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Abstract The nonlinearities of power amplifiers combined
with non-contiguous transmissions found in modern, fre-
quency-agile, wireless standards create undesirable spuri-
ous emissions through the nearby spectrum of data carriers.
Digital predistortion (DPD) is an effective way of com-
bating spurious emission violations without the need for a
significant power reduction in the transmitter leading to bet-
ter power efficiency and network coverage. In this paper,
an iterative, multi sub-band version of the sub-band DPD,
proposed earlier by the authors, is presented. The DPD
learning is iterated over intermodulation distortion (IMD)
sub-bands until a satisfactory performance is achieved for
each of them. A sequential DPD learning procedure is also
presented to reduce the hardware complexity when higher
order nonlinearities are incorporated in the DPD learning.
Improvements in the convergence speed of the adaptive
DPD learning are also achieved via incorporating a vari-
able learning rate and interpolation of previously trained
DPD coefficients. A WARPLab implementation of the pro-
posed DPD is also shown with excellent suppression of the
targeted spurious emissions.
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1 Introduction

Mobile devices need to access more radio spectrum to meet
the increasing data-rate demands of mobile users. This is
particularly challenging when we compound this with the
growing number of active wireless devices in the world
today [1]. This leads to what is referred to as spectrum
scarcity and fragmentation [2, 3]. In scenarios where there
is little available bandwidth, it may be necessary to aggre-
gate spectrum opportunistically, potentially across multiple
bands non-contiguously. This sort of frequency-agile sys-
tem has been adopted in protocols and standards such as in
LTE-Advanced with carrier aggregation [4] and will likely
also play a role in 5G communications [5].

For cases where spectrum is aggregated in a non-
continuous manner, challenges arise in the radio frontend
design. In particular, the power amplifier (PA) becomes
problematic. The PA is inherently a nonlinear device [6],
and whenever non-contiguous signals pass through this
nonlinearity, they intermodulate creating intermodulation
distortion (IMD) components throughout the nearby spec-
trum as illustrated in Fig. 1. For example, if carriers exist at
radio frequencies f1 and f2, there will be third-order IMD
products (IM3s) at frequencies of 2f1 − f2 and 2f2 − f1.
These spurious emissions or “spurs” could interfere with
other users or with a device’s own receiver in a frequency-
division duplexing scenario [7]. If severe enough, they may
violate emission requirements in standards such as the 3GPP
LTE-Advanced or other FCC standards [8–11].
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Figure 1 Power spectral density of a non-contiguous signal after
being applied through a nonlinear PA. Intermodulation of the
main carriers, x1 and x2, cause distortion throughout the nearby
spectrum. For example, the third-order intermodulation distortion

products (IMDs) are shown as IM3- and IM3+. Each IMD is the
sum of multiple nonlinearity components. Here we show the contri-
bution of each nonlinear order up to the seventh in each of the IMD
products.

The undesirable effects of the PA nonlinearities are exac-
erbated by modern, multicarrier signals such as OFDM due
to their high peak-to-average power ratio (PAPR) [6]. Tech-
niques such as crest factor reduction (CFR) can help reduce
the PAPR of these signals by many dB by limiting the peak
power through clipping and filtering. However, CFR doesn’t
correct for the nonlinearities of the PA and may come at the
cost of a poorer error-vector magnitude [12].

In conjunction with CFR, to avoid violating the strict
emission requirements, devices may need to also consid-
erably back off their transmit power from the nominal
maximum value (e.g., +23 dBm in 3GPP LTE uplink) so that
the PA operates in a more linear region. However, reduc-
ing the transmit power in order to satisfy the emission mask
will necessarily reduce the uplink coverage and the energy
efficiency of the PA. [8, 13–17].

An alternative to power back-off is digital predistortion
(DPD). DPD is a signal processing technique that requires
sampling the output of the PA to learn its nonlinearities and
then applying an inverse of them in the digital baseband sig-
nal to cancel the effect of the PA’s nonlinearities. This can
have the effect of dramatically reducing spurious emissions
and other nonlinear effects [17].

