International Journal of Bifurcation and Chaos
© World Scientific Publishing Company

Bifurcations of finite-time stable limit cycles from focus boundary
equilibria in impacting systems, Filippov systems, and sweeping
processes

OLEG MAKARENKOV
Department of Mathematical Sciences, The University of Texas at Dallas, 800 West Campbell Road
Richardson, Texas 75080, United States of America
makarenkov@utdallas. edu’

LAKMI NIWANTHI WADIPPULI ACHCHIGE
Department of Mathematical Sciences, The University of Texas at Dallas, 800 West Campbell Road
Richardson, Texas 75080, United States of America
Lakmi. WadippuliAchchige@Quitdallas. edu

Received (to be inserted by publisher)

We establish a theorem on bifurcation of limit cycles from a focus boundary equilibrium of an
impacting system, which is universally applicable to prove bifurcation of limit cycles from focus
boundary equilibria in other types of piecewise-smooth systems, such as Filippov systems and
sweeping processes. Specifically, we assume that one of the subsystems of the piecewise-smooth
system under consideration admits a focus equilibrium that lie on the switching manifold at
the bifurcation value of the parameter. In each of the three cases, we derive a linearized system
which is capable of concluding about the occurrence of a finite-time stable limit cycle from the
above-mentioned focus equilibrium when the parameter crosses the bifurcation value. Examples
illustrate how conditions of our theorems lead to closed-form formulas for the coefficients of the
linearized system.

Keywords: Boundary focus bifurcation, impacting system, Filippov system, sweeping process,
limit cycle.

1. Introduction

Unfolding of a singular equilibrium of a vector field on a boundary of a smooth manifold is a classical
problem of the theory of differential equations that goes back to Vishik [Vishik, 1972] and Arnold [Arnol’d,
1978].

In the case where the boundary of a smooth manifold is a switching manifold separating two smooth
differential equations, the main breakthrough is due to Filippov [Filippov, 2013], who offered a formula to
define the flow of the full (i.e. piecewise smooth) system of differential equations on the switching manifold
(called sliding flow). In particular, Filippov observed [Filippov, 2013, §19] that a focus equilibrium of
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a smooth subsystem of a piecewise smooth planar system of differential equations may produce a limit
cycle after such an equilibrium collides with the switching manifold under varying parameters. In this way
Filippov paved a route to such an analogue of the classical Hopf bifurcation that is capable to provide
limit cycles that lack smoothness (with multiple applications to e.g. mechanical systems with dry friction
and drillstring dynamics, see [Galvanetto & Bishop, 1999], [Makarenkov, 2017], [Besselink et al., 2011],
[Makarenkov & Lamb, 2012]).

The problem of bifurcation of limit cycles from focus boundary equilibria of Filippov systems has been
intensively refined lately, see e.g. [Kuznetsov et al., 2003], [Guardia et al., 2011], [Hogan et al., 2016], [Chen
& Zhang, 2016], [Glendinning, 2016]. Specifically, if a Filippov system

&\ _ [ [(zy.e) . i=+1, if H(z,y) > 0, (1)
v/) \g'(z,y,e) )’ = i=-1,if H(z,y) <0,
where f!, ¢ and H are smooth functions, admits a focus equilibrium (z,y.) — (zo,0) as € — 0 with

H(z0,y0) = 0, then the available theory (as it appears e.g. in [Glendinning, 2016]) provides a change of
the variables that brings (1) near (xg,yo) to the normal form

(3:) = <a _b> < v > + smaller nonlinear terms, if y > 0, (2)
U b a y—e
<z> = (?) + smaller nonlinear terms, if y <0. (3)
One of the conclusions of [Glendinning, 2016] and [Kuznetsov et al., 2003] relate the property of the form
a a 1 _v/a am +b
ith a4 9 and P (f : ) : 4
e1term>b or m<band€ 6€) < (4)

to the existence of cycles in the linear part of system (2)-(3) for ¢ > 0, see formulas (36)-(38). Here
x — P(x,¢) is the Poincaré map of (2) induced by the cross-section y = 0. And the purpose of the second
inequality of (4) is to avoid the presence of stationary points of the sliding flow between ¢ and %P (%5, 5) .

Much less is known in the case where a focus equilibrium collides with the boundary of a completely
inelastic unilateral constraint, which formulates as the following differential inclusion known as sweeping
process (see e.g. [Edmond & Thibault, 2005], [Kunze & Marques, 2000])

() < Neuon + (£

where N¢o(x,y) is a normal cone to C' at (z,y). Sweeping processes is a standard tool to describe the
evolution of elastoplastic systems [Bastien et al., 2013]. There is also an increasing interest in using sweeping
processes in the constraint motion modeling, see [Maury & Venel, 2008], [Cao & Mordukhovich, 2015].
Here the results on optimal control (see [Colombo et al., 2016] and references therein), local ([Kamenskii &
Makarenkov, 2016]) and global ([Leine & Van de Wouw, 2007; Leine & Van De Wouw, 2008|, [Kamenskii
et al., 2017]) stability have been developed, but no any results about bifurcations of dynamical behavior
are currently available, that was the main reason and motivation for the current work.

