and then use optimization
to approximately solve the problem. The game-theoretic ap-
proach treats each vehicle as an independent agent attempting
to optimize an objective, subject to their internal dynamic
constraints, and it can be viewed as the generalization of
optimal control to multiple, potentially competing, agents.
This approach can generate realistic predictions of the be-
havior of other vehicles, while only requiring knowledge
of the other vehicles’ dynamics, objectives, and current
state. This is advantageous because, in many cases, it is
fundamentally easier to infer intent than to predict behavior.
For example, during highway driving, activating a turn signal
almost always means that a vehicle would like to change
lanes. However, the precise behavior that results from that
intent is dependent on the density of traffic, geometry of
the road, etc. In the game theoretic approach the result
of this interaction between intent and environment can be
determined immediately by the optimization, whereas in a
behavioral model approach it would be necessary to collect
data and verify the model for each environmental sub-case.

The drawback of the game-theoretic approach is that the
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resulting optimization problem is very difficult to solve.
For example, it is not practical to develop even a general
numerical scheme which converges to a solution (a Nash
Equilibrium) in the case of non-linear stochastic differential
games. Instead, we propose to use a simple numerical
method, known as best-response iteration, which is an it-
erative system of equations with the solutions to the differ-
ential game as fixed points. We then combine best-response
iteration with information theoretic model predictive control,
and we demonstrate the ability of the resulting best response
model predictive control algorithm to independently control
two one-fifth scale autonomous ground vehicles operating in
close proximity. As a baseline for comparison, we utilize the
method of treating the other vehicle as an obstacle moving
in a straight line with constant velocity, and compare its
performance to that of the best response controller.

II. RELATED WORK

The application of the theory of differential games for min-
max problems is popular in several areas of robotics: single
player games where system noise is considered adversarial
[14], pursuit evasion games [15], [16], and cooperative games
where control of a robot is shared [17]. Although the methods
described in these works are effective in their own domains,
we consider a more general problem formulation which does
not fall under the umbrella of min-max differential games.
This inspires our usage of best-response iteration, which is
one of the oldest methods in game theory [18], and can be
applied to any game. Although the idea of best response
iteration is old, its use in the control of autonomous robotic
systems is novel, and it is only possible because of recent
advances in computing power and fast online optimization
schemes.

The most similar framework to the one we present here is
[8], where a best-response type iteration is used with deter-
ministic model predictive control in order to study human-
robot behavior in a variety of simulated driving scenarios
with simplified vehicle dynamics. The main algorithmic
difference between [8] and our work is the formulation of
the problem as a semi-stochastic game, and the subsequent
use of stochastic optimal control to compute a best-response.
Taking stochasticity in the dynamics into account during the
optimization enables the method to automatically determine
a safe operating margin between itself and the other vehicles
in the system, which results in a high level of performance
despite the presence of significant model uncertainty and
external disturbances.

The stochastic model predictive control method that we
use as the basis for our best-response mechanism is based on
our previous work on information theoretic model predictive
control [19]. This work has its origins in path integral control
theory [20], and is also closely related to the cross-entropy
method for motion planning [21].

III. PROBLEM SETUP

Our primary motivation is the problem of two autonomous
ground vehicles operating in close proximity. However, we

begin by describing the differential' game problem formu-
lation for a general two-player system (the generalization to
more than two is straight-forward). Let F,, and F} be the
dynamics of player A and player B respectively. We assume
that the equations of motions for the players are stochastic,
discrete time equations of the form:

Xt = 1i(x}, v}) (1)
vith ~ N(ul, %) )
i € {a,b} 3)

where u! is the commanded input for player ¢ at time ¢, and
v! is the input perturbed by a Gaussian disturbance. This
type of control-dependent noise is a common assumption in
robotics control. Next x! € R"= and x) € R™ denotes the
initial conditions of the two players, U, and U}, denotes the
set of admissible control inputs for the systems, and C,, and
Cy are the cost functions for the two players. It is assumed
that both cost functions take the form:

T-1

Ci =Er, p, |0i(x},x]) + Z Li(xq, Xp, g, wp) | (4)
t=0

Li = ci(xq,xp) + A(u)) '8 ug ©)

where ¢t € {0,1,...7} and i € {a,b}. Note that although
both players cost functions have the same general structure,
the two cost functions need not be the same. The resulting
differential game can then be described by the tuple:

