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Optimal Covariance Control for Stochastic
Systems Under Chance Constraints

Kazuhide Okamoto, Maxim Goldshtein, and Panagiotis Tsiotras

Abstract—This letter addresses the optimal covariance
control problem for stochastic discrete-time linear sys-
tems subject to chance constraints. To the best of our
knowledge, covariance steering problems with probabilis-
tic chance constraints have not been discussed previously
in the literature, although their treatment seems to be a
natural extension. In this letter, we first show that, unlike
the case with no chance constraints, the covariance steer-
ing problem with chance constraints cannot be decoupled
to mean and covariance steering sub-problems. We then
propose an approach to solve the covariance steering prob-
lem with chance constraints by converting it to a convex
programming problem. The proposed algorithm is verified
using a numerical example.

Index Terms—Stochastic systems, stochastic optimal
control, uncertain systems.

I. INTRODUCTION

I
N THIS letter we address the problem of finite-horizon

stochastic optimal control for a discrete-time linear time-

varying stochastic system with a fully-observable state, a given

Gaussian distribution of the initial state, and a state and

input-independent white-noise Gaussian diffusion with given

statistics. The control task is to steer the system state to the

target Gaussian distribution, while minimizing a state and con-

trol expectation-dependent cost. In addition to the boundary

condition, in the aim of adding robustness to the controller

under stochastic uncertainty, we consider chance constraints,

restricting the probability of violating the state constraints to

be less than a pre-specified threshold.

Since the Gaussian distribution can be fully defined by

its first two moments, this problem can be described as a

finite-time optimal mean and covariance steering problem of a
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stochastic time-varying discrete linear system, with a bound-

ary conditions in the form of given initial and final mean and

covariance, and with constraints on the trajectory in the form

of a probability function.

The chance-constrained optimal covariance control problem

is relevant to a wide range of control and planning tasks,

such as decentralized control of swarm robots [1], closed-loop

cooling [2], and others, in which the state is more naturally

described by its distribution, rather than a fixed set of values.

In addition, this approach is readily-applicable to a stochastic

MPC framework [3].

The problem of controlling the state covariance of a lin-

ear system goes back to the late 80s. The so-called covariance

steering (or “Covariance Assignment”) problem was first intro-

duced by Hotz and Skelton [4], where they computed the

state feedback gains of a linear time-invariant system, such

that the state covariance converges to a pre-specified value.

Since then, many works have been devoted to this problem

of infinite-horizon covariance assignment, both for continuous

and discrete time systems [5]–[9]. Recently, the finite-horizon

covariance control problem has been investigated by a num-

ber of researchers [10]–[13], relating to the problems of

Shrödinger bridges [14] and Optimal Mass Transfer [15].

Others, including our previous work [16], showed that the

finite covariance control problem solution can be seen as a

LQG with a particular terminal weights [16], [17], which can

be also formulated (and solved) as an LMI problem [18]–[20].

The chance-constrained optimization has been extensively

studied since 50’s, with the purpose of system design with

guaranteed performance under uncertainty [21]. A stochastic

model-predictive control design with a chance-constraints has

been solved using various techniques (see [22] for an extensive

review).

This letter contributes to this line of work by adding chance

state constraints to the underlying stochastic optimal covari-

ance steering problem. The covariance control problem is

reformulated as a convex optimization problem, with a deci-

sion variable that is quadratic in the cost function. To the best

of the authors’ knowledge, this letter is the first that solves

the covariance-steering problem with chance constraints.

II. PROBLEM STATEMENT

A. Problem Formulation

We consider the following discrete-time stochastic linear

system (possibly time-varying) with additive uncertainty,

xk+1 = Akxk + Bkuk + Dkwk, (1)
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where k = 0, 1, . . . , N − 1 is the time step, x ∈ R
nx is the

state, u ∈ R
nu is the control input, and w ∈ R

nw is a zero-mean

white Gaussian noise with unit covariance, that is, E[wk] = 0

and E[wk1
w�

k2
] = Inwδk1,k2

. We assume that E[xk1
w�

k2
] = 0 for

0 ≤ k1 ≤ k2 ≤ N. The initial state x0 is a random vector

drawn from the normal distribution

x0 ∼ N (µ0, �0), (2)

where µ0 ∈ R
nx is the initial state mean and �0 ∈ R

nx×nx

is the initial state covariance. We assume that �0 � 0. Our

objective is to steer the trajectories of the system (1) from this

initial distribution to the terminal Gaussian distribution

xN ∼ N (µN, �N), (3)

where µN ∈ R
nx and �N ∈ R

nx×nx with �N � 0, at a given

time N, while minimizing the cost function

J(x0, . . . , xN−1, u0, . . . , uN−1)

