Journal of Signal Processing Systems (2018) 90:1311-1328
https://doi.org/10.1007/511265-017-1313-z

@ CrossMark

Implicit vs. Explicit Approximate Matrix Inversion for Wideband
Massive MU-MIMO Data Detection

Michael Wu'-2 . Bei Yin' - Kaipeng Li' @ . Chris Dick? - Joseph R. Cavallaro - Christoph Studer3

Received: 21 April 2017 / Revised: 3 September 2017 / Accepted: 17 November 2017 / Published online: 1 December 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract

Massive multi-user (MU) MIMO wireless technology promises improved spectral efficiency compared to that of
traditional cellular systems. While data-detection algorithms that rely on linear equalization achieve near-optimal error-rate
performance for massive MU-MIMO systems, they require the solution to large linear systems at high throughput and low
latency, which results in excessively high receiver complexity. In this paper, we investigate a variety of exact and approximate
equalization schemes that solve the system of linear equations either explicitly (requiring the computation of a matrix inverse)
or implicitly (by directly computing the solution vector). We analyze the associated performance/complexity trade-offs,
and we show that for small base-station (BS)-to-user-antenna ratios, exact and implicit data detection using the Cholesky
decomposition achieves near-optimal performance at low complexity. In contrast, implicit data detection using approximate
equalization methods results in the best trade-off for large BS-to-user-antenna ratios. By combining the advantages of exact,
approximate, implicit, and explicit matrix inversion, we develop a new frequency-adaptive equalizer (FADE), which outperforms
existing data-detection methods in terms of performance and complexity for wideband massive MU-MIMO systems.

Keywords Equalization - Linear data detection - Massive multi-user MIMO - Matrix inversion - Neumann series
expansion - SC-FDMA - OFDM

in terms of the spectral efficiency compared to traditional,
small-scale cellular MIMO technology [1-5]. The key idea
of massive MU-MIMO is to deploy hundreds of antennas
at the base station (BS) and to serve tens of single-antenna
users concurrently and in the same frequency resource.
This technology not only promises significant improve-
ments in terms of the spectral efficiency compared to tradi-

1 Introduction

Massive multi-user (MU) multiple-input multiple-output
(MIMO) will be a core technology for fifth-generation (5G)
wireless systems as it promises significant improvements
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of subcarriers, even some of the least expensive linear
data-detection algorithms, e.g., methods relying on linear
minimum mean square error (MMSE) equalization, require
excessive hardware complexity and power consumption (see
[6] for a detailed discussion).

In order to address the complexity and power consump-
tion issue of linear data detection in wideband massive MU-
MIMO systems, a variety of approximate matrix inversion
methods have been proposed in recent years [1, 6-11].
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These methods require, in general, lower computational
complexity than exact, linear methods or non-linear
algorithms, and entail only a small error-rate performance
loss in massive MU-MIMO systems having a large BS-to-
user-antenna ratio.

For systems in which the BS-to-user-antenna ratio is
below two, however, approximate methods result in a strong
error floor—often too high to enable reliable communica-
tion at high data rates. Furthermore, corresponding high-
throughput very-large scale integration (VLSI) designs for
wideband massive MU-MIMO systems that use orthogonal
frequency-division multiplexing (OFDM) or single-carrier
frequency-division multiple access (SC-FDMA), such as the
reference hardware designs in [6, 12], still require large sil-
icon area and excessively high power consumption. Hence,
to successfully deploy massive MU-MIMO in practical
wideband systems, new algorithm solutions that achieve
near-optimal error-rate performance at low hardware com-
plexity are necessary.

1.1 Contributions

In this paper, we propose a host of novel low-complexity,

soft-output data detection methods for wideband massive

MU-MIMO systems that further reduce the complexity

compared to existing approximate methods in [1, 6-11].
Our contributions are summarized as follows:

— We propose accelerated explicit matrix inversion
methods building on the Neumann series expansion.

—  We propose corresponding implicit equalization meth-
ods, which avoid the computation of a matrix inverse
altogether.

— We propose a method that approximates the post-
equalization signal-to-noise-and-interference-ratio
(SINR) values in order to enable soft-output data
detection with implicit equalizers.

—  We propose two low-complexity initialization schemes
that improve convergence of our iterative algorithms.

— We propose a hybrid explicit/implicit frequency-
adaptive equalizer (short FADE) that exploits frequency
correlation in wideband MIMO wireless systems and
combines the advantages of explicit and implicit
methods.

In order to evaluate the efficacy of our algorithms, we
study the associated performance/complexity trade-offs in
a 3GPP LTE-based massive MU-MIMO wireless system,'
and we provide a detailed performance and complexity

IThe methods proposed in this paper can easily be extended to other
multi-carrier waveforms that support frequency-domain equalization
[13], such as OFDM-based systems.
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comparison with existing approximate inversion algorithms
proposed in [1, 6-11].

1.2 Notation

Lowercase boldface letters stand for column vectors;
uppercase boldface letters designate matrices. For a matrix
A, we denote its transpose and conjugate transpose A’ and
Af | respectively. The entry in the k™ row and ¢ column
of A is A ¢; the k™ entry of a vector a is ax. The Frobenius
norm, the spectral norm, the £1-norm, and the ¢,,-norm of
a matrix A are denoted by ||A| £, |All2, |All1, and ||A|so,
respectively.

The M x M identity matrix is Ips, Opxn is an M X
N all-zeros matrix, and F,; refers to the orthonormal
M x M discrete Fourier transform (DFT) matrix satisfying
FiFy =1y.

1.3 Paper Outline

The rest of the paper is organized as follows.

Section 2 details the system model and equalization-
based data detection for SC-FDMA systems.

Sections 3 and 4 proposes explicit and implicit equaliza-
tion methods, respectively.

Sections 5 and 6 proposes new initialization schemes and
the frequency-adaptive equalizer (FADE), respectively.

Sections 7 and 8 provides a complexity comparison and
a trade-off analysis, respectively.

We conclude in Section 9.

2 System Model and Data Detection

We now introduce the LTE uplink model and detail an
efficient, equalization-based minimum mean-square error
(MMSE) data detector for SC-FDMA-based massive MU-
MIMO systems.

In what follows, we make frequent use of the superscript
()@ to indicate the ith base-station antenna and the jth
user; the subscript (-),, designates the SC-FDMA subcarrier
index.

2.1 Uplink System Model

We consider an LTE-based uplink system in which U < B
single-antenna® user terminals communicate with B BS
antennas. The ith user first performs discrete Fourier
transform (DFT) and subcarrier mapping for its serial time-
domain (TD) data taken from a discrete constellation set
O (e.g., QPSK) and generates the frequency domain (FD)

20ur results can be extended to user terminals with multiple antennas.
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@) (@) o]’
symbol vector s = [s] N ] . For each user,

these FD symbols are assigned to data-carrying subcarriers,
and then transformed back to the TD using an inverse
discrete Fourier transform (IDFT). After prepending the
cyclic prefix, all U users transmit their TD signals over the
wireless channel.