G ={F,, Fy,x0,xy,Cq, Cp, Uy, Uy} (©6)

Each players’ objective is to minimize their cost function
subject to their own dynamical constraints. However, since
the costs are functions of both players, and each players’
costs may not be aligned, it may be impossible to find
a set of control which minimizes the cost functions for
both players simultaneously. This creates the need for an
alternative solution concept to functional minimization. The
most appropriate notion of solution for our setting is the
Nash equilibrium. Let X denote the concatenated states of
both players X; = (x! x!)T, and let 7,(X;) and 7,(X:)
denote policies for players A and B respectively, we then
have the following definition:

Definition 1: A set of policies 7, (X;) and 7,(X;) are said
to be in a Nash Equilibrium, for the game G, if:

Vi € {a’ b}, qu(ﬂ'mﬂ'b) — mﬂin [Cz (W,ﬂ(a,b)\i)}

That is, each players policy is optimal given that the policy
of the other player is fixed.

If the players’ policies are in Nash equilibrium then neither
player has an incentive to unilaterally change their policy,
thus the Nash equilibrium acts as a natural solution concept
for multi-player games. Our goal will therefore be to find a
Nash equilibrium for our game. In this work, we use open-
loop control laws 7m; = {u?,ul,...u’ "'} as the policy
parameterization, although it is theoretically possible to work
with more powerful policy parameterizations.

ITechnically a difference game, since we will consider discrete time
dynamics.
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A. Semi-Stochastic Game

In our problem formulation, we assumed that both of the
systems under consideration have stochastic dynamics. This
is a realistic assumption, however it creates a very difficult
objective function from an optimization standpoint. When
both systems have stochastic dynamics, the objective takes
the form of an expectation over the joint distribution of
F, and F}, which then needs to be estimated in order to
approximate a solution.

A more tractable approach is to treat the problem as semi-
stochastic, where each player assumes the other player acts
in a noise-free manner, but treats their own dynamics as
stochastic. The underlying assumption behind this approach
is that the other player will be able to effectively correct for
any stochastic disturbances that they encounter, with minimal
changes to their trajectory. This semi-stochastic game set-up
can be described using dynamics and costs for each player
that take the form:

£,(xt ,,, vt
Fa(XZ,VZ,uZ) = (faEth’d ut ?) ) Vztz NN(uwaa) (7

£y (xt ,vi)
Fy(xp, vi,ul :( b ) v~ N (g, S) (8)
(x5, vy, ) fb(Xé,dvui) b (up, Xp)
The state of each player consists of a noisy copy of the
state, xt-’ and a deterministic copy xi 4> with @ € {a,b}.
The objective functions then take the form:

1,M

T-1

¢(X5n7 XZjd) + Z E(xfz,nv Xi,d’ ufzv ui)‘| (9)
t=0

C, = E,

T-1

¢(X£n’ Xid) + Z ﬁ(xi,na sz,d’ 112, ug)‘| (10)
t=0

Cy =Eg,

Note how each players’ objective function only considers
the stochastic copy of their own state, and the deterministic
copy of the other player’s state. This eliminates the need to
compute the expectation over the joint distribution, but still
enables some stochasticity to enter into the problem through
the dynamics.

IV. BEST RESPONSE MODEL PREDICTIVE
CONTROL

Our problem formulation results in a differential game
with non-linear stochastic dynamics, and a potentially non-
convex cost function. This type of problem generality is re-
quired for controlling ground vehicles in agile close-quarters
maneuvers, however it makes finding a solution in an online
optimization framework extremely difficult. In this section,
we propose a simple iterative solution method which has
Nash equilibrium as fixed points. Our algorithm is based
on the combination of the game-theoretic notion of iterated
best-response, and information theoretic model predictive
control, which has been demonstrated as a powerful tool
for controlling stochastic non-linear systems subject to non-
convex costs.