= E

[

N−1
∑

k=0

x�
k Qkxk + u�

k Rkuk

]

, (4)

where Qk � 0 and Rk � 0 for all k = 0, 1, . . . , N − 1.

The objective is to compute the optimal control input, which

ensures that the probability of the state violation at any given

time is below a pre-specified threshold, say,

Pr(xk /∈ χ) ≤ Pfail, k = 1, . . . , N, (5)

where Pr() denotes the probability of an event, χ ⊂ R
nx is the

state constraint set, and Pfail ∈ [0, 1] is the threshold for the

probability of failure. Optimization problems with these types

of constraints are known as chance-constrained optimization

problems [23]. In this letter, we assume for simplicity that χ

is convex, but chance-constraints with non-convex constraints

are also possible (see [24]).

It is assumed that the system (1) is controllable, that is,

given any xN ∈ R
nx and x0 ∈ R

nx , and provided that wk = 0

for k = 0, . . . N − 1, there exists a sequence of control inputs

{uk}
N−1
k=0 that steers x0 to xN .

B. Preliminaries

We provide an alternative description of the system dynam-

ics in (1) that will be instrumental for solving the covariance

sterring problem. The notation below is borrowed from [16].

Let Ak1,k0
, Bk1,k0

, and Dk1,k0
, where k1 > k0, denote the transi-

tion matrices of the state, input, and the noise term from step k0

to step k1, respectively, as follows Ak1,k0
= Ak1

Ak1−1 · · · Ak0
,

Bk1,k0
= Ak1,k0+1Bk0

, Dk1,k0
= Ak1,k0+1Dk0

. We define the

augmented vectors Uk ∈ R
(k+1)nu and Wk ∈ R

(k+1)nw as

Uk = [u0, u1, . . . , uk]� and Wk = [w0, w1, . . . , wk]�. Then

xk can be, equivalently, computed from

xk = Ākx0 + B̄kUk + D̄kWk, (6)

where Āk = Ak−1,0, B̄k = [Bk−1,0, Bk−1,1, . . . , Bk−1], D̄k =

[Dk−1,0, Dk−1,1, . . . , Dk−1]. Furthermore, we introduce the

augmented state vector X ∈ R
(k+1)nx as follows Xk =

[x0, x1, . . . , xk]�. It follows that the system dynamics (1) take

the equivalent form

X = Ax0 + BU + DW, (7)

where X = XN ∈ R
(N+1)nx , U = UN−1 ∈ R

Nnu , and

W = WN−1 ∈ R
Nnw , and the matrices A ∈ R

(N+1)nx×nx ,

B ∈ R
(N+1)nx×Nnu , and D ∈ R

(N+1)nx×Nnw are defined in [16].

Note that E[x0x�
0 ] = �0 + µ0µ

�
0 , E[x0W�] = 0, and

E[WW�] = INnw . Using the previous expressions for X and

U, we may rewrite the objective function in (4) as follows

J(X, U) = E

[

X�Q̄X + U�R̄U
]

, (8)

where Q̄ = blkdiag(Q0, Q1, . . . , QN−1, 0) and R̄ =

blkdiag(R0, R1, . . . , RN−1). Note that, since Qk � 0 and

Rk � 0 for all k = 0, 1, . . . , N − 1, it follows that Q̄ � 0

and R̄ � 0.

The boundary conditions (2) and (3) take the form

µ0 = E0E[X], (9a)

�0 = E0

(

E[XX�] − E[X]E[X]�
)

E�
0 , (9b)

and

µN = ENE[X], (10a)

�N = EN

(

E[XX�] − E[X]E[X]�
)

E�
N , (10b)

where E0 � [Inx , 0, . . . , 0] ∈ R
nx×(N+1)nx and EN �

[0, . . . , 0, Inx ] ∈ R
nx×(N+1)nx , respectively. Finally, the chance

constraints (5) can be rewritten as

Pr(X /∈ X ) ≤ Pfail, (11)

where X ⊂ R
(N+1)nx is a convex set.

