THE OFFICIAL JOURNAL OF THE
l l \ | f' INTERNATIONAL CONGRESS
b r Y ' OF INFANT STUDIES

Infancy, 23(6), 833-856, 2018 WI LEY Blackwell

© International Congress of Infant Studies (ICIS)
ISSN: 1525-0008 print / 1532-7078 online
DOI: 10.1111/infa.12260

A Novel Method to Investigate How
Dimensions Interact to Inform Perceptual
Salience in Infancy

Marie Rogers (®, and Anna Franklin
The Sussex Colour Group
School of Psychology
University of Sussex

Kenneth Knoblauch

Univ Lyon
Université Claude Bernard Lyon 1
Inserm, Stem Cell and Brain Research Institute U1208

How physical dimensions govern children’s perception, language acquisition, and cogni-
tion is an important question in developmental science. Here, we use the psychophysical
technique of maximum likelihood conjoint measurement (MLCM) as a novel approach to
investigate how infants combine information distributed along two or more dimensions.
MLCM is based on a signal detection model of decision that allows testing of several
models of how observers integrate information to make choices. We tested 6-month-old
infants’ preferential looking to “green” stimuli that covaried in lightness and chroma and
analyzed infant preferences using MLCM. The findings show that infant looking is driven
primarily by lightness, with darker stimuli having a greater preference than lighter, plus a
small but significant positive contribution of chroma. This study demonstrates that the
technique of MLCM can be used in conjunction with preferential looking to investigate
the salience of physical dimensions during development. The technique could now be
applied to investigate the role of physical dimensions in key aspects of perceptual and cog-
nitive development such as face recognition, language acquisition, and object recognition.

Our world is multidimensional. Objects vary along multiple physical dimensions, for
example, apples vary in their glossiness, color, shape, size, and texture. Dimensional
properties of an object covary and interact to produce cohesive perceptual experiences.
However, it can be difficult to identify how physical dimensions govern perception,
cognition, and behavior. This is important to understand perceptual and cognitive
development such as language acquisition, object individuation, esthetics, and memory.
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Perceptual salience of physical dimensions

During development, some dimensions are particularly salient in a given context. In
language acquisition, children exhibit certain attentional biases that lead them to prior-
itize learning about one dimension over another, depending on the circumstance. For
example, in an object label extension task, children display a “shape bias” (Landau,
Smith, & Jones, 1988). When children learn a novel word, they are more likely to
extend that word to similarly shaped objects, versus objects of a similar color (Born-
stein, 1985), a similar texture or color (Diesendruck & Bloom, 2003), or a similar size
or texture (Landau et al., 1988). However, there is also evidence that such attentional
biases are task-dependent, for example, children are more likely to extend a novel
word when an object shares a unique function than shape (Diesendruck, Markson, &
Bloom, 2003). The most salient dimension to a child during novel word learning can
be context-dependent. These examples demonstrate the importance of understanding
dimensional salience in the domain of language and having an effective task to test
this.

Dimensional properties also contribute to object recognition and individuation dur-
ing development. In occlusion events, where an object is hidden behind a screen,
infants are faced with the challenge of object individuation when the object reappears.
They must determine how many objects are moving in and out of view. Objects have
dimensional (or featural) properties, which may help solve this puzzle, such as shape,
size, texture, and color. If the reappearing object has different properties to the original
one, an adult would be expected to assume that this object is distinct from the
occluded object. The dimensions which infants use to solve this puzzle change over the
course of development: Infants at 4.5 months use shape and size features, at
7.5 months they additionally use pattern, and at 11.5 months they can use color in
object individuation (Wilcox, 1999). Covariation of multiple dimensional properties
further aids in object individuation. When the color or luminance of an object varies,
infants are not able to individuate the object until 11.5 months (Wilcox, 1999), but
with covariation, infants aged 7.5 months are able to complete this task (Woods &
Wilcox, 2010). This may be because color and luminance often covary in our natural
visual environment and thus are useful cues for identification.

Interaction of dimensions

The evidence discussed above pitted dimensions against each other and examined
which dominated as the most important (salient) in a given task. In reality, it is possi-
ble that, when multiple physical dimensions covary, perception and behavior arise
from an interaction between the dimensions. For example, in adults, the dimensions of
color (hue, chroma, and lightness) interact in perception (Burns & Shepp, 1988;
Rogers, Knoblauch, & Franklin, 2016). However, a study which modeled the data
from five studies on infants’ preferential looking at colors found that 6-month-old
infants tended to base their looking preference on hue, and luminance differences did
not contribute to the fit of the model (Brown & Lindsey, 2013). This raises the inter-
esting question of whether there are developmental differences in how the dimensions
of color are weighted in perceptual judgments.

It has also been argued that infants process stimuli more holistically than adults do
and that there is a developmental trend from interaction toward separation of
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dimensions (e.g., Kemler, 1983; Kemler & Smith, 1978, 1979; Smith, 1979, 1983; Smith
& Kemler, 1978). That is, dimensions, which adults separate (such as shape and color),
are more integrated into infants’ perception. However, research into this hypothesis
has yielded mixed results. For example, while there is evidence to support this hypoth-
esis (e.g., Kemler, 1983), one study provides contrary evidence and found that younger
children (aged 5-6 years) did not use holistic rules on a dimensional card-sorting task
to a greater extent than older children (aged 10-11 years; Kemler & Smith, 1978).

The most appropriate and effective method to investigate dimensional processing in
infants is not clear. A method is needed which can quantify the relative contributions
of multiple dimensions to perceptual behaviors (e.g., preferential looking) in infancy.
Studies conducted with adults on the interaction of dimensions require explicit judg-
ments, such as odd-one-out tasks or similarity ratings (e.g., Burns & Shepp, 1988;
Indow & Kanazawa, 1960; Komarova & Jameson, 2013), but these explicit judgment
methods are not feasible for infants. In infants, modeling preferential looking with
regressions is useful in identifying which dimension contributes to preferential looking
(e.g., Brown & Lindsey, 2013), but the method does not address the extent to which
multidimensional interactions may occur.

