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ARTICLE INFO ABSTRACT

Surface color appearance depends on both local surface chromaticity and global context. How are these inter-
dependencies supported by cortical networks? Combining functional imaging and psychophysics, we examined
if color from long-range filling-in engages distinct pathways from responses caused by a field of uniform chro-
maticity. We find that color from filling-in is best classified and best correlated with appearance by two dorsal
areas, V3A and V3B/KO. In contrast, a field of uniform chromaticity is best classified by ventral areas hV4 and LO.
Dynamic causal modeling revealed feedback modulation from area V3A to areas V1 and LO for filling-in, con-
trasting with feedback from LO modulating areas V1 and V3A for a matched uniform chromaticity. These results
indicate a dorsal stream role in color filling-in via feedback modulation of area V1 coupled with a cross-stream
modulation of ventral areas suggesting that local and contextual influences on color appearance engage
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distinct neural networks.

1. Introduction

Surface color appearance depends on multiple factors. In the absence
of contextual information, color appearance largely depends on surface
spectral information and will be referred to as surface-dependent color.
Nevertheless, contextual features influence and modulate color appear-
ance. The contributions of contextual influences to surface color
appearance have interested scientists for many years and have been
successfully studied via a number of visual phenomena, including
simultaneous contrast (Chevreul, 1839), neon-color spreading (Varin,
1971), and, more recently by the Watercolor Effect (Pinna et al., 2001).
Surface color perception that is driven by remote contours is referred to
as filling-in. The above studies suggest that the color appearance of
surfaces depends on combining local surface information with contextual
information, such as from distant edges. The latter we refer to as edge--
dependent or induced color. In contrast to the progress made on the psy-
chophysics of these phenomena, little is known about the distributed
neural representation of edge-induced filling-in percepts and precisely to
what extent identical percepts induced by edge and surface information
depend on common or distinct neural networks.

A common hypothesis is that surface- and edge-dependent percepts

generate equivalent neural activity at early visual stages (Komatsu,
2006). Ratliff and Sirovich (1978) noted that convolution with
center-surround like filters both of step-edges and of the spatial transients
that induce filling-in (e.g., Craik-O’Brien-Cornsweet effects) results in
nearly identical images (Fig. 1). One possibility is that the
center-surround receptive field organization in early vision could leads to
edge transients and surfaces generating equivalent neural response pro-
files that the observer would perceive similarly.

Bayesian models of perception predict that both such stimuli would
be perceived as uniform fields because they would correspond to the
most likely cause of the neural activation (Brown and Friston, 2012). This
proposal is agnostic, however, with respect to whether the underlying
neural representations generate retinotopically-distributed activity
isomorphic with the fill-in percept at a subsequent stage (Anstis, 2010).
Such a proposal is compatible with reports that in cortical area V1 the
most frequently encountered color sensitive cells are double-opponent
that respond best to isolated chromatic contours but also to the edges
of uniform color and luminance surfaces (Friedman, Zhou, and von der
Heydt, 2003; Johnson et al., 2001). These cells show response profiles
that are stronger for stimulus edges than uniform surfaces (Friedman,
Zhou, and von der Heydt, 2003), and, in fact, optical imaging
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Fig. 1. Equivalence of responses for step and gradient intensity profiles under
convolution with a center-surround weighting function.

Both a step change in intensity (solid curve, upper left) and the exponential
ramp transient for a Craik- O'Brien-Cornsweet effect (dashed curve, lower left)
when convolved (indicated by “*””) with a center-surround weighting function
(center, the negative second derivative of a Gaussian) yield nearly identical
response profiles (right, solid and dashed curves, respectively).

experiments using voltage sensitive dyes in macaque (Zweig et al., 2015)
and functional imaging in humans (Cornelissen et al., 2006) demonstrate
that the response profiles in area V1 for uniform luminance or chromatic
surfaces are dominated by edge responses.

In area V1, it is conceivable that surface- and edge-dependent per-
cepts could be processed through distinct neural channels. Double-
opponent cells in area V1 could carry information about both isolated
chromatic and luminance edge-transients, such as those that generate
filling-in, as well as the edges of uniform surfaces while single-opponent
cells would respond optimally to the interior region of uniform fields.
Single-opponent receptive fields display different spectral sensitivities in
spatially distinct excitatory and inhibitory regions, thereby giving rise to
spectrally dependent responses to uniform fields. Such an organization
would be consistent with theories of visual processing that propose in-
dependent surface and edge processing in form perception (Pinna and
Grossberg, 2005). While the population of single opponent cells in V1 is
estimated to be less than half that of the double-opponent cells, this may
simply reflect differences in the sampling requirements for detecting
uniform surfaces and edges (Schluppeck and Engel, 2002). Whereas area
V1 has the neural machinery to support both edge-induced and
surface-dependent color, here we ask to what extent the mechanisms
underlying these perceptual phenomena are dependent on distributed
neural activity across cortical areas, and more particularly by distinct
inter-areal networks.

The edge-induced, filling-in phenomenon known as the Watercolor
Effect (WCE) is ideal for investigating the networks involved in contex-
tual effects (Fig. 2a). In the WCE, the color of the inner contour of a pair
of distant, chromatic contours modifies the appearance of an interior
region that is physically identical to the background in such a manner
that it appears as a uniform, desaturated hue (Pinna et al., 2001). The
WCE propagates over too large a visual angle to be attributed to light
spread in the eye. However, to date, investigation of the WCE has pro-
vided little evidence concerning the neuronal underpinnings of the
phenomena. Importantly, based on theoretical and psychophysical ob-
servations (Devinck et al., 2014), the thin chromatic edge-transient that
induces the WCE is expected to preferentially activate edge-sensitive
double opponent cells in area V1 rather than surface responsive single
opponent cells. While Coia et al. (2014) found that the visual evoked
potential (VEP) correlates with psychophysical responses for the WCE,
insufficient resolution of the VEP make it impossible to localize the areas
implicated in the processing. Finally, both the large extent of the filling-in
and the sensitivity of the phenomenon to the curvature of the inducing
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Fig. 2. Watercolor effect demonstration and fMRI stimuli used in the main
experiment.

a. Stimulus demonstrating the WCE. Two intersecting circular chromatic con-
tours, each with its radius frequency modulated, thereby defining three regions.
In the left region, the interior region takes on the hue of the bright orange
interior contours showing the WCE while in the right, the dark purple contours
generate no filling-in. The region of intersection that is enclosed by both types of
contours is described by some observers as showing a weaker filling-in color. b.
Examples of the three classes of stimuli used in the fMRI experiment. Beside
each stimulus an enlarged detail of the contour is drawn to illustrate its structure
Left: Edge-dependent stimulus inducing the perception of the WCE, as defined
from (Gerardin et al., 2014); Center: The control stimulus is composed of
braided contours and demonstrates a decrease in strength of WCE filling-in;
Right: The surface-dependent stimulus was used to match the effect of the
WCE filling-in, in which the interior chromaticity was defined from each sub-
ject's matches (from a preliminary paired comparison experiment inside the
scanner). These examples are schematic in terms of the width and color of the
contours and interior region, which are enhanced here for visibility of the
stimulus structure used.

oL
LL.Surface-dependent

contours (Gerardin et al., 2014) point to the involvement of cortical areas
beyond V1 and V2.

Here, we used functional magnetic resonance imaging (fMRI) com-
bined with Multi-Voxel Pattern Analysis (MVPA) in order to localize
those cortical areas associated with edge-induced, color filling-in of the
WCE phenomenon and those responding to a matched uniform chro-
maticity. To validate the functional imaging findings, we compared the
blood oxygen-level dependent (BOLD) signal with the psychophysically
estimated strength of the WCE. The MVPA results demonstrate that
neural activity supporting the WCE is distributed across multiple hier-
archical levels and streams in the visual system, but only a small set of
higher order dorsal areas are related to the perceptual strength of the
phenomenon. Combining Dynamic Causal Modeling (DCM) with
Bayesian Model Selection, shows that the areas most associated with the
WCE exert a feedback modulation of area V1 and the ventral stream, and
the directions of these modulations are reversed for the matched uniform
chromaticity. The results suggest that the WCE color filling-in depends, at
least in part, on a dorsal stream influence on ventral color areas. They
support the idea that edge-induced filling-in and surface-dependent color
are processed through distinct networks across the cortical hierarchy,
engaging ascending and descending pathways.
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2. Material and methods
2.1. Observers

Sixteen observers (10 female, mean + SD age: 28 + 4 years) partici-
pated in the study. All observers had normal color vision (Ishihara test
and Panel D15), normal or corrected to normal vision and were all right-
handed. The study was approved by the local ethics committee (ID-RCB,
2012-A000123-40) and all participants gave written informed consent.

2.2. Stimuli

The stimuli were created with Matlab R2010b (Mathworks, MA.,
U.S.A.), and displayed with the PsychToolbox extensions (Brainard,
1997; Pelli, 1997). Spectral and luminance calibrations of the display
were performed with a PR-650 SpectraScan Colorimeter (Photoresearch)
and used for screen gamma-correction in stimulus specification. All
stimuli were displayed on a white background (580cd/m2, CIE
xy = 0.29, 0.30). Stimuli in the main experiment were defined by a vir-
tual circle (8° diameter, i.e., 4° eccentricity when centrally fixated)
whose radius was modulated sinusoidally. A subset of observers was also
tested independently using a 4° diameter stimulus allowing comparison
to conditions from previous psychophysical studies (Devinck et al., 2014;
Gerardin et al. 2014, 2018). The 4-degree measures also served as a test
for repeatability of the pattern of results. The contour pairs that defined
stimuli in all conditions had a combined width of 16 min, i.e., 8 min each.
The classical WCE was generated with a pair of continuous adjacent
contours and will be referred to as the test or edge-dependent condition
(Fig. 2b, left). The outer contour appeared purple (CIE xy = 0.32, 0.19)
and the inner orange (CIE xy = 0.48, 0.34). Control stimuli were defined
by interleaving the interior and exterior contours in a braid (Fig. 2b,
center) (Devinck and Knoblauch, 2012). An additional stimulus was
tested, referred to as the surface-dependent condition, in which the
chromaticity of the interior of the control stimulus was modified to match
the fill-in color of the edge-dependent condition (Fig. 2b, right). The
matching procedure is described below. All stimuli were specified in the
DKL color space (Derrington et al., 1984) with purple and orange con-
tours at azimuths of 320 and 45 deg, respectively. Additional information
is described in the Stimuli and conditions paragraph in the section fMRI
Design and procedure.