The objective of this letter is to solve the following problem.

Problem 1: Given the system (7), find the control sequence

U∗ that minimizes the cost function Eq. (8) subject to the

initial state constraints (9), the terminal state constraints (10),

and the chance constraint (11).

In Section IV we show how to solve Problem 1 by convert-

ing it to a convex programming problem. Before doing that,

we first investigate the case without chance constraints.

III. NO CHANCE CONSTRAINT CASE

Before discussing the general case with chance con-

straints, in this section we briefly revisit the case without

chance constraints and show that, similarly to the work by

Goldshtein and Tsiotras [16], where the authors considered

the case with minimal control effort (Q̄ = 0, R̄ = I), it is pos-

sible to separately solve the mean and the covariance steering

optimization problems, even with the more general �2-norm

objective function of equation (4).

A. Separation of Mean and Covariance Problems

It follows immediately from Eq. (6) that

µk � E[xk] = Ākµ0 + B̄kŪk, (12)

where Ūk = E[Uk]. Furthermore, by defining Ũk � Uk −

Ūk, x̃k � xk − µk, and using (6), we have that

x̃k = Ākx̃0 + B̄kŨk + D̄kWk. (13)

Furthermore,

�k � E[x̃kx̃�
k ] = ĀkE[x̃0x̃�

0 ]Ā�
k + ĀkE[x̃0Ũ�

k ]B̄�
k

+ B̄kE[Ũkx̃�
0 ]Ā�

k + B̄kE[ŨkŨ�
k ]B̄�

k

+ D̄kE[WkW�
k ]D̄�

k + D̄k−1E[Wk−1Ũ�
k ]B̄�

k

+ B̄kE[ŨkW�
k−1]D̄�

k−1. (14)
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Note that the evolution of the mean µk from (12) depends

only on Ūk, whereas the evolution of x̃k and �k depend solely

on Ũk and Wk. It follows from Eqs. (7) and (12) that

X̄ � E[X] = Aµ0 + BŪ, (15)

and from (13) that

X̃ � X − E[X] = Ax̃0 + BŨ + DW. (16)

The objective function (8) can also be rewritten as J(X, U) =

E[X�Q̄X +U�R̄U] = tr(Q̄ E[X̃X̃�])+ X̄�Q̄X̄ + tr(R̄E[ŨŨ�])+

Ū�R̄Ū,= Jµ(X̄, Ū) + J�(X̃, Ũ), where

Jµ(X̄, Ū) = X̄�Q̄X̄ + Ū�R̄Ū, (17)

J�(X̃, Ũ) = tr
(

Q̄E[X̃X̃�]
)

+ tr
(

R̄E[ŨŨ�]
)

, (18)

and where tr() denotes the trace of a matrix. It follows that the

original optimization problem in terms of (X, U) is equivalent

to two separate optimization problems in terms of (X̄, Ū) and

(X̃, Ũ) with optimization costs (17) and (18), respectively.

We have therefore shown the following result.

Proposition 1: Let the system (7), the initial and terminal

state constraints (2) and (3), and the objective function (4). The

control sequence U∗ that solves this optimization problem is

given by U∗ = Ū∗ + Ũ∗, where Ū∗ solves the mean steering
optimization problem

MS

{

min(X̄,Ū) Jµ(X̄, Ū) = X̄� Q̄X̄ + Ū�R̄Ū
subject to X̄ = Aµ0 + BŪ, E0X̄ = µ0, EN X̄ = µN,

(19)

and Ũ∗ solves the covariance steering optimization problem

CS

⎧

⎨

⎩

min(X̃,Ũ) J�(X̃, Ũ) = tr
(

Q̄E[X̃X̃�]
)

+ tr
(

R̄E[ŨŨ�]
)

,

subject to X̃ � X − E[X] = Ax̃0 + BŨ + DW
E0X̃X̃�E�

0 = �0, EN X̃X̃�E�
N = �N .

(20)

The rest of this section introduces the methods to solve these

two subproblems.