However, to cancel a nonlinearity, we have to also be
able to observe it. For many carrier aggregation scenarios,
the carriers may be spaced hundreds of MHz apart. This
would lead to their IMD products being spaced even farther
apart so that the observation bandwidth necessary to mit-
igate the spurious emissions becomes infeasible for many
analog-to-digital converters (ADCs) and radio-frequency
(RF) downconverters [18].

This issue is quickly becoming more prevalent in that
carrier aggregation is now almost commonplace. Since its
2011 debut in LTE Release 10, it has made its way from
the standards down to commercial implementations. Many
networks already provide support for up to three carriers on
the downlink [19], and many consumer devices also sup-
port it with system-on-chips such as the Snapdragon 835
supporting four downlink carriers and two uplink carriers
[20]. However, most DPD solutions do not completely con-
sider the carrier aggregation scenario. For example, in [18],

the effects of intermodulation are considered, but only the
bandwidth around the main carrier is linearized.

To combat this, the authors introduced a sub-band DPD
method in [16]. However, the IM3 sub-bands were con-
sidered separately while not taking into consideration the
mutual effect of each of the IM3 sub-band DPDs over
the other. An FPGA implementation of this solution has
also been presented by the authors in [21] demonstrating
real-time processing of the adaptive DPD learning solution.

An extension of the DPD solution in [16, 21] was pro-
posed in [22], where an iterative learning algorithm is used
between the right and left IM3 sub-bands until they are
both properly suppressed. A WARPLab implementation of
an iterative version of this higher order sub-band DPD was
also presented with additional ideas added to reduce the
complexity and/or improve the learning speed of the pro-
posed DPD. Moreover, in [23], higher nonlinearity orders
were introduced in addition to the third-order nonlinearity
processing in [16, 21].

In this paper, we extend the work from [22] to include
processing for the fifth-order IMD products (IM5) and
include new interpolation based speed-up methods. In sum-
mary, this paper includes:

– An iterative version of the previously proposed sub-
band DPD. This solution iterates between the different
spurious components, such as the IM3+, IM3-, IM5+,
and IM5- until a satisfactory performance is achieved
for each of them. This improves the flexibility and
potentially reduces complexity when compared to a
full-band DPD system in that learning can be focused
only on sub-bands that are in violation of emission lim-
its and only a single RF feedback path is necessary. This
comes at a cost of additional latency when compared to
full-band DPD.

– The learning of the higher-order nonlinearities in each
sub-band is done sequentially, one basis function at
a time in ascending order. This has the advantage of
reducing the hardware complexity by essentially using
one learning module for all the nonlinearity orders.
An additional flexibility advantage is that we can stop
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adding higher orders in the learning phase once a suf-
ficient spurious emission suppression is achieved, thus
further reducing the complexity. However, this comes at
a cost of additional latency.

– To improve the convergence speed of the proposed solu-
tion, two modifications have been adopted in this paper.
The first is using a variable learning rate during the DPD
coefficient learning to have a fast convergence during
the initial phase of the learning while not sacrificing the
steady-state error. The second modification is that the
DPD coefficients are stored once they are converged.
When transmitting, the previous acts as a starting point
for learning anytime the same carrier configuration is
transmitted again. For transmissions with new config-
urations, we can interpolate from stored values to help
start training from a value close to the final value.

– A WARPLab implementation is done demonstrating
effective performance of the proposed solution using
real hardware equipment.

This paper is organized as follows. In Section II, the mod-
eling of the spurious emissions at the IM3 sub-bands and
their mutual effects are presented. The proposed iterative
sub-band DPD processing is also introduced in this section.
In Section III, sequential learning of the DPD coefficients
is proposed to reduce the hardware complexity. In Section
IV, two methods are proposed for improving the conver-
gence time. In Section V, the overall DPD system flow is
presented. In Section VI, we show the results from testing
the proposed algorithms on the WARPLab platform. Finally,
in Section VII, we conclude the paper.