2.3. Psychophysical procedures

2.3.1. Maximum Likelihood Difference Scaling

Prior to the collection of fMRI data, each observer performed the
Maximum Likelihood Difference Scaling (MLDS) task in the scanner
(Knoblauch and Maloney, 2012, 2008; Maloney and Yang, 2003) in order
to measure the perceived magnitude of the WCE from the stimuli in situ,
following the procedure introduced by Devinck and Knoblauch (2012).
To confirm that observers responded according to the fill-in color and not
on the basis of other stimulus feature(s), equal numbers of test and
control stimuli were interleaved in the session. On each trial, a randomly
selected triad of either test or control patterns was presented with three
luminance elevations of the orange contour (a, b, ¢) chosen from a series
of 10, with a < b < c. Stimulus b was always the upper stimulus in the
middle, and stimuli a and ¢ were randomly positioned below on the left
or right side, respectively (Fig. 3a). In each session, there was a random
presentation of the 10!/(3! 7!) = 120 unique triads from the series of 10
luminances of the orange contour, equally-spaced in elevation from the
equiluminant plane in DKL space from 0.1 to 0.9, for both test and control
stimuli triads, thus yielding a total of 240 presentations. Frequency and
amplitude of the contour were set to 20 cycles per revolution (cpr) and
0.2, respectively, with values shown previously to generate a strong WCE
(Gerardin et al., 2014). On presentation of a triad, the observer was
instructed to fixate each pattern and to choose which of the two bottom
patterns (left or right) was most similar to the upper pattern with respect
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Fig. 3. Psychophysics: stimulus configuration and estimated perceptual scales.
(a) Example of the triad configuration used in the MLDS task performed in the
session before scanning. A triad consisted of either edge-dependent (WCE) or
braided control stimuli with three unique ordered luminance elevations (a, b, c,
selected randomly from 10 elevations in total) of the interior orange contour.
Stimulus b was always the upper stimulus in the middle, and stimuli a and ¢
were randomly positioned on the left or right. The observer had to fixate each
pattern until he/she could choose which of the two bottom patterns (left or
right) was most similar to the upper pattern with respect to the color of its
interior region. (b) Left, all estimated response scales from the MLDS procedure
for the sixteen observers as a function of luminance elevation for edge-
dependent stimuli (black) and control stimuli (white). The signal detection
model used to fit the observer's data permits the ordinate values to be expressed
in terms of the signal detection measure d’. Right, average response scales for
the sixteen observers as a function of luminance elevation for edge-dependent
and control stimuli with 95% confidence intervals. (c) Correlations of MLDS
results with paired-comparison matches. Each point indicates for each observer
the luminance elevation that best matched the edge-dependent stimulus (WCE)
plotted against the peak MLDS response for edge-dependent (left) and for con-
trol stimuli (right).

to the color of its interior region. The observer's response initiated the
next trial. No feedback was provided to observers. Difference scales for
test and control stimuli were estimated from the session by maximum
likelihood using the mlds function from the MLDS package (Knoblauch
and Maloney, 2008) in the open source software R (RCoreTeam, 2015).
The scales estimated are based on a signal detection model of the decision
process and have the property that equal scale differences are
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perceptually equal, i.e., they are interval scales. When parameterized so
that each response has unit variance, the scales can be interpreted in
terms of the signal detection parameter d’ (Knoblauch and Maloney,
2012). Additional details on the procedure and modeling can be found
elsewhere (Devinck et al., 2014; Devinck and Knoblauch, 2012).

2.3.2. Paired-comparisons to estimate chromaticity that matched the WCE

A paired-comparison experiment was performed to estimate a uni-
form chromaticity that matched the appearance of the WCE filling-in
color. Observers were tested in the scanner prior to scanning. In pre-
liminary observations, we found that the fill-in appearance could be
closely matched by simply varying the luminance elevation at constant
length of the color vector in DKL space for the interior region. Because
the vector length is held constant, the length of the projection on the
equiluminant plane decreases with increasing elevation from the plane,
thereby reducing colorimetric purity of the stimulus. Observers were
presented simultaneously with a test and a control stimulus (braided
contour) for which the appearance of the interior of the latter was
controlled by adjusting the luminance elevation in DKL color space in the
manner described above. Observers judged which interior region of the
pair was more orange and the match was assigned to the value at which
the choice probability was 50%.

2.4. fMRI design and procedure

Observers were presented sequences of stimuli selected from the
three conditions described below. To control for attentional factors,
during all functional MRI experiments, observers performed a task
requiring them to detect a change in orientation of the fixation cross.
Observers were instructed to press a button when they detected a change
in the fixation cross from ‘+’ to ‘x’. Performance for this task was
79% =+ 3% (SD) correct. All stimuli were back-projected using a video-
projector on a translucent screen positioned at the rear of the magnet.
A subject in the scanner viewed the screen at a distance of 122cm via a
mirror fixed on the head coil.

2.4.1. Stimuli and conditions

Three conditions were used. a) Edge-dependent stimuli: Based on our
previous studies (Gerardin et al., 2014) and the psychophysical experi-
ments performed in the scanner, stimuli were chosen to generate a strong
WCE. Three contour frequencies (16, 18 and 20 cpr) were used, with two
contour amplitudes (0.16 and 0.20) and with three luminances of the
orange contour (elevations of 0.7, 0.8 and 0.9 in DKL space) (Fig. 2b left).
b) Control stimuli: Control stimuli were identical except that the contours
were interlaced or braided and generated little filling-in (Fig. 2b center).
c) Surface-dependent stimuli: These stimuli had braided contours similar to
the control, but the region interior to the contours was set to a uniform
chromaticity and luminance that matched the interior, fill-in color of the
edge-dependent stimuli (Fig. 2b right) based on a paired-comparison
experiment performed inside the scanner for each subject, described
above. These stimuli were designed to generate the same appearance as
the uniform interior of the WCE stimulus but with the bounding contour

Table 1
Stimulus and response differences tested by classifiers.
Edge Interior Interior
continuity chromaticity perceived
color
Edge- X X
dependent
vs Control
Surface vs X X
Control
Surface vs X X
Edge-
dependent
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of the control stimulus.

Table 1 shows the pattern of feature differences among the three
stimulus conditions that we used and on the basis of which we can make
comparisons and inferences about the role of particular Regions of In-
terest (ROIs) on edge and surface dependent color appearance. Because
each comparison varies for two features, no comparison uniquely defines
the information treated by a ROI, instead the interpretation of the source
of the activation is constrained by the combined classification across all
three comparisons.

The X's indicate the features on which the comparisons differed and
also symbolized by the contour pairs in the last column. The pattern of
responses across the three classifiers and not a single classification con-
strains the specificity of the region tested.

For example, significant differences for the edge-dependent vs. con-
trol comparison could result from either the local difference in edge
continuity of the inducer or from the difference in perceived color of the
interior region. However, if the same ROI only weakly differentiates the
surface-dependent vs. edge-dependent, then the influence of the edge
continuity on the response can be excluded since these stimuli also differ
with respect to that feature. In this case, we infer that the area's response
is implicated in the treatment of filling-in. If in addition the ROI weakly
differentiates surface vs. control conditions, then it implies that the ROI's
response does not depend strongly on the surface chromaticity since that
feature is common to the two comparisons showing weak classification.
On the other hand, if an ROI makes a strong distinction between the
edge-dependent vs. surface and the surface vs. control conditions but not
the edge-dependent vs. control, then we can conclude that it responds on
the basis of a purely stimulus bound feature, the interior chromaticity
difference, since that is the only common feature.

2.4.2. Procedure

Each observer was tested in one session comprising six scanning runs.
Each run consisted of 12 blocks plus 5 fixation intervals (including one at
the start, one at the end, and one between each 3-block sequence) and
lasted for 272s. Three conditions were tested: a) stimuli inducing WCE
(edge-dependent), b) null filling-in stimuli (control) and c) surface-
dependent stimuli. Each block comprised 20 stimuli of one condition
and was repeated four times. Block presentation was randomized. Each
stimulus was presented for 500 ms followed by a blank interval (300 ms).

2.5. fMRI data acquisition

All experiments were conducted using a 3-T Philips Achieva MRI
scanner at the Grenoble MRI facility IRMaGE, France. In each session for
each individual, a high-resolution T1-weighted structural image (3D TFE
sequence, acquisition matrix 240 x 256 x 180, TR/TE: 25/2.3 ms, flip
angle 9°, 1 x 1x1mm resolution) and series of T2*-weighted functional
images (EPI MS-FFE, acquisition matrix 80 x 80, 30 slices, TR/TE: 2000/
30 ms, flip angle 80°, acquisition voxel size 3 x 3x2.75mm, reconstructed
voxel size 3 x 3x3mm) were collected with a 32 channel SENSE head
coil.

In order to control for fixation stability, the position of the left eye
over the course of all experiments was monitored with an ASL Eye-
Tracker 6000. No systematic deviations from the fixation point were
observed and no data were excluded from the analysis.

2.6. fMRI data analysis

The fMRI data were analyzed using Brain Voyager QX (Brain In-
novations, Maastricht, The Netherlands). Preprocessing of the functional
data consisted of slice-scan time correction, head movement correction,
temporal high-pass filtering (2 cycles) and linear trend removal. Indi-
vidual functional images were aligned to each corresponding anatomical
image that was used for 3D cortex reconstruction, inflation and flat-
tening. The volume time-course datasets were convolved with a canon-
ical hemodynamic response function. No spatial smoothing was applied
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except for the group whole brain analysis (Gaussian filter; full-width at
half maximum: 6 mm kernel) after normalization of all data to a common
referential (Talairach space). Functional data analysis was first per-
formed using a general linear model (GLM). Such an analysis was real-
ized on the entire brain and in individually mapped regions of interest.
Subsequently, Multi-Voxel Pattern Analyses (MVPA) were performed on
each individual with Matlab R2010b (www.MathWorks.com) and
svlight (Joachims, 1999). Finally, Dynamic Causal Modelling (DCM)
analyses were performed using Matlab (R2014a-with SPM12 (6906) with
supplementary analyses using the open source software R (RCoreTeam,
2015). The three approaches used for fMRI data analysis and how they
are related to each other are schematized in Fig. 4.

2.6.1. General model analysis

For each participant, all three conditions (edge-dependent, control
and surface-dependent) were modeled as three regressors constructed as
boxcar functions convolved with a canonical hemodynamic function.
Parameters obtained from movement correction were added to the
design matrix as nuisance covariates. Contrast images were computed
relative to the fixation condition for all visual conditions and each
stimulus condition separately. These contrasts were used to select the
most activated voxels in each ROI. Once voxels were selected, the MVPA
was run on the raw data (see Fig. 4A).

2.6.2. Mapping regions of interest

In a second session, for each observer, we identified: 1) retinotopic
areas V1 and V2, 2) the human V4 (hV4, also identified by retinotopic
mapping) and Lateral Occipital complex (LO) and 3) motion-related areas
(V3B/KO, hMT+/V5). We functionally localized early visual areas V1
and V2, dorsal retinotopic areas V3, V3A and V7 and ventral retinotopic
areas V3v and hV4 based on standard retinotopic mapping procedures
(Warnking et al., 2002; DeYoe et al., 1996; Sereno et al., 1995; Engel
et al., 1994; Bordier et al., 2015). We also functionally localized LO
(Kourtzi and Kanwisher, 2001), V3B/KO (Dupont et al., 1997), and

A Activation for all

Design Matrix visual conditions

[“..

p<0.05 uncor.
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hMT+/V5 (Tootell et al., 1995) with a block related paradigm detailed
below (Fig. 5).

For retinotopic areas, visual stimuli composed of moving rings and
rotating wedges were used to encode respectively the eccentricity and
the polar angle in the visual field. Wedges and rings consisted of black
and white checkerboards displayed at a 4Hz flicker frequency. The aspect
ratio of the checks was kept constant by scaling their height linearly with
eccentricity. A fixation cross was displayed at the center of the stimulus.
Stimulus parameters are described in detail in (Warnking et al., 2002).
fMRI responses to stimuli that cover the visual field in opposite direction,
expanded rings and contracting rings for eccentricity encoding, and
clockwise and anti-clockwise for polar angle encoding, were combined to
cancel the effects of the hemodynamic delay. We used the Brain Voyager
analysis pipeline (correlation analyses) to define for each subject the
ventral and dorsal, as well as the left and right parts of areas V1, V2, V3
and hV4 (ventral only).

We computed correlation analyses with a sinusoidal function with 16
lags to obtain power and phase maps for both the eccentricity and the
polar mapping. Phase maps were thresholded at a correlation of 0.2 and
projected on the cortical flat maps. The borders between visual areas
were identified as phase reversals on the polar phase maps, with simul-
taneous visualization of the eccentricity map to ensure that the borders
ran perpendicularly to the eccentricity gradient. We identified V1 and
V2, dorsal areas up to V7 and ventral areas up to hV4. In addition, for
area V1, a set of voxels was selected that was retinotopically interior to
those significantly activated by the contours of the control stimulus (4-
degree eccentricity, blue shading in Fig. 5) for use in the subsequent
MVPA analysis. This selection was based on the data from the retinotopic
mapping experiments, i.e., eccentricity maps defined using expanding
concentric rings. This allows excluding pattern classification based on
voxel response to the contour. Subsequently, additional control analyses
were performed to evaluate the role of the contour in classification for
the extrastriate visual areas.