B. Optimal Mean Steering

The solution to the optimal mean steering subproblem is

summarized in the following proposition. Note that we assume

a general (nonzero) mean.

Proposition 2: The optimal control sequence that solves the

optimization problem (19) is given by

Ū∗ = R
−1

(

B
�Q̄Aµ0 + B̄�

N (B̄NR
−1B̄�

N )−1

(

µN − ĀNµ0 − B̄NR
−1

B
�Q̄Aµ0

))

, (21)

where R = (B�Q̄B + R̄).

Proof: Since the terminal constraint is µN = EN X̄ =

ĀNµ0 + B̄NŪ we can write the Lagrangian as L(Ū, λ) =

X̄�Q̄X̄ + Ū�R̄Ū + λ�(µN − ĀNµ0 − B̄NŪ) = (Aµ0 +

BŪ)�Q̄(Aµ0 + BŪ) + Ū�R̄Ū + λ�(µN − ĀNµ0 − B̄NŪ),

where λ ∈ R
nx . The first-order optimality condition yields

∇ŪL = 2(B�Q̄B + R̄)Ū + 2B�Q̄Aµ0 − B̄�
N λ = 0. Thus,

Ū∗ = R
−1(B�Q̄Aµ0 + 1

2
B̄�

N λ), (22)

where R = (B�Q̄B + R̄) is invertible because of the second-

order optimality condition ∇ŪŪL = B�Q̄B + R̄ � 0. In order

to find the optimal value of λ we substitute equation (22) into

the terminal constraint to obtain

1
2
B̄NR

−1B̄�
N λ = µN − ĀNµ0 − B̄NR

−1
B

�Q̄Aµ0. (23)

Note that rank(B̄NR
−1B̄�

N ) = rank(R−1/2B̄�
N ). Also, since the

system is controllable, it follows that rank(B̄N) is full row rank,

that is, rank(B̄N) = nx [16]. In addition, since R is invertible,

rank(R−1/2) = Nnu. It follows from [25, Corollary 2.5.10]

that rank(R−1/2) + rank(B̄�
N ) − Nnu ≤ rank(R−1/2B̄�

N ) ≤

min{rank(R−1/2), rank(B̄�
N )} and nx ≤ rank(B̄NR

−1B̄�
N ) ≤

min{Nnu, nx} = nx. Thus, the matrix (B̄NR
−1B̄�

N ) is full rank

and invertible. Therefore,

λ = 2(B̄NR
−1B̄�

N )−1
(

µN − ĀNµ0 − B̄NR
−1

B
�Q̄Aµ0

)

.

By substituting in (22) the expression for the optimal mean

steering controller, the expression (21) follows.

By comparing (21) with the corresponding controller in [16]

we have the following immediate result.

Corollary 1: The minimum-effort mean-steering optimal

controller introduced in [16] is a special case of the optimal

controller (21) with Q̄ = 0, R̄ = I in (21).

C. Optimal Covariance Steering

While many previous works have attempted to solve the

optimal covariance-steering problem, the majority of them

solve this problem subject to a minimum effort cost func-

tion. Bakolas [19] addressed the case with the more general

�2-norm cost function Eq. (4) (and zero mean). He also intro-

duced a convex relaxation to change the terminal constraint to

an inequality as follows

EN

(

E[XX�] − E[X]E[X]�
)

E�
N � �N . (24)

By making the problem convex, it can be efficiently solved

using standard convex programming solvers. At the same time,

but independently, Halder and Wendel [17] solved a problem

with a similar terminal covariance constraint using a soft con-

straint on the terminal state covariance under continuous-time

dynamics.

IV. CHANCE CONSTRAINED CASE

This section introduces the proposed approach to solve the

covariance steering problem with chance constraints as stated

in Problem 1.