Furthermore, when determining how two (or more) physical dimensions contribute
to behavior, there is a challenge of equating the dimensions on a perceptual scale. For
example, at 9 months, infants appear to identify objects based on shape but not color
(e.g., Kaldy & Leslie, 2003), but how can we be sure that the shapes selected in the
experiment were equally salient to the colors? This has been addressed using interdi-
mensional salience mapping (ISM; Kaldy, Blaser, & Leslie, 2006; Kaldy & Blaser,
2009, 2013) which allows one to determine how physical change along a dimension
relates to changes in salience and thus enables salience to be equated across dimen-
sions. ISM uses a forced-choice preferential-looking method to determine which of two
stimuli are more salient in a head-to-head competition. By manipulating the properties
of the stimuli and determining which of the two competitors “wins” in such a task,
ISM can produce a psychometric function of salience. This precise approach to stimu-
lus calibration across dimensions is a big improvement on the majority of previous
developmental studies of dimensional processing, which do not consider stimulus cali-
bration issues. However, although ISM can equate perceptual salience across dimen-
sions, we still lack a method that quantifies dimensional interactions in perception.

Maximum likelihood conjoint measurement

Here, we present a novel approach to investigate the interaction of color dimensions in
infancy. MLCM is a psychophysical technique that allows one to quantify the contri-
bution of more than one dimension to a behavior (Ho, Landy, & Maloney, 2008; Kno-
blauch & Maloney, 2012). MLCM determines how the probability of a choice between
a pair of stimuli is influenced by the covariation along multiple dimensions or attri-
butes of the stimuli. Previous adult studies using MLCM have examined the interac-
tions of gloss and surface texture (Ho et al., 2008; Qi, Chantler, Siebert, & Dong,
2015), surface lightness and gloss (Hansmann-Roth & Mamassian, 2017), contour cur-
vature and luminance in the illusory watercolor effect (Gerardin, Devinck, Dojat, &
Knoblauch, 2014), the voice and the face in gender perception (Abbatecola, Gerardin,
Knoblauch, & Kennedy, 2016), race on the perceived lightness of faces (Nichiporuk,
Knoblauch, Abbatecola, & Shevell, 2017), and lightness and chroma in adults (Rogers
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et al., 2016). In each of these experiments, adult participants made explicit judgments
about the stimuli. However, MLCM has not yet been used to measure the interaction
between dimensions in infancy and throughout development. To implement this
approach in infants, we will use preferential eye movements on presentation of a pair
of stimuli as the choice response required to implement MLCM.

In MLCM, the choice probabilities are modeled by a noise-contaminated decision
rule. This constitutes a signal detection model whose parameters are estimated via
maximum likelihood, hence the name of the method. Three nested decision rules can
be defined. First, the independent model describes the case where the choice probabili-
ties can be described by physical manipulation of one dimension alone; there is no
“contamination” by the other dimension. This would occur, for example, if given a
choice between a chromatic and an achromatic stimulus, the observer always chose to
look at the chromatic one, regardless of the difference in lightness between the two.
The additive model describes the case where choice probabilities depend on the additive
sum of two underlying, response components, one associated with each of the manipu-
lated dimensions. In this case, the choice is influenced by both variables, but the con-
tribution of each variable to the choice depends only on its own level in the stimulus
and not at all on the level of the other variable. Finally, in the saturated model, the
choice probabilities depend on an interaction beyond the additive combination of the
underlying components. Thus, like an interaction in an analysis of variance, the proba-
bilities depend on the particular pair of values along each dimension rather than the
sum of two components. The model is called saturated because it includes the maxi-
mum number of parameters to model the data. In each case, the decision variable is
assumed to be perturbed on a trial-by-trial basis by mean zero, Gaussian noise. This
allows for a stochastic relation between the responses and the decision variable. The
noise-contaminated decision variable is related to the response through a Gaussian
psychometric function. Importantly, relative judgments across the dimensions are
equated through their effects on the decision variable, that is, the scales are constructed
so that chroma and lightness differences that produce the same difference on the deci-
sion variable will be equally salient.

Current study

In this study, we use MLCM to estimate the influence of lightness and chroma on
infants’ preferential looking to color. The study aims to establish whether it is possible
to use MLCM to model the contribution of physical dimensions to infants’ preferential
looking using the technique. We use color as a testing ground for the application of
MLCM to infant preferential looking and to further our understanding of infants’
color perception. By at least 3 months of age, infants are trichromatic (the three types
of cone photoreceptors and the “red-green” and “blue-yellow” neural pathways are
functioning; Banks & Bennett, 1988; Knoblauch, Bieber, & Werner, 1998; Morrone,
Burr, & Fiorentini, 1990, 1993; Volbrecht & Werner, 1987). The ability to discriminate
colors progressively improves through development until adolescence (Knoblauch,
Vital-Durand, & Barbur, 2001). Previous studies have shown that infants look longer
at some colors than others (e.g., Franklin, Bevis, Ling, & Hurlbert, 2010; Franklin
et al., 2008; Zemach, Chang, & Teller, 2007) and can categorize the spectrum of color
(e.g., Skelton, Catchpole, Abbott, & Franklin, 2017). However, we know little about
how the dimensions of color contribute and interact in infants’ perception of color.
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The appearance of color can be described in a three-dimensional perceptual space con-
sisting of hue, lightness, and chroma (Wyszecki & Stiles, 2000). As discussed, these
dimensions are not independent in adults’ perception (Burns & Shepp, 1988; Rogers
et al., 2016). It is unknown whether this is the case for infants as well, or whether
there are developmental differences in the interaction of color dimensions.

To test whether MLCM can be applied to infants’ preferential looking and to fur-
ther understand infant color perception, we conducted an experiment using a forced-
choice preferential-looking method with 6-month-olds and adult observers (Teller,
1979). The method involves eye-tracking observers’ responses to pairs of stimuli and
coding which of the pair they look at first. For infants, the pairs of stimuli were ran-
domly selected from a 3-by-3 matrix of green stimuli in which lightness and chroma
independently covary. All stimulus levels were above threshold for infants at 6 months
according to threshold data from Knoblauch et al. (2001). The adult experiment used
the same range of lightness and chroma, but the range was divided into four stimulus
levels rather than three. We were able to use more stimulus levels with adults as they
have better color discrimination and can tolerate a longer experimental procedure.