The TD signals received at each BS antenna are first
transformed back to the FD using a discrete Fourier
transform (DFT), followed by the extraction of the data
symbols. The received FD symbols on the wth subcarrier
are modeled as y,, = Hysy, + ny, with

1 1,1 1,U
y;) HIE) ) . HIE) )
Y = : , H, = : . : ,
B B,1 B,U
W B
b = O, SO p BT

Here, yg) is the FD symbol received on the wth
subcarrier for antenna i, ngf 7 s the frequency gain (or
attenuation) on the wth subcarrier between the ith receive
antenna and jth user. The scalar Sg ) denotes the symbol
transmitted by the jth user on the w subcarrier; the scalar
nff,) models i.i.d. circularly-symmetric complex Gaussian
noise with variance Nj.

2.2 Soft-Output Data Detection

The goal of soft-output MIMO data detection is to generate
reliability information in terms of LLR values for the
transmitted data bits. Among the best-performing data-
detection algorithms for traditional, small-scale MIMO
systems are tree-search algorithms [14—16] (see [17] for a
recent survey article). Unfortunately, such non-linear data-
detection algorithms do not scale well to massive MU-
MIMO systems with a large number of users and prevent
efficient hardware designs.

In recent years, alternative non-linear methods have been
proposed for massive MU-MIMO systems, such as parallel
interference cancelation [18, 19], Monte—Carlo methods
[20], and message-passing algorithms [21, 22].

All these methods exhibit significantly better
complexity-scaling properties than tree-search methods,
while enabling near-optimal performance with massive
MU-MIMO. Nevertheless, none of these methods are
directly applicable to SC-FDMA-based systems.

For SC-FDMA, only a handful of non-linear data-
detection methods exist [23-25]. While these methods
achieve near-optimal performance in small-scale MIMO
systems, their complexity does, similarly to tree-search-
based methods, not scale well to large BS antenna arrays.

In contrast, equalization-based linear data detection was
shown in [6] to achieve near-optimal performance for

SC-FDMA-based massive MU-MIMO systems, and the
throughput of corresponding application-specific integrated
circuits readily exceeds 3.8 Gb/s [12].

Thus, to achieve the throughputs required in future
massive MU-MIMO systems at near-optimal performance,
we focus on methods that rely on linear equalization.

2.3 Equalization-Based Linear Soft-Output Data
Detection

The methods proposed in this paper build upon the MMSE
data detector in [26] initially developed for traditional,
small-scale MIMO-OFDM systems.

This algorithm performs data-detection in two phases:
(i) Estimates of the transmitted FD symbols in SC-FDMA
systems are obtained using MMSE equalization on a per-
subcarrier basis; (ii) log-likelihood ratio (LLR) values are
computed in the time domain.

(i) Equalization:

To perform MMSE equalization in the FD, we compute
the Gram matrix G,, = HZ H,, and the matched filter vector
y%IF = Huh)' yu for each subcarrier w. We then compute the
regularized Gram matrix Ay, = Gy + NoE; T/, which
enables us to compute the equalized FD symbols as
o = A,y )
which are then used to compute the LLR values required for
soft-output data detection [6, 26].

(ii) Soft-output Data Detection:

Since the LTE uplink utilizes SC-FDMA, we first

perform an IDFT on §) = [yf"), cee jzg)]T to obtain the
(@) =T
X1

TD estimate X = (X7, ..., . The so-called max-log

LLR value of the j™ bit of ™ symbol, Lg) j)» can then be
computed as follows [26]:
=(0) 2 =) 2
@ _ .| X .| X
L. = min |— —a| — min |[— — 2
@7 an? ,Uv(l) an} ﬂ(l)

Here, (’)(j) and (’)} are the constellation subsets for
which the j bit is 0 and 1 respectively. The post-
equalization signal-to-noise-and-interfence-ratio (SINR) is
p® = (/,L(i))2/l)l-2, where vi2 = E;u® — Eg|u®|? for SC-
FDMA-based systems. The effective channel gain is
computed as u® = L1 25;:1 afwgi,w, where a{[w is the
i row of A! and g; ,, is the i column of G,,. See [6] for
more details.

2.4 Explicit vs. Implicit Equalization

There exist two distinct equalization methods to compute
(1), namely explicit and implicit methods. Explicit methods

@ Springer
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first compute the matrix inverse A;l (or an approximation
thereof) and then, use the matrix inverse to compute the
equalized FD symbol as in Eq. 1. Implicit methods solve the
system of linear equations A, y,, = yMF either exactly or
approximately to compute the equalized FD symbol y,,; this
approach avoids an explicit computation of the inverse A;l .

The key advantage of implicit equalization methods
is the fact that they require (often significantly) lower
computational complexity than explicit methods.

In contrast, explicit equalization methods have the
following advantages: (i) Massive MU-MIMO systems
are expected to operate as time-division duplexing (TDD)
systems [1], in which the BS estimates the channel during
the uplink phase. As a result, the matrix inverse obtained
during the uplink transmission can be re-used to perform
MU precoding (or beamforming) in the downlink. (ii) For
slow-fading channels and/or flat-fading channels with low-
delay spread, the inverse can be re-used for consecutive
symbols and/or adjacent subcarriers, respectively.

(iii) Computation of the post-equalization SINR p® used
in the LLR computation (2) can be obtained from the
explicit inverse A;l (see Section 2.3).

In the following Sections 3 and 4, we discuss both of
these equalization schemes.

3 Explicit Equalization

We start by discussing explicit MMSE equalization, i.e.,
where we obtain the equalized symbol Yy, by first
computing or approximating the inverse matrix A,
followed by computing (1).

We provide an overview of exact, explicit inversion
methods and proceed by discussing existing and new
iterative methods that approximate A;l at low complexity.
To simplify notation, we omit the subcarrier index w.

3.1 Exact Inversion via the Cholesky Decomposition

The literature describes a large number of exact methods to
compute A~!; see the references [27-29] for an overview.
One of the most efficient methods (in terms of arithmetic
operations) that can be implemented in VLSI at low
complexity relies on the Cholesky decomposition [6, 30—
32]. This approach first factorizes the regularized Gram
matrix A = LL¥, where L is a lower-triangular matrix with
non-negative entries on the main diagonal. To obtain A~!,
this approach then solves LX = Iy for X using forward
substitution—one can then solve LYA~! = X for A~!
using back substitution.

The complexity that is required to explicitly compute
A~! using the Cholesky decomposition can become pro-
hibitive for large values of U (see Section 7). Furthermore,

@ Springer

computing the Cholesky decomposition, as well as per-
forming forward or backward substitution, exhibits stringent
data dependencies, which prevents highly-parallel hardware
architectures.