A. Iterated Best Response

The fundamental object that we consider in iterated best
response is the best response set:

Definition 2: Assume that player B follows the policy 7y,
then the best response set for player A is the set:

{wa | Cal(ma, m) = min [C’a(ﬂ,ﬂ'b)]} (11)

A similar definition applies for best response set for player
B. Observe how if both players are playing policies that are
best responses to each other, than the game is in a Nash
equilibrium. Now let H, (X, mp,) and Hy, (X, ) be functions
which take the current state of the game and the opponents
strategy, and returns a strategy from the best-response set.
The iterative best response system is then defined by the
dynamical system:

7T2+1 = Ha(Xa ﬂ—f)

7rl’f+1 = ”Hb(X,ﬂg)

12)
13)

At each iteration of this system, each player responds by
playing their best-response to the other players current policy,
and a point is a fixed point in the system if and only if it is
a Nash equilibrium. For certain classes of games exhibiting
cooperative properties (e.g. potential games), the iterated best
response system converges to a Nash Equilibrium. However,
in general the system may not converge, but instead cycle
between policies. Our key assumption is that the dynamic
constraints of the system combined with the stochastic nature
of the environment are enough to either prevent cycling, or
quickly break it in the event that it does occur. This is similar
to the well-established phenomenon of symmetry breaking in
standard stochastic optimal control theory [22].

B. Information Theoretic Model Predictive Control

In order to utilize iterated best response in an online
optimization scheme, we need a method for rapidly approxi-
mating a best-response. In order to perform this computation
we use information theoretic model predictive control [19].
Information theoretic model predictive control (IT-MPC)
is a sampling-based approach to model predictive control
which has been successfully applied to controlling non-linear
systems, including agile ground vehicles. In IT-MPC the
trajectory optimization problem is treated as a probability
matching problem. Let U = {up,uy,...ur_1} be a se-
quence of commanded inputs, and define V' as a sequence
of perturbed inputs with mean U such that:

V=U+¢&
52{60,61,...671}7 €t NN(O,E)

(14)
15)

Next, using an information theoretic lower bound, it is
possible to show that there exists an optimal distribution
over controls, which is optimal in the sense that trajectories
sampled from that distribution have a lower cost than any
other control distribution. This distribution takes the form:

W) e (<550 ov) a0
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where S(V') is the state-dependent cost of a trajectory and
p(V) is the probability density of V' from some prior distri-
bution (e.g. zero mean Gaussian) which implicitly defines a
control cost. The goal is to then minimize the KL-Divergence
between the controlled and optimal distribution, which in
turn leads to the following surrogate objective:

T—1
U* = argmin [; ; (u;rzl (Ut - /q*(V)thV)>

a7
which can be optimized by sampling trajectories from the
(simulated) system dynamics, and computing a weighted
average over sampled trajectories.

In a model predictive control setting, the algorithm starts
with a planned control sequence:

(uo,ul, . qul) =Ue¢€ RMXT

(18)

It then samples a set of random control sequences,
(V1,Va...Vk), where:

Vi = (vg,...vafl), vi ~ N(u, %) (19)
Then the IT-MPC algorithm updates the control sequence as:
K 1 T—1
n=3Y exp <—A (S(Vk) +v> uth—lvg)) (20)
k=1 t=0
1 K 1 T—1
_ Ty—1t
U= 5; lexp (A (S(Vk) + ; ul'y vk>> Vi

21

The parameter A determines the selectiveness of the weighted
average, and v modulates the importance of the control cost.
In order to be effective, the IT-MPC algorithm must perform
millions of dynamics evaluations per second. This can be
done in a fast control loop using the parallel processing
power of a GPU. In our implementation we sample 1200
trajectories that are each 2 seconds long and sampled at
a control frequency of 40 Hz. An outline of the IT-MPC
algorithm specific to the game-theoretic setup in our problem
formulation is given in Alg. 1, note that the algorithm is given
from player A’s perspective. The algorithm for player B can
be obtained simply by switching the {a,b} subscripts.

C. Best Response MPC

The best response model predictive control algorithm
combines the concept of iterated best response from IV-A
with the information theoretic optimization procedure from
IV-B. The algorithm starts with an initial guess of the other
vehicle's control plan, and then estimates the current state
of both vehicles. Then, it uses the IT-MPC optimization
procedure to simultaneously compute an estimate of the
control sequences for both itself and the other agent. Next, it
executes the first element in the control sequence, and lastly
it slides down the remaining elements in the sequence by
one timestep and uses that sequence to start the optimization
on the next round.