A. Proposed Approach

First, we assume that, at each time step, the control input is

represented as follows uk = �k[1�
nx

, x�
0 , x�

1 , . . . , x�
k ]�, where

1nx = [1, . . . , 1]� ∈ R
nx and �k ∈ R

nu×nx(k+2). Thus, we may

write the relationship between X and U as follows

U = LX, (25)

where X = [1�
nx

, X�]� ∈ R
(N+2)nx is the augmented state

sequence until step N and L ∈ R
Nnu×(N+2)nx is the control

gain matrix. In order to ensure that the control input at time

step k depends only on xi for i = 0, 1, . . . , k (so that the
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control input U is causally related to the state history, that is,

it is non-anticipative) the matrix L has to be of the form

L = [L1, LX], (26)

where L1 ∈ R
Nnu×nx and LX ∈ R

Nnu×(N+1)nx is a lower block

triangular matrix. Using L in (26) we convert the problem

from finding the optimal control input sequence U∗ to one of

finding the optimal control gain matrix L∗. It follows from (7)

that

X =

[

Inx 0

0 A

][

1nx

x0

]

+

[

0

B

]

LX +

[

0

D

]

W, (27)

and hence

X = (I − BL)−1(AX0 + DW), (28)

where X0 = [1�
nx

, x�
0 ]�, A = blkdiag(Inx ,A), B = [0, B�]�,

D = [0, D�]�. Note that (I − BL) is invertible because

BL =

[

0

B

]

[L1, LX] =

[

0 0

BL1 BLX

]

. (29)

Since BLX is strictly lower-block triangular, BL is also strictly

lower-block triangular.1 Using X from (28), the objective

function (8) can be written as

J(L) = E

[

(AX0 + DW)�(I − BL)−�Q̄(I − BL)−1

(AX0 + DW) + X
�L�R̄LX

]

,

where Q̄ = blkdiag(0, Q̄). Note that Q̄ � 0. Similarly to [19],

we introduce the new decision variable K such that

K � L(I − BL)−1. (30)

It follows that I + BK = (I − BL)−1. Then, X and U can be

rewritten as

X = (I + BK)(AX0 + DW), (31)

U = K(AX0 + DW). (32)

Before continuing, we show that K defined in (30) is

lower block triangular. This ensures that the resulting U is

non-anticipative.

Lemma 1: Let L be defined as in Eq. (26), let B be a strictly

lower block triangular matrix, and let I be an identity matrix

with proper dimensions. Then, K defined as in Eq. (30) can

be represented as K =
[

K1 KX
]

, where K1 ∈ R
Nnu×nx and

KX ∈ R
Nnu×(N+1)nx is lower block triangular.

Proof: The proof is straightforward and thus it is

omitted.

We may now prove the following result.

Proposition 3: Let X and U as in (31), the objective

function (8) and the boundary conditions

µ0 =

[

1nx

µ0

]

, �0 =

[

0nx 0nx

0nx �0

]

� 0. (33)

Then, the objective function (8) takes the form

J(K) = tr
((

(I + BK)�Q̄(I + BK) + K�R̄K
)

(

A

(

µ0µ0
� + �0

)

A
� + DD

�
))

. (34)

which is a quadratic expression in K.

1A strictly lower-block triangular matrix is a lower-block triangular matrix
with zero matrices on the diagonal elements.

Proof: The proof follows easily by using (31) in the objec-

tive function (8), expanding and performing the necessary

algebraic manipulations.

B. Conversion of Chance Constraints to Deterministic
Inequality Constraints

We assume that the feasible region X is defined as an

intersection of M linear inequality constraints as follows

X �

M
⋂

j=1

{X : α�
j X ≤ βj}, (35)

where αj ∈ R
(N+2)nx and βj ∈ R with j = 1, 2, . . . , M. Thus,

the chance constraint (11) is converted to

Pr(α�
j X > βj) ≤ pj, j = 1, . . . , M, (36a)

M
∑

j=1

pj ≤ Pfail. (36b)

Using the Boole-Bonferroni inequality [26],

Blackmore and Ono [27] showed that a feasible solu-

tion to the problem (35)-(36) is a feasible solution to

the original chance-constrained problem. Note that the

constraint (36a) can also be written as

Pr(α�
j X ≤ βj) ≥ 1 − pj. (37)

As a result, α�
j X is a univariate Gaussian random variable

such that α�
j X ∼ N (α�

j X̄, α�
j �Xαj). where X̄ = E[X] = (I +

BK)Aµ0, and �X = (I +BK)(A�0A
� +DD�)(I +BK)�.