To reduce the computational complexity of matrix
inversion for the high-dimensional systems anticipated
in systems that use massive MU-MIMO and to enable
massively parallel hardware designs, we next propose
novel, low-complexity methods that explicitly compute
approximate versions of the matrix inverse A=,

3.2 Exact Inversion using Series Expansions
3.2.1 Accelerated Neumann Series Expansion

In [6], the authors proposed a truncated version of the
Neumann series expansion [33] with the goal of reducing
the complexity of exact, explicit matrix inversion. We now
propose a more general, accelerated version of the classical
Neumann series, which enables the design of approximate
data detectors that achieve superior error-rate performance
at low complexity. The proof of the following result is given
in Appendix A.1.

Lemma 1 (Accelerated Neumann Series) Let Ka I e
CY*Y be a so-called initialization matrix with full rank.
Suppose that

lim (Iy — A7 'A)* = 0y . 3)
k— 00

Then, we have the following accelerated Neumann
series:

-1 0 A—1 A kR -1
AT =) A ATTAAG Q)

In Section 5, we will develop ~efficient methods
for computing initialization matrices A !, which enable
accurate approximations of A~! with only a few terms of
the accelerated Neumann series in Eq. 4.

In order to design such matrices, we will make use of the
following convergence condition; the proof directly follows
from [33, Thm. 4.20].

Lemma 2 (Convergence Condition) A sufficient condition
for Eq. 3 to hold is that

A1
My — Ay Al < 1 ®)
for any consistent matrix norm.

3.2.2 Accelerated Neumann Series Recursion

As it will be important for the implicit, approximate
inversion methods discussed in Section 4, it is key to
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realize that Eq. 4 can alternatively be formulated using the
following recursion for the iterations k = 1, 2, ... given by

+ (1o - A5'A) AL, 6)

~

A=A

which we initialize with Aa ! (hence, the name initialization
matrix). leen that Eq. 5 holds, the recursion satisfies
limg_s o0 A =A"1L

The recursion in Eq. 6 can be derived from the right-hand
side (RHS) in Eq. 4 by successively factoring Iy — Ag A
from the infinite sum.

We note that recurrent operations in Eg. 6 can be avoided
in practice by precomputing the matrix A TA.

3.2.3 Schulz Recursion

To obtain faster convergence rates than the accelerated
Neumann series recursion (6), one may use higher-order
recursions. One prominent method is the Schulz recursion
[34], which has been proposed for small-scale MIMO
systems in [35].

As for Eq. 6, if Eq. 5 holds, then the inverse A~! can be
computed recursively for k = 1, 2, ... as follows [34]:

Al = (2 Iy — A,;_‘IA) Al %)
with the initialization matrix Aa I

This recursion generates 2¢ Neumann series terms for k
iterations, whereas the accelerated Neumann recursion (6)
only generates k + 1 terms per k iterations.

The Schulz method (7), however, requires two matrix
multiplications per iteration, in contrast to the accelerated
Neumann recursion (6) that requires only one.

Hence, for a small number of iterations, i.e., for
k < 2, the accelerated Neumann series recursion is
computationally more efficient than the Schulz recursion
(see Section 7.2 for more details).

3.2.4 Higher-Order Recursions

The literature describes other recursive inversion methods
[36, 37], which converge even faster than the Schulz
recursion (7).

For example, if Eq. 5 holds, then the inverse A~! can be
computed recursively for k = 1,2, ... as follows [37]:

A=A <3IU — AR (3IU —AK,;_II)) (8)

with the initialization matrix Ag !

This 3"-order matrix inverse approximation requires
three matrlx multiplications per iteration (if one precom-
putes AA 1) and generates 3 Neumann series terms for k
iterations. Note that Eq. 8 is computationally more efficient
than the Schulz recursion only for k > 3.

3.3 Approximate Inversion using Truncated Series
Expansions

For a large number of iterations, computing the accelerated
Neumann Series recursion (6), as well as the recursions in
Egs. 7 and 8, is impractical and entails higher complexity
than the Cholesky-based approach in Section 3.1. However,
if we restrict ourselves to a small number Kp,x of
iterations, which is equivalent to truncating the series (4)
to Kmax terms, one can accurately approximate A~! at low
complexity. We next discuss existing and new variations of
this general idea.

3.3.1 Truncated Neumann Series

The approximate, explicit inversion approach put forward
in [6] evaluates only Kpax terms in Eq. 4 together with a
simple initialization matrix.

Reference [6] starts by decomposing the matrix A into its
main diagonal part D and the off-diagonal part E = A — D.
Then, by using A = D! as the initialization matrix, the
following truncated Neumann series [6]

e Kimax TveTy—

Aszz (-D'E)*D 9)
accurately approximates A~! for small values of Kpax in
systems with large BS-to-user-antenna ratios. _

For Kmax = 0, this approach results in Ay I'— p 1
which, together with Eq. 1, results in a scaled version of the
matched filter (MF) equalizer § = D~!yMF,

For slightly larger values of Kpux (e.g., one or two),
we can trade-off performance versus complexity. In fact,
the complexity of this approximation is quadratic and cubic
for Kmax = 1 and Kpax = 2 respectively, while Kpax = 2
outperforms Kmax = 1 in terms of the error rate (see [6] for
a detailed trade-off analysis). We note that the convergence
condition (5) is not guaranteed® to hold for the choice
Ajl=p".

In Section 5, we will develop novel choices for
the initialization matrix A that not only require low

complexity but also yield more accurate approximates of
AL

3.3.2 Higher-Order Series Expansions

Evidently, the above truncation approach can also be used in
combination with the Schulz recursion (7) or other higher-
order recursions, such as the one in Eq. 8. In Sections 7 and 8

we will analyze the associated performance/complexity
trade-offs.

3 A probabilistic convergence condition is provided in [6].

@ Springer
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3.4 LLR Computation for Explicit Inversionethods

With the above methods for computing the inverse A;l, we
can calculate the LLR values for soft-output data detection
using Eq. 2. Specifically, for the Cholesky decomposition in
Section 3.1 and the exact series expansions in Section 3.2,
we first compute the equalized symbols (1) and then, gener-
ate the TD estimates X,, with an IDFT. The LLR values (2) are
obtamed directly from A} !"and X,,, where the quantities ,u(l)
and pw are computed as discussed in Section 2.3.

For the approximate matrix inversion methods described
in Section 3.3, we first compute the approximate equalized
symbol y,, = Aw‘ KoY II\U/IF for each subcarrier and then,
generate the TD estimates X,, with an IDFT. To obtain LLR
values (2), we first compute

,LL(K) L'k yaft w|k &i,w> Where a aj! wik 18 ith row of
ALk

The missing quantity, o) = (u)?/ viz, however, requires
a matrix-matrix multiplication as we need to compute [6]:

ik AwGudiwik — Egliy . (10)

L
b — Z

Computing this expression requires the same order of
complexity (i.e., cubic) as the approximate matrix inverse
itself and hence, should be avoided to maintain low

complexity.
To this end, one can use the approx1mat10n groposed
in [6], which uses vl2 ~ EM — E; |,u |2 with

M(()i) = L! Zizl(dﬁf))’l ) Note that this approxima-
tion approaches its exact counterpart in the large-antenna
limit for massive MU-MIMO systems [6].