Using the general linear model (GLM) including fixation periods and

Differential time course for the selected voxels
in each ROI for each condition

Most activated voxels in
each delineated area

S V30w ¢, /W Edge-Dependent
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Fig. 4. Image processing steps for each subject.
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A. Selection and Time series extraction. After General Linear Model (GLM) estimation, the most activated voxels for all visual conditions were selected in each
delineated area and their time course extracted for each condition. Stimulus conditions in right panel are indicated symbolically from top to bottom as continuous
contours, braided contours and braided contours with added uniform chromaticity. B. Classification. A Support Vector Machine classifier was trained based on the
mean z-normed activation of each area in response to each block to discriminate between conditions using a six-fold cross-validation scheme. C. DCM analysis. The
eigenvectors of selected area in response to each condition were used as input (stimulus comparisons shown above models) for the evaluation of connectivity
modulations (12 possible models). These models were then compared within condition with Bayesian Model Selection. Red rectangles indicate the selected model for

edge vs control (left) and surface vs control conditions.
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Fig. 5. ROIs delineation.

Functional activation (from red to yellow, for low to high activation) from the
braided control (4 deg eccentricity) versus fixation conditions was projected
onto each inflated or flattened hemisphere (Fig. 5, Left: left hemisphere; Right:
right hemisphere for one subject). The blue shading in area V1 indicates the
retinotopic regions interior to the activation by the 4-degree eccentric contours
of the control stimulus, based on the eccentricity maps obtained from the reti-
notopy mapping experiment. This defines the region interior to the stimuli from
which the voxels were defined for the analyses in order to exclude voxels
responding directly to the contour.

movement correction parameters as covariates of no interest, we iden-
tified LO, hMT+/V5 and V3B/KO. For LO mapping we used the paradigm
described in (Kourtzi and Kanwisher, 2001). In a block session, twenty
intact objects and their scrambled versions were presented successively
during 16s. A resting state block, consisting of a fixation cross at the
center of the screen, was inserted each 4 consecutive blocks and at the
beginning and ending of the session. Two sessions were executed for a
duration of 336s each. Using a GLM, LO was defined as the set of
contiguous voxels in the ventral occipito-temporal cortex that showed
significantly stronger activation (t (161)>4.0, p < 0.001 uncorrected) to
intact compared to scrambled images of objects (Kourtzi and Kanwisher,
2001).

For hMT+/V5, we used a ten block paradigm, each block lasting 8 s,
where 4 blocks of moving dots (outward movement using 20 images
displayed 250 ms each) alternated with 4 blocks of static dots. Similarly
to previous paradigms, a resting state block was displayed at the begin-
ning and ending of the session. The session was repeated 5 times. The ROI
hMT+/V5 (Tootell et al., 1995) was defined as the set of contiguous
voxels in the lateral occipito-temporal cortex that showed significantly
stronger activation (t (189)>4.0, p <0.001 uncorrected) to moving
compared to static random dots.

For V3B/KO delineation, the protocol was identical to LO except that
we presented randomly textured patterns that generated kinetic contours
as described in (Dupont et al., 1997). V3B/KO was defined as the set of
contiguous voxels anterior to V3A that showed significantly stronger
activation (t (161)>4.0, p < 0.001 uncorrected) to random-dot displays
that defined relative rather than transparent motion (Dupont et al.,
1997).

During all of the ROI mapping sessions, the subjects were instructed
to focus on the central fixation cross while paying attention to the whole
stimulus. Their task was to press a button each time the fixation cross
changed orientation.

2.6.3. Multi-voxel pattern analysis

Multi-voxel Pattern Analysis (Haynes and Rees, 2005; Kamitani and
Tong, 2005), using linear Support Vector Machine (SVM) classifiers fol-
lowed by cross-validation procedures, was used with Matlab R2010b
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(www.MathWorks.com) (Gerardin et al., 2010) and svmlight (Joachims,
1999). For each Region of Interest (ROI: retinotopic areas, LO, V3B/KO
and hMT+/V5), voxels were sorted according to their response (t-sta-
tistic maps based on the GLM) to all stimulus conditions compared to
fixation baseline across all experimental runs. The number of voxels was
selected across individual ROIs and observers by restricting the pattern
size to those voxels that showed a significant (p < 0.05 uncorrected) t
value. One hundred voxels from both hemispheres were included for
each ROI and subject. For area V1, voxels were chosen to be at retinotopic
eccentricities inferior to those activated directly by the control stimulus
contour at 4° (blue region of V1 in Fig. 5). For other visual areas, it was
not possible to exclude such voxels for all observers and maintain 100
voxels per ROI As an additional test of a possible influence of the contour
on the activations, we performed a second analysis in which the number
of voxels was reduced per area on an individual basis to the maximum
number excluding the activation by the control contour. To account for
the differences in voxel numbers between areas and observers, we report
weighted means and confidence intervals based on weighted standard
deviations for these results with the voxel numbers used as weights.

Each voxel time course was normalized (z-score) separately for each
experimental run in order to minimize baseline differences. For each
subject and each condition, all time series data points of the corre-
sponding experimental block were averaged in order to generate the data
vectors for the multivariate analysis. Data vectors were selected ac-
cording to the comparison of interest and split into a training sample
comprising the data of five runs and a test sample comprising the
remaining run. A six-fold cross-validation was performed leaving one run
out (test sample). For each subject, accuracy rates were averaged
(number of correctly assigned test patterns/total number of assignments)
across cross-validation runs. Statistical significance across conditions was
evaluated using linear mixed-effects models with observer treated as a
random effect (Pinheiro and Bates, 2000). A recent study questioned the
use of parametric significance tests with MVPA based on simulations that
revealed skewness of the null-distribution (Jamalabadi et al., 2016).
Diagnostic plots of the residuals from the mixed-effect model fits (re-
siduals vs fitted values, and quantile-quantile plots, S1), however,
revealed no systematic deviations from model distribution or variance
assumptions that would warrant discounting the model or preferring
transformed values of the response variable.

2.6.4. Control analyses for the MVPA

Control analyses were performed with permutation tests to evaluate
whether the observed classification accuracies observed were due to
chance (Etzel, 2017; Etzel and Braver, 2013). The MVPA analyses were
run with randomly assigned category labels to each activation pattern for
1000 repetitions per subject. For each permutation, the classification
accuracies were averaged across subjects. The probability of observing a
value equal or higher than the average observed value was calculated
from the distribution of permuted averages as the achieved significance
level of the test (Efron and Tibshirani, 1994). Ninety-five percent confi-
dence limits for the mean predictions under the permutations were
estimated from the 2.5 and 97.5 quantiles of the permutation
distributions.

2.6.5. Dynamic Causal Modeling for BOLD responses

Using Dynamic Causal Modeling (DCM), we explored changes in the
effective connectivity, i.e. the inferred influence exerted by one region on
the others, and how information is propagated through these regions (see
(Friston, 2011) for details about the operational distinction between
functional and effective connectivity) in response to our protocol. DCM
considers the brain as a deterministic system whose response in a region
or part of a cortical network, is determined by activity in other regions.
We defined causal models of connectivity between selected ROIs to make
inferences about underlying mechanisms expressed in our BOLD data.
These models included 1) intrinsic (or endogenous) connections that
quantify the effective fixed connectivity between the model nodes, i.e.
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the changes in activity in a target region when activity in the source
region changes (matrix A in DCM), 2) stimulus-related inputs that define
how the model responds to task-related inputs (matrix C in DCM), and 3)
possible input modulations that define how the effective connectivity is
influenced by experimental factors (matrix B in DCM). Following model
estimations, DCM provides a Bayesian method (Bayesian Model Selec-
tion, BMS) for selecting the best model of coupling that explains con-
nectivity changes underlying task-related brain responses (Friston et al.,
2003). Note that effective connectivity between regions does not imply
underlying direct anatomical connections (Friston, 2011).

2.6.5.1. Model structure. Following BMS, each model is attributed a
probability according to its power to describe the data. These probabil-
ities sum to one, so the number of models in the model space must be
limited to prevent excessive dilution of the maximum probability. One
way to achieve this is to limit the number of areas considered. In our case,
three areas were considered in each model definition because it is the
lowest number necessary to translate our hypothesis concerning the
connectivity modulations between dorsal and ventral streams. For
example, region V1 (as receiving visual input), region V3A (that best
classified edge-dependent stimuli) and region LO (that best classified
surface-dependent stimuli). As early visual areas are strongly inter-
connected, we considered all possible connections between and within
areas in our endogenous matrix. Our control stimuli entered all models as
a driving input to V1.

2.6.5.2. Connectivity Modulation. We designed a model space in terms of
which a subset of connections was modulated by the edge-dependent or
the surface-dependent stimuli. We reasoned that both types of stimuli
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have a differential effect on endogenous connections of the network for
each subject. We did not consider bidirectional modulations because we
were only interested in the strongest direction. V1 was always connected
to the two other areas in all models, but we included the hypothesis that
there was no differential modulation between them. Because of the
importance of V1 intrinsic horizontal connections for contour integration
(Stettler et al., 2002), for each model we included a self-modulation of
V1. This resulted in the model space described in Fig. 6a and Supple-
mentary Fig. S2a with 12 possible modulation patterns.

2.6.5.3. Model comparison. All twelve models were applied successively
with the functional data sets from each subject and each condition (edge-
induced or surface-dependent). Then, a BMS procedure to identify which
of the competing models best predicts each dataset. For each model, the
model evidence, i.e. the probability of observing the measured data given
a specific model, was computed based on the free energy approximation.
Model evidence was used by the BMS procedure to rank the models. The
protected exceedance probability defined the relative superiority of a
model, given the group data (Rigoux et al., 2014). For group-level
Bayesian model selection, we then considered a Random-effects (RFX)
analysis to account for between-subject variability (Stephan et al., 2009).

3. Results
3.1. Estimated perceived strength of WCE
Perceptual scales were estimated by Maximum Likelihood Difference

Scaling (MLDS), method of triads (Knoblauch and Maloney, 2008;
Maloney and Yang, 2003), a powerful method for identification of
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Classification accuracies across the 10 regions of interest for the three classifiers: (I) Edge-dependent vs. control (dark grey); (II) Surface-dependent vs. control (grey);
(II1) Surface-dependent vs. edge-dependent (white). Mean classification accuracy is based on 100 voxels per area in both hemispheres. Each bar plot shows results for 3
pairs, means of observed values across observers (left) and means based on permutation tests (n = 1000) (right), of classifiers. Error bars indicate 95% confidence
intervals. Prediction accuracies that exceeded a p-value of 0.05 after Bonferroni correction (Table S2) are indicated by ns above the bar pairs. Significant differences
between the classifiers (p < 0.05) controlled for multiple comparisons (Tukey test) are indicated by horizontal bars and star. The yellow points indicate average results

of a repeated experiment on three of the observers using a 4 deg stimulus.
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perceptual correlates of BOLD responses (Bellot et al., 2016; Yang, Sze-
verenyi, and Ts'o 2008). A sample trial illustrating the stimulus config-
uration is shown in Fig. 3a. The approach is based on the idea that when
the perceived filling-in of the upper stimulus is judged equally often to be
as similar to the lower left as to the lower right stimulus, then the
perceived differences between a and b and between b and c are equal.
This allows scale values to be estimated by maximum likelihood based on
a signal detection model of the observer decision rule (Knoblauch and
Maloney, 2012; Maloney and Yang, 2003). Individual (left panel) and
average (right panel) perceptual scales estimated by MLDS (Fig. 3b)
display the dependence of the strength of the filling-in on the luminance
of the orange contour for test (filled circles) and control (open circles)
stimuli. With test stimuli the filling-in response increases with the
elevation of the luminance of the interior contour with respect to an
equiluminant plane in DKL space, while for the control stimuli responses
are attenuated or absent (Devinck et al., 2014; Devinck and Knoblauch,
2012). The differences in response magnitude between edge-dependent
and braided control stimuli confirm that observers respond to the
fill-in color and not the contours, and reveal significant variation in the
strength of the WCE across observers. Fig. 3c shows for all observers two
scatterplots of the luminance elevations that best match the WCE against
the peak MLDS responses for the edge-dependent stimulus (left panel)
and the control stimulus (right panel). As the luminance elevation of the
matched stimulus decreases in DKL space, colorimetric purity increases.
Thus, lower luminance matches correspond to a higher matched colori-
metric purity and therefore, a stronger perceived fill-in color in the
edge-dependent stimulus. The strength of the WCE is significantly
correlated with the matched color value (r=-0.62, p=0.01) for the
edge-dependent but not for the control stimulus (r = —0.19, p=0.48).
Thus, individual differences in the strength of the WCE covary similarly
for both the scaling and matching data.