In this paper we offer a unified theorem on bifurcation of limit cycles from a boundary equilibrium of an

impacting system
i\ _ (flzy)
(5)=(fem). #ema <o 5)

(xay) = (A(&“),B(E)), H('r7y75) =0, (6)

which is capable to predict the occurrence of limit cycles in Filippov systems and sweeping processes alike.
Compared to the above-mentioned results about bifurcation of limit cycles in Filippov systems, our result
implies the occurrence of a cycle in the initial nonlinear system (1), rather than in its linearization given by
(2)-(3). The linear system of (2)-(3) is considered as an example in which case we get same condition (4).
Note, following [di Bernardo et al., 2008], a different equivalent strategy can be taken where bifurcation
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results in both impact systems and sweeping processes are derived from a general result for Filippov
systems. The later strategy has been also offered earlier by [Zhuravlev, 1976] and [Ivanov, 1994].

The approach of the paper is based on a blow-up technique that one of the authors earlier used in the
context of smooth Malkin-Melnikov bifurcations (see [Kamenskii et al., 2011]).

The paper is organized as follows. In Section 2 we prove our main result (Theorem 1) about bifurcation
of finite-time stable limit cycles in impacting system (5)-(6) from the origin which is a focus equilibrium
of subsystem (5). We consider parameter-independent vector fields in (5), but rather assume that the
switching manifold is a function of the parameter ¢ and that the origin belongs to the switching boundary
at € = 0 (i.e. that H(0,0,0) = 0). To illustrate Theorem 1 a simple resonate-and-fire neuron model from
[Izhikevich, 2001] is considered. In [di Bernardo et al., 2008], the analysis of bifurcations of limit cycles from
a boundary focus equilibrium in impacting system (5)-(6) is converted into the analysis of the respective
bifurcations in Filippov systems, but the approach of [di Bernardo et al., 2008] uses state-dependence of
the impact law (6) in an essential way.

Section 3 shows (Theorem 2) that bifurcation of finite-time stable limit cycles in Filippov systems of type (1)
from a boundary focus equilibrium, can be obtained as a corollary of Theorem 1. We note that throughout
Section 3 we assume that vector fields in (1) don’t depend on ¢, but H does, which is equivalent to the
setting (1). The linear part of (2)-(3) is considered in Section 3 as a benchmark to illustrate Theorem 2.
Here we also enhance the known formula (4) by deriving a closed-form expression for the last inequality of
(4), that allows us to plot (4) in the (%,m)-coordinate plane (Fig. 2).

The main contribution and added value of this work, an application of Theorem 1 to sweeping processes is
given in Section 4, where the properties similar to those of the Filippov sliding vector field are established
for sliding along the boundary 0C(e) of the unilateral constraint C'(g) in Proposition 4 of Section 4. In
particular, formula (42) introduces an equation of sliding along dC'(¢) and formula (43) gives an equation
for stationary point of sliding motion. Based on the properties discovered in Proposition 4, Theorem 3
establishes bifurcation of a finite-time stable limit cycle as 9C(e) collides with a focus equilibrium of the

vector field ({]((i’ Zt/)) ) of the perturbed sweeping process.

2. Impacting systems

The change of the variables

brings (5)-(6) to the form
w) _ 1 f(eu,ev) . ev
<b>_g<g(5u,sv)>’ H(eu,ev,e) <0, (7)
(u,0) é(A(a),B(e)), H(eu,cv,¢) = 0, (8)

We identify (u,v) and (u,v)” when it doesn’t lead to a confusion. Along with system (7)-(8) we consider
the following reduced system

<u> - (§E8§ 5%) <u> if 1, (0)v + He(0) <0, (9)
H.(0)

u s A'(0), if v=— .
© ,(0)

(10)

Theorem 1. Consider f,g, A, B,H € C?. Assume that the equilibrium of (5) collides with the switching
manifolds when € = 0, i.e. f(0) = ¢g(0) = H(0) = 0. Assume that the coordinates are rotated in such a



4 Oleg Makarenkov, Lakmi Niwanthi Wadippuli Achchige

way that Hy(0) = 0 and H,(0) # 0. Assume that the impacting law in (6) maps points of the switching
mamnifold back to the switching manifold, i.e., for all € > 0,