4 Implicit Equalization

We now discuss existing and novel implicit MMSE
equalization algorithms. The idea of these methods is
to obtain the equalized symbol ¥y, (or a corresponding
approximation) without ever computing the inverse A;l
As discussed in Section 2.4, the complexity of implicit
methods is, in general, significantly lower than for explicit
methods. Nevertheless, exact computation of the post-
equalization SINR, as required for LLR computation (2), is
computationally expensive.

To enable soft-output data detection with implicit
equalization methods, we propose a low-complexity SINR
approximation.

To simplify notation, we omit the subcarrier index w.

@ Springer

4.1 Exact Inversion using Implicit Cholesky
Decomposition

Implicit equalization methods solve for y directly without
computing A~! explicitly.

A hardware-friendly approach for implicit equalization
first performs the Cholesky decomposition to obtain A =
LL*. Then, one can solve Lx = yMF for x followed by
solving L7y = x, where ¥ corresponds to the equalized
vector (see, e.g., [32] for a corresponding hardware design).

4.2 Implicit Accelerated Neumann Recursion

To reduce the complexity of implicit equalization, we
can perform the following implicit, accelerated Neumann
recursion; the proof immediately follows from right-
multiplying both sides of Eq. 6 by yMF

Lemma 3 (Implicit Accelerated Neumann Recursmn) Let
Yo = A0 ]yMF where the initialization matrix A0 satisfies
(5). Then, for the iterationsk = 1,2, .

Y& = Yo + (IU - K61A> Vi1 (11)

we recursively obtain y, = A ! yMF with Kk_l as defined in
Eq. 6.

Evidently, the recursion (11) can be terminated after
Kmax iterations to obtain an approximate to Eq. 1 at low
complexity. Furthermore, A~'A can be precomputed in
practice to avoid recurrent calculations.

We note that the recursion in Eq. 11 is a generalization
of the equalization algorithm proposed in [1], which uses
;‘(; I = Iy. Note that this particular choice only performs
well for suitably normalized channel matrices and massive
MU-MIMO systems with large BS-to-user-antenna ratios.

Unfortunately, the Schulz recursion and higher-order
recursions do not—to the best of our knowledge—have
efficient implicit forms. In fact, if we right-multiply both
sides of Eq. 7 or Eq. 8 by yMF, we see that one needs to keep
track of the matrix A !in order to compute yy; this prevents
the design of a computatlonally efficient, implicit recursion
with these methods.

4.3 Existing Approximate Implicit Equalization Methods

A variety of low-complexity, implicit equalization methods
for data detection in massive MU-MIMO systems have
been proposed recently [8—10, 38]. The Richardson method
proposed in [9] can be rewritten as

e = 7y + (y — 7A) Fi—1,
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which corresponds to a special case of the acceler-
ated implicit Neumann series recursion in Eq. 11 with
;‘5 U= JI; the quantity ¥ is an algorithm parameter.*

Other implicit methods, such as the conjugate gradient
method (CG) method [10] and the Gauss-Seidel (GS)
algorithm [8] are iterative methods that solve systems of
linear equations for the positive semidefinite matrix A. Both
methods, CG and GS, will converge to the exact solution for
a sufficiently large number of iterations.

GS is initialized by yo = D_lyMF; for CG, we define the
vector yo as the output of the first iteration since the initial
guess is an all-zero vector.

CG and GS enable approximate equalization at (often)
lower complexity than other explicit and implicit equaliza-
tion algorithms [8—10].

In Sections 7 and 8 we compare the computational
complexity and performance of these equalization methods,
respectively.

4.4 LLR Approximation for Implicit Inversion Methods

We can evaluate (2) to obtain LLR values for the transmitted
bits. Since the proposed implicit methods do not compute
the matrix inverse A;,! (or a corresponding approximation
Ak ) cOmputing the quantities 1 and p without
having A;l seems difficult. To enable soft-output data
detection with implicit equalization algorithms, we propose
a novel approximation for u® and p® that does not need
the explicit inverse A;l or a corresponding approximation
A K’

Our approach uses the effective channel gain 1@ for the
0™_term Neumann series approximation

L
wO~ g =17y @i el (12)

w=1

where dg) is the it diagonal element of A, and gg) is the
i" diagonal element of G,.
Analogously, we propose to use the SINR for the 0"-term

Neumann series approximation

(i) ~ 15(()1) (1)) /(\)(1)

1 = iy’ (Esu(’) Eliig | )

As we will demonstrate in Section 8, this LLR
approximation enables implicit equalizers that achieve near-
optimal error-rate performance at low complexity.

4We note that the parameter in [9] is y = (B + UL

5 Initialization Matrices

The proposed series-based explicit and implicit methods
in Sectlons 3 and 4 require a suitable initialization matrix
Ao to improve (i) the probability of convergence, i.e., the
probability that the initialization matrix satisfies (5), and
(ii) the accuracy of the approximated matrix inverse when
performing only a small number of iterations.

We next discuss existing choices for Ay ! and propose
two new methods that enable improved error-rate perfor-
mance.

5.1 Relevance of the Initialization Matrix

We first show that the choice of the initialization matrix A~
directly affects the performance of (explicit and implicit)
approximate equalizers that use truncated series expansions.
The following Lemma generalizes the derivations in [6, Sec.
II-B] for the initializer D~!; a short proof is given in
Appendix A.2.

Lemma 4 (Residual Estimation Error) Let yk,,..
Al_(rlnax YME be the result of an approximate equalizer using
a truncated series expansion. Define the residual estimation
error as

AlMF

eKmﬂx = meax

Then, we have the following upper bound on the residual
estimation error:

Y1 A Kmaxt] [
ekl = My — Ag ATyl

where § = A~'YMF is the estimate obtained through the
exact equalizer
and || - || is a consistent (matrix) norm.

It is evident that by reducing ||[Iy — Ka 1A||, we directly
reduce the residual estimation error. Furthermore, if Eq. 5
holds, then increasing the number of accelerated Neumann
series terms k — oo forces the residual estimation
error to zero, i.e., the series expansion is exact. Hence,
it is of utmost 1mportant to chose an initialization matrix
Ag ! that minimizes My — A A|| in order to minimize
both the residual error and, consequently, the error-rate of
approximate linear equalization.

5.2 Existing Initialization Matrices
Common initialization matrices [36, 37, 39]. that satisfy (5)

are of the form K& = ¢AH where o > 0is a carefully
chosen scalar.

@ Springer
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For example, reference [37] postulates the use of «~! =
(Amax + Amin)/2, where Amax and Apin are the largest and
smallest eigenvalues of AXA, respectively. This choice
minimizes the left-hand side of Eq. 5 by assuming the
spectral norm.

Unfortunately, the complexity required to compute the
largest and smallest eigenvalues of A”A is, in our
application, larger than computing the inverse A~! itself,
which renders this method unattractive.