A key detail in the best response MPC algorithm is that the
best responses for both players are computed simultaneously.

Algorithm 1: IT-MPC Optimization for Player A

Given: U,: Control sequence for player A;
Uy: Control sequence for player B;
X,,Xp: Current state estimates;
C: Cost function for player A;
f,, fy: System dynamics for both vehicles;
K, T Number of samples and timesteps;
A, y: Cost functions/parameters;
Upin, Umax: Actuator limits;
SF: Convolutional smoothing filter;
ng — Xp,
for t < 1 to T do
| xha < Bl w0

for k< 0 to K —1 do

xg,b — Xg5

Sample EF = (ef ... €k, e € N(0,%);

for t < 1 to T do

i, £t ul 4 )
Sk +=
Ca(X0, 0, X4 g) + (G TR (T + )
L Sk += ¢(X£nvxg:d);
B« ming[Sk)];
K-1
14 D j—o €XP (‘%(Sk - 5));
for £ < 1 to K do
L Wy, %exp (—5(Sk = B));

Ua = Ua+ SF = (S wneh);

This is important, because it enables calling the two IT-
MPC optimizers in parallel, which significantly reduces
the run time of a single best response iteration. The best
response MPC (BR-MPC) algorithm is given in Alg. 2. Also,
notice how the semi-stochastic game formulation enables
the IT-MPC algorithm to run with only a single sampling
loop, if the game were formulated as fully stochastic, there
would need to be a sampling loop for both players. This
would either significantly increase the number of samples
required, or drastically increase the variance of the stochastic
optimization.

We want to emphasize that the algorithm described in this
section (Alg. 2) is meant for a single vehicle, and that the two
vehicles are not iteratively transmitting any internal planning
information to each other. Even though in the BR-MPC
algorithm two control plans are computed, one is simply an
informed guess at the other vehicles motion, and only one
of the control plans is actually used to control a vehicle.

V. IMPLEMENTATION DETAILS

The goal in our experiments was to have two one-fifth
scale ground vehicles autonomously operate in close prox-
imity to each other, and to test the limits of the best response
MPC algorithm as the target speed was increased. In order to
implement the BR-MPC controller for this task, we require

2406



Algorithm 2: BR-MPC for Player i

Given: G: Differential game description;
IT-MPC-OPT: Information theoretic MPC optimizer;
U,,Uy: Initial control sequences;

Orrmpc: IT-MPC hyper-parameters;

while task not completed do

X <+ GameStateEstimator();

U(; = IT—MPC-OPT(Ua, Ub7 X, Ca, fa,, fb7 GIT-MPC);
Ul: = IT—MPC-OPT(Ub, Ua, X, Cb, fb, fa, GITfMPC);

U, =U.;
Ub = Ué;
Execute(uy);

fort < 0toT —2do
LUjeUﬁl;

Ut + Ut
Ur-1 =y
Ut =o;

two key components: a cost function encoding the task, and
vehicle dynamics models.

A. Cost Function Design

The state-dependent cost for the task that we are trying to
achieve has three main components: (1) Stay on the track,
(2) Go close to the set target speed, and (3) Stay 1 meter
away from the other vehicle, but do not hit the other vehicle.
This last condition is particularly challenging since at 1 meter
distance between center of masses, the vehicles are nearly
touching, so the algorithm has to balance this objective with
the stochastic dynamics of the system. We describe the cost
from player A’s perspective, the cost for player B is the
same, but with the a and b subscripts swapped. Recall that
the state of the game is X; = (x, x}). For player A, the
cost components encoding the first two instructions are only
concerned with the x, portion of the state and the control
input ul. This part of the cost takes the form:

. 2
Cod = ) M (2%, yPo) + wy v — Uﬁf’desﬂz — w3 tan™! (%)
(22)
where 2£°° and yP°°

Pos are the position of player A, vl

and vY are the body-frame forward and lateral velocities

v

respectively. The function — arctan (—g{) is the slip angle

v,
of the vehicle and the quadratic penalt; on slip angle helps
stabilize the vehicle. The function M (22°°, yP°%) is a cost-
map of the track which returns O if the vehicle is on the
centerline and 1 if the vehicle is on the boundary, it smoothly
interpolates in between those values.