3.2. BOLD activation related to the WCE

A whole-brain analysis using a General Linear Model (GLM) was
undertaken so as to detect significant BOLD activation related to the
WCE. Fig. S2 in Supplementary Material shows the activation in each ROI
with respect to the mean response for the fixation condition and
normalized by the pooled standard deviation, for each condition. For all
areas, 95% confidence intervals overlap in all conditions, except for LO,
V3d and V3A, which show higher activation for the Edge condition that
generates a WCE. To detect differential activation, stimulus blocks from
each of the three conditions were contrasted with the other two in a
group analysis. No significant activation survived when correction for
multiple comparisons was applied (p > 0.05, Bonferroni corrected for all
brain voxels).

3.3. Discriminating edge-dependent and surface-dependent processing with
MVPA

To obtain a more fine-grained analysis of the contrasts, MVPA was
applied to ROIs identified by functional localizers. We assumed that if a
ROl is involved in edge- or surface-dependent color appearance, contrasts
in the stimuli would generate a significantly higher accuracy than chance
according to the logic expressed in the methods with respect to Table 1.
Signal-to-noise ratios tested by a linear mixed-effects model across
cortical areas and with a random observer intercept showed no signifi-
cant differences that could bias such comparisons (Likelihood ratio test:
272(9) =7.4;p = 0.6, Fig. S3).

MVPA was used to test whether activity patterns of voxels in reti-
notopic areas (V1, V2), dorsal areas (V3d, V3A, V7, V3B/KO, hMT+/V5)
and ventral areas (V3v, hV4, LO), decode the WCE. As demonstrated
previously (Devinck et al., 2014; Gerardin et al., 2014) and confirmed in
the psychophysical experiments above, WCE filling-in is absent or
strongly attenuated when the stimulus contour is braided. Classifiers
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were run to identify regions that decode preferentially these particular
properties of the edge-dependent stimuli (WCE). Analyses were also
conducted to reveal visual regions that classify the surface-dependent
stimuli matched in color appearance to the WCE. For each area, three
classifiers tested specific hypotheses: (I) that accuracy was higher for the
classification of edge-dependent compared to control stimuli; (II) that
accuracy was higher for the classification of surface-dependent compared
to control stimuli and (III) that accuracy was higher for the classification
of edge-compared to surface-dependent color stimuli. All results reported
below were corrected for multiple testing (Holm, 1979).

Fig. 6 shows the classification accuracies (left bar of each of the three
pairs in the bar graph for each area with 95% confidence intervals and
Supplementary Table S1) with comparisons to the mean value obtained
from a permutation test (n=1000, right bar in each pair with 95%
confidence intervals of the permutation distributions) for each of the
comparisons among the three stimulus conditions and each ROI. The
confidence intervals for all means based on the permutation distributions
include the chance level of 0.5. Supplementary Table S2 shows the sig-
nificance levels after Bonferroni correction of the permutation analyses
of the observed classification accuracies. Seven values do not differ
significantly from the mean permutation value (Edge-dependent vs
Control: hMT+/V5; Surface-dependent vs Control: V3d, V3B/KO,
hMT+/V5; Surface-dependent vs Edge-dependent: V7, V3B/KO, hMT+/
V5). All other values fell outside the distribution of 1000 permutations.
The results suggest that processing of the stimuli tested is distributed
across multiple areas. However, not all areas displayed differential
classification for the three comparisons. For 4 areas (V2, V3d, V7 and
hMT+/V5), the classification accuracies showed no selectivity for the
conditions (Table S6, linear mixed effects model: V2: F (2, 30) = 2.96,
p=0.07; V3d: F (2, 30) = 0.87 p = 0.42; V7: F (2, 30) = 1.53, p = 0.23;
hMT+/V5: F (2, 30) = 0.28, p = 0.76), and except for area V2, which
classified robustly for all three MVPA comparisons, displayed relatively
low or non-significant prediction accuracies. Significant differences be-
tween the MVPA comparisons were observed in V1 (Table S6, linear
mixed-effects model: F (2,30) = 16.58, p < 0.001) and in ventral stream
areas (V3v: F (2,30) =7.61, p < 0.01); hV4: F (2,30) =11.78, p < 0.001;
LO: F (2,30) =17.14, p < 0.0001). In dorsal areas, differences between
the MVPA comparisons only attained significance for areas V3A (F
(2,30) =47.05, p<0.00001) and V3B/KO (F (2,30)=27.27,
p < 0.00001) (Supplementary Table S6). The yellow points indicate in-
dependent replications of the conditions in 3 observers using a 4° stim-
ulus. In all cases, they yield the same pattern of results as for the larger
stimuli and support the robustness of the findings.

Ventral and dorsal stream areas systematically differ in the profile of
classification accuracy across the three MVPA comparisons. Ventral areas
(V3v, hV4 and LO) displayed high accuracies for the surface-dependent
vs. edge-dependent classifier that additionally were significantly
greater than for the edge-dependent vs. control comparison (Tables 2 and
[ vs III: Tukey test, V3v: t (885) = —4.3, p < 0.001; hV4: t (885) = —2.5,
p <0.05; LO: t (885) = —5.2, p < 0.001). If the classifiers were driven by
the edge continuity, then both of these comparisons would be expected to
indicate high prediction accuracy. Areas V3v and hV4 also showed a
significantly higher prediction accuracy for the surface-dependent vs.
control comparison than for the edge-dependent vs. control (Table 2,
Tukey test, [ vs II: V3v: t (885) = —3.1, p < 0.01 and hV4: t (885) = —4.7,
p <0.001). This result also argues against the edge continuity as the
decoding feature because the edge-continuity is matched for the com-
parison with higher prediction accuracy (surface-dependent vs control).
Instead, the two comparisons differ in the interior chromaticity but not
the perceived interior color, suggesting that decoding is based on the
former feature. LO shows a similar prediction accuracy profile except that
the difference between comparisons I and II does not reach significance
(edge-dependent vs control compared with surface-dependent vs control:
Table 2, Tukey test, I vs II; LO: t (885) = —2.1, p = 0.08). These findings
suggest that the classifications do not depend on either edge continuity or
interior chromaticity, since both of these classifiers differ on these
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Table 2
Post-hoc t-tests (Tukey Honest Significant Differences test) for differences of
classification accuracy between classification comparisons within areas.

MVPA comparison  I-1II I-1 II-11

t p t p t p
Retinotopic areas
V1 -250 3.3e-02 230 5.6e-02 4.80 5.2e-06
V2 —0.88 6.6e-01 1.30 3.9e-01 2.20 7.6e-02
Ventral visual areas
V3v -3.10 6.6e-03 —4.30 6.4e-05 2.20 6.9e-02
hv4 —-4.70 1.0e-05 —-2.50 3.8e-02 —-2.30 2.2e-01
LO —-2.10  8.2e-02 —-5.20 9.3e-07 —-3.00 7.5e-03
Dorsal visual areas
v3d 0.99 5.8e-01 —0.54 8.5e-01 -1.50 2.8e-01
V3A 6.50 4.7e-10 850 4.0e-17  2.10 1.0e-01
v7 —0.64  8.0e-01 1.40 3.3e-01 2.10 9.8e-02
V3B/KO 7.10 9.5e-12 7.30 2.2e-12 0.20 9.8e-01
hMT+/V5 0.35 9.3e-01 0.94 6.1e-01 0.59 8.2e-01

Roman numerals refer to classification comparisons: (I) Edge-dependent vs. control;
(I) Surface-dependent vs. control; (III) Surface-dependent vs. edge-dependent.
Each column indicates the t- and p-values for the difference of a pair of classi-
fication comparisons. Significance levels for p < 0.05 are indicated in bold.

attributes and if one were driving the decoding results, then the classi-
fication accuracies would differ, too. The highest prediction accuracy
occurs, however, for the classification that compares stimuli in which the
interior perceived colors match. This would suggest that LO classification
depends on the perceived color evoked by the chromaticity difference but
not that arising specifically from filling-in.

Dorsal stream areas (V3A and V3B/KO) showed a complementary
pattern of results in which classification accuracy was highest for the
edge-dependent vs. control condition and significantly higher than for
the other two comparisons (Table 2, Tukey test, V3A, I vs. II: t
(885) =6.50; p < 0.001; I vs. III; t (885) = 8.50, p < 0.001; V3B/KO: I vs.
II: £ (885) = 7.10, p < 0.001; I vs. III: t (885) = 7.30; p < 0.001). The high
accuracy in these areas for the edge-dependent vs. control comparison
supports either a classification on the basis of the filling-in or the edge
continuity. The surface-dependent vs. edge-dependent comparison,
however, also differed in edge continuity so that the significantly lower
response in this case argues in favor of filling-in and against a role for
edge continuity. In addition, the significantly lower response of the
surface-dependent vs. control comparison argues against a critical role
for surface chromaticity per se in the classification behavior of these
areas.

Areas V1 and V2 showed similar prediction accuracies for the three
classifiers, with higher response for the first two, edge-dependent vs.
control and surface-dependent vs. control, but only in area V1 do the
differences between comparisons attain significance. This pattern is
consistent with processing of the fill-in color and the surface color since
the responses are equally strong for the edge- or surface-dependent color
and weakest when this attribute is matched. However, the strong activity
for all three classifiers could indicate the presence of subpopulations that
respond differentially to all of the dimensions along which these stimuli
differ.