We analyzed the data using MLCM to estimate the relative contributions of light-
ness and chroma to the observers’ decisions (first look). The outcome variable of our
MLCM analysis is parameterized to be on the scale of d” (units of the standard devia-
tion for each scale value) from signal detection theory (e.g., Gerardin et al., 2014;
Green & Swets, 1966; Ho et al., 2008; Rogers et al., 2016; Stanislaw & Todorov,
1999). Here, we take d’ to reflect the perceptual salience of a stimulus, not necessarily
its discriminability, by measuring which of two stimuli observers look at first. We fol-
low Kaldy and Blaser’s definition of salience as, “the visual system’s real-time assess-
ment of the behavioural relevance (current importance) of information in the scene—a
prioritization that drives attention allocation and consequent eye movements” (2009,
p- 223). The most salient object in a scene is the one that is preferred, that is, it beats
the other in a forced-choice looking paradigm. Note that what we aim to measure is
the suprathreshold salience and contributions of chroma and lightness when these are
dimensions of a multifeature object, not the low-level detectability of chroma and
lightness as separate dimensions. Although it has been argued that detectability deter-
mines visual salience in infancy (e.g., Banks & Salapatek, 1981), the lack of transitivity
in infant visual salience suggests that infants’ visual salience is not purely driven by
detectability of each dimension (Kibbe, Kaldy, & Blaser, 2018). With MLCM, we can
quantify multidimensional contributions to perceptual salience.

METHOD

Participants

Twenty-two 6-month-olds (nine females) participated in this study in total. One further
infant was recruited but did not take part due to fussiness. The infants had a mean
age of 28 weeks (SD = 1.9) and all had a birthweight >2.5 kg, with no family history
of color deficiency, and no known visual impairments. Infant participants were
recruited by contacting parents/carers with infant children through the Sussex Baby
Lab (University of Sussex, UK). They received a small gift (book or T-shirt) as a
thank you at the end of the experiment.
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Additionally, 12 adult observers participated (all female) with a mean age of
22 years (SD = 3.5). All adult observers were assessed as having normal color vision
using Ishihara plates (Ishihara, 2010) and the Lanthony Tritan Album (Lanthony,
1998). Adult participants were paid £8 per hour for their participation. This study was
conducted according to guidelines laid down in the Declaration of Helsinki, with writ-
ten informed consent obtained from a parent or guardian for each child before any
data collection. All procedures involving human subjects in this study were approved
by the Sciences and Technology Cross-Schools Ethical Committee at the University of
Sussex and the European Research Council Executive Agency ethics committee.

Stimuli and apparatus

Three levels of lightness and three levels of chroma were selected for the infant stimuli,
giving a 3-by-3 stimulus matrix (see Table 1 and Figure 1). The levels were specified in
CIE LCH,, color space. This is a transformed version of CIELUYV space, where L is
the lightness, C is the chroma, and H is the hue (Poynton, 2012). This color space was
selected to be in line with a previous study of MLCM in adults (Rogers et al., 2016).
The hue angle was fixed at 143.2° (CIE H), which normal adult observers classify as
“green.”

We maximized the stimulus range within monitor gamut (i.e., the possible range of
colors that can be displayed on the screen) to maximize discriminability for infants.
Equal perceptual spacing in CIE LCH,, space between adjacent stimuli was calculated
from previously obtained results from adults by Maximum Likelihood Difference Scal-
ing (MLDS) (Rogers et al., 2016). MLDS is a psychophysical scaling technique, also
based on a signal detection model of decision, that allows the estimation of an interval
scale along a continuous dimension through comparisons of stimulus intervals (Kno-
blauch & Maloney, 2008; Maloney & Yang, 2003). The derived scale has the property
that equal scale differences appear equally different perceptually. The prescaling of the
stimuli with MLDS is not a prerequisite to performing or to analyzing the MLCM
results. It serves mostly as a convenience to linearize the estimated response functions,
which simplifies the subsequent statistical analyses.

The adult stimuli used the same range of values, but divided the range into four
levels, giving a 4-by-4 stimulus matrix. A gray background (xyY (1931): 0.313 0.329,
50; L* = 100) was used throughout the experiment, lighter than all stimulus levels.

Stimuli were presented on a 22-inch Mitsubishi Diamond Plus 230SB monitor, cali-
brated using a ColorCAL colorimeter (Cambridge Research Systems), and the room
was dark other than that light emitted from the monitor. Eye movements were

TABLE 1
Lightness and Chroma Values for Adult and Infant Stimuli in CIE LCH,,. Hue Angle = 143.2°
Infant stimuli Adult stimuli
Stimulus level Chroma Lightness Stimulus level Chroma Lightness
1 5.00 39.63 1 5.00 39.63
2 26.83 52.55 2 19.11 49.55
3 50.00 69.06 3 34.85 58.47
4 50.00 69.06
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Figure 1 The 3-by-3 matrix of infant stimuli. Three levels of chroma and three levels of lightness
are perceptually equally spaced using MLDS.

recorded with an EyeLink 1000 Plus Eye Tracker manufactured by SR Research Ltd,
using an infant lens. Participants wore a small target sticker, which aids accurate
tracking with a freestanding eye tracker. The experimental procedure was created using
SR Research Experiment Builder.

Design and procedure

On each trial, a pair of stimuli was chosen from the 3-by-3 stimulus matrix (see Fig-
ure 1). All possible unordered pairs were shown in a randomized order, excluding self-
comparisons. From the nine stimuli, there are 72 pair combinations, including both
left/right and right/left versions of a pair (9 x (9 — 1) = 72).

Infants sat in a car seat 60 cm away from the computer monitor. Cartoon clips
played onscreen while the researcher set up the eye-tracking camera; infants then com-
pleted a 3-point calibration. On each trial, a pair of stimuli was presented: one on the
left and one on the right-hand side of the screen. Each stimulus was 14 cm x 14 cm
on the monitor, corresponding to a visual angle of 13°. If the infant did not fixate on
either the left or the right-hand stimulus before the trial timed out (2,000 ms), the
stimulus pair was presented again later in the experiment. Thus, there were, in
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Gaze-contingent attention-grabber Stimulus pair. Experiment
proceeds after fixation on
one stimulus. Time out
after 2000ms.