2 Spurious Component Modeling and Iterative
IM3 Sub-band DPD Processing

In [16], a decorrelation-based sub-band DPD was proposed
to mitigate the spurious emissions at the IM3± sub-bands.
However, the mutual effect of, for example, the IM3+ sub-
band DPD on the other sub-bands was not taken into con-
sideration. In this work, we propose an iterative sub-band
DPD that starts with linearizing the most extreme sub-band,
and then after applying the sub-band DPD, the learning is
switched to another sub-band. Since each of the IM3± and
IM5± sub-band DPDs has an effect on the other sub-bands,
the proposed DPD iterates the learning between each of
the considered sub-bands until the spurious emissions are
sufficiently suppressed.

To further illustrate this behavior, a mathematical analy-
sis is introduced in this section to show the impact of the
IM3+ sub-band DPD on the IM3- sub-band when a dual
carrier signal is applied to a nonlinear PA. This analysis
will provide a theoretical foundation and motivation for our

work. For simplicity of the presentation, we restrict our
analysis in this section to third-order nonlinearity. However,
in the actual WARPLab experiments, higher order nonlin-
earities are included in the DPD processing. The analysis is
carried out at composite baseband equivalent level, and the
two component carriers (CC’s) are assumed to be separated
by 2fIf . Thus, the composite baseband equivalent PA input
and output signals, x(n) and y(n), read

x(n) = x1(n)e
j2π

fIf
fs

n + x2(n)e
−j2π

fIf
fs

n
, (1)

y(n) = β1x(n) + β3|x(n)|2x(n), (2)

where β1 and β3 are unknown PA coefficients, and x1(n)

and x2(n) are the baseband equivalents of the input CCs.
Through direct substitution of Eq. 1 in Eq. 2, the baseband
equivalent positive and negative IM3 terms read

yIM3+(n) = β3x
∗
2 (n)x2

1(n), (3)

yIM3−(n) = β3x
∗
1 (n)x2

2(n). (4)

The idea proposed in [16], for suppressing the IMD at the
IM3+ sub-band for example, is to inject a proper additional
low-power cancelation signal to Eq. 1, located at three times
fIf , such that spurious emission at the IM3+ sub-band at the
PA output is suppressed. Stemming from the signal structure
in Eq. 3, the injection signal is of the form x∗

2 (n)x2
1(n) but

should be scaled properly with a complex DPD coefficient
denotedhere byα. Thus, incorporating suchDPDprocessing,
the composite baseband equivalent PA input signal now reads

x̃(n) = x1(n)e
j2π

fIf
fs

n + x2(n)e
−j2π

fIf
fs

n

+α(x∗
2 (n)x2

1(n))e
j2π

3fIf
fs

n
. (5)

Substituting now x̃(n) in Eq. 2, the IM3 components at PA
output read

It can be seen from Eqs. 6 and 7 that the spurious emis-
sions at both IM3 sub-bands are dependent on the DPD
parameter α, despite the cancelation signal being injected
only at the IM3+ sub-band. In particular, an additional
fifth-order term which depends on α appears at the IM3-
sub-band, which is shown inside the box in Eq. 7. Despite
the magnitude of this term being quite small, it becomes
considerable when the PA exhibits strong nonlinearities.
This represents the theoretical basis of the mutual effect the
IM3+ sub-band DPD has on the two IM3 sub-bands.

In [16], the learning of the DPD parameter α, for the
IM3+ sub-band, for example, was formulated to minimize



1498 J Sign Process Syst (2018) 90:1495–1505

the correlation between the IMD at the considered IM3
sub-band and the distortion basis x∗

2 (n)x2
1(n). This cor-

relation minimization will eventually minimize the dis-
tortion at the considered sub-band effectively, as demon-
strated in [16, 21]. However, optimizing the DPD param-
eter α to minimize the power at the IM3+ sub-band, will
affect the IM3- sub-band as well, as shown in Eqs. 6
and 7.