In order to exploit 100 voxels per area in all observers, the ROIs used
for the MVPA analyses other than for area V1 contained voxels that
included activation by the stimulus contour. Could the decoding results
be due to the contour differences, per se? At least two of the comparisons
in Table 1 involve pairs of stimuli that differ in contour continuity (I:
Edge-dependent vs Control and III: Surface-dependent vs Edge-
dependent). Hence, if the contour continuity were the basis of the clas-
sification accuracies, we would expect that the classification accuracies
obtained for these two comparisons would be correlated. We calculated
the Pearson correlations between the prediction accuracies for these two
comparisons. Only the correlation for area LO attains significance, and
this p-value would not survive a correction for multiple tests
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(Supplementary Table S3). These findings argue against the contours
making a significant contribution to the decoding. We further verified the
absence of a role of the contours by determining new ROIs in each area as
the maximum number of voxels excluding the contour activation and
repeating the analyses. This resulted in unequal numbers of voxels for
each area and observer as indicated in Supplementary Table S4. To ac-
count for the differences in number of voxels in the analyses, we
computed weighted means and standard deviations with the number of
voxels as weights. The prediction accuracies for this analysis and the
comparisons with the permutation distributions are shown in Supple-
mentary Fig. S4 in the same format as Fig. 6. The prediction accuracies
tend to be a little smaller and the confidence intervals larger as would be
expected from an analysis with fewer samples. Several of the lower
prediction accuracies now do not differ from chance. However, qualita-
tively, most of the results show the same trends. The V1 results are the
same as those from the previous figure, because the voxels from that area
were already chosen to exclude the contour activation zones. Contour
exclusion led to the following differences. In area V2, the surface-
dependent vs control prediction accuracy is not significant, suggesting
that the decoding when the contour is excluded is driven by the contour.
In area hV4, only the surface-dependent vs control comparison is sig-
nificant, suggesting that the decoding is driven by the interior chroma-
ticity. Finally, area V3v appears to be driven by a combination of the
interior chromaticity and the edge continuity. Importantly, the decoding
profiles for areas V3A and LO on which subsequent analyses are based are
similar for both voxel selections.

3.4. Relationship between behavior and neural processing of the WCE

The MVPA analysis reveals candidate areas implicated in the pro-
cessing of the WCE filling-in, but does not necessarily indicate any
relation to perception. To explore such a link, the Pearson product-
moment correlations were calculated between the individual classifica-
tion accuracies for the edge-dependent vs. control MVPA comparison and
the peak values for the estimated perceptual scales (d’ from the MLDS
task). None of the other comparisons should be related to the perceptual
strength of the WCE and with one exception (area hMT+/V5, surface-
dependent vs. edge: r = 0.52, p = 0.04), no significant positive correla-
tions were observed. The statistical significance of this case is surprising,
given that the prediction accuracy is low (0.55). Fig. 7 shows the scat-
terplots of classification accuracy vs. d’ with regression lines for all ROIs
with the correlations and significance levels under the hypothesis of no
correlation indicated in each figure. This shows that only areas V3A and
V3B/KO showed a significant positive correlation (V3A: r=0.66,
p=0.006, 95% CI (0.237, 0.869); V3B/KO: r =0.5, p =0.049, 95% CI
(0.004, 0.794)).

The correlation for area V3v is near the criterion of significance used
throughout (V3v: r = 0.47, p = 0.064, 95% CI (—0.030, 0.785), and one
can legitimately question whether its value differs significantly from that
observed for area V3B/KO (Nieuwenhuis et al., 2011). An analysis of
covariance to predict classification accuracy with respect to the covariate
d’ and the factor Area indicated a significant interaction (F (9,
140) = 2.21, p = 0.025), demonstrating the presence of at least one slope
that differed significantly from 0. Inspection of the estimated coefficients
for each area revealed significant slopes for areas V3A (t (140) =2.81,
p=0.006), V3B/KO (t (140) = 2.43, p=0.02) and V3v (t (140) =2.04,
p = 0.04). Post-hoc tests, however, showed that the slopes of both areas
V3A and V3B/KO differed significantly from that of V3v (Tukey Honest
Significant Differences test: V3v - V3A: t (140) = —7.4, p < 0.0001; V3v -
V3B/KO: t (140) = —4.81, p=0.0002) while the slope difference be-
tween areas V3A and V3B/KO is at chance level (V3A — V3B/KO: t
(140) =2.59, p =0.2305).

The results of the correlations recomputed with the prediction accu-
racies based on the contour excluded ROIs were unchanged and signifi-
cant only for areas V3A and V3B/KO (V3A: r=0.59, p = 0.016; V3B/KO:
r=0.513, p=0.042).
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Fig. 7. Correlating pattern classification and appearance.

Scatter plots of classification accuracies and peak MLDS scale values for all subjects (N =16) for the comparison edge-dependent (WCE) vs. control stimulus for all
ROIs with the best-fitting linear regression (solid line). Pearson product-moment correlations and p-values for the hypothesis that the correlation is 0 are indicated

within each graph.
3.5. Effective connectivity for edge-induced and surface-dependent colors

The above results suggest a role for dorsal areas, particularly area
V3A, in the WCE color filling-in. This is surprising because this area, and
more generally, dorsal stream areas are little implicated in color pro-
cessing. We hypothesized that such a role could be mediated through the
action of these dorsal stream areas on the ventral stream, which has more
typically been implicated in color processing. To evaluate this hypothe-
sis, we used Dynamic Causal Modeling (DCM (Stephan et al., 2010;
Friston et al., 2003),) and Bayesian Model Selection (BMS) to test the
context dependent modulation among areas that showed differential
responses to WCE and the uniform added chromaticity. To increase the
power of the analysis, we limited evaluation to a triple of areas that
included area V1, which represents the visual input at the cortical level,
and two areas, V3A and LO, which based on the MVPA analyses, dis-
played the strongest contrast in their classification profiles with respect
to edge-dependent and surface-dependent stimuli. We hypothesized that
these areas would be the most likely set of areas to differentiate between
the two conditions. We considered models that contrasted the directional
modulation of effective connectivity between each pair of the triple when
compared with the braided control stimulus. We only tested models with
unidirectional modulation of connections between each pair of areas to
further reduce the number of models and because we were only inter-
ested in the strongest modulation of effective connectivity between area
pairs. We considered a space of 12 models (4 patterns of modulation of
connectivity of area V1 to V3A and LO times 3 possible relations between
V3A and LO), representing plausible effective connectivities between
these two areas and V1 (Fig. 8a). V1 was always connected to the two
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areas, but we also included the hypothesis that there was no modulation
between V3A and LO.

The protected exceedance probabilities (PEP) for the 12 models for
each of the two conditions are shown in the bar graphs of Fig. 8b for the
edge- (left panel) and surface-dependent (right panel) conditions. The
Bayesian Omnibus Risk factors (BOR) for the PEP profiles rejected the
hypothesis that the models are equiprobable, thus, indicating that at least
one differed significantly from the others (BOR = 0.002 for both cases).
For the number of observers in our study, PEP values above 0.5 (the
disambiguation threshold) are considered strong evidence in favor of the
model (Rigoux et al., 2014). Thus, the edge-dependent condition strongly
supported model MO8 (PEP = 0.82) in which feedback connections from
area V3A influence areas V1 and LO, and a feedforward connection from
V1 modulates LO. The surface-dependent condition, however, strongly
supported model M11 (PEP = 0.68), which displays a complementary set
of modulations, i.e., LO exerting a feedback modulation on V1 and V3A,
and V1 a feedforward modulation of area V3A.

In the analyses above, areas V3A and LO were selected based on the
clear contrast in their stimulus classification profiles. Concomitantly, we
should expect that pairs of areas for which the classification accuracy was
low and for which the profiles did not distinguish among the stimuli
would not show evidence supporting different models of effective con-
nectivity for the edge- and surface-dependent conditions. As a control, we
examined a model space for the triple V1-V3d-V7 (Supplementary
Fig. S5a). Both V3d and V7 showed low classification accuracies (p < 0.6)
and displayed no significant differences among the three comparisons
(Fig. 6). In addition, in all three areas the correlations between the pre-
diction accuracy and appearance measures were not significant (Fig. 7).
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The analysis rejected the hypothesis that models were equiprobable
(BOR < 0.05 for both edge and surface conditions), but the model for
which the evidence was strongest was the same (M11) for both condi-
tions (Edge: PEP=0.039; Surface: PEP=1.4e-4) (Supplementary
Fig. S5b).

4. Discussion

In the current study, we compared cortical activity related to color
appearance generated by either edge-induced filling-in or a uniform
surface chromaticity and found them to be associated with complemen-
tary patterns of activity in dorsal and ventral visual streams. Three lines
of evidence support these results. First, the MVPA technique showed a
significantly different profile of classification performance for the edge-
dependent vs surface dependent conditions in dorsal areas V3A and
V3B/KO compared to ventral areas V3v, hV4 and LO. These results are
robust as these areas showed the same pattern of responses when repli-
cated with a smaller stimulus and also when re-analyzed with ROIs that
excluded the voxels retinotopically activated by the contours. It is un-
likely that differential deployment of attentional mechanisms could
explain these results as attention was uniformly controlled in all fMRI
experiments. Second, individual differences in the psychophysically
measured strength of the WCE were significantly correlated only with the
classification performance of the edge-dependent stimulus in dorsal areas
V3A and V3B/KO. Finally, a DCM analysis supported a model in which
the edge-dependent stimulus modulated the effective connectivity
directed from dorsal area V3A to area V1 and ventral area LO. In contrast,
complementary modulations of LO onto V1 and V3A were found for the
surface-dependent comparison with the control. Importantly, given that
the whole brain GLM analyses failed to detect significant differences
among the stimulus conditions, the results obtained depended critically
on the sensitivity of the fine-grained MVPA (Sapountzis et al., 2010) and
the DCM methods (Stephan et al., 2010; Friston et al., 2003). Taken
together, the results demonstrate that signals associated with edge- and
surface-dependent information are not represented identically across
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visuals areas. The results support the hypothesis that information about
surface-dependent and edge-induced colors is transmitted through
distinct neural pathways.

The results do not rule out the participation of other areas in medi-
ating edge- and surface-dependent color appearance. Indeed, the MVPA
results reveal classification performance above chance for at least some
conditions in all visual areas except for area hMT+/V5, although they do
not all significantly distinguish between the three conditions. For
example, it would be interesting to extend the DCM analyses to include
area V2 because of its implication in color processing (Roe and Ts'o 1999)
and contour extraction (Lee and Nguyen, 2001). This would entail
examining a space of effective connections between four areas with an
accompanying combinatorial increase in the number of possible models
that would need to be tested. The larger number of models would dilute
the power of such an analysis without, for example, evidence from the
MVPA to constrain the analysis to a relevant subset of hypotheses.

4.1. Implication of cortical areas in edge- and surface dependent color
processing

While area V3A has not typically been associated with color pro-
cessing, activity dependent markers revealed a sparse population of cells
responsive to chromatic stimuli (Tootell et al., 2004; Tootell and Nasr,
2017). The small size of these color-selective cells and their random
distribution may explain the failure to detect color-selective responses in
this area (Brouwer and Heeger, 2009). In addition, Hadjikhani et al.
(1998) included V3A in a set of areas that generated greater responses to
color than luminance modulated stimuli. More recently, Castaldi et al.
(2013), reported that V3A responds to chromatic spatial features. Its
influence on color areas would be made possible by the dense connec-
tivity between dorsal and ventral streams (Markov et al., 2013) made
possible in human via the Vertical Occipital Fasciculus (Takemura et al.,
2015).

Area V3A exhibits response selectivity to stimulus features that are
characteristic of the WCE. V3A has been shown to be selective for contour
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curvature (Caplovitz and Tse, 2007), a characteristic of the inducer
contours that is necessary to enhance the WCE but not sufficient to
generate it alone, e.g., as shown by the braided control contours here and
in previous work (Devinck et al., 2014; Gerardin et al., 2014). Area V3A
is also implicated in filling-in phenomena, in that it was reported to show
increases in activity during Troxler fading (Mendola et al., 2006). Areas
V3 and V4 have recently been implicated in form-contingent filling-in
induced by closed contours (Hong and Tong, 2017). Similarly in ma-
caque, area V3 has been implicated in filling-in phenomena (De Weerd
et al., 1995). V3A also shows much larger spatial summation than do
nearby cortical areas (Press et al., 2001) as might be expected for an area
involved in filling-in over extended regions of the visual field. In fact, the
large areas of the visual field over which the WCE can extend require
mechanisms that are effective in the peripheral visual field. The impli-
cation of dorsal areas in large scale filling-in is consistent with the bias of
peripheral visual field projections in the dorsal stream (Kravitz et al.,
2013).