Related approaches that ensure (5) while requiring lower
complexity are, for example, a~! = %HAAH loo or @™t =
Al [Alloo [36, 39]. -

Reference [6] proposes A, ' = D!, where D is the
main diagonal of A. While this initialization approach
requires low complexity and was shown to perform well for
data detection in massive MU-MIMO systems, it does not
guarantee (5) to hold.

Nevertheless, as shown in [6, Thm. 1], for i.i.d.
circularly-symmetric complex Gaussian channel matrices H
and for sufficiently large BS-to-user-antenna ratios (e.g.,
two or higher), the condition (5) is satisfied with high
probability.

Unfortunately, for small BS-to-user-antenna ratios, this
initialization method results in poor error-rate performance

The more recent reference [9] proposes A, = (U +
B)~'Iyy, which only converges in the large antenna limit
for i.i.d. circularly symmetric complex Gaussian channel
matrices H. This method, however, still diverges for “not-
so-massive systems” with small BS-to-user-antenna ratios
(see Section 5.4).

5.3 Two New Initialization Matrices

We next propose two new initialization matrices that
can be computed at low complexity and result in small
approximation errors even for a few iterations Kpax. In
addition, as we will show in Section 5.4, the proposed
initializers outperform the methods discussed in Section 5.2
in practical scenarios. We emphasize that the initialization
matrices proposed next are suitable for any matrix inversion
method that uses (truncated) series expansions, i.e., for
applications beyond equalization and data detection.

The first initialization method requires low complexity;
see Section 7.1 for a discussion. In Appendix A.3, we derive
this initialization method by minimizing « € C in condition
(5) for matrices of the form A L )

Initializer 1 Let D contain the main diagonal of A. Then
the initialization A U= oD~ with P = U||D A |72 F

minimizes (5).

The second initialization scheme refines Initialization 1
at slightly higher computational complexity; see Section 7.1
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for a discussion. The method is derived in Appendix A.4,
where we minimize the parameters {a, ..., ay}in condition
(5) for matrices of the form A" = dlag(otl, ...,ay)DL

Initializer 2 Let D be the main diagonal of A. Furthermore,
let Q contain_ the off-diagonal part of D~'A. Then, the
initialization A = dlag(a()pt,. Opt)D ! with aoPt =
(I +[Iri ll5 -1, where r; is the ith row of Q, minimizes (5).

We conclude by noting that both of these initialization
schemes do not, in general, guarantee convergence accord-
ing to Eq. 5 as we only minimized the free parameters
a or {ay,...,ay}. Nevertheless, the proposed initializa-
tion methods exhibit (often significantly) faster convergence
compared to the ones discussed in Section 5.2 and con-
verge (empirically) with high probability,> even for small
BS-to-user-antenna ratios. We next empirically study the
convergence behavior of all the discussed and proposed
initialization matrices.

5.4 Comparison of Empirical Convergence Behavior

To assess the convergence behavior of approximate equal-
izers using the truncated series expansions for different
initialization matrices, we generate B x U random matrices
H and U-dimensional vectors x, where the entries are i.i.d.
circularly-symmetric complex Gaussian with unit variance.
For each matrix and vector pair, we compute y = Hx. Given
H and y, we first compute the Gram matrix A = HH
and perform recursive matrix inversion using the accelerated
Neumann recursion (6), the Schulz recursion (7), and the
3rd order recursion (8). We then use the approximate inverse
A ! to obtain X Xy = Ak y. In addition, we also estimate X,
using CG [10] and GS [8], which are both implicit methods.

Figure 1 compares the relative error (RE) at iteration k
defined as RE(k) = ||x — Xk||2/|Ix||2 between the exact and
the approximate solution for the Neumann (Fig. 1a), Schulz
(Fig. 1b), and 3™ order recursion (Fig. 1c). We report the
average RE over 10,000 Monte-Carlo trials.

By comparing the convergence behavior of the Neumann
recursion (Fig. 1) against the Schulz recursion (Fig. 1b),
and the 3™ order recursion (Fig. 1), we see that the average
RE decreases faster for higher-order recursions. Although
CG and GS outperform the methods that use a truncated
Neumann series, they are both implicit methods and do not
compute an approximate matrix inverse.

Figure 1 also shows the performance of conventional
1n1t1ahzat10n matrices. Traditional initializers, such as
A_ = oA with () ¢ = 20max + Amin)~L, (i)
a = 2[AH|3), and (i) « (1Al [IAllo)~" always

5The derivation of probabilistic convergence guarantees turns out to be
non-trivial and is part of ongoing work.
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(a) Average RE of the truncated Neumann series recursion with different initializers.
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(C) Average RE of the truncated 3rd order recursion with different initializers.

Figure 1 Average relative error (RE) comparison for different antenna BS-to-user-antenna ratios; CG and GS exhibit excellent convergence,

configuration, algorithms, and initialization methods. The proposed whereas CG is exact for eight iterations (as we consider an eight-user
Initializers 1 and 2 outperform existing initializers, even for small system).
converge, whereas (i) leads to the fastest convergence As a general trend, we observe that improved conver-

among these methods. The initialization matrix D! gence is obtained for all considered algorithms in Fig. 1
proposed specifically for massive MU-MIMO leads to faster by increasing the BS-to-user-antenna ratio. This fact shows
convergence than these traditional initialization matrices for ~ that massive MIMO enables low-complexity data detection
large BS-to-user-antenna ratios but diverges as k — oo for ~ methods to achieve near-optimal error-rate performance.

small ratios. N

The Richardson method [9] uses Aj L (B +
U)~ 'y and exhibits similar convergence as D! and also 6 Frequency-Adaptive Equalizer (FADE)
diverges for small BS-to-user-antenna ratios. The proposed
Initializers 1 and 2 enable faster convergence than all the =~ We now propose the frequency adaptive equalizer (FADE,
other considered initialization matrices for all BS-to-user-  for short), which combines the advantages of implicit,

antenna ratios. explicit, exact, and approximate equalization methods, and
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achieves near-exact equalization performance at very low
computational complexity.

6.1 Exploiting Correlation in Multipath Wireless Channels

Practical multipath channels in wideband communication
systems typically exhibit correlation across time and
frequency [40]. In fact, by assuming a wide-sense stationary
uncorrelated scattering (WSSUS) channel model, the TD
correlation between symbols is dependent on the Doppler
spread and the FD correlation between subcarriers is
dependent on the delay spread [41]. Existing wideband
systems that rely on OFDM and SC-FDMA already exploit
time and frequency correlation to estimate the channel
coefficients. For example, 3GPP LTE-A [42] embeds pilot
symbols across frequency and time in the transmitted
signal, which allows the receiver to estimate the channel
coefficients by means of interpolation.

