
Decentralized Equalization

for Massive MU-MIMO on FPGA

Kaipeng Li1, Charles Jeon2, Joseph R. Cavallaro1, and Christoph Studer2

1Department of Electrical and Computer