That is why an iterative sub-band DPD learning is pro-
posed in this paper in the case that multiple IMD sub-bands
are required to be mitigated effectively. First, we start by
learning the DPD coefficients for the most extreme IMD
sub-band, then after injecting its DPD cancelation signal,
the emissions at other sub-bands are raised a little above
their original levels due to the mutual effect described ear-
lier. In the case that the IM3+ is the most extreme, learning
begins there. Then, the DPD learning may switch to the
IM3- sub-band, which then also affects the IM3+ sub-band.
An extra iteration may be required at previously learned
sub-bands so that the spurious emissions are all reduced
to appropriate levels. This will be demonstrated in the
WARPLab experimental results in Section 6. This method
also has a practical, hardware benefit in that only a single RF
feedback path is necessary. The downconverter in the feed-
back path will simply be re-tuned to each of the sub-bands
during training.

In the following sections, modifications are introduced to
the proposed sub-band DPD in order to reduce the complex-
ity, improve the convergence speed, or both. These aspects
are particularly important for mobile devices, which is the
main scope of this work.

3 Sequential Learning of IM3 Sub-Band DPD
Coefficients

A detailed analysis of the nonlinear distortions at the IM3
and IM5 sub-band has been done in [23] when a ninth-
order PA is excited with a dual carrier signal as in Eq. 1.
We hereby present the distortion components up to the ninth
order at the IM3+ sub-band, which read

u3+3 (n) = x∗
2 (n)x2

1(n), (8)

u3+5 (n) = u+
3 (n) × (2|x1(n)|2 + 3|x2(n)|2), (9)

u3+7 (n) = u+
3 (n) × (3|x1(n)|4 + 6|x2(n)|4

+12|x1(n)|2|x2(n)|2), (10)

u3+9 (n) = u+
3 (n) × (4|x1(n)|6 + 10|x2(n)|6

+30|x1(n)|4|x2(n)|2+ 40|x1(n)|2|x2(n)|4). (11)

Similarly, for the IM3- sub-band, the distortions terms
u3−(n) are simply obtained by interchanging x1(n) and

x2(n) in Eqs. 8–11. The distortion components up to the
ninth order at the IM5+ sub-band read

u5+5 (n) = (x∗
2 (n))2x3

1(n), (12)

u5+7 (n) = u5+5 (n) × (4|x1(n)|2 + 3|x2(n)|2), (13)

u5+9 (n) = u5+7 (n) × (10|x1(n)|4 + 6|x2(n)|4
+20|x1(n)|2|x2(n)|2). (14)

Similarly, for the IM5- sub-band, the distortions terms
u5−(n) are simplyobtainedby interchangingx1(n) andx2(n).

The proposed DPD was based on injecting the above
basis functions at the IM3+ sub-band with proper scaling
such that the distortion at the IM3+ sub-band is minimized.
The composite baseband equivalent PA input signal with
Qth order sub-band DPD processing thus reads

x̃(n) = x(n) +

⎡
⎢⎢⎣

Q∑
q=3
q odd

α+
q,n � u+

q (n)

⎤
⎥⎥⎦ e

j2π
3fIf
fs

n (15)

The qth order DPD coefficients α+
q,n are obtained such

that the correlation is minimized between the nonlinear dis-
tortion observed at the PA output at the IM3+ sub-band, and
the nonlinear basis functions in Eqs. 8–11. This is formu-
lated as a simple block-adaptive learning approach, where
the following vector based notations are defined

α+
q (m) = [α+

q,0(m) α+
q,1(m) ... α+

q,N (m)]T , (16)

ᾱ+(m) = [α+
3 (m)T α+

5 (m)T ... α+
Q(m)T ]T , (17)

u+
q (nm) = [u+

q (nm) u+
q (nm − 1) ... u+

q (nm − N)]T , (18)

ū+(nm) = [u+
3 (nm)T u+

5 (nm)T ... u+
Q(nm)T ]T , (19)