FD correlation has also been exploited to reduce the com-
plexity for linear data detection in traditional small-scale
MIMO systems [43, 44]. Reference [43] proposes to com-
pute an explicit inverse only at a given number of subcarriers
(so-called base-points), whereas the other inverses at the
remaining subcarriers are computed through interpolation.
Given a sufficiently large number of base points (depending
on the delay spread), this method was shown to be exact.
The drawback of such exact, interpolation-based matrix
inversion methods for massive MU-MIMO is the high com-
putational complexity caused by rather long interpolation
filters [44]. Nevertheless, inspired by these algorithms, we
next propose an approximate interpolation-based equaliza-
tion method that achieves excellent performance at low
complexity.

6.2 Frequency Adaptive Equalizer (FADE)

The key idea of FADE is to exploit correlation across
frequency (and possibly time) and to take advantage of
explicit and implicit equalization schemes. As in [43, 44],
we first compute an explicit matrix inverse at a given (small)
set  of subcarriers (base-points).® Given the inverse
matrix A;l at base-point w € €2, we can approximate
the matrix inverse at nearby (adjacent) subcarriers w’ by
using one of the accelerated recursions in Section 3.2 with
A;! as the initialization matrix (i.e. A;,llo = A"). For
example, the matrix inverse A;,l at a neighboring subcarrier
w’ = w + 1 can be approximated by computing one explicit

SThese set of base-points can either be pre-assigned or varied on-the-
fly depending on channel condition for better performance.
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recursion of the Neumann series in Eq. 11 using Al

w4110 —
A, as follows:
K;i—lll = A;l + (IT - A;IAwH) A;1
=24, —AJJA, 1A (13)

Unfortunately, the complexity of Eq. 13 is dominated
by two matrix multiplications, which is higher than that
of a Cholesky decomposition. To reduce the complexity,
we perform implicit equalization on neighboring subcarriers
instead, i.e., we compute

urt =24, yutt — AL Awn AL v (14)
where yg)’[_li] = Hs 4+1Yw+1. Besides computationally-

efficient matrix vector products, this implicit, approximate
equalizer still requires computation of the regularized Gram
matrix Ay +1. It is, however, crucial to realize that the Gram
matrix does not need to be computed when expanding (14)
into

w1 =24, 'y —

AL (L AG'YE + NoEST ALV ). 15)

By precomputing A;lyzﬁl, all subsequent operations
in Eq. 15 consist of matrix-vector multiplications—this is
one of the reasons why FADE requires low computational
complexity. Another reason is the fact that for massive
MU-MIMO only very few base points are required due to
channel hardening [45]. Specifically, the entries in the Gram
matrices G, between adjacent subcarriers become similar
in magnitude (or flat) as B — oo [46].

Since FADE avoids computation of a matrix inverse
A;,l for adjacent subcarriers w’ ¢ €, we compute the
quantities 1) and p¥) using the approximations outlined
in Section 4.4 for implicit methods to compute approximate
LLR values. Note that these approximations require the
computation of D;l, which can be obtained efficiently from
the squared column norms of the channel matrix H,,.

Although FADE as discussed above only exploits FD
correlation, it can be extended to exploit correlation in
the time domain as well. For example, the inverse of the

00000000000 0000000000
_ | ©600000000000000000000
= | 0000000000000 000000000
= | 0000000000000 0@000000
2 | 90000000000 00000000000
£ [ 0000000000 Q00000000000
S | 0000000000000 0@000000
F | 000000000000 000Q000000
& | 0000000000000 000000000

@00000@00000@00@00@000

time (7)

@ base points O adjacent subcarriers

Figure 2 Illustration of the frame structure of a wideband system.
FADE only computes explicit matrix inverses at a small number of
base points (in black); equalization at adjacent (in time and frequency)
subcarriers is performed using one iteration of the implicit accelerated
Neumann series recursion in Eq. 15.
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Table 1 Complexity of different initialization methods.

20A7 1A% W+ By D! it 1 Init. 2

202 +1 0 0 2024+4U+4+1 2U%4U

wth subcarrier of the (¢+ — 1)th symbol can be used as
the initial estimate for the wth subcarrier of fth symbol.
Figure 2 illustrates how FADE can exploit FD and TD
correlations. In the following, we will show that FADE
is not only computationally extremely efficient but also
achieves near-exact performance, even for small BS-to-user-
antenna ratios.

7 Computational Complexity

We now compare the computational complexity of existing
and the proposed (approximate) inversion methods in terms
of real-valued multiplications as an indication of hardware
efficiency.” For each complex-valued multiplication, we
assume four real-valued multiplications and two real-valued
additions. We also exploit symmetries (e.g., the fact that A
is Hermitian) and avoid multiplications with zeros and ones.

7.1 Initialization Methods

Table 1 compares the complexity for all initialization
methods discussed in Section 5.2 that can be implemented
without an eigenvalue decomposition. Note that these
complexity results ignore the computation of the regularized
Gram matrix A.

Evidently, computing D™! as in [6] and (U + B) "'y as
in [9] does not require any multiplications. The complexity
of the traditional initializer 2||A*||Z!A# is dominated by
the term ||AX ||gol and requires a total of 2U% + 1 real-
valued multiplications. The complexity of the proposed
initialization methods, Initialization 1 and 2, is 2U 2 4
U + 1 and 2U? + U, respectively. The complexity of both
methods is dominated by the computation of the entry-wise
norm of D™'A. While the multiplication count for both
initializers are very similar, Initialization 1 requires only
one reciprocal operation whereas Initialization 2 requires U
such operations. In what follows, we exclusively focus on
Initialization 1, since Initialization 2 provides only slightly
better performance (cf. Figure 1 and the discussion in
Section 5.4).

7While the processing latency is another important design parameter in
practice, it typically depends on (i) the data dependencies of the used
algorithm, (ii) the hardware architecture (parallel or serial), and (iii)
the computing fabric (e.g., GPU, FPGA, or ASIC). Hence, we limit our
results on complexity aspects only—a detailed latency analysis would
require hardware designs and is left for future work.

7.2 Explicit Series Expansions and Exact Inversion

Table 2 compares the complexity of exact inversion via
the Cholesky factorization and of various explicit series
expansions as discussed in Section 3. All results in this table
include the complexity of computing A, which is necessary
for all considered explicit methods. The complexity of
Cholesky-based exact inversion scales with U3 and is lower
than the complexity of a standard® matrix multiplication.
The complexity of the proposed explicit series expansions
depends on two factors: the initialization matrix and the
iteration count Kax.

7.2.1 Impact of the Initialization Matrix

The initialization matrix oD~1, for example, causes the
intermediate terms A?A to not be Hermitian, in general.
In contrast, using 2||AH||golAH ensures that A;IA is
Hermitian, leading to different operation counts for these
two initialization matrices.

7.2.2 Impact of the Iteration Count

The case Kmax = 0 corresponds to the computation of
the initialization matrix as summarized in Table 1.
For Kmax = 1, the Neumann series expansion with the
initialization matrix ozoptD_l leads to

A7 =200y — a2 DT'AD !,

opt

which requires only column and row scaling of A. Hence,
the associated complexity scales only in U2. In this
case, the truncated Neumann series approximation exhibits
lower complexity than the explicit Cholesky-based inverse
and is an attractive method for explicit equalization in
massive MU-MIMO systems [6]. For Kma,x = 1 and the
initialization matrix 2||A” || ! A, however, the complexity
of the truncated Neumann series expansion is larger than
that of the explicit Cholesky-based inverse, because of the
matrix multiplication required for the term AO_ 'A.