Early studies that reported retinotopically distributed neural activity
due to brightness and color filling-in in area V1 (Sasaki and Watanabe,
2004) have been disputed (Zweig et al., 2015; Cornelissen et al., 2006).
Using fMRI, Cornelissen et al. (2006) found that surround-induced re-
sponses in V1 did not depend on surround intensity but instead could be
attributed to an extended edge-response. This is consistent with
voltage-sensitive dye-imaging in macaque that shows only edge re-
sponses to uniform fields of color and luminance in V1 (Zweig et al.,
2015). Instead, V1 responses to contours have been attributed to figural
effects rather than brightness or color filling-in (Kok and de Lange, 2014;
Cornelissen et al., 2006; Lee and Nguyen, 2001). Interestingly, the WCE
stimulus is reported to demonstrate both a long-range color filling-in and
a strong influence on figure-ground segregation (Von der Heydt and
Pierson, 2006; Pinna et al., 2001). However, the results from area V1 are
not likely to be explained uniquely by figure-ground processing. The
classification results from this area (Fig. 6) were based only on the voxels
interior to those activated by the retinotopic positions of the contours
(blue regions in Fig. 5). The highest prediction accuracy for V1 signifi-
cantly differed from that for both of the other classification performed
and pitted the surface-dependent stimulus against the braided control,
i.e., stimuli having the same braided contour. Instead, this supports that
classification depended on the interior chromaticity and/or the perceived
color and not local or long-range contour detection (Table 1). The poor
correlation of the classification accuracies from this area with the
perceived strength of the filling-in color (Fig. 7) would support the
former of these two interpretations.

Areas V3v, hV4 and LO displayed their highest classification accuracy
to the surface chromaticity of the stimulus and not to the edge-induced
fill-in conditions. In line with this outcome, the classification accu-
racies for these areas were not correlated with the strength of the
perceived filling-in color. These results are consistent with previous
studies that have demonstrated strong responses of these ventral stream
areas to uniform surface colors (Brouwer and Heeger, 2009; Parkes et al.,
2009; Bouvier et al., 2008; Bartels and Zeki, 2000; Hadjikhani et al.,
1998; Sakai et al., 1995).

Area V2 presents a more complex pattern of results in that the clas-
sifiers trained for this area showed high accuracy for all three conditions
with no selectivity between comparisons. This pattern of results is
consistent with neurophysiological studies in primates that show diverse
cell classes in area V2 including those responsive to uniform color fields
(Peng and Van Essen, 2005; Roe and Ts'o 1999) and others that might be
involved in contour detection and color induction (Roe and Ts'o 1999).

4.2. Role of double- and single-opponent cells

The initial segregation of responses to uniform color fields and edges
in neural sub-populations occurs as early as area V1 and may reflect the
differential responses of single- and double-opponent cells. Population
responses to uniform color fields in area V1 are dominated by edge
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responses as demonstrated by optical imaging with voltage sensitive dyes
(Zweig et al., 2015). This result could reflect that double-opponent cells
are the most numerous color sensitive cell class in area V1 at the ec-
centricity examined. The less numerous single-opponent cells would be
expected to respond as well to uniform fields. Thus, the typical cortical
response signature in area V1 to a uniform color field could be expected
to be a pattern of activity across cells with both types of receptive field
profile. Isolated chromatic edges and edge transients, however, would be
expected to generate a response profile dominated by double opponent
cells.

Why then do chromatic edge-transients, such as in the case of the
WCE, suffice to generate the appearance of a weakly colored field, filling-
in the interior of a uniform region interior to the chromatic contour? It is
significant that the color filling-in requires continuity of the bi-chromatic
contour as shown here and elsewhere (Devinck and Knoblauch, 2012) by
the lack of effect for the braided control stimulus. This suggests a
mechanism by which the coherence along the contour is integrated
across a population of double-opponent cells' responses that we hy-
pothesize would be mediated via paths from V1 to V3A. Such an inter-
pretation is supported by results from adaptation studies demonstrating
the role of contours in generating filling-in phenomenon (Coia and
Crognale, 2017; Hazenberg and van Lier, 2013; van Lier et al., 2009). We
suppose then that the coherent contour would signal a uniform color field
rather than just an edge-transient through the concurrent modulation of
ventral color areas and V1 via dorsal stream areas implicated in contour
integration.

4.3. Distributed nature of the responses

We find responses to the stimuli distributed across multiple streams
and at multiple levels of the visual hierarchy, in line with an interareal
network which is observed to be much denser than previously thought
(Markov et al., 2013) and with evidence of the highly distributed nature
of object processing (Konen and Kastner, 2008). In area V1, the induced
activity of voxels remote from the contours is unlikely to be mediated by
monosynaptic lateral connections because intrinsic connections extend
over 2mm or less (Markov et al., 2011), and given a cortical magnifi-
cation factor of 6-13 mm/deg (Van Essen, Newsome, and Maunsell,
1984; Daniel and Whitteridge, 1961), it is unlikely that lateral activity
spreads much larger than a degree (Angelucci and Bressloff, 2006). This
suggests that feedback projections from higher order areas play a role in
the activation of area V1. The involvement of descending pathways is
highly relevant given the role of feedback pathways in contextual pro-
cessing (Zipser et al., 1996). Here, feedback projections from areas V3A
and V3B/KO could be particularly significant given that we show that
these areas code the behavioral response and that the dynamic causal
model that best supports the data indicates that the effective connectivity
from V3A to V1 is modulated differentially by the WCE. Recent human
studies suggest that area V3A is relatively low in the cortical hierarchy
(Michalareas et al., 2016) so that these findings are in line with previous
evidence of activity at early hierarchical stages reflecting the content of
consciousness (Leopold and Logothetis, 1996). In the framework of
predictive coding, that postulates that prediction errors are propagated
up the cortical hierarchy and predictions down the hierarchy (Friston and
Kiebel, 2009), the descending prediction signal from area V3A might be
related to figure-ground perception which is thought to be represented in
area V1 (Kok and de Lange, 2014; Cornelissen et al., 2006; Von der Heydt
and Pierson, 2006) or alternatively a prior indicating the presence of a
uniform color field.

5. Conclusion

Our results provide evidence that the visual system employs separate
networks for the processing of surface colors that are generated by a field
of uniform chromaticity and those due to filling-in induced by distant
chromatic edges, so that the neural responses to a uniform and a filled-in
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color are not isomorphic. Responses in early visual areas are likely due to
differential feedback processes from the dorsal and ventral streams. We,
thus, conclude that surface color representation depends on a context-
sensitive network of multiple distributed processes in the cortex.

Funding

This work was supported by a grant from the Agence Nationale de la
Recherche to FD (ANR-11-JSH-20021) and by LABEX CORTEX (ANR-11-
LABX-0042) to KK and HK and ANR-11-BSV4-501, CORE-NETS (H.K.),
ANR-14-CE13-0033, ARCHI-CORE (H.K.), ANR-15-CE32-0016, CORNET
(H.K.), A2P2MC (H.K.), ANR-17-HBPR-0003, CORTICITY (H.K.). The
Grenoble MRI facility IRMaGe was partly funded by the French program
‘Investissement d’Avenir’ run by the Agence Nationale pour la Recherche
(ANR-11-INBS-0006).

Acknowledgements

The authors thank Elisabeth Baumgartner, Karl Gegenfurtner, Stewart
Shipp and Andrew Coia for comments and criticisms on a previous
version of this manuscript. They also thank Mathieu Ruiz for help with
data analysis and the technical staff at the Grenoble MRI facility IRMaGe.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.
org/10.1016/j.neuroimage.2018.06.083.

References

Angelucci, A., Bressloff, P.C., 2006. Contribution of feedforward, lateral and feedback
connections to the classical receptive field center and extra-classical receptive field
surround of primate V1 neurons. Prog. Brain Res. 154, 93-120. https://doi.org/
10.1016/50079-6123(06)54005-1.

Anstis, S., 2010. Visual filling-in. Curr. Biol. 20 (16), R664-R666. https://doi.org/
10.1016/j.cub.2010.06.029.

Bartels, A., Zeki, S., 2000. The architecture of the colour centre in the human visual brain:
new results and a review. Eur. J. Neurosci. 12 (1), 172-193.

Bellot, E., Coizet, V., Warnking, J., Knoblauch, K., Moro, E., Dojat, M., 2016. Effects of
aging on low luminance contrast processing in humans. Neuroimage 139, 415-426.
https://doi.org/10.1016/j.neuroimage.2016.06.051.

Bordier, C., Hupe, J.M., Dojat, M., 2015. Quantitative evaluation of fMRI retinotopic
maps, from V1 to V4, for cognitive experiments. Front. Hum. Neurosci. 9, 277.
https://doi.org/10.3389/fnhum.2015.00277.

Bouvier, S.E., Cardinal, K.S., Engel, S.A., 2008. Activity in visual area V4 correlates with
surface perception. J. Vis. 8 (7), 1-9. https://doi.org/10.1167/8.7.28, 28.

Brainard, D.H., 1997. The psychophysics toolbox. Spatial Vis. 10 (4), 433-436.

Brouwer, G.J., Heeger, D.J., 2009. Decoding and reconstructing color from responses in
human visual cortex. J. Neurosci. 29 (44), 13992-14003. https://doi.org/10.1523/
JNEUROSCI.3577-09.2009.

Brown, H., Friston, K.J., 2012. Free-energy and illusions: the Cornsweet effect. Front.
Psychol. 3, 43. https://doi.org/10.3389/fpsyg.2012.00043.

Caplovitz, G.P., Tse, P.U., 2007. V3A processes contour curvature as a trackable feature
for the perception of rotational motion. Cerebr. Cortex 17 (5), 1179-1189. https://
doi.org/10.1093/cercor/bhl029.

Castaldi, E., Frijia, F., Montanaro, D., Tosetti, M., Morrone, M.C., 2013. BOLD human
responses to chromatic spatial features. Eur. J. Neurosci. 38 (2), 2290-2299. https://
doi.org/10.1111/ejn.12223.

Chevreul, MLE., 1839. De la loi du contraste simultané des couleurs et de 'assortiment des
objets coloré. Hachette Livre BNF, Paris (éd. 2012).

Coia, A.J., Crognale, M.A., 2017. Contour adaptation reduces the spreading of edge
induced colors. Vis. Res. https://doi.org/10.1016/j.visres.2017.01.009.

Coia, A.J., Jones, C., Duncan, C.S., Crognale, M.A., 2014. Physiological correlates of
watercolor effect. J Opt Soc Am A Opt Image Sci Vis 31 (4), A15-A22. https://
doi.org/10.1364/JOSAA.31.000A15.

Cornelissen, F.W., Wade, A.R., Vladusich, T., Dougherty, R.F., Wandell, B.A., 2006. No
functional magnetic resonance imaging evidence for brightness and color filling-in in
early human visual cortex. J. Neurosci. 26 (14), 3634-3641. https://doi.org/
10.1523/JNEUROSCI.4382-05.2006.

Daniel, P.M., Whitteridge, D., 1961. The representation of the visual field on the cerebral
cortex in monkeys. J. Physiol. 159, 203-221.

De Weerd, P., Gattass, R., Desimone, R., Ungerleider, L.G., 1995. Responses of cells in
monkey visual cortex during perceptual filling-in of an artificial scotoma. Nature 377
(6551), 731-734. https://doi.org/10.1038/377731a0.

Derrington, A.M., Krauskopf, J., Lennie, P., 1984. Chromatic mechanisms in lateral
geniculate nucleus of macaque. J. Physiol. 357, 241-265.