It follows from inequality (37) that

Pr(α�
j X ≤ βj) = 	

⎛

⎝

βj − α�
j X̄

√

α�
j �Xαj

⎞

⎠ ≥ 1 − pj, (38)

where 	 is the cumulative distribution function of the stan-

dard normal distribution, which is a monotonically increasing

function. Thus,

βj − α�
j X̄

√

α�
j �Xαj

≥ 	−1
(

1 − pj
)

, (39)

where 	−1 is the inverse of 	. Therefore,

α�
j X̄ − βj +

√

α�
j �Xαj 	

−1
(

1 − pj
)

≤ 0. (40)

Previous works [27]–[29] assumed some prior knowledge

about the covariance �X, enabling Eq. (40) to be a linear

inequality constraint. However, as we are interested in the

covariance steering problem, we cannot assume any prior

knowledge of �X.

Theorem 1: Let X̄ and �X as before, and let µ0 and �0

as in (33). With the assumption, �0 � 0, the inequality con-

straint (40) is converted to the inequality constraint α�
j (I +

BK)Aµ0 − βj‖(A�0A
� + DD�)1/2(I + BK)�αj‖	−1(1 −

pj) ≤ 0.

Proof: Since �0 � 0, it follows that �0 � 0 and A�0A
�+

DD� � 0. Therefore, the expression for �X yields �X = (I+
BK)(A�0A

� + DD�)1/2(A�0A
� + DD�)1/2(I + BK)�,

and (40) can be rewritten as α�
j X̄−βj+α�

j (I+BK)(A�0A
�+
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DD�)1/2(A�0A
� +DD�)1/2(I +BK)�αj)

1
2 	−1(1−pj) ≤

0. Note that since (A�0A
� + DD�)1/2(I + BK)�αj is a

vector, one obtains that α�
j X̄−βj+‖(A�0A

�+DD�)1/2(I+

BK)�αj‖	−1(1 − pj) ≤ 0, where ‖ · ‖ denotes the 2-norm of

a vector. The result then follows easily.

The inequality constraint in Theorem 1 is a bilinear con-

straint, which makes it difficult to efficiently solve this

problem. Thus, we convert the chance constraints (36) as

follows

Pr(α�
j X > βj) ≤ pj,fail, j = 1, . . . M, (41a)

M
∑

j=1

pj,fail ≤ Pfail. (41b)

Note that, unlike pj, the pj,fail is not a decision variable but a

pre-specified value satisfying inequality (41b). This alternative

formulation implies the specification of the maximum collision

probability with each obstacle at each time step a priori.

In summary, the chance constraints are formulated as

follows.

α�
j (I + BK)Aµ0 + ‖(A�0A

� + DD
�)1/2

(I + BK)�αj‖	
−1

(

1 − pj,fail

)

− βj ≤ 0. (42)

Unlike the case described in Section III, where no chance

constraints exist, we cannot decouple the mean and covariance

steering problems owing to (42).

C. Terminal Gaussian Distribution Constraint

As discussed in Section III-C, the terminal covariance con-

straint (10b) is not convex. We therefore relax this constraint

to the inequality constraint [19]

E[x̃N x̃�
N ] � �N . (43)

This condition implies that the covariance of the terminal

state is smaller than a pre-specified �N , which is a reason-

able assumption in practice. This change of terminal constraint

relaxes the chance-constraint requirement for �N as well.

Namely, if µN is inside the feasible region, �N can have any

value as long as it is positive definite. We are now ready to

prove the following result.

Proposition 4: The terminal constraints (10a) and (43) can

be formulated as

µN = EN(I + BK)Aµ0,

1 − ‖(A�0A
� + DD

�)1/2(I + BK)�E
�
N �

−1/2
N ‖ ≥ 0,

where EN �
[

0nx EN
]

.

Proof: It follows from the expressions of X̄ and �X

that E[xN] = EN(I + BK)Aµ0, and E[x̃N x̃�
N ] = EN(I +

BK)(A�0A
� + DD�)(I + BK)�E

�
N . Using inequality (43),

it follows that the previous expression results in the following

inequality constraint, which is convex in K

EN(I + BK)(A�0A
� + DD

�)(I + BK)�E
�
N � �N . (44)

Since by assumption �N � 0, inequality (44) becomes Inx −

�
−1/2
N EN(I+BK)(A�0A

�+DD�)(I+BK)�E
�
N �

−1/2
N � 0.