For Kpax =1 and aoptD_l, the Neumann recursion
coincides to the Schultz recursion. For Kp.x > 1,
however, the Schultz recursion requires two matrix-matrix
multiplications per iteration, resulting in substantially
higher complexity. Similarly, the 3™ order recursion
requires three such operations per iteration. As a result, both
of these explicit higher-order recursions are unattractive
in terms of complexity despite the fact they enable fast
convergence (cf. Section 5.4).

8More efficient matrix-multiplication algorithms, such as Strassen’s
algorithm which scales with U 28074 could be used [47]; the
irregularity of such algorithms, however, renders efficient hardware
designs difficult.
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Table2 Complexity of exact

and approximate explicit Method oD

oAl

matrix inversion methods for

Kmax > 1. Neumann recursion

Schultz recursion

3 order recursion

2BU? + (Kmax — DQU?) + (2U? — 2U)
2BU? + (Kmax — D(6U?) + (2U? — 2U)
2BU? + Kpmax 10U

2BU? + (Kmax + DQU?)
2BU? + Kpax4U?
2BU? + Kpnax6U?

7.3 Implicit Series Expansions and Exact Inversion

Table 3 compares the complexity of various implicit
equalization schemes, including Cholesky-based exact
matrix inversion, various approximate series expansions,
as well as iterative methods. As expected, the complexity
of implicit methods is significantly lower than that of
explicit methods (cf. Table 2). Furthermore, the complexity
of Cholesky-based implicit equalization scales with U3,
whereas all other approximate methods scale only with U?2.

As for explicit, approximate methods, the complexity
of the implicit Neumann recursion depends on the
initialization matrix. The choice A; = aD! requires
one matrix-vector multiplication per iteration; the choice
Ay ' = 2||A"||Z!A" requires two such operations and,
hence, is less attractive (also from a convergence point-of-
view; see Section 5.4). Table 3 also includes the complexity
of CG [10] and GS [10], which scales quadratically in U. As
for the implicit Neumann recursion, GS must be initialized
by computing §o = D~'yMF, whereas CG uses an all zero
vector for the initialization vector. In addition, we see in
Table 3 that the complexity of the exact Cholesky-based
approach scales cubically in U.

We emphasize that the method that exhibits the lowest
computational complexity is not immediately clear from
Table 3. As it turns out, the implicit Cholesky decompo-
sition often has the lowest complexity depending on U
and Kpmax, mainly due to the rather small constant of 2/3
in front of the U3 term. Table 4 provides an overview
of this rather surprising behavior by listing the break-
even points, i.e., the smallest value of the number of
users U such that the complexity of a given approximate
implicit method is lower than that of the exact, implicit
Cholesky decomposition. To ensure a fair comparison, we
take into account the complexity required to compute the
necessary initialization matrices (i.e., D!, o«°P'D~!, and
2||AH ||g01AH ). We observe that the Neumann recursion,
CG, and GS, are only competitive with the exact, implicit

Cholesky decomposition for a very small number of itera-
tions Kmax. In these cases, GS exhibits the lowest complex-
ity among all considered implicit equalization methods.

7.4 Complexity of FADE

We now assess the complexity of the proposed frequency-
adaptive equalizer (FADE). Since this method combines two
methods: (i) an exact, explicit inversion using the Cholesky
decomposition at each base point and (ii) an approximate,
implicit Neumann recursion update on adjacent subcarriers
(15), the total complexity of FADE is an average of the two
methods.

The complexity of explicit inversion using the Cholesky
decomposition is shown in Table 2; the complexity of the
implicit Neumann recursion update in Eq. 15 is given by
8B +8U%+4U.Let pc[0,1]andp=1— p € [0, 1] be
the percentage of base-point subcarriers and the percentage
of adjacent subcarriers, respectively. For example, p = %
and p = % in Fig. 2. Then, the average number of real-
valued multiplications required per subcarrier is simply the
weighted sum of the two parts given by

2 E 3_‘_1 — 2
p|2BU* + U = 2U | + 58U +8U% +40).  (16)

The parameter p controls a performance/complexity
trade-off—Ilarge values of p perform more explicit matrix
inversions, which result in high complexity but deliver
excellent error-rate performance; small values of p perform
less explicit inversions which reduce the complexity at the
cost of error-rate performance—this trade-off is studied next.

8 Performance/Complexity Trade-offs

We now investigate the performance/complexity trade-offs
associated with the proposed equalizers and that of existing
solutions.

Table 3 Complexity of implicit

matrix inversion methods. Method aD~lor (U + B)~'1 2 AT AT
Neumann 2BU? 4 Kmax (4U%4+2U)+ 2U 2BU? 4 Kmax8U2+4U2
CG 2BU? + (Kmax + D(@U? +20U)
GS 2BU? 4+ Kmax4U? +2U
Cholesky FUS +2BU? +4U% - 3U
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Table4 Break-Even Point for Implicit Inversion. The break-even point
is the smallest U such that the method exhibits lower complexity than
the implicit Cholesky decomposition.

Kmax 0 1 2 3 4 5 6
Dland U+ B)7'I 1 8 14 19 25 31
a®Ptp~! 1 5 11 16 22 28 33
2)AT AT 1 16 28 40 52 64 76
CG 5 12 18 24 30 36 42
GS 1 3 7 13 19 25 31

8.1 Simulation Setup and Performance/Complexity
Metrics

To evaluate the error-rate performance of the proposed
soft-output data detectors, we consider a 3GPP-LTE uplink
system [48] with U = 8 single-antenna user terminals and
B € {32, 64, 128, 256} BS antennas. For all simulations, we
consider a 20 MHz bandwidth with 1200 subcarriers, and
we use 64-QAM with 3GPP turbo code of rate 3 /4.

To consider frequency and spatial correlation, we used a
WINNER-Phase 2 channel model [49] with 8.9 cm antenna
spacing; the maximum delay spread for this model is six
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Figure 3 Error-rate performance vs. complexity trade-off for differ-
ent antenna configurations (we use the notation B x U). The proposed
FADE algorithm outperforms all considered exact/approximate meth-
ods for all antenna configurations and operates close to the complexity
limit of maximum ratio combining (MRC). Furthermore, implicit

XExp. a®'D”"

taps. All simulations assume perfect synchronization and
channel-state knowledge.

To assess the error-rate performance without the need
of many different performance curves, we use the so-
called SNR operation point [50], which is defined as the
minimum SNR required to achieve 10% block error-rate
(BLER) for U = 8 users, which is representative for reliable
transmission in LTE-based systems. The BLER is obtained
via Monte-Carlo simulations averaged over 2000 transport
blocks (TB), each consisting of 75,376 bits.