Ū
+
(m) = [ū+(nm) ... ū+(nm + M − 1)], (20)

where N denotes the DPD filter memory depth, and nm

denotes the first sample of block m, with block size M .
Consequently, the DPD block-adaptive parameter learning
update then reads

e+(m) = [ỹIM3+(nm) ... ỹIM3+(nm+M−1)]T , (21)

ᾱ+(m + 1) = ᾱ+(m)−μ Ū
+
(m)e+∗(m), (22)

where ỹIM3+(n) denotes the baseband equivalent observa-
tion of the PA output at the IM3+ sub-band with the current
DPD coefficients, and e+∗(m) refers to the element-wise
conjugated error signal vector, while Ū

+
(m) denotes the fil-

ter input data matrix, all within the processing block m. The
obtained new DPD coefficients ᾱ+(m + 1) are then applied
to the next block of samples, as illustrated in [21].

In order to reduce the hardware complexity of the DPD,
a sequential learning of the DPD coefficients is adopted in
this paper instead of learning the DPD coefficients for all
the nonlinearity orders concurrently. The idea is to first train
the DPD for the third-order coefficient, and after injecting
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the scaled third-order basis function at the target IM3 sub-
band, we start training for the fifth-order coefficient using
the residual IMD at the target sub-band, and so on. This pro-
posed learning algorithm has two advantages. The first is
that only one hardware module needs to be used for training
all the DPD nonlinearity orders thus reducing the hardware
overhead due to DPD learning, which is an important aspect,
especially for small devices. The second advantage is that
we can stop training the DPD once a sufficient performance
is achieved. For example, if after doing the third-order train-
ing, the transmitter already satisfies the emission limits, then
there is no need to train the DPD for higher orders. This will
save the complexity in both the DPD training phase and in
the actual DPD filtering as well.

However, for fast and smooth learning of the proposed
sub-band DPD coefficients, a basis function orthogonaliza-
tion procedure was proposed earlier in [23]. In this paper,
we use an orthogonalization procedure which allows us to
learn the DPD coefficients with different orders sequentially
instead of concurrently. The idea of the orthogonalization
and learning procedure in this paper is to generate the
third-order basis function and train the DPD for this basis
function. Then the projection of the third-order basis func-
tion onto the fifth-order basis function is subtracted from the
fifth-order basis function in order to obtain the new orthogo-
nalized fifth-order basis function, which is then used to train
the DPD for the fifth-order nonlinearity, and so on. Once
the spurious emissions satisfy the emission regulations,
the DPD training is stopped to save further higher-order
processing that may not be required, depending on the trans-
mission scenario and TX power level. Using the standard
vector dot product, the new orthogonalized basis functions
v±
q (n) used for DPD learning thus read

v±
3 (n) = u±

3 (n), (23)

v±
5 (n) = u±

5 (n) − dot (u±
5 (n), v±

3 (n))

||v±
3 (n)||2 v±

3 (n), (24)

v±
7 (n) = u±

7 (n) − dot (u±
7 (n), v±

3 (n))

||v±
3 (n)||2 v±

3 (n)

−dot (u±
7 (n), v±

5 (n))

||v±
5 (n)||2 v±

5 (n), (25)

v±
9 (n) = u±

9 (n) − dot (u±
9 (n), v±

3 (n))

||v±
3 (n)||2 v±

3 (n)

−dot (u±
9 (n), v±

5 (n))

||v±
5 (n)||2 v±

5 (n)

−dot (u±
9 (n), v±

7 (n))

||v±
7 (n)||2 v±

7 (n). (26)

Despite the reduced complexity that is achieved from the
proposed sequential DPD learning, the learning time is now
increased compared to the case when we learn all the DPD

nonlinearity orders concurrently. Two algorithm modifica-
tions are thus proposed in the next section for improving the
convergence speed of the proposed DPD.