Figure 2 Trial procedure.

principle, 72 ordered pairs of colors presented, but the number of total trials for an
individual observer could be higher as a pair of stimuli would be reshown until the
infant fixated on one side.

To begin, a looming black and white “attention-grabber” appeared with a noise, to
ensure the infants were centrally fixated before the trial began. The trial began auto-
matically when the participant fixated on the attention-grabber. The experiment auto-
matically proceeded to the next screen when the infant fixated on either the left or the
right stimulus for 160 ms (this fixation duration has been found to be reliable and
resistant to measurement artifacts; Wass, Smith, & Johnson, 2013). See Figure 2 for
illustration of trial procedure. The experiment was halted if the infant showed signs of
distress. Infants completed an average of 68% of the total number of trials
(SD = 29%).

Adult participants were informed that they were a comparison group for an infant
experiment and to “look at the patch that stands out more, or that most grabs your
attention.” They completed a 9-point calibration before the trial began. The procedure
was the same as the infant experiment, except there was a central fixation cross instead
of the attention-grabber. Furthermore, as adults viewed unordered pairs randomly
selected from a 4-by-4 stimulus matrix (i.e., 16 stimuli), they responded to 240 trials
(16 x (16 — 1) = 240).

Data analysis

For each participant and on each trial, the stimulus looked at first was recorded as the
choice. The data were analyzed using MLCM; this analysis is described in full else-
where (Knoblauch & Maloney, 2012; Rogers et al., 2016), and we provide a brief sum-
mary here. On each trial, a pair of stimuli is randomly selected from the stimulus
matrix (Figure 1) for presentation. The pair can be indexed in terms of their ordinal
chroma levels (w, y) and lightness levels (x, z). For example, in the pair C3L1 (bottom
right stimulus) plus C2L2 (center stimulus), w=3, y = 2, x=1, and z=2. It is
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assumed that when viewing the stimulus pair, the observer forms the noise-contami-
nated decision variable:

A=5+8:‘P(¢f,<pf) — (oS, 0k) +e, (1)

X
on the contributions” of the stimulus lightness and chroma to the perceptual salience.

The value of A predicts the first-look response, that is, the observer looks left if it is
greater than 0 and right if it is less. The noise term, ¢, assumed to be zero-mean Gaus-
sian with variance ¢°, is included to account for the fact that observers do not neces-
sarily make the same choice on repeated trials. MLCM is an equal variance, Gaussian,
signal detection model and allows estimation of the scale values corresponding to the
contributions of each internal response by maximum likelihood so that they best pre-
dict the observer’s behavior over the set of experimental responses.

As described above, there are three possible nested models of the decision variable that
can be fit to the data: independent, additive, and saturated. With the independent model, the
observer’s responses depend on only one of the dimensions. The decision rule reduces to

where 6 = ¥( o€, q)L> — ¥ (¢S, %) and the W terms are internal responses that depend

Alw,x,,z) = ‘I’f — ‘PS +& (2)

in the case of a chroma response or

Alw,x,y,z) = ‘PL - ‘Pé + ¢ (3)

in the case of lightness. With & levels of each dimension, there are k + 1 parameters
including the variance for the noise term. However, to make the model identifiable, the
lowest level is set to 0 and the variance to 1, so that there are only k — 1 free parame-
ters to estimate.

For the additive model, the decision variable becomes

AGw,x,3,2) = (¥ 4+ WE) = (¥ +P5) +e. 4)

With k levels along each dimension, there are 2k + 1 parameters, including the vari-
ance for the noise term. To make the model identifiable, the two lowest levels along
each dimension are set to 0 and the variance to 1, yielding 2k — 2 free parameters to
estimate. Finally, for the saturated model, the decision variable becomes

A(w, x, 7, 2) = (\Pf +l oy \Pff) — (WE 4+ WE WO 4 (5)

Due to the interaction terms, the responses cannot be explained by a simple additive
sum of component responses, but depend on the specific levels along each dimension.
With k levels along each dimension, there are k*+ 1 parameters, including the
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variance for the noise term. In order to make the model identifiable, only one cell in
the k x k grid is set to zero and the variance to one, yielding a model with k* — 1 free
parameters to estimate. This is the maximum number, hence the term saturated.

If we denote the chroma and lightness quadruple of indices (w, x, y, z) for a trial by
g, then assigning responses, R, the values 0/1 to choices left/right, respectively, the
probability of choosing the right-hand stimulus on a trial can be written as

o) (1-o(2)) ©

where @ is the cumulative distribution function of the standard Gaussian, the value of
2 in the denominator assures a unit variance for each value of W, and the log likeli-
hood of the set of responses over all trials is

(¥;R,q) =) log(P,). (7)

We choose the values of ¥ to maximize the likelihood over the set of responses of
the observer by minimizing the negative of the expression above for each of the three
models. In practice, the model can be reformulated as a generalized linear model
(GLM) with a binomial family (McCullagh & Nelder, 1989),

g(E[R = 1]) = X, (®)

where the link function, g, is the inverse cumulative Gaussian distribution function, X,
is a design matrix with a column for each identifiable term in the model filled with 0,
—1, or 1 depending on the stimulus levels on the trial and the sign of the coefficients
in the decision rule and f is a vector of the estimated identifiable scale values. The
three nested models are tested with likelithood ratio tests. The statistic,

—2(lo — &) = 2 )

where 4y and ¢; are maximum likelihoods from nested models, is distributed asymptoti-
cally according to a chi-square distribution with degrees of freedom the difference of
number of parameters between the two models (Wood, 2015). We fit the models to
the data and tested them using the MLCM package in the open-source software R
(Knoblauch & Maloney, 2014; R Core Team, 2017) that implements the above GLM
and testing procedures.