To assess the computational complexity, we use the
real-valued multiplication counts in Section 7.

For the initialization matrix o°P'D~!, we use o' =
UID A2

8.2 Trade-off Comparison

Figure 3 shows the performance/complexity trade-offs for
all considered exact, approximate, explicit, and implicit
methods, as well as FADE.

First, we emphasize that the matched filter equalizer
(which is equivalent to Kpax = 0) achieves the lowest
complexity but is unable to achieve 10% BLER for all
considered antenna configurations. In contrast, the explicit
matrix inversion using the Cholesky decomposition leads to
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methods generally outperform explicit methods in terms of complexity.

The complexity is defined as the number of real-valued multiplica-

tions and the performance as the SNR operation point, which is the
minimum SNR that is required to achieve a BLER of 10%.
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exact MMSE equalization performance, while requiring the
highest complexity. The implicit Cholesky decomposition
achieves a BLER close to that of the exact MMSE detector
for all the considered antenna configurations at slightly
lower complexity—the performance loss of this implicit
data detector comes from the SINR approximation in
Section 4.4.

For B = 32, we see that only Cholesky-based
exact inversion and FADE are able to achieve (near-
optimal) performance. Furthermore, FADE with p = 4%
exhibits the same performance at 2 x lower complexity. For
B = 64, CG and GS are the only approximate, implicit
methods that achieve 10% BLER; these methods, however,
exhibit a similar complexity as the implicit Cholesky
decomposition at about 0.5dB performance loss. Again,
FADE outperforms all methods in terms of performance
and complexity. By increasing the number of BS antennas
to B > 128, explicit as well as implicit Neumann
series approximations start to approach the performance
of the exact MMSE equalizer. However, only the implicit
Neumann recursion enables lower complexity than the
implicit Cholesky decomposition, which renders it attractive
for massive MU-MIMO systems with large BS-to-user-
antenna ratios. FADE reduces the complexity by more than
2x at near-optimal performance for only 1% base points.

In summary, by exploiting frequency correlation, FADE
is able to significantly reduce the complexity compared
to all other methods, by eliminating the need to compute
the regularized Gram matrix A at all subcarriers. We also
observe that the complexity advantage of FADE becomes
more pronounced for larger BS antenna arrays where (i)
the complexity of computation of Gram matrix becomes the
dominating operation and (ii) channel hardening enables us
to use fewer base points [45]. We finally note that FADE can
be combined with decentralized baseband architectures in
which the antennas are distributed and baseband processing
is performed on multiple computing fabrics in parallel in a
decentralized fashion [51]; such systems have the potential
to enable antenna arrays with thousands of BS antennas.

9 Conclusions

We have analyzed the performance and complexity of var-
ious exact, approximate, explicit, and implicit equalization
schemes for wideband massive MU-MIMO systems that use
SC-FDMA.

Our results show that for small BS-to-user antenna
ratios, exact and implicit Cholesky decomposition-based
equalization methods achieve the best trade-off; for large
BS-to-user antenna ratios—if the number of BS antennas
is roughly 2x larger than the number of user antennas—
approximate and implicit methods such as conjugate
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gradients, Gauss-Seidel, or accelerated implicit Neumann
series approximations in combination with our post-
equalization SINR approximation enable further reductions
in computational complexity at virtually no performance loss.

Finally, we have shown that by combining the advantages
of exact explicit and approximate implicit equalization
using the proposed frequency adaptive equalizer (FADE),
we can exploit frequency (and time) correlation in wideband
massive MU-MIMO systems to achieve near-optimal
error-rate performance at only 50% of the complexity
of competitive methods. A hardware integration of the
proposed algorithms (such as in [6, 12, 38, 52]) on
modern computing fabrics, and corresponding throughput
and latency measurements are part of ongoing work.
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Appendix A: Proofs and Derivations
A.1 Proof of Lemma 1

We use [33, Thm. 4.20], which establishes that for a given
matrix P € CY*V for which limy_, o, P¥ = 0y xy/, we have
Iy —P)7! = Y 2° P* and Iy — P is invertible. As a
consequence, by defining Ka 'A =1y —Pand assuming
that limy 0o (Iy — Ag 'A)* = Oy xyy, we have

o0
AR = A" =)y - A TA),

k=0

which can be rewritten to the accelerated Neumann series

in Eq. 4, since A~! was assumed to be full rank.

A.2 Proof of Lemma 4

We start by rewriting the residual error term as a function of
Ay ! We have the following identities:

€K = Ko — ATV = AL —ATHYM
e ~ ~
_|_ Z Iy — Ao TAFA: |yMF
k=Kumax+1

— _(IU _ KalA)Kmax*FlA*]yMF'
By using basic properties of induced norms, we get the
following inequality:
ek Il < 1Ty — Ag A Frt 7,

where we define § = A~!yMF,
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A.3 Derivation of Initialization 1

We start by noting that squaring both sides in Eq. 5 results
in the equivalent sufficient condition |[Iy — Ay lA||2 < 1.
Furthermore, by assuming the spectral norm (which is a
consistent norm), we have || I —AalA 12 < Iy —AalA 12,
which enables us to obtain a more restrictive sufficient
condition that allows the design of efficient initializers:

Iy — AG'Al% < 1. (17)

__ The initialization method developed next? is of the form
Ay ''— SD!, where S is a diagonal scaling matrix that is
designed to meet condition (17).

Let W contain the diagonal part of D™'A and Q the
off-diagonal part. We define

f = Ily —SD7'A|% = Iy — S(W + Q)|I%
= [Ty — SW|% + SQI%, (18)

and seek a diagonal scaling matrix S that minimizes f.

We define the diagonal scaling matrix to have the form
S = oI, which leads to f = YU, |1 —aWi|” +
lo)21Qll % We now find the optimum scaling parameter ®
by computing df/da* = 0 and solving for «. Standard
manipulations yield

U
t —14 =2

a = (> WS ) IDTIAYR,

i=1
where W, are the complex conjugates of the diagonal
entries of W. Since W = I/, we get o°P! = U||D_1A||;2.
Consequently, the first initialization matrix is Ag b=
a®P' D!,

A.4 Derivation of Initialization 2

For the second initialization method, we follow the
derivation in Appendix A.3 but with a more general
diagonal scaling matrix of the form S = diag («q, ..., ay).
We obtain

U
F= 00— Wi [P+ e P 13,
i=1

where r; corresponds to the i ™ row of Q. To find the optimal
scaling parameters «;, i = 1,..., U, we set Bfi/aa;" =0
and solve for ¢;. Standard manipulations yield

opt 2 2 .
o = Wi /(IWiil* + Inill3), i=1,.... U,
and we use the fact that W; ; = 1, Vi.
Consequently, the second initialization matrix is
~_1 . opt optyy—1
Ao = dlag(otlp e, aUp D™

9This initialization scheme can also be used by replacing D! with an
arbitrary matrix X that is close to the exact inverse A~!.
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