H(A(e),B(e),e) =0 (11)
Assume that the reduced system (9)-(10) admits a cycle (uo(t),vo(t)) with the initial condition
(up(0),v9(0)) = (A’(O), —Hs(gg) of exactly one impact per period. Let Ty be the period of the cycle. If

Hy(

H.(0)
Hy(0)
then, for all ¢ > 0 sufficiently small, the impacting system (5)-(6) admits a finite-time stable limit cycle
(x:(t),y=(t)) with the initial condition (z-(0),y:(0)) = (A(e), B(e)). Specifically, there exists T. — Ty as
e — 0 such that H(z:(1:),y:(1z),e) = 0, for all € > 0 sufficiently small.

gx(O)UO(TO) - gy(o) 7£ 07 HE(O) 7& 07 (12)

Ul(t,u,v,e)
V(t,u,v,e)

F(T,2) = éH <5U <T, Af), Bf),s> v <T, Aff), Bf),e> ,g> .

Computing F(T,0) we get

Proof. Let t — ( ) be the general solution of system (7). Introduce

F(T,0) = Hy(0)V(T, A'(0), B'(0)) + H-(0).
The value of B’(0) can be found from (11) as

Therefore, F(Tp,0) = 0, and since
Ft(Oa TO) = Hy(O)Vt(Tbv A,(O)a B/(O)v 0) =
— H,(0)(9:(0),9,(0)) (5§§g§gggggg;g;) ,

we have F;(Tp,0) # 0 by the first assumption of (12). Therefore, the existence of T such that F(T.,e) =0
follows by applying the Implicit Function Theorem (see e.g. [Zorich, 2004, §8.5.4, Theorem 1]), which in
turn implies that (z-(t),y(t)) is a cycle of (5)-(6).

To establish finite-time stability of (z(t),y-(t)) we have to prove that (z¢(t),y-(t)) reaches the switching

manifold L = {(z,y) € R? : H(z,y,¢) transversally (see also [Makarenkov, 2017, Proposition 1]). In other
words, we have to show that

doesn’t vanish for all € > 0. Indeed, we have ¢(0) = B'(0)H,(0) = —H-(0) # 0 by the second assumption
of (12).

The proof of the theorem is complete. W

As an example we consider the following nonlinear model of a resonate-and-fire neuron from [Izhikevich,

2001]:

z\ [(ax—by .
(y'>_<bx+ay>+M($’y)’ if y—e <0, (13)
x — —ke, ity—e=0, (14)

where k > 0, M € C?, M(0) = M'(0) = 0, a < 0, and b > 0, so that the origin is a stable focus for
subsystem (13).
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In what follows we check the assumptions of Theorem 1. The impact law (14) leads to
A'(0) = —k.
The condition (12) reduces to
buo(Tp) +a # 0. (15)

To prove the existence of a cycle to the reduced system (9)-(10) and to check the condition (15), we
compute P(A’(0)) (i.e. P(—k)) for the Poincaré map P of linear system (9) induced by the cross-section

V=) B’(0) = 1. The linear system (9) corresponding to (13) is

] au — bv
<1‘)> N <bu+av>' (16)
Using that a solution of (16) is given by

u(t) = e cos(bt), wv(t) = e™sin(bt), (17)
we build the following solution of (16)
e®(t=t0) cos(bt) e?(t=t0) sin(bt)
sin(btg) sin(bty) '
which verifies the property (uo(to),vo(to)) = (—k,1). It is impossible to find the intersection of solution

(up(t),vo(t)) with v = 1 explicitly, so we propose an explicit approach that relies on the observation that
an intersection of any solution of (16) with u = 0 is computable explicitly.

up(t) = vo(t) = bty = arccot (—k),

Since arccot (—k) € (g,w) , the first intersection of this solution with u = 0 occurs at bt = § + m, which

gives
o (13T 1.3m_, 1
Pem A 2 ) TP NG 2 ) ) sinbte)

Now we assume that the intersection of (ug(t),vo(t)) with v = 1 occurs at some point v = r and use (17)
to compute y, in terms of r. Specifically, using (17) we build a solution

et=") cos(bt) A(t) = =) gin(bt)
sin(bt9) -~ sin(bt0)

which verifies (u°(t°),v%(t%)) = (r,1). Since arccot(r) € (0,7), the intersection of (u®(t),v°(t)) with u =
0, v <0, must had occurred earlier at time bt = § — 7, which gives

o () oo () -0)) s

for the respective point of intersection with © = 0. Now equaling y, and y*, observing that

ud(t) = bt = arccot(r),

1 _
sin(arccota)
Va? + 1, and taking the natural logarithm of both sides of the equality, one gets the following implicit
formula for 7 :

4. 3% — Larccot (—k) 4+ 3 1n (1 + k%) = o(r),

(18)
Y(r) =% (=3) — $arccot(r) + & In(1 + r?).