RESULTS

Infants

Six of the 22 infants completed all 72 trials, and 11 completed over 75% of the trials
(range of trials completed = 13—72). The analysis of one infant observer (number 8)
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showed complete separation. This occurs where the outcome variable is perfectly pre-
dicted by an explanatory variable (Albert & Anderson, 1984). Further investigation
showed that in trials where the highest chromatic value was presented, the infant fix-
ated on this stimulus 100% of the time. While this appears to be prima facie evidence
that the infant responded to chromatic stimuli, it presents a problem for analysis
because we cannot obtain a valid estimate of the dimension’s contribution without
variation in response. Therefore, we (conservatively) excluded this infant’s data from
the full analysis. Analyses reported here are based on data from 21 infants.

The infants’ frequencies of first-look responses to the green stimuli are plotted in
Figure 3. The figure shows that within each chroma level, darker stimuli tend to be
more preferred on the first look than lighter stimuli. There also appears to be an effect
of chroma, with higher chroma levels slightly more preferred, especially at the highest
and lowest lightness levels. A log-linear analysis of the frequencies shows the chroma:-
lightness interaction fails to reach significance (3*(4) = 0.86,p = .93) nor does the main
effect of chroma (7%(2) = 0.09). Nevertheless, the model that included main effects of
lightness and chroma displayed a lower AIC than one without the chroma term (AIC
(L + C) =170.8; AIC(L) = 71.5) suggesting that the model with the chroma term is clo-
ser to the true model. These results were obtained by combining responses across all
infants and ignoring observer dependent variations, thus, reducing the power of the
analysis. We address this issue more directly in the next set of analyses.

We used MLCM to fit the additive model to the responses of each individual infant
to estimate the contributions of each dimension to the looking preferences. The points
in Figure 4 show the average additive contributions of lightness and chroma to
infants’ looking preference and the 95% confidence intervals. The y-axis indicates
which is a measure of sensitivity or response strength used in signal detection theory,
and that here indicates perceptual salience. Figure 4 shows that lightness negatively

180 -
160 -
140 +

120
100 A Lightness levels
= | (darkest)
2
3 (lightest)

N N o0
(e} (e (e}
1 1 1

Total numebr of first-looks to stimulus

e}
(=)
1

o

1 2 3
(least chromatic) (most chromatic)

Chroma levels

Figure 3 Frequency of first-look responses to each of the stimuli in the 3-by-3 stimulus matrix,
summed across all infant observers. N = 21.
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Figure 4 Parameter estimates for the additive model for looking preference in infants, averaged
across observers. Circles show the estimated contribution of chroma and triangles of lightness based
on individual MLCM fits. Error bars show 95% confidence intervals of the points. The lines are
based on the mixed-effects model fixed-effect slope estimates, and the shaded areas, the 95%
confidence intervals for the slopes of the lines. N = 21.

contributes to infants’ first-look preference, that is, darker stimuli tend to be preferred
over lighter stimuli. Conversely, chroma shows a smaller positive contribution to look-
ing preference, indicating that stimuli with higher chromaticity are preferred over stim-
uli with lower chromaticity. The responses increase approximately linearly with the
stimulus indices, suggesting that the stimulus spacing based on the adult scaling func-
tions also holds approximately for the infants. While the estimated values of d’ are
small, the confidence intervals for the strongest lightness and chroma values indicate
significant differences from zero.

A criticism that can be raised is that the number of trials to estimate the response
probabilities is quite small. If all 72 trials were completed, then there are only two tri-
als for each of the 36 unique pairs. As indicated earlier, not all infants completed 72
trials and one infant completed as few as 13, surely insufficient to estimate all of the
choice probabilities. For comparison, previous studies in adults that used more levels
for each dimension tested on the order of 1,000 or more trials. Knoblauch and Malo-
ney (2012) have shown with simulation that the precision of estimates in MLCM is
related to the square root of the number of trials tested. Comparing, for example, with
the Gerardin et al. (2014) study that tested 1,500 trials per condition, we would see a
reduction in precision of 1/72/1,500 = 0.22, at best, compared to their results.

Mixed-effects models provide a possible solution to this problem in that observers
are assumed to be sampled from a common population that shares common charac-
teristics (Knoblauch & Maloney, 2012; Moscatelli, Mezzetti, & Lacquaniti, 2012).
Information is pooled over all observers, weighted according to the information
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available from each observer’s data, to obtain an optimal population estimate. This
leads to shrinkage of the predictions of extreme observer’s means toward the popula-
tion mean, as the individual estimates are considered to borrow strength from each
other.

Generalized linear mixed-effects models (GLMM) are GLMs in which the linear
predictors are composed of fixed and random effect terms. Estimates are made of the
fixed-effect coefficients and the variances of the random terms (Bates, Maechler,
Bolker, & Walker, 2014). We can use the approximate linearity of the response esti-
mates to specify a GLMM for MLCM (Rogers et al., 2016) that combines the data
from all infants in an optimal fashion. We are assuming that this equal spacing based
on difference scaling is also applicable to infants, and therefore, the assumption of lin-
earity in response is valid. In short, for each stimulus pair, we compute the difference
in levels within each dimension, dC and dL, and use these variables as covariates. The
GLMM can then be expressed as

g(E(R=1)) = (Bc+bco)dC+ (By +bro)dL + €, (10)

where g is the probit (inverse cumulative Gausian) link function, f-and f;, fixed-
effect slopes for chromatic and luminance contributions, b¢, and by ,, observer-specific
random variations of the slope each assumed to be Gaussian random variables with
1t =0 and variances o2 and o7, respectively, and € is a standard Gaussian variable with
1 =0 and ¢® = 1. The mixed-effects models were fit using the glmer function in the Ime4
package (Bates et al., 2014) within the software R (R Core Team, 2017). We can use the
same framework to fit the independence model by dropping one of the terms, covariates, dC
or dL, and a saturated model by including terms that are the product of the two covariates.
The three models are then evaluated using nested likelihood ratio tests.