Being symmetric, the matrix �
−1/2
N EN(I + BK)(A�0A

� +

DD�)(I + BK)�E
�
N �

−1/2
N is diagonalizable via an orthogo-

nal matrix S ∈ R
nx×nx . Thus, S(Inx − diag(λ1, . . . , λnx))S

� �

0, where λ1, . . . , λnx are the eigenvalues of �
−1/2
N EN(I +

BK)(A�0A
� +DD�)(I +BK)�E

�
N �

−1/2
N . The last inequal-

ity is implied by 1 − λmax(�
−1/2
N EN(I + BK)(A�0A

� +

DD�)(I + BK)�E
�
N �

−1/2
N ) ≥ 0. An easy calculation shows

that this inequality is equivalent to

1 − ‖(A�0A
� + DD

�)1/2(I + BK)�E
�
N �

−1/2
N ‖2 ≥ 0,

(45)

thus completing the proof.

V. NUMERICAL SIMULATIONS

In this section we validate the proposed algorithm using

a simple numerical example. We use CVX [30] with

MOSEK [31] to solve the relevant optimization problems.

Note that the structure of K from Lemma 1 enters as a

constraint in the resulting optimization problem.

We consider the path-planning problem for a vehicle under

the following time invariant system dynamics with xk =

[x, y, vx, vy]� ∈ R
4, uk = [ax, ay]� ∈ R

2, wk ∈ R
4 and

A =

⎡

⎢

⎣

1 0 
t 0

0 1 0 
t
0 0 1 0

0 0 0 1

⎤

⎥

⎦
, B =

⎡

⎢

⎢

⎣


t2 0

0 
t2


t 0

0 
t

⎤

⎥

⎥

⎦

, (46)

and D = diag(0.01, 0.01, 0.01, 0.01), where 
t = 0.2 is the

time-step size. Figure 1(a) illustrates the problem setup. The

red circle denotes the 3σ error of the initial state distribution

of x and y coordinates. The magenta circle denotes the 3σ

error of the terminal state distribution of x and y coordinates.

Specifically, the initial condition is µ0 = [−10, 1, 0, 0] and

�0 = diag(0.1, 0.1, 0.01, 0.01), while the terminal constraint

is µN = [0, 0, 0, 0] and �N = 0.5�0.

The green dotted lines illustrate the state constraints given

by 0.2(x − 1) ≤ y ≤ −0.2(x − 1). The vehicle has to

remain in the region between the two lines while moving

from the red to the magenta regions. Such a “cone”-shaped

constraint is seen in many engineering applications, e.g., the

instrument landing for aircraft, spacecraft rendezvous, and

drone-landing on a moving platform. The probabilistic thresh-

old for the violation of the chance constraints was specified

a priori, as pj,fail = 0.0005 for j = 1, 2, . . . , 2(N + 1)

with horizon N = 20. The objective function weights are

Qk = diag(10, 10, 1, 1) and Rk = diag(103, 103). This prob-

lem is infeasible if we do not control the state covariance.

See, for example, Figure 1(b), which shows the results using

only the mean steering controller (21). As the covariance

grows, it is impossible to find a feasible solution to this prob-

lem that will guarantee the satisfaction of chance constraints.

The case without chance constraints imposed is illustrated in

Fig. 2(a). By introducing covariance steering, the uncertainty

of the future trajectory is successfully reduced but, nonethe-

less, it violates the constraint. Finally, Fig. 2(b) illustrates the

results of the proposed chance-constrained covariance steering

approach. The error ellipse successfully changed its shape to

avoid collision with the constraints while maintaining the ter-

minal covariance constraints to be less than the pre-specified

state covariance bound.
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Fig. 1. (a) Problem setup; (b) Mean steering.

Fig. 2. (a) Covariance steering results without chance constraints;
(b) Covariance steering results with chance constraints.

VI. SUMMARY

This letter has addressed the problem of optimal steering

of the covariance for a stochastic linear time-varying system

subject to chance constraints in discrete time. We showed

that if there are no chance constraints, one can indepen-

dently design the mean and covariance steering controllers.

It is shown that the optimal covariance steering problem

with chance constraints can be cast as a convex program-

ming problem. The proposed approach was verified using

numerical examples. Future work will investigate the applica-

tions of the proposed approach to stochastic model predictive

controllers.
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