42

Neurolmage 181 (2018) 30-43

Devinck, F., Gerardin, P., Dojat, M., Knoblauch, K., 2014. Spatial selectivity of the
watercolor effect. J Opt Soc Am A Opt Image Sci Vis 31 (4), A1-A6. https://doi.org/
10.1364/JOSAA.31.0000A1.

Devinck, F., Knoblauch, K., 2012. A common signal detection model accounts for both
perception and discrimination of the watercolor effect. J. Vis. 12 (3) https://doi.org/
10.1167/12.3.19.

DeYoe, E.A., Carman, G.J., Bandettini, P., Glickman, S., Wieser, J., Cox, R., Miller, D.,
Neitz, J., 1996. Mapping striate and extrastriate visual areas in human cerebral
cortex. Proc. Natl. Acad. Sci. U. S. A. 93 (6), 2382-2386.

Dupont, P., De Bruyn, B., Vandenberghe, R., Rosier, A.M., Michiels, J., Marchal, G.,
Mortelmans, L., Orban, G.A., 1997. The kinetic occipital region in human visual
cortex. Cerebr. Cortex 7 (3), 283-292.

Efron, B., Tibshirani, R., 1994. An Introduction to the Bootstrap. Chapman & Hall, New
York.

Engel, S.A., Rumelhart, D.E., Wandell, B.A., Lee, A.T., Glover, G.H., Chichilnisky, E.J.,
Shadlen, M.N., 1994. fMRI of human visual cortex. Nature 369 (6481), 525. https://
doi.org/10.1038/369525a0.

Etzel, J.A., 2017. MVPA significance testing when just above chance, and related
properties of permutation tests. In: 2017 International Workshop on Pattern
Recognition in Neuroimaging (PRNI), Toronto, ON, pp. 1-4.

Etzel, J.A., Braver, T.S., 2013. MVPA permutation schemes: permutation testing in the
land of cross-validation. In: 2013 International Workshop on Pattern Recognition in
Neuroimaging, Philadelphia, PA, pp. 140-143.

Friedman, H.S., Zhou, H., von der Heydt, R., 2003. The coding of uniform colour figures
in monkey visual cortex. J. Physiol. 548 (Pt 2), 593-613. https://doi.org/10.1113/
jphysiol.2002.033555.

Friston, K.J., 2011. Functional and effective connectivity: a review. Brain Connect. 1 (1),
13-36. https://doi.org/10.1089/brain.2011.0008.

Friston, K.J., Harrison, L., Penny, W., 2003. Dynamic causal modelling. Neuroimage 19
(4), 1273-1302.

Friston, K., Kiebel, S., 2009. Predictive coding under the free-energy principle. Philos.
Trans. R. Soc. Lond. B Biol. Sci. 364 (1521), 1211-1221. https://doi.org/10.1098/
rstb.2008.0300.

Gerardin, P., Devinck, F., Dojat, M., Knoblauch, K., 2014. Contributions of contour
frequency, amplitude, and luminance to the watercolor effect estimated by conjoint
measurement. J. Vis. 14 (4) https://doi.org/10.1167/14.4.9.

Gerardin, P., Dojat, M., Knoblauch, K., Devinck, F., 2018. Effects of background and
contour luminance on the hue and brightness of the Watercolor effect. Vis. Res. 144,
9-19. https://doi.org/10.1016/j.visres.2018.01.003.

Gerardin, P., Kourtzi, Z., Mamassian, P., 2010. Prior knowledge of illumination for 3D
perception in the human brain. Proc. Natl. Acad. Sci. U. S. A. 107 (37), 16309-16314.
https://doi.org/10.1073/pnas.1006285107.

Hadjikhani, N., Liu, A.K., Dale, A.M., Cavanagh, P., Tootell, R.B., 1998. Retinotopy and
color sensitivity in human visual cortical area V8. Nat. Neurosci. 1 (3), 235-241.
https://doi.org/10.1038/681.

Haynes, J.D., Rees, G., 2005. Predicting the orientation of invisible stimuli from activity
in human primary visual cortex. Nat. Neurosci. 8 (5), 686-691. https://doi.org/
10.1038/nn1445.

Hazenberg, S.J., van Lier, R., 2013. Afterimage watercolors: an exploration of contour-
based afterimage filling-in. Front. Psychol. 4, 707. https://doi.org/10.3389/
fpsyg.2013.00707.

Holm, S., 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6,
65-70.

Hong, S.W., Tong, F., 2017. Neural representation of form-contingent color filling-in in
the early visual cortex. J. Vis. 17 (13), 10. https://doi.org/10.1167/17.13.10.

Jamalabadi, H., Alizadeh, S., Schonauer, M., Leibold, C., Gais, S., 2016. Classification
based hypothesis testing in neuroscience: below-chance level classification rates and
overlooked statistical properties of linear parametric classifiers. Hum. Brain Mapp. 37
(5), 1842-1855. https://doi.org/10.1002/hbm.23140.

Joachims, T., 1999. Making Large-scale SVM Learning Practical. Advances in Kernel
Methods — Support Vector Learning. MIT Press., B. Scholkopf (C. Burges and A.
Smola).

Johnson, E.N., Hawken, M.J., Shapley, R., 2001. The spatial transformation of color in the
primary visual cortex of the macaque monkey. Nat. Neurosci. 4 (4), 409-416. https://
doi.org/10.1038/86061.

Kamitani, Y., Tong, F., 2005. Decoding the visual and subjective contents of the human
brain. Nat. Neurosci. 8 (5), 679-685. https://doi.org/10.1038/nn1444.

Knoblauch, K., Maloney, L.T., 2008. MLDS: maximum likelihood difference scaling in R.
J. Stat. Software 25 (2), 1-26.

Knoblauch, K., Maloney, L.T., 2012. Modeling Psychophysical Data in R. Springer, New
York.

Kok, P., de Lange, F.P., 2014. Shape perception simultaneously up- and downregulates
neural activity in the primary visual cortex. Curr. Biol. 24 (13), 1531-1535. https://
doi.org/10.1016/j.cub.2014.05.042.

Komatsu, H., 2006. The neural mechanisms of perceptual filling-in. Nat. Rev. Neurosci. 7
(3), 220-231. https://doi.org/10.1038/nrn1869.

Konen, C.S., Kastner, S., 2008. Two hierarchically organized neural systems for object
information in human visual cortex. Nat. Neurosci. 11 (2), 224-231. https://doi.org/
10.1038/nn2036.

Kourtzi, Z., Kanwisher, N., 2001. Representation of perceived object shape by the human
lateral occipital complex. Science 293 (5534), 1506-1509. https://doi.org/10.1126/
science.1061133.

Kravitz, D.J., Saleem, K.S., Baker, C.I., Ungerleider, L.G., Mishkin, M., 2013. The ventral
visual pathway: an expanded neural framework for the processing of object quality.
Trends Cognit. Sci. 17 (1), 26-49. https://doi.org/10.1016/j.tics.2012.10.011.


https://doi.org/10.1016/j.neuroimage.2018.06.083
https://doi.org/10.1016/j.neuroimage.2018.06.083
https://doi.org/10.1016/S0079-6123(06)54005-1
https://doi.org/10.1016/S0079-6123(06)54005-1
https://doi.org/10.1016/j.cub.2010.06.029
https://doi.org/10.1016/j.cub.2010.06.029
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref3
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref3
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref3
https://doi.org/10.1016/j.neuroimage.2016.06.051
https://doi.org/10.3389/fnhum.2015.00277
https://doi.org/10.1167/8.7.28
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref7
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref7
https://doi.org/10.1523/JNEUROSCI.3577-09.2009
https://doi.org/10.1523/JNEUROSCI.3577-09.2009
https://doi.org/10.3389/fpsyg.2012.00043
https://doi.org/10.1093/cercor/bhl029
https://doi.org/10.1093/cercor/bhl029
https://doi.org/10.1111/ejn.12223
https://doi.org/10.1111/ejn.12223
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref12
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref12
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref12
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref12
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref12
https://doi.org/10.1016/j.visres.2017.01.009
https://doi.org/10.1364/JOSAA.31.000A15
https://doi.org/10.1364/JOSAA.31.000A15
https://doi.org/10.1523/JNEUROSCI.4382-05.2006
https://doi.org/10.1523/JNEUROSCI.4382-05.2006
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref16
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref16
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref16
https://doi.org/10.1038/377731a0
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref18
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref18
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref18
https://doi.org/10.1364/JOSAA.31.0000A1
https://doi.org/10.1364/JOSAA.31.0000A1
https://doi.org/10.1167/12.3.19
https://doi.org/10.1167/12.3.19
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref21
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref21
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref21
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref21
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref22
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref22
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref22
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref22
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref23
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref23
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref23
https://doi.org/10.1038/369525a0
https://doi.org/10.1038/369525a0
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref25
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref25
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref25
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref25
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref26
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref26
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref26
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref26
https://doi.org/10.1113/jphysiol.2002.033555
https://doi.org/10.1113/jphysiol.2002.033555
https://doi.org/10.1089/brain.2011.0008
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref29
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref29
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref29
https://doi.org/10.1098/rstb.2008.0300
https://doi.org/10.1098/rstb.2008.0300
https://doi.org/10.1167/14.4.9
https://doi.org/10.1016/j.visres.2018.01.003
https://doi.org/10.1073/pnas.1006285107
https://doi.org/10.1038/681
https://doi.org/10.1038/nn1445
https://doi.org/10.1038/nn1445
https://doi.org/10.3389/fpsyg.2013.00707
https://doi.org/10.3389/fpsyg.2013.00707
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref37
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref37
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref37
https://doi.org/10.1167/17.13.10
https://doi.org/10.1002/hbm.23140
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref40
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref40
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref40
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref40
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref40
https://doi.org/10.1038/86061
https://doi.org/10.1038/86061
https://doi.org/10.1038/nn1444
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref43
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref43
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref43
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref44
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref44
https://doi.org/10.1016/j.cub.2014.05.042
https://doi.org/10.1016/j.cub.2014.05.042
https://doi.org/10.1038/nrn1869
https://doi.org/10.1038/nn2036
https://doi.org/10.1038/nn2036
https://doi.org/10.1126/science.1061133
https://doi.org/10.1126/science.1061133
https://doi.org/10.1016/j.tics.2012.10.011

P. Gerardin et al.

Lee, T.S., Nguyen, M., 2001. Dynamics of subjective contour formation in the early visual
cortex. Proc. Natl. Acad. Sci. U. S. A. 98 (4), 1907-1911. https://doi.org/10.1073/
pnas.031579998.

Leopold, D.A., Logothetis, N.K., 1996. Activity changes in early visual cortex reflect
monkeys' percepts during binocular rivalry. Nature 379 (6565), 549-553. https://
doi.org/10.1038/379549a0.

Maloney, L.T., Yang, J.N., 2003. Maximum likelihood difference scaling. J. Vis. 3 (8),
573-585 doi: 10:1167/3.8.5.

Markov, N.T., Ercsey-Ravasz, M., Van Essen, D.C., Knoblauch, K., Toroczkai, Z.,
Kennedy, H., 2013. Cortical high-density counterstream architectures. Science 342
(6158), 1238406. https://doi.org/10.1126/science.1238406.

Markov, N.T., Misery, P., Falchier, A., Lamy, C., Vezoli, J., Quilodran, R., Gariel, M.A.,
Giroud, P., Ercsey-Ravasz, M., Pilaz, L.J., Huissoud, C., Barone, P., Dehay, C.,
Toroczkai, Z., Van Essen, D.C., Kennedy, H., Knoblauch, K., 2011. Weight consistency
specifies regularities of macaque cortical networks. Cerebr. Cortex 21 (6),
1254-1272. https://doi.org/10.1093/cercor/bhq201.