4 Improving Convergence Speed of the Proposed
DPD

In the previous section, a trade-off was made between hard-
ware complexity and convergence time. We introduce two
methods to help relax the extra time that is necessary to con-
verge sequentially. Firstly, we modify the learning rate, and
secondly, we modify the starting coefficients.

The first modification involves adjusting the learning rate
μ in Eq. 22 depending on the residual correlation between
the observed spurious IMD at the PA output and the non-
linear basis functions representing this IMD. We allow μ

to take on two values, μ1 and μ2 where μ1 > μ2. This
ensures fast convergence while not sacrificing the steady
state error. We also establish a threshold, γ , and a confi-
dence metric, ν. The change to μ is decided as shown in
Algorithm 1. The threshold, γ , and the confidence metric ν

are chosen based on experimental results over a wide range
of carrier allocation scenarios and power levels. This helps
ensure that the basis functions and the spurious IMD have
actually decorrelated and that we do not switch μ too soon
due to fluctuations in the correlation.

The second modification involves adjusting the starting
point for the DPD training. In Eq. 22, ᾱ(0) = 0. If we were
to start closer to the final coefficient, there would be less
change necessary and hence the convergence time could be
much faster. We propose storing the final coefficients from
various transmit scenarios. Then, whenever the same trans-
mit scenario is used again, we can retrain by starting from
the previous value. The previous coefficients should be sim-
ilar, but retraining allows us to overcome possible variations
due to temperature, power levels, etc.
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If we slightly change a TX parameter such as the gain of
the PA so that we are in a new scenario, it may not be nec-
essary to start our training from zero. Instead, as we collect
DPD coefficients from a variety of scenarios, we can per-
form a linear interpolation to fill in the blanks. By starting
the DPD training from an interpolated guess, we can reduce
the training time for new scenarios.

5 Overall DPD System Flow

In this section, the overall flow of the proposed DPD pro-
cessing is summarized and presented, thus putting all the
bits and pieces together. In Fig. 2, we introduce the system
architecture for the DPD learning. This architecture shows
the lower-level algorithm for performing the DPD learning.
This architecture will be used in a method shown by the
higher-level flow chart in Fig. 3 which presents the overall
DPD system processing including the iterative IMD learn-
ing, sequential learning for the higher nonlinearity orders,
and the speed-up methods.

The system begins by applying stored coefficients if they
are available. If they are not available, the system will inter-
polate from other previously stored values if possible or
set the DPD coefficients to zero. The system searches for
spurious emissions in violation of a threshold. If there is
a violation, the system chooses the most extreme violation
to train on. We then choose the lowest possible order to
train on for that spur (third for IM3, fifth for IM5, etc.)
and perform a sub-band DPD learning step after which the
spurious emissions are checked to see whether they already
meet the emission requirements or not. If they do not sat-
isfy emission requirements, an additional nonlinearity order
is added. In all the learning phases, the DPD learning rate μ

is varied according to the residual correlation between the
observed IMD emissions and the corresponding basis func-
tion(s), in order to improve the learning speed, as explained
in Algorithm 1.

Once the spurious emission is below the threshold, we
search for another spur that is above the limit. If there is
one, we will similarly train on that spur. We then begin the
search again realizing that it is possible that a previously
trained spur may no longer meet the requirements due to the
mutual effects of one DPD application on the other. In the
case that the DPD can not sufficiently suppress the spuri-
ous emission below the limit, we lower the transmit power
and begin again. Whenever all spurs are under the limit,
the coefficients can be stored in the memory. This serves
as a starting point for whenever the transmission scenar-
ios are repeated and for interpolation of other values. In
the next section, experimental results are presented using
the WARPLab setup demonstrating the effectiveness of the
proposed DPD solution.