Likelihood ratio tests indicated that the additive model fit the data significantly bet-
ter than the independence models for lightness (*(1) = 19.79, p < .001) and for
chroma (7%(1) = 5.90, p = .015). However, the saturated model was not an improve-
ment over the additive model (3>(1) = 0.289, p = .591). This suggests that both chroma
and lightness contribute to infants’ looking preference with no interaction between the
two dimensions. The additive model revealed a significant negative effect of lightness
(B, =—0.202, z = —=5.76, p < .001) and a smaller but still significant positive effect of
chroma (- =0.096, z = 2.48, p = .013) on looking preference. The 95% confidence
intervals for the slopes, based on profile likelihoods, are chroma: (0.020, 0.179) and
lightness: (—0.275, —0.130), both excluding zero. The variance associated with the
chroma term was 2.6 times larger than that for the lightness term, or in other terms, it
accounted for 72% of the interobserver variability. The lines drawn through the data
points in Figure 4 are based on the estimated slopes from the additive model and
appear to describe the average data well, although the points for the chromatic aver-
ages suggest some bias in the estimates, perhaps arising from the small number of sam-
ples for the individual estimates. This also supports the use of the equal perceptual
spacing of stimulus levels based on adult MLDS data. The envelopes about each curve
display the 95% confidence limits on the fitted lines. Again, while the predicted effects
are small, they do support significant contributions of both dimensions to the infants’
judgments with a contribution of lightness to performance roughly twice that of the
contribution of chroma.
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Adults

As with the infant observers, we plotted the combined adults’ first-look response as a
bar chart in Figure 5. It appears that adults are more likely to look at a stimulus as it
becomes more chromatic. There also seems to be a positive, rather than a negative,
influence of lightness, with lighter stimuli being more preferred, especially at the high-
est lightness level (4) compared to the other three. The log-linear analysis did not sup-
port a significant lightness:chroma interaction (*(9) = 9.1, p = .43). Both the lightness
and chroma main effects were significant, however (lightness: %*(3) = 59.3,p < .001;
chroma: (¥*(3) = 301.7,p < .001).

Individual adult responses were analyzed using MLCM with the additive model,
and the average values for the contributions of lightness and chroma components with
95% confidence intervals are plotted in Figure 6. Chroma has a large positive effect on
looking preference: Adults are more likely to look first toward a stimuli with a high
chroma level. Lightness also has a positive contribution to first-look preference in
adults, although it appears smaller, and is perhaps significant only at the highest light-
ness level.

The GLMM described above to test the infant data was fit to the adult responses.
Likelihood ratio tests rejected the independence model for lightness (y%(1) = 4.63,
p =.031) and for chroma (x*>(1) = 10.94, p < .001). However, the saturated model fit
could not be differentiated statistically from the additive model fit (x*(1) = 0.017,
p = .897). This suggests that both chroma and lightness contribute additively to adults’
looking preference without the need of an interaction term. The mixed-effects analysis
revealed a significant positive effect of chroma (- = 0.599, z = 4.19, p <« .001) and a
smaller but still significant positive effect of lightness (f, = 0.226, z = 2.37, p = .018)
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Figure 5 Frequency of first-look responses to each of the green stimuli in the 4-by-4 stimulus
matrix, summed across adult observers. N = 12.
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Figure 6 Parameter estimates for the additive model for looking preference in adults, averaged
across observers. Circles show the estimated contribution of chroma and triangles of lightness. Error
bars show 95% confidence intervals. N = 12.

on looking preference with 95% confidence intervals: chroma: (0.298, 0.908) and light-
ness: (0.024, 0.432). The lines drawn through the data points in Figure 6 are based on
the estimated fixed-effect slopes from the additive model of the mixed-effects analysis.
The variance associated with the chromatic term was 2.3 times larger than that for the
lightness term, or in other terms, it accounted for 70% of the interobserver variability,
similar to the infant value. The magnitude of the average effects is about three times
larger than those of the infants. In adults, the contribution of chroma to performance
is nearly three times that of lightness, that is, there is a reversal in the dominant
dimension between adult and infant.

Influence of sampling constraints in infant data

The adults were tested with 16 stimuli generating 240 ordered pairs, while the infants
were tested with only nine stimuli generating 72 ordered pairs. In addition, every adult
completed all 240 trials while only about one quarter of the infants completed the full
set of trials. The adult and infant data sets differ both quantitatively and qualitatively.
To what extent could the differences in sampling account for these differences?

To address this question, we repeatedly simulated reduced and variable size data
sets by sampling from the 12 adult data sets, to mimic the sampling characteristics of
the infant data sets. We analyzed each simulated data set with a GLMM to assess
whether the sampling influenced the magnitude and the slopes of the estimated chroma
and lightness functions. First, we reduced the adult data sets to 72 trials using only
nine stimuli with three levels per dimension by eliminating all trials that contained the
fourth (highest) levels of chroma and/or lightness in the stimulus set. We will refer to
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Figure 7 (a) Relative frequency distribution of number of trials completed for the 21 infants tested.
(b) Average relative frequency distribution of number of trials completed based on a censored discrete
uniform distribution with endpoints [13, 92] and with all values greater than or equal to 72 assigned
to this value. One thousand samples of size 21 were drawn from the distribution. Each sample was
assigned a bin according to the breaks in the abscissa of Figure 7a, and the averages were taken for
each bin. Error bars are +SD. (c) The results of the GLMM fit to the simulated data sets are shown
as 1,000 thin green and black transparent lines with the slopes of the estimated chroma and lightness
components, respectively. The gray dashed lines indicate the line of mean slope. The dashed dark
green and black lines indicate the 95% confidence intervals for the slopes of the chroma and lightness
simulations, respectively. The solid black lines (coincident with gray dashed line for the lightness
component) indicate the estimated slopes from the original 12 adult data sets.

these as reduced data sets. Then, we sampled 1,000 sets of 21 data sets with replace-
ment from the 12 reduced data sets. In each of these sets, any of the 12 adult reduced
data sets could appear multiple times or not at all. To generate different observers, we
generated new random responses for each trial using the estimated choice probabilities
from the MLCM fit to the data and Equation 6.