Mendola, J.D., Conner, L.P., Sharma, S., Bahekar, A., Lemieux, S., 2006. fMRI Measures of
perceptual filling-in in the human visual cortex. J. Cognit. Neurosci. 18 (3), 363-375.
https://doi.org/10.1162/089892906775990624.

Michalareas, G., Vezoli, J., van Pelt, S., Schoffelen, J.-M., Kennedy, H., Fries, P., 2016.
Alpha-beta and gamma rhythms subserve feedback and feedforward influences
among human visual areas. Neuron 89 (2), 384-397.

Nieuwenhuis, S., Forstmann, B.U., Wagenmakers, E.J., 2011. Erroneous analyses of
interactions in neuroscience: a problem of significance. Nat. Neurosci. 14 (9),
1105-1107. https://doi.org/10.1038/nn.2886.

Parkes, L.M., Marsman, J.B., Oxley, D.C., Goulermas, J.Y., Wuerger, S.M., 2009.
Multivoxel fMRI analysis of color tuning in human primary visual cortex. J. Vis. 9 (1),
1-13. https://doi.org/10.1167/9.1.1, 1.

Pelli, D.G., 1997. The VideoToolbox software for visual psychophysics: transforming
numbers into movies. Spatial Vis. 10 (4), 437-442.

Peng, X., Van Essen, D.C., 2005. Peaked encoding of relative luminance in macaque areas
V1 and V2. J. Neurophysiol. 93 (3), 1620-1632. https://doi.org/10.1152/
jn.00793.2004.

Pinheiro, J.C., Bates, D.M., 2000. Mixed-effects Models in S and S-plus. Springer, New
York.

Pinna, B., Brelstaff, G., Spillmann, L., 2001. Surface color from boundaries: a new
'watercolor' illusion. Vis. Res. 41 (20), 2669-2676.

Pinna, B., Grossberg, S., 2005. The watercolor illusion and neon color spreading: a unified
analysis of new cases and neural mechanisms. J Opt Soc Am A Opt Image Sci Vis 22
(10), 2207-2221.

Press, W.A., Brewer, A.A., Dougherty, R.F., Wade, A.R., Wandell, B.A., 2001. Visual areas
and spatial summation in human visual cortex. Vis. Res. 41 (10-11), 1321-1332.

Ratliff, F., Sirovich, L., 1978. Equivalence classes of visual stimuli. Vis. Res. 18 (7),
845-851.

RCoreTeam, 2015. R: a Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Rigoux, L., Stephan, K.E., Friston, K.J., Daunizeau, J., 2014. Bayesian model selection for
group studies - revisited. Neuroimage 84, 971-985. https://doi.org/10.1016/
j.neuroimage.2013.08.065.

Roe, AW., Ts'o, D.Y., 1999. Specificity of color connectivity between primate V1 and V2.
J. Neurophysiol. 82 (5), 2719-2730.

Sakai, K., Watanabe, E., Onodera, Y., Uchida, I., Kato, H., Yamamoto, E., Koizumi, H.,
Miyashita, Y., 1995. Functional mapping of the human colour centre with echo-

43

Neurolmage 181 (2018) 30-43

planar magnetic resonance imaging. Proc. Biol. Sci. 261 (1360), 89-98. https://
doi.org/10.1098/rspb.1995.0121.

Sapountzis, P., Schluppeck, D., Bowtell, R., Peirce, J.W., 2010. A comparison of fMRI
adaptation and multivariate pattern classification analysis in visual cortex.
Neuroimage 49 (2), 1632-1640. https://doi.org/10.1016/
j-neuroimage.2009.09.066.

Sasaki, Y., Watanabe, T., 2004. The primary visual cortex fills in color. Proc. Natl. Acad.
Sci. U. S. A. 101 (52), 18251-18256. https://doi.org/10.1073/pnas.0406293102.

Schluppeck, D., Engel, S.A., 2002. Color opponent neurons in V1: a review and model
reconciling results from imaging and single-unit recording. J. Vis. 2 (6), 480-492.
https://doi.org/10.1167/2.6.5.

Sereno, M.I., Dale, A.M., Reppas, J.B., Kwong, K.K., Belliveau, J.W., Brady, T.J.,

Rosen, B.R., Tootell, R.B., 1995. Borders of multiple visual areas in humans revealed
by functional magnetic resonance imaging. Science 268 (5212), 889-893.

Stephan, K.E., Penny, W.D., Daunizeau, J., Moran, R.J., Friston, K.J., 2009. Bayesian
model selection for group studies. Neuroimage 46 (4), 1004-1017. https://doi.org/
10.1016/j.neuroimage.2009.03.025.

Stephan, K.E., Penny, W.D., Moran, R.J., den Ouden, H.E., Daunizeau, J., Friston, K.J.,
2010. Ten simple rules for dynamic causal modeling. Neuroimage 49 (4), 3099-3109.
https://doi.org/10.1016/j.neuroimage.2009.11.015.

Stettler, D.D., Das, A., Bennett, J., Gilbert, C.D., 2002. Lateral connectivity and contextual
interactions in macaque primary visual cortex. Neuron 36 (4), 739-750.

Takemura, H., Rokem, A., Winawer, J., Yeatman, J.D., Wandell, B.A., Pestilli, F., 2015.
A major human white matter pathway between dorsal and ventral visual cortex.
Cerebr. Cortex. https://doi.org/10.1093/cercor/bhv064.

Tootell, R.B.H., Nasr, S., 2017. Columnar segregation of magnocellular and parvocellular
streams in human extrastriate cortex. J. Neurosci. 37 (33), 8014-8032. https://
doi.org/10.1523/JNEUROSCI.0690-17.2017.

Tootell, R.B., Nelissen, K., Vanduffel, W., Orban, G.A., 2004. Search for color 'center(s)' in
macaque visual cortex. Cerebr. Cortex 14 (4), 353-363.

Tootell, R.B., Reppas, J.B., Kwong, K.K., Malach, R., Born, R.T., Brady, T.J., Rosen, B.R.,
Belliveau, J.W., 1995. Functional analysis of human MT and related visual cortical
areas using magnetic resonance imaging. J. Neurosci. 15 (4), 3215-3230.

Van Essen, D.C., Newsome, W.T., Maunsell, J.H., 1984. The visual field representation in
striate cortex of the macaque monkey: asymmetries, anisotropies, and individual
variability. Vis. Res. 24 (5), 429-448.

van Lier, R., Vergeer, M., Anstis, S., 2009. Filling-in afterimage colors between the lines.
Curr. Biol. 19 (8), R323-R324. https://doi.org/10.1016/j.cub.2009.03.010.

Varin, D., 1971. Fenomeni di contrasto e diffusione cromatica nell’organizzazione
spaziale del campo percettivo. Riv. Psicolog. 65, 101-128.

Von der Heydt, R., Pierson, R., 2006. "Dissociation of color and figure-ground effects in
the watercolor illusion. Spatial Vis. 19 (2-4), 323-340.

Warnking, J., Dojat, M., Guerin-Dugue, A., Delon-Martin, C., Olympieff, S., Richard, N.,
Chehikian, A., Segebarth, C., 2002. fMRI retinotopic mapping-step by step.
Neuroimage 17 (4), 1665-1683.

Yang, J.N., Szeverenyi, N.M., Ts'o, D., 2008. Neural resources associated with perceptual
judgment across sensory modalities. Cerebr. Cortex 18 (1), 38-45. https://doi.org/
10.1093/cercor/bhm029.

Zipser, K., Lamme, V.A., Schiller, P.H., 1996. Contextual modulation in primary visual
cortex. J. Neurosci. 16 (22), 7376-7389.

Zweig, S., Zurawel, G., Shapley, R., Slovin, H., 2015. Representation of color surfaces in
V1: edge enhancement and unfilled hosles. J. Neurosci. 35 (35), 12103-12115.


https://doi.org/10.1073/pnas.031579998
https://doi.org/10.1073/pnas.031579998
https://doi.org/10.1038/379549a0
https://doi.org/10.1038/379549a0
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref52
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref52
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref52
https://doi.org/10.1126/science.1238406
https://doi.org/10.1093/cercor/bhq201
https://doi.org/10.1162/089892906775990624
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref56
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref56
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref56
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref56
https://doi.org/10.1038/nn.2886
https://doi.org/10.1167/9.1.1
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref59
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref59
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref59
https://doi.org/10.1152/jn.00793.2004
https://doi.org/10.1152/jn.00793.2004
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref61
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref61
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref62
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref62
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref62
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref63
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref63
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref63
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref63
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref64
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref64
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref64
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref64
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref65
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref65
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref65
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref66
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref66
https://doi.org/10.1016/j.neuroimage.2013.08.065
https://doi.org/10.1016/j.neuroimage.2013.08.065
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref68
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref68
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref68
https://doi.org/10.1098/rspb.1995.0121
https://doi.org/10.1098/rspb.1995.0121
https://doi.org/10.1016/j.neuroimage.2009.09.066
https://doi.org/10.1016/j.neuroimage.2009.09.066
https://doi.org/10.1073/pnas.0406293102
https://doi.org/10.1167/2.6.5
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref73
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref73
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref73
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref73
https://doi.org/10.1016/j.neuroimage.2009.03.025
https://doi.org/10.1016/j.neuroimage.2009.03.025
https://doi.org/10.1016/j.neuroimage.2009.11.015
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref76
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref76
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref76
https://doi.org/10.1093/cercor/bhv064
https://doi.org/10.1523/JNEUROSCI.0690-17.2017
https://doi.org/10.1523/JNEUROSCI.0690-17.2017
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref79
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref79
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref79
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref80
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref80
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref80
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref80
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref81
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref81
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref81
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref81
https://doi.org/10.1016/j.cub.2009.03.010
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref83
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref83
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref83
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref84
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref84
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref84
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref84
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref85
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref85
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref85
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref85
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref85
https://doi.org/10.1093/cercor/bhm029
https://doi.org/10.1093/cercor/bhm029
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref87
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref87
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref87
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref88
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref88
http://refhub.elsevier.com/S1053-8119(18)30590-1/sref88

	Neural circuits for long-range color filling-in
	1. Introduction
	2. Material and methods
	2.1. Observers
	2.2. Stimuli
	2.3. Psychophysical procedures
	2.3.1. Maximum Likelihood Difference Scaling
	2.3.2. Paired-comparisons to estimate chromaticity that matched the WCE

	2.4. fMRI design and procedure
	2.4.1. Stimuli and conditions
	2.4.2. Procedure

	2.5. fMRI data acquisition
	2.6. fMRI data analysis
	2.6.1. General model analysis
	2.6.2. Mapping regions of interest
	2.6.3. Multi-voxel pattern analysis
	2.6.4. Control analyses for the MVPA
	2.6.5. Dynamic Causal Modeling for BOLD responses
	2.6.5.1. Model structure
	2.6.5.2. Connectivity Modulation
	2.6.5.3. Model comparison



	3. Results
	3.1. Estimated perceived strength of WCE
	3.2. BOLD activation related to the WCE
	3.3. Discriminating edge-dependent and surface-dependent processing with MVPA
	3.4. Relationship between behavior and neural processing of the WCE
	3.5. Effective connectivity for edge-induced and surface-dependent colors

	4. Discussion
	4.1. Implication of cortical areas in edge- and surface dependent color processing
	4.2. Role of double- and single-opponent cells
	4.3. Distributed nature of the responses

	5. Conclusion
	Funding
	Acknowledgements
	Appendix A. Supplementary data
	References