6 WARPLab Results

The methods presented previously in the paper were tested
using the WARPLab framework on the WARPv3 board.
WARP is a software-defined radio platform that allows for
rapid prototyping by interfacing with MATLAB to perform
the baseband signal processing [24]. The WARP board is
similar to other SDR boards like the popular USRP boards
from Ettus Research/National Instruments in that they allow
for rapid prototyping via software such at MATLAB. In order
to study the DPD performance, a PA is needed as part of
the SDR platform. The USRP does not contain an integrated
PA. However, the WARP platform contains a standard

Figure 2 Block diagram of the
system architecture. Here, the
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Figure 3 System flow chart of the proposed iterative sub-band DPD
solution with speed-up methods. The speed-up methods are indicated
in bold letters.

on-board PA which makes it ideal for algorithm verification.
A photo of the experimental setup is shown in Fig. 4. For
these experiments, the DPD processing is done on the host
CPU, but the broadcasting is done on the WARP radio hard-
ware which includes the Maxim MAX2829 transceiver and
the Anadigics AWL6951 PA.

6.1 IM3± Iterations

We began by testing the iterative method presented in
Section 2. An LTE uplink signal was generated in MATLAB

with two non-contiguous carriers. One carrier was 3 MHz,
and the other was 1.4 MHz. Both carriers had 64 QAM sub-
carrier modulation. The frequency domain results at each
iteration are shown in Fig. 5. The IM3+ spur was trained
first using seventh-order DPD processing, and suppression
was achieved as evident in the red curve. However, the IM3-
spur magnitude was increased slightly which is consistent
with Eq. 7. We then trained the IM3- spur (yellow curve).
Again, there was a negative effect on the opposite spur, so
we retrained the IM3+ spur (purple curve). At this point, we
were satisfied with the performance and quit training.

6.2 Sequential Learning

Aspresented inSection 3,we then tested the sequential learn-
ing concept in WARPLab where we started with low-
order nonlinearities and added higher orders as needed. In
Fig. 6, we show an example for comparison using the previ-
ously developed concurrent training method. We then swit-
ched to using the new sequential method as seen in Fig. 7.
For these two experiments, the same LTE uplink signal and

Figure 4 TheWARPv3 board interfaces withMATLAB via an Ethernet
cable connected to aPC.TheTXport is directly connected to theRXport
via a 30 dB directional coupler for the feedback loop during training.
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Figure 5 Normalized spectral result when using the iterative method
to suppress both the IM3+ and the IM3- spurs.

setup were used. We see that all the coefficients converged
to approximately the same value. In Fig. 8, we show the
results in the frequency domain on the IM3+ spur. From
these figures, it is evident that the final result is equivalent
and the only difference is the amount of time it takes to train.

6.3 Speed-up Methods

The convergence time for sequential training is longer
than training in parallel as discussed earlier and shown in
Figs. 6 and 7. To overcome this, we tested the previously
presented methods for speeding up the convergence time.

We tested the adaptive μ concept presented by Algorithm
1. In Fig. 9, we show the correlation between the error block
and the LMS reference block as the algorithm converges.
As the DPD coefficient convergences (shown in blue), the
correlation decreases (shown in orange). When it is below

Figure 6 Example DPD coefficient convergence when concurrent
training is used. By training multiple orders concurrently, convergence
occurs more rapidly at the price of additional hardware complexity
when compared to sequential learning.

Figure 7 WARPLab testing of sequential learning of DPD coeffi-
cients. By training multiple orders sequentially, convergence occurs
more slowly with the benefit of less hardware complexity when
compared to concurrent learning.

the threshold (γ ) of 0.05 (shown in red) more than 5 times
(the confidence metric, ν), the learning rate changes from
μ = 4 to μ = 0.7. This change of μ is denoted by the
dashed line. The values were determined experimentally to
what worked well for a variety of scenarios as determined
by the authors.

We then tested the concept of starting the DPD coeffi-
cient at a value based on the interpolation of other trained
values. When using WARPLab, there is an RF gain param-
eter that sets the gain for the PA. This value is an integer
between zero and sixty-three with approximately half a dB
of gain per integer increase of this parameter. We started
with an RF gain parameter of 45 where we trained from a
starting point of zero. Then, we increased the RF gain to
55 where we again trained from 0. At each, the coefficients
converged smoothly with sufficient suppression.