By solving 9'(r) = 0 we conclude that ¢ is increasing on r > —¢ and 9 (r) — oo as r — co. The equation
¥ (r) = R has a solution
a

r>-y (19)

for any R > 1 (—%). Therefore, r satisfying (19) and (18) exists, if
4.3% _ Garccot (—k) + 3 1n (1 +&?) >

> % (=2) — %arccot (—%) + 11n (1 + Zé) . (20)
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a
-0.2 -0.1 b
Fig. 1. The region of parameters (%, k) that satisfy (20), a < 0, b > 0, and k > 0. The dotted curve is the boundary which
is not a part of the region.
In particular, (19) implies that (15) holds for the values of (%, k) satisfying (20).
Our findings about the dynamics of (13)-(14) can now be summarized as follows.

Proposition 1. Assume that a < 0,b >0, and k > 0. If (%, k‘) satisfies (20), then for all e > 0 sufficiently
small, the impacting system (13)-(14) admits a finite-time stable limit cycle (z(t),y=(t)) of one impact per
period that shrinks to the origin as € — 0.

The region of parameters (%, k:) that satisfy the condition of Proposition 1 is plotted in Fig. 1.

Finally, we formulate the following remark that simplifies assumption (12) of Theorem 1 in the situations
that we are going to consider through the rest of the paper.

Remark 2.1. If the impact law (6) satisfies

H(x,y)(A(€)7B(5)75) (g(A(e),
then the first assumption of (12) reduces to
uo(To) # A'(0). (22)

(8))) =0, £>0, (21)

3. Filippov systems

In this section we consider the following Filippov system equivalent to (1)
B\ _ (fi@y)\ =410 Hz,y,e) >0, (23)
v)  \g'(z,y) )’ li=-1, if H(x,y,e) <0,

i i=—1,1, and H are smooth functions and ¢ > 0 is a parameter.

where f%, g

Proposition 2. Consider f~,g~, fT, g7, H € C2. Let the origin be an equilibrium of the “—”-subsystem
of (23) and H(0) = 0. Let the coordinates be rotated so that H,(0) =0 and H,(0) # 0. Assume that

H,y(0)g™(0) <0, g, (0)#0 (24)

f‘(0)> <f+(0)>

z . 25
() (0 (%)
Then, one can find r > 0 and g9 > 0 such that for any 0 < & < g there exists a unique point (A(e), B(g)) €

[—r, 7] X [=r, 7] which satisfies the property (21). The following properties hold on top of (21):
1) The point (A(e), B(e)) satisfies

and

(A 0).50) = (g <§E8§‘1> . ()
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2) The point (A(e), B(e)) splits
L= {(a:,y) eR?: z,y€ [—r,r], H(z,y,e —O}
mnto two parts
Ltiging = {(x,y) eR?: z,ye [—r,r], H(z,
N {(x,y) P Hig (7,9, €) (gé
and

Lcrossing = {(-T,y) € R2 RIS [_T7 T]a H(ﬂj’ Y, € ) = 0} N

n {(x,y) gy (@, y:€) (g:ggD - 0} '

f_(avb) - )‘f+(a7b) =0,
g (a,b) — /\g+(a7 b) =0

possesses a unique equilibrium (a(e),b(e), A\(€)) on L whose derivative (a’(0),0(0), N'(0)) equals
fz (0) £, (0)

3) The Filippov equilibrium equation

1.0) [ ;050 g, @10 o0 9,0 o
1,0) | 72097 (0) 92 077 0) " e 0)9+(0) — g2 0)*(0)
4) If
Few® (30} ) (O = OO <0, (25)

f‘(A(a),B(e))) L. .
then the vect _ t t to L by definit ts outwards Liging-
en the vector <g (A(e). B(e)) (tangent to y definition) points outwards Lgjiding

5) If condition (28) holds, then any solution (z(t),y(t)) of (23) with the initial condition (x(0),y(0)) from
the ((a(e),b(e)), (A(e), B(e)))-segment of Lgiding, escapes from Lgding in finite time through the point
(A(e), B(e)).

6) The solution (x(t),y(t)) of (23) with the initial condition (x(0),y(0)) = (A(e), B(e)) leaves L towards

L™ ={(z,y) eR*: H(z,y,e) < 0}
immediately, in the sense that there exists At such that t — (x(t),y(t)) verifies both the “—”-subsystem of
(23) and (z(t),y(t)) € L™, for all t € (0, At].