To simulate the random number of trials completed for each infant, we first exam-
ined the distribution of number of trials from the infants in our data set (Figure 7a).
The distribution looks fairly uniform except at the largest number trials completed.
These are the infants that completed all 72 trials or about a quarter of the sample. To
approximate this distribution, we created a discrete censored uniform distribution
(DCU) on the interval (13, 92) with all data above 72 censored to this value. The mini-
mum and censored values correspond to minimum and maximum from our data set,
and the maximum of 92 is the value that we calculated that would lead to about one
quarter of the samples being censored. For comparison, we drew 1,000 samples of size
21 from the DCU, binned them according to the breaks in the histogram of Figure 7a
and then averaged the values in each bin. The results are shown in Figure 7b with the
standard deviations indicated as error bars. Given the variability in each bin, the distri-
bution is not very different from that of Figure 7a.
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‘We then used the 1,000 sets of 21 trials completed to subsample trials randomly
from the reduced data sets to generate sets of data of 21 observers with the number
of trials following a similar distribution to that from the infant data sets. Each of
these sets of 21 subsampled data sets was fit with the GLMM model that we fit to the
infant data. The slopes of the chroma and lightness components were extracted from
each fit and averaged. Figure 7c shows the comparison of average slopes for both
components (gray dashed lines) and the slopes fit to the 12 reduced data sets (black
solid lines). To visualize the variability across the 1,000 repeats, we plotted the pre-
dicted lines from each simulation as thin lines of transparent color. The averages are
indicated as dashed gray lines with 95% confidence intervals as dark green (chroma)
or black (lightness) dashed lines. The similarity of the average simulated results with
those obtained from the reduced data sets shows that neither the low responses
obtained from the infant nor the reversed contributions of the salience components
can be explained by the smaller and more variable sampling imposed by testing the
infants.

DISCUSSION

This study used the psychophysical technique of MLCM to investigate how the dimen-
sions of lightness and chroma contribute to perceptual saliency in infants and adults.
Previous studies have demonstrated the effectiveness of this method when adults are
instructed to judge pairs on specific stimulus dimensions (Gerardin et al., 2014; Ho
et al., 2008; Rogers et al., 2016), but it was still an open question as to whether the
methods could be extended to infants. Here, we used eye tracking with infant and
adult observers, while they viewed pairs of green stimuli that varied in lightness and
chroma to obtain first fixations as a choice response measure. We successfully used
MLCM to model the first-look data with a GLMM.

The analyses reveal that chroma and lightness both contribute to looking preference
in infants and adults and that an additive model best describes the data in both
groups. This indicates that the looking response depends on an additive combination
of the underlying response components to lightness and chroma and that there is no
interaction between the two components. Infants’ looking behavior was primarily pre-
dicted by lightness, but there was a small positive contribution of chroma. Infants pre-
fer stimuli that are darker and more chromatic. However, for adults, chroma primarily
determined the first-look response, and there was a small positive contribution of light-
ness. Adults prefer stimuli that are more chromatic and lighter.

Interestingly, in our former study, when adults were instructed to judge which stim-
ulus is greener, higher chroma led to a more positive chroma contribution but higher
lightness to a more negative lightness contribution (Rogers et al., 2016), qualitatively
similar to the infants’ salience responses in the current study. This raises the possibility
that the mechanisms engaged by the salience of the stimulus in the infants are the same
as those employed by an adult judging the chromatic difference between a pair of stim-
uli. The results in both cases, however, show that both the chroma and the lightness
contribute to these behaviors. In the Rogers et al. (2016) study, when adults were
instructed to judge which stimulus was lighter, the lightness component dominated and
the response was independent of the chroma response. This is unlike either of the adult
or infant response patterns in the current study.
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Influence of sampling constraints in infant data

Our analysis of the adult data when sampled such that the number of participants and
trials is equivalent to the infant data set illustrates that the differences in infant and
adult response cannot be explained by the smaller and more variable sampling that
occurs when testing infants. The variability in the number of trials sampled makes it
difficult to analyze the individual data sets of the infants. Grouping the observers
together, as in Figures 3 and 5, is useful for identifying the trends in the data but of
less value for statistical tests because the observer-specific sources of variance are
ignored thereby reducing the power of the test less. The mixed-effects model frame-
work presented here provides a good solution in that observer specific sources of vari-
ability can be included in the model yielding the expected gains in sensitivity. Even the
small data sets can be included in such an analysis as they contribute information
about the population estimates (Bates et al., 2014).

Consistency of response

The average contribution of chroma to the choices of infants is about six times lower
than that of the adults. This could arise if the infants discriminate the chroma differ-
ences less well, but also if they were more variable in their preferences. All such
sources of variability will be confounded in the decision noise, ¢, of the model. This
term is included to take into account the fact that observers do not give the same
response to the same stimulus when the differences are small. Thus, inconsistencies in
the response patterns are tolerated by the model and expressed as smaller differences
between estimated scale values. This cannot explain, however, the reversal in salience
preferences of the infants that would appear to be a real difference in the patterns of
infant and adult preferences.

Development of dimensional interaction

Previous researchers have theorized that perceptual dimensions become more separated
over development and that infants process stimuli more holistically than adults do
(Kemler, 1983; Kemler & Smith, 1978). However, our findings do not support the idea
that there are differences between infants and adults in the extent of dimensional sepa-
ration for color, as the additive model best fit both infant and adult data. Both data
sets are accounted for by a pair of invariant response functions, signaling lightness,
and chroma that simply add to generate a salience estimate. The presence of a signifi-
cant interaction would have supported a more holistic processing in that the compo-
nent responses would not be able to be disentangled. However, there was a difference
between adults and infants in the weights applied to lightness and chroma contribu-
tions to the response. There are a number of possible explanation for these differences.