In addition to the individual portion of the cost function,
the two vehicles have an interaction cost which forces them

to stay close to each other:

€ = wa (@2 9) = ("4 ) = D (23)
where D is the target distance (set to 1 meter in all of

our experiments). Lastly, a crashing cost is added which is

TABLE I
DYNAMICS MODELS PERFORMANCE

| Basis Function Model | Neural Network Model

R2 Score .68 18
Mean Squared Error 2.07 1.39
Mean Absolute Error 93 .76

activated if the vehicle either collides with the other vehicle
or leaves the track:

Cgrash _ wSBtI (24)

here J is a time-decay rate, and [ is an indicator variable
which is 1 is the vehicle crashed and 0O otherwise. The
time-decay is added to the crash variable so that, if a
crash is unavoidable, the vehicle chooses to wait until the
last possible moment to crash. In addition to the state-
dependent cost there is a quadratic control cost which is
proportional to the sampling variance introduced by the IT-
MPC optimization. The hyper-parameters for the cost and
optimization were then set as: (wq, wa, w3, Wy, W5, A,y) =
(100,4.25,100.0, 1.0, 10000.0, 0.0015, 0.1).

B. Vehicle Dynamics Models

Pushing the vehicles to their limits while operating nearby
each other requires precise agile maneuvering. This means
that we need a high-fidelity, non-linear model capable of cap-
turing sliding dynamics, and therefore rules out using simple
kinematic models. Additionally, the nature of the dirt track
that we perform experiments on makes traditional system
identification difficult, so we use a data-driven approach and
model the dynamics of the vehicle with a multi-layer neural
network. This is the same network from [19].

Although the neural network that we trained is highly
accurate, a drawback is that it is computationally expensive,
and running two simultaneous IT-MPC optimizations with
the neural network is too slow to operate in real-time. As
a solution we use two dynamics models, the more accurate
neural network is used for the optimization of the vehicle
actually being controlled, and a faster, less accurate model
is used to predict the motion of the other vehicle. The faster
model is a non-linear basis function model described in [23].
The idea behind this double model approach is that, since
we do not actually have to control the other vehicle, a less
accurate model can be effective as long as it captures the
dynamics constraints of the other vehicle. Table I summarizes
the performance difference, on a AutoRally driving test set,
between the two dynamics models.

VI. EXPERIMENTAL SETUP

Experimental data was collected using a pair of AutoRally
robots at the Georgia Tech Autonomous Racing Facility (GT-
ARF). Each AutoRally robot ran the BR-MPC algorithm
on-board in order to control the vehicle and estimate the
future motion of the other vehicle. In principle, no vehicle to
vehicle communication is required for BR-MPC where the
requisite information can be inferred from onboard sensor
information. However, in order to simplify the experiments
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TABLE I
AUTORALLY COMPUTE BOX COMPUTING AND POWER COMPONENTS.

Component Detail

Motherboard Asus Z1701 Pro Gaming, Mini-ITX

CPU Intel 17-6700, 3.4 GHz quad-core 65 W

RAM 32 GB DDR4, 2133 MHz

GPU Nvidia GTX-1050ti SC, 768 cores, 4 GB, 1354 MHz
Battery 222V, 11 Ah LiPo, 244 Wh

Xbee wireless p-
ROS message -

AutoRally Robot 1

State Estimates

AutoRally Robot 2

900 MHz XBee 900 MHz XBee

Pose, | Robot 1 Pose,
200 Hz 10 Hz

Robot 2 pose,

200 Hz 10 Hz State Estimator

State Estimator

Fig. 2. Vehicle to vehicle system for broadcasting state estimates at 10 Hz
from one robot to all other robots within communications range.

we chose to enable the AutoRally robots to share their pose
estimates over low-bandwidth XBee Radios. This removes
the requirement of estimating the other vehicles pose using
on-board sensors, which is a difficult perception problem by
itself.