Proof. The existence, uniqueness, and continuous differentiability of (A(e), B(¢e)) satisfying (21) follow by
applying the Implicit Function Theorem to the function

f(A
F(A,B,e) = (H(z’y)(A’;(’j)gg)(A
,D,€

where we use that F'(0) = 0 and det || F{ 4 5)(0)|| # 0 by the second of the assumptions of (24).
Part 1. Formula (26) follows by computing the derivative of F(A(e), B(g),e) =0 at £ = 0.
Part 2. Follows from the uniqueness of (A(g), B(¢)).
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Part 3. The region Lgging is the region of sliding by the first of the assumptions of (24). We define
(a(e),b(e)) as the unique equilibrium of the sliding vector field of Filippov system (23). To prove the
existence of such a unique equilibrium we apply the Implicit Function Theorem to the function

f=(a,b) = A\f*(a,b)
G(a,b,\,e) = | g (a,b) — Ag*(a,b)

H(a,b,e)
The determinant
£z (0) f7(0) —f*(0)
det|G (q,p2)(0)] = det | g7 (0) g, (0) —g*(0) | =

0 Hy0) 0
= —Hy(0)(~f5 (0)g™(0) + g5 (0)f7(0))
doesn’t vanish by (25) and the formula for the derivative of the implicit function

(a’(0),'(0), N'(0))" = =G(ap,1) (0) T G=(0) (29)

yields (27).

Part 4. Conditions (26) and (27) imply that A(e)a(e) # 0 for all £ > 0 sufficiently small. Case I: \'(0) < 0,
which combined with (28) gives

Few® ( 3i0) ) (4@ =) >0 (30)

Furthermore, A'(0) < 0 implies that (a(e),b(¢)) € Lsiding for all € > 0 sufficiently small. Sub-case 1:
A'(0) < d'(0) (i.e. (A(e), B(e)) is the left endpoint of Lgjging). In this case (30) yields f~(A(e), B(e)) < 0,
: A(e) B( )

i.e. the vector ! ’

( ~(A(e), B(e))

assumption (30) implies f~(A(e), B(e)) < 0.

> points to the left. Sub-case 2: By analogy, when A’(0) > a'(0), the

Case II: X(0) > 0. Can be considered by analogy taking into account that A(0) > 0 implies that
(a(e),b(€)) € Lerossing for all € > 0 sufficiently small.

Part 5. The dynamics of (z(t),y(t)) is described by one-dimensional smooth equation of sliding mo-
tion ([Filippov, 2013, §19]) as long as (x(t),y(t)) € Lgiding- Part 4) implies that the vector field of
the equation of sliding motion on Lgiging points towards the endpoint (A(e), B(e)) at all the points
of Lgiding close to (A(e), B(e)). Therefore, if we assume, by contradiction, that the solution (z(t),y(t))
doesn’t reach (A(g), B(e)) in finite-time, then the sliding vector field must possess an equilibrium on the
((a(e),b(e)), (A(e), B(e)))-segment of Lgjiging, which contradicts the uniqueness of equilibrium (a(e), b(e)).

Part 6. This is a standard property, see e.g. [Filippov, 2013, §19].
The proof of the proposition is complete. W

“_»

Combining Theorem 1 (where we view the -subsystem of (23) as system (5)), Remark 2.1, and Propo-
sition 2, we arrive to the following result about limit cycles of Filippov system (23).

“__»

Theorem 2. Consider f~,g~, f*,g7, H € C?. Let the origin be an equilibrium of the -subsystem of
(23) and H(0) = 0. Let the coordinates be rotated so that H,(0) = 0 and Hy,(0) # 0. Let the assumptions
(24), (25), and (28) of Proposition 2 hold with (A’(0), B’(0)) and (a’(0),b'(0), N (0)) given by (26) and
(27) respectively. Assume that the reduced system (9)-(10) with (f,g) replaced by (f~,9~) admits a cycle
(ug(t),vo(t)) with the initial condition (ug(0),v0(0)) = (A’(0), B'(0)) of exactly one impact per period. Let
Ty be the period of the cycle. If

up(Tp) € (minf{a’(0), A’(0)}, max{a’(0), A’(0)}) in the case when N (0) < 0,

uo(Tp) # A'(0) in the case when X' (0) > 0, (31)
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then for all € > 0 sufficiently small, the Filippov system (23) admits a finite-time stable stick-slip limit
cycle (xe(t),y:(t)) = 0 as e — 0.

Proof. Let (zz(t),y(t)) be the solution of (23) with the initial condition (z.(0),y:(0)) = (A(e), B(e)) as
defined in Theorem 1. To prove the theorem it is sufficient to observe that condition (31) implies that, for
X(0) < 0, the point (z-(T%),y-(T:)) belongs to the ((a(e),b(e)), (A(e), B(e)))-segment of Lg;ging as defined
in Proposition 2, so that the map (6) is well defined on L in the neighborhood of (z.(7%),y-(7%)) (the
case A'(0) > 0 is straightforward because here (z.(7%), (7)) belongs to the part of Lg;ging that doesn’t
contain equilibria, i.e. the solution slides along Lg;qging until it reaches (A(e), B(e))). W

As an example, we consider the following Filippov system

(?):(ﬁ)JrK(x,y), if y—e>0, (32)

Yy
z\  [ax—by .
<y> = <bx+ay> + M(x,y), ify—e<0, (33)

where a,b > 0, m € R, and K, M are any C?-functions such that K(0) = M’(0) = 0.