Visual strategy

First, the visual strategy may be different between adults and infants. We theorize
that adults are focusing more on the abstract stimulus property of color, and ignoring
the background, whereas infants are focusing on the whole screen in a trial, including
the background. This may lead to luminance contrast driving infant-looking behavior,
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which would bias the infants toward lightness-based responses. Previous work has
shown that for achromatic stimuli, 4-month-old infants looking preferences are gov-
erned by luminance contrast (stimulus to background luminance ratio; Chien, Palmer,
& Teller, 2005). Here, lightness and chroma levels were perceptually equated using dif-
ference scaling data from adults (Rogers et al., 2016), and the fact that the average
responses vary approximately linearly as a function of the stimulus index suggests that
this scaling was valid. However, all stimuli were darker than the background, and the
lightness levels had greater variation from the background than the chroma levels in
CIE delta E. Therefore, the pattern of infants’ responses may be driven by a preference
to stimuli that were most different to the background. If the above “contrast theory”
is correct then infants may fixate more on the edges of the stimuli, whereas adults may
focus on the center. It would be informative to test this theory by displaying the stimu-
lus pairs for a set amount of time and measuring looking time to each area of the
screen.

Cognitive strategy

A second possible explanation for the difference in dimensional contribution
between infants and adults is a difference in the cognitive strategy between the two
groups. Adult participants were given instructions for the task (“look at the patch that
stands out more, or that most grabs your attention”). With these instructions, we
aimed to access the same outcome we measured in infant participants: salience. How-
ever, the instruction is vague. By making the salience outcome measure in adults expli-
cit, we may have inadvertently introduced unwanted cognitive strategies. We may be
accessing our target measurement of “salience” more successfully in infants than in
adults. This theory is supported by the large variation in adult responses (see error
bars of Figure 6), which may indicate different interpretations of the task among adult
observers. In comparison, the variation among infants is much smaller. This is despite
the fact that adults performed many more trials than infants (240 for adults compared
to a maximum of 72 for infants). Adult eye-movement strategies are highly dependent
on the task or instruction given (Buswell, 1935). It would be informative to examine
how the dimensions of color interact to inform looking behavior in adults with a range
of different instructions.

Dimensional differences

A final explanation for the difference in results is that there are differences in the
perceptual weighting of the dimensions between infants and adults. In 6-month infants,
hue preference curves are highly similar at different levels of lightness (Brown & Lind-
sey, 2013). Furthermore, when color and Iuminance were equated for visual salience,
6.5-month infants noticed a color change, but not a luminance change when tracking
an occluded object (Kaldy et al., 2006). This may lead to the inference that lightness
does not have an effect on infants’ looking preference. However, in this study, we find
that in fact lightness makes a stronger contribution than chroma to looking preference
in infants.

The observation in this study that lightness influences infant preference more than
chroma may be due to the relative faster maturation of the magnocellular pathway,
compared to the parvocellular pathway, in the first year of life (Hammarrenger et al.,
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2003). Neurons in the magnocellular pathway are more sensitive to luminance contrast,
whereas neurons in the parvocellular pathway are more sensitive to red/green chro-
matic contrast (Lee, Pokorny, Martin, Valbergt, & Smith, 1990; Smith, Pokorny,
Davis, & Yeh, 1995). Three- and 4-month infants are more sensitive to luminance con-
trast than chromatic contrast (Dobkins, Anderson, & Lia, 1999). There is evidence of
adult-like performance of the magnocellular pathway in 4-month infants, whereas the
parvocellular pathway had not fully developed by this age (Dobkins et al., 1999). Our
results may be explained by greater sensitivity to lightness differences than chroma dif-
ferences in our 6-month infant sample, due to greater magnocellular maturity than
parvocellular maturity. Our task does not aim to measure the low-level detectability of
chroma and lightness in infants. We do not measure just-noticeable differences in these
dimensions in isolation; we measure the visual salience of suprathreshold stimuli that
vary on both dimensions. However, infants’ low-level perceptual sensitivity for each
dimension could still contribute to the visual salience of each dimension on our task.
This relationship between detectability and visual salience in infancy deserves further
investigation (see Kibbe et al., 2018 for further discussion of this issue).

Future directions

This study has demonstrated that a simple method in combination with statistical
modeling based on a signal detection model allows scaling of the contributions of stim-
ulus dimensions in perceptual salience in human infants. The method, like most in
developmental science, is limited by the patience of the infant participants. In this
study, we successfully modeled three levels of lightness and three levels of chroma.
Additional levels or dimensions would likely have resulted in too many trials for
infants to complete in one session. Importantly, the use of many infant observers in
the framework of mixed models allowed us to overcome the low number of trials
recoverable from individual infants. An advantage of the method is that it requires a
binary measurement; therefore, we were able to exploit first-look responses (left or
right stimulus). This means that the trials moved along rapidly. Other measures of
looking time, for example, stimulus fixated for the longest duration, or any other mea-
sure that can be used to assign a choice between stimuli (e.g., which stimulus does the
infant grab first), could equally be exploited. Once the choices are assigned, the analy-
sis proceeds identically to that presented in the current study. Further studies which
compare different measures for the same stimulus set would be of interest.

Maximum likelihood conjoint measurement modeling assumes that the observer is
making a choice, and this is the basis for estimation of the decision variable. For
example, in Rogers et al. (2016), adult observers viewed pairs of stimuli that varied in
lightness and chroma, and made a judgment about whether the left or right stimulus
was lighter or more chromatic in different sessions. In this study, we use eye-movement
data as a proxy measurement for stimulus choice. It is always challenging to determine
exactly what is being measured in infant eye-tracking studies (Aslin, 2007). However,
eye movements are widely interpreted as choices in infants across developmental psy-
chology (Civan, Teller, & Palmer, 2005; Teller, 1979).

The results reveal interesting differences in responses to color between adults and
infants, and there is now potential for this method to be applied in a wider range of
contexts. This method could be used to study dissociations between visual domains
over the course of development (Dobkins, 2009) by pairing dimensions from different
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modalities such as color, motion, form, and depth. The development of early cross-
modal correspondences could also be studied in this way. For example, auditory-visual
correspondences such as associations between high frequency, small size, and bright
color (as in Haryu & Kajikawa, 2012).

CONCLUSIONS

This study demonstrates how a signal detection method can be used to investigate sal-
ience and interaction of dimensions in infancy. The contributions of luminance and
chroma to salience judgments in infants resembled the contributions of these dimen-
sions to adults judging stimuli on the basis of chroma differences. This study paves the
way for future work that aims to understand the contribution of various perceptual
dimensions to perceptual and cognitive development to benefit from this method.
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