A. AutoRally Robot

The AutoRally robot is a robust, all-electric autonomous
vehicle testbed that is 1:5 the size of a passenger vehicle.
The robot is equipped with an onboard Mini-ITX computer
housed in a rugged enclosure. The computer configuration is
shown in Table II. The sensor package on AutoRally includes
2 forward facing Point Grey USB3.0 cameras with 70 deg
FOV lenses, a Lord Microstrain 3DM-GX4-25 IMU, an RTK
corrected Hemisphere GPS receiver, and Hall Effect wheel
speed sensors. The entire robot weighs approximately 22
kg, measures 0.9 meters in length, and has a top speed of
27 m/s. AutoRally allows for the self-contained testing of all
algorithms, with no reliance on external position systems or
computation beyond a GPS receiver. Complete instructions to
build, configure, and operate AutoRally are available online,
as well as a Gazebo simulation environment, ROS interface,
and reference controllers [24], [25].

B. Vehicle to Vehicle Communication

We bypass the problem of estimating the pose of the
other vehicle by transmitting the state estimate of each
vehicle (current position, velocity, heading, and heading
rate) over an Xbee wireless radio on each AutoRally robot.
The 900 MHz XBee radios provide a high-reliability, low
bandwidth network for all vehicles at the test site. Each
robot runs a standalone state estimator that fuses IMU and
GPS information using the factor graph based optimization
packages GTSAM and iSAM2 [26] to produce an accurate
state estimate at 200 Hz. The high rates are necessary
for high speed, real time control, but would saturate the
XBee network with even two vehicles within communication
range. For that reason, we implemented a configurable rate,

Fig. 3. View from the rear vehicle exiting a turn with BR-MPC at the 10
m/s target.

currently set at 10Hz, to down sample pose estimates before
transmission over the XBee network. Figure 2 shows the
wireless pose communication system for two vehicles and
the routing of signals within each robot between the state
estimator, XBee interface software, and each robots BR-MPC
controller.

C. Baseline Algorithm

As a baseline comparison, we implemented the IT-MPC
algorithm treating the other vehicle as a “dumb” obstacle
with a constant velocity. All of the other implementation
details are the same, but instead of using a second IT-MPC
optimizer to simulate the motion of the other vehicle, it is
simulated according to the linear extrapolation:
i (t) = @7 (0) + ¢ (dai™(0))

K2 2

yi () = 577 (0) + ¢ (dyi”"(0))

This type of model is reasonably accurate on the straight-
aways, and on the corners at slow speeds. However, it quickly
starts to become inaccurate around corners as the vehicle
speed is increased. We refer to this method as Velocity-
Obstacle Model Predictive Control (VO-MPC for short).

(25)
(26)

VII. RESULTS

We tested both the BR-MPC algorithm and the VO-MPC
algorithm at the task of maneuvering two AutoRally vehicles
around an elliptical dirt track. The desired distance between
the two vehicles center of mass was one meter, and the target
speed was varied between 5, 6, 7, 8, 9, and 10 m/s. Each
speed setting was tested for 10 laps around the test track,
except for the 7 m/s VO-MPC setting which was only run
for four laps due to safety concerns. This amounts to a total
of 84 laps, which is roughly 3.5 miles worth of driving data
for each robot. Figure 4 and Table III show the change in
distance between the two vehicles as the desired speed is
increased from 5 to 10 m/s.
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Fig. 4.  Following distance and standard deviation for best response

dynamics and velocity obstacles. Distance is measured from the center of
mass, so a distance of less than one meter indicates a collision if the two
vehicles are oriented end-to-end.