In what follows we check the assumptions of Theorem 2. Assumptions (24) and (25) hold, if a # 0 and
2 # —m respectively. Formulas (26) and (27) lead to the following expressions for the derivatives A’(0),
B'(0), a/(0), /(0), and N'(0) :

a

(4'(0), B'(0)) = (~5.1).

— am CL2 2
((0).5/(0), N(0)) = (b 0 ) |

atbm’’ a+bm

which gives

a2+ b —a? -0 a®+b?
b bla+bm) a+bm
for the left-hand-side of (28). Therefore, assumption (28) always holds.
To prove the existence of a cycle to the reduced system (9)-(10) and to check the condition (31), we have
to compute r = P(A’(0)) = P (—%). But the same quantity » = P (—k) has been already computed in the

example of Section 2. Therefore, to obtain the formula for r we simply need to replace k by ¢ in formula
(18) of Section 2 getting

4. 3% — Larccot (—%) + 3 1n (1 + %j) =
=2 (—%) — garccot(r) + %ln(l +7r?).
The graph of the implicit equation (35) is given in Fig. 2 left, from which we conclude that the solution
(uo(t),vo(t)) returns back to the cross-section v = 1 at the value r (%) = (uo(Tp), vo(Tp)) which increases

monotonically with §. To summarize, the requirement of Theorem 2 about the existence of a cycle to the
reduced system (9)-(10) holds. Our goal now is to establish (31).

(35)

Based on (34), the property A’'(0) > 0 is equivalent to

m < —%. (36)
Therefore, if (36) is satisfied, then the assumption (31) of Theorem 2 holds. Let us consider \'(0) < 0, i.e.
m > —%. (37)
In this case assumption (31) takes the form
r = uo(Tp) < L=ym
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16
14
a
b
12

ST

0.2 0.4

Fig. 2. Left: The solution of (35). Right: The region of parameters (b? ) that satisfy (36) (gray), the region of parameters
(¢, m) that satisfy (37)-(38) (black), and the line m = —% (dotted white).

Since r — —%arccot(r) + 3 In(1 + r2) is a monotonically increasing function, we can combine the later
inequality with (35) to obtain

%%”—Earccot( ) 1ln<1—|— §)<

< §(~3) - garccot m>+%ln< (2 +$)2>- (38)

Proposition 3. If (%, m) satisfies either (36) or (37)-(38), then for all e > 0 sufficiently small, the Filippov
system (32)-(33) admits a finite-time stable stick-slip limit cycle (z-(t),y=(t)) that shrinks to the origin as
e — 0.

We arrive to the following corollary of Theorem 2.

The region of parameters (%, m) that satisfy (36) and the region of parameters (%, m) that satisfy (37)-(38)
are drawn at Fig. 2 right.

4. Sweeping processes

Consider a perturbed sweeping process

(5) e ~Newn+ (1)), (39
where
Cle) ={(z,y) € R? : H(z,y,e) < 0}, He cv,

is a nonempty closed time-independent p-prox-regular set with fixed p > 0, for all € > 0. We refer
the reader to e.g. [Edmond & Thibault, 2005] for the definition of pu-prox-regular sets (see Fig. 3 for
examples). The only fact about C(e) that we will effectively use smoothness of H in the neighborhood of
is that 0 € 0C(0). However, assuming p-prox-regularity for C(e) is required to ensure the existence and
uniqueness of solutions to (39) with any initial-condition. Specifically, if C'(¢) is p-prox-regular and if f and
g are C! globally Lipschitz functions, then for any initial condition (x¢,yo) € C(¢), the sweeping process
(39) admits a unique forward solution (z(t),y(t)) € C(e) with the initial condition (z(0),y(0)) = (zo,v0),
that satisfies the differential inclusion (39) for a.a. ¢ > 0 ([Edmond & Thibault, 2005, Theorem 1]). In
particular, according to the definition of the solution (z(t),y(t)),

<§) N <£Eig£> , when (z,y) € intC(e). (40)

Proposition 4. Consider f,g € C? and assume that H is twice continuously differentiable in the neighbor-
hood of the origin. Let the origin be an equilibrium of the subsystem (40) and H(0) = 0. Let the coordinates
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be rotated so that H,(0) =0 and H,(0) # 0. Assume that
f(0) #0,  g2(0) # 0. (41)