Figure 8 PSD result when using the concurrent and sequentially
trained coefficients to suppress the IM3+ spur. This shows nearly
identical performance between the methods.
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Figure 9 Correlation vs. block index during DPD training. As train-
ing progresses the correlation decreases. Once it is below the threshold
for a total number of times greater than the confidence metric, we
change to the lower learning rate.

We then choose to work at an RF gain of 50. We lin-
early interpolated from the two values previously stored. We
then started training from this point. The training is shown
in Fig. 10. Based off the sequential, LMS training, a small
update to the interpolation guess is made.

As we continue to transmit under various conditions,
the interpolations become more accurate. Eventually, a
complete table of DPD coefficients is formed. Then when-
ever we need to broadcast, we can simply load the previous
coefficients and quickly update them to account for small
fluctuations if needed.

6.4 Full System Verification

We then put everything together in WARPLab to follow the
process shown in Fig. 3 where multiple spurs need to be

Figure 10 Convergence of the DPD coefficients after interpolating
from previously learned coefficients.

Figure 11 Normalized spectral result when using the iterative method
to make sure both IM3 and both IM5 spurious emissions are below the
threshold.

under a threshold. The previously discussed speed-up meth-
ods are applied in the training process. Two LTE carriers
are broadcast. The two carriers are set to be 1.4 MHz LTE
uplink signals spaced 6 MHz apart. This allowed the IM5
spurs to be observable in the WARP board’s 40 MHz RF
Bandwidth. For this experiment, we set a threshold that the
spurs must be 35 dB below the main carriers. The results are
plotted in Fig. 11.

We assume this to be a new configuration where we start
with no know coefficients; every coefficient gets initialized
to zero. The non-contiguous signal is broadcast over the
WARP board, and the spectrum for this is shown as the blue
curve in Fig. 11. We identify the IM3+ spur as the most
severe and train on it. There is some suppression, but it does
not completely meet the threshold. We train another order
on the IM3+ spur and then continue the process until the

Table 1 Results of the intermediate training steps in the multi sub-
band DPD from Fig. 11.

Training Step Result (dB)

Step Spur Order IM5- IM3- IM3+ IM5+

0 − − −38.7 −28.0 −27.9 −38.8

1 IM3+ 3 −37.3 −27.4 −34.4 −36.7

2 IM3+ 5 −37.2 −27.4 −36.9 −36.4

3 IM3- 3 −35.9 −33.9 −35.5 −34.9

4 IM3- 5 −35.0 −37.0 −35.8 −34.5

5 IM5+ 5 −34.5 −33.15 −34.5 −43.0

6 IM3- 5 −33.6 −37.1 −34.3 −44.4

7 IM5- 5 −42.9 −32.0 −33.5 −44.0

8 IM3- 5 −45.1 −37.6 −33.2 −44.0

9 IM3+ 3 −43.2 −32.3 −36.8 −42.6

10 IM3- 5 −44.6 −37.5 −37.0 −42.5
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final result shown in black is achieved. During the process,
the mutual effect of one DPD training negatively impacts the
other spurs and causes additional steps in the multi sub-band
DPD. All of the intermediate results are shown Table 1.

7 Conclusion

In this paper, an iterative, multi sub-band DPD learning
algorithm has been presented that can suppress the IM3 and
IM5 spurious emissions. A sequential learning procedure
where higher nonlinearity orders were added one at a time
was also presented in order to reduce the complexity and
add flexibility to the DPD solution. Additionally, the con-
vergence speed of the proposed DPD has been improved by
two methods, while not sacrificing the DPD performance.
The first used a variable learning rate which switches from
high speed to lower speed once the loop becomes close
to convergence. The second method starts the DPD learn-
ing from previously learned points and uses interpolation
of past scenarios to reduce convergence time. A WARPLab
implementation of the proposed DPD solution has been
demonstrated showing excellent performance with up to 20
dB suppression in the undesired spurious emissions.
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