TABLE III
FOLLOWING DISTANCE PERFORMANCE

Method Target | Min Dist.(m) | Max Dist.(m) | Avg. Dist (m)
BR-MPC 5 m/s 2.04 3.40 2.52
BR-MPC 6 m/s 1.92 322 2.54
BR-MPC 7 m/s 2.03 3.09 2.56
BR-MPC 8 m/s 1.80 3.80 2.46
BR-MPC 9 m/s 1.83 491 2.73
BR-MPC | 10 m/s 1.59 10.65 3.16
VO-MPC | 5 m/s 1.79 3.25 2.45
VO-MPC | 6 m/s 0.58 5.09 1.93
VO-MPC | 7 m/s 0.22 7.03 2.01

At the slowest speed setting of 5 m/s, there is min-
imal performance difference between the simple baseline
method, and the BR-MPC method. This is expected, since
the distances the AutoRally vehicles travel during the two
second time horizon are very short, and can roughly be
approximated with straight lines. They both maintain a
distance of approximately 2.5 m between the two vehicles,
even though the desired distance is 1 m, this extra cushion
is automatically included due to the collision penalty and
the stochastic dynamics. As the desired speed is increased,
the VO-MPC method quickly degrades. At the 6 m/s target,
VO-MPC results in 4 distinct collision events during the 10
lap trial run, with one collision requiring a manual take-over
of the system. Then, at the 7 m/s target, the two vehicles
consistently collide with each other when controlled using
VO-MPC.

At the 6 m/s and 7 m/s targets, the BR-MPC method
performs nearly identically, in terms of following distance,
as the 5 m/s target. As the desired speed is further increased
from 7 m/s to 10 m/s, the mean and variance of the following

TABLE IV
BR-MPC PERFORMANCE STATISTICS (LEAD / TRAIL)

Target | Avg. Lap Time (s) | Max Speed (m/s) | Max Slip (Deg.) |

5 m/s 20.85 /7 20.84 3.8/43 5.6/88

6 m/s 15.53 / 15.51, 51754 9.0/10.3
7 m/s 12.82/12.79 6.0/6.2 11.6 /152
8 m/s 11.06 / 11.07 7217113 18.6 / 20.4
9 m/s 9.96 / 9.94 8.0/79 19.0 7 25.6
10 m/s 9.66 / 9.65 8.2/8.1 23.9726.0

distance both increase. However, the two vehicles avoid ever
colliding with each other during the trial runs. Table IV
shows the lap statistics for the lead and trail vehicles with the
BR-MPC method during the trial runs. At the highest speed
target, the vehicles obtain maximum speeds over 8 m/s, while
maintaining an average distance of 3.16 meters between their
center of mass (this is 2.16 meters from bumper-to-bumper).
Additionally, at the highest speed target both vehicles attain
a significant side-slip angle, which is the difference between
the heading angle and the vehicle’s velocity vector, indicating
highly dynamic maneuvers. One of the key benefits of the
stochastic optimization approach is that only the high level
objective needs to be specified, and the precise method for
achieving that objective is left to the autonomy system. This
is illustrated by Fig. 5, at the 5 m/s target the two vehicles
follow nearly the same track with the trail vehicle directly
behind the lead vehicle. However, at the 10 m/s target, the
behavior looks considerably different, with the two vehicles
entering the turns in a staggered formation. This formation
enables there to be more room for error in the estimate of
the other vehicles longitudinal direction, which is critical for
operating at high speeds.

VIII. CONCLUSION

In this work we have introduced a best response model
predictive control algorithm capable of controlling fast
ground vehicles operating in close proximity to each other.
The method combines iterated best response with infor-
mation theoretic stochastic optimal control, in order to try
and find a Nash equilibrium for semi-stochastic differential
games. We demonstrated the algorithm operating on two one-
fifth scale AutoRally robots, and showed that it outperformed
a simple baseline method based on linearly extrapolating the
other vehicles current position into the future from its initial
heading and velocity.

Finding algorithmic solutions to the problem of controlling
autonomous ground vehicles, with little or no ability to
communicate to the other vehicles around them, is key to
getting safe autonomous vehicles deployed in the real world.
Our algorithm is one of the first methods which takes a
game-theoretic optimization approach to the problem, and
which is able to anticipate and react to the other vehicles in
the environment only using knowledge of the other vehicles
pose, dynamics, and objective. The result is that the two
vehicles are able to perform agile maneuvers in close prox-
imity to each other, without sharing any internal planning
information.
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Fig. 5. Top: Following behavior at the 5 m/s target. Bottom: Following

behavior at 10 m/s target. The blue marker indicates the lead vehicle, and
the red the trail vehicle, with the dashed line showing which markers are
synced in time. Colors on the trajectory traces indicate vehicle speed range.
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