Then, there exist r > 0 and g9 > 0 such that for any 0 < € < gq there exists a unique point (A(e), B(e)) €
[—r, 7] X [—r,r] which satisfies the property (21). The statements 1)-2) and 4)-6) of Proposition 2 hold with
f=, 97, and (23) replaced by f, g, and (39) respectively. Furthermore, the following analogue of statement
3) of Proposition 2 takes place

a) Any solution (x(t),y(t)) of sweeping process (39) with the initial condition (x(0),y(0)) € Lgiiding can
escape from Lygjiging through the endpoints of Lgjiding only (i.e. through the two points of Lsiiding \Lstiding)-
b) While in Lgjiging, the solution (x(t),y(t)) is governed by the following equation of sliding motion

(1) _ —Hy(x(t),y(t), )
<y(t)> = ale(t),y(t).¢) < Hy(x(t),y(t), ) ) ’ (42)

where

(—Hy(z,y,2), He (2, y,€)) (§§x7y§>

LY

alz,y,e) =
(9-¢) [Ho @ 3,9

c) The equation
f~(a,b) + AH,(a,b,e) =0,
g (a,b) + XHy(a,b,e) =0
for the equilibrium of (42) possesses a unique solution (a(e),b(e), A(€)) on L with (a’(0),b'(0), N (0)) given
by

(43)

1
-1 det

H.(0) [ £,(0)
(fim)’ H, (0)7,(0)

H,(0)

£(0) £,(0)
4:(0) ,(0) ') ' (44)

Proof. Part 1 and Part 2. Same proof as in Proposition 2, where the second of the assumptions of (41)
is used.
Part 3a. Fix € > 0. Let tc5cape > 0 be the time when (x(t),y(t)) escapes from Lg;qing, specifically
terossing = max{to > 0: z(t) € [-r,r], y(t) € [-r,7],
H(z(t),y(t),e) =0, t € [0, 0]}

Assuming that neither |z(tescape)| = 7, n0r |Y(tescape)| =, we now show that

f(x(tesca 6)7 y(tesca e))
H, t ,y(t , P p <0, 45
(@) (x( escape) y( escape) 6) (g('r(tescape)a y(tescape)) - ( )
which coincides with the Statement 3a.

By the definition of tescqpe, for any 6 > 0 there exist t5 € [tescape; tescape + 0] such that H(x(ts), y(ts),e) <0
and t5 € [tescape, ts) such that

H(x(t5), y(t5),e) =0, H(xz(t),y(t),e) #0, € (t5,15].
Since, the solution (x(t),y(t)) satisfies (40) on (t},t5], one can apply the Mean-Value Theorem to get

(3tin) = () = (Snitey ) s>

H(a(ts) + f(x(t57), y(t57)), y(t5) + 9(=(t57), y(157)), €) <0,
which yields (45) as 6 — 0.

or
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Part 3b. Consider some ¢ty > 0 such that (x(t),y(t)) € Lsiiding for all t € [0,%o]. From the definition of
Lgiiding we conclude that

z(t
H g (2(),y < t;) 0, for a.a.t e |0,t,
where we use that the derivatives of solutions of (39) are defined for a.a. ¢ only, and so
#(t)\ [ —Hy(x(t ,y(t),€)>
—H, t ’ t 9 7Hw Y
(=4, (@(t).y(0).€) ( ) ( H(a(t),y(t).) ) <¢<t>)
1 (0 (2(£), y (), ) y(t) )’
for a.a. t € [0,tg]. Equation (42) now comes by projecting (39) on the vector <_£&Ei<lfég?;ﬁg?f)) and by

extending (42) from a.a. t € [0,%o] to all ¢ € [0, tp] using smoothness of (42).

Part 3c. To prove the existence and uniqueness of (a(e),b(¢)), we apply the Implicit Function Theorem
to the function

fla,b) + A\Hy ((a, b, €)

G(a,b,\,e) = | g(a,b) + AHy(a,b,¢)
H(a,b, 5)
The determinant
f=(0) fy(0) 0
det’G(a,b,/\)(o)’ = det 9:1:(0) gy(o) Hy(o) = _Hy(0)2fx(0)
0 Hy0) 0

doesn’t vanish by the first assumption of (41) and the formula (29) for the derivative of the implicit function
yields (44).

Part 4 and Part 5. Same proof as in Proposition 2. In particular, the construction (43) implies that
(a(e),b(e)) € Lgiiging for all € > 0 sufficiently small, if A'(0) < 0, and (a(e),b(¢)) € Lerossing for all € > 0
sufficiently small, if \'(0) > 0.

Part 6. Let (x(¢),y(t)) be the solution of (40) with the initial condition (z(0),y(0)) = (A(e), B(e)). By the
definition of (A(e), B(e)), there exists At > 0 such that H(z(t),y(t),e) < 0 for all ¢t € (0, At]. Therefore,
(x(t),y(t)) is the solution of (39) on (0, At]. Therefore, (x(t),y(t)) is the solution of (39) on [0, At], because
the definition of the solution (39) requires the validity of (39) for (z(¢),y(t)) in a.a. time instances t only.

The proof of the proposition is complete. M

Combining Theorem 1 (where we view the sweeping process (39) as system (5)) and Proposition 2, we
arrive to the following result about limit cycles of sweeping process (39).

Theorem 3. Consider f,g € C? and assume that H is twice continuously differentiable in the neighborhood
of the origin. Let the origin be an equilibrium of the subsystem of (40) and H(0) = 0. Assume that the
coordinates are rotated so that H,(0) = 0 and Hy,(0) # 0. Let the assumption (28) of Proposition 2 hold
with (A’(0), B'(0)) and (a’(0),b'(0), \'(0)) given by (26) and (44) respectively. Let the assumption (41) of
Proposition 4 holds. Finally, assume that the reduced system (9)-(10) admits a cycle (uo(t),vo(t)) with the
initial condition (uo(0),v0(0)) = (A’(0), B'(0)) of exactly one impact per period. Let Ty be the period of
the cycle. If (31) holds then for all € > 0 sufficiently small, the sweeping process (39) admits a finite-time
stable stick-slip limit cycle (z(t),y=(t)) — 0 as e — 0.

To illustrate the theorem we will build upon computations from the example of Section 3 and consider the
following sweeping process

A e o)
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where M € C? and C is any nonempty j-prox-regular set satisfying
9C = {(z,y) € R* : H(z,y) = 0}, He ",
with such a function H which is continuously differentiable in the neighborhood of the origin, H(0) = 0,
0 .
and H(;,)(0,0) = <1) , see Fig. 3.

Y y )’

> A \/x

Fig. 3. Two convex sets (particular examples of u-prox-regular sets) and an p-prox regular set that can be used in sweeping
process (46).

In order to adopt computations of the Example of Section 3 we only have to replace (a’(0),5'(0), \'(0)) of
(27) by (a’(0),b'(0), N'(0)) of (44) when computing estimates (36)-(38). From (44) we have

91_¥+W
a’ b a )

which just equals (34) with m = 0. The next proposition, therefore, comes by plugging m = 0 into (38).

Proposition 5. If ¢ satisfies
a a a , , . a
3 <4arctang - 37T> > 21In 5 (which gives approximately 7 < 0.29),

then for all ¢ > 0 sufficiently small, the sweeping process (46) admits a finite-time stable stick-slip limit
cycle (z:(t),ye(t)) that shrinks to the origin as € — 0.

5. Conclusions

The results of this paper complement the available literature in various ways. First of all, our theorem on
bifurcation of limit cycles from a boundary equilibrium of an impacting system turned out to be applicable
in the case of a stable focus, thus giving a proof for the occurrence of spiking oscillations in a simple
resonate-and-fire model.

Even though studies on bifurcation of limit cycle from a focus boundary equilibrium in Filippov systems
are extensively available, they focus on the occurrence of limit cycles in the associated reduced normal. In
contrast, our approach establishes bifurcation of limit cycles in the Filippov system as given initially. In
particular, our conditions are formulated in terms of the right-hand-sides of the initial Filippov system,
which might be useful in application. For example, our condition (25) explains why the literature on
limit cycles in dry friction oscillators (see [Galvanetto & Bishop, 1999; Guardia et al., 2010; Kowalczyk &
Piiroinen, 2008; Makarenkov, 2017] and references therein) doesn’t feature any papers on the occurrence
of a stable stick-slip limit cycle from a focus boundary equilibrium located at y = 0 when the velocity of
the belt crosses V' = 0 (which looks a natural simplest scenarios). Indeed, first components of both vectors
of (25) appear to vanish in such a case.

Perhaps most importantly, this paper offers the first ever result on bifurcation of limit cycles in sweeping
processes, in which analysis we derived an equation of sliding along the boundary of an unilateral constraint
and observed that the action of the unilateral constraint is equivalent to an action of an orthogonal vector
field pointing towards the unilateral constraint from the outside.
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Finally, the method that we used in the example of Sections 2 to compute the Poincaré map of the linear
part of system (13) induced by cross-section y = 1 can be extended to compute Poincaré maps of arbitrary
linear relay systems induced by the switching thresholds. Such a method can be of great use in the design
of stable limit cycles in relay systems and it doesn’t seem to appear in the literature as yet, see [Astrém,
1995] and [Boiko, 2008] as the central relevant references in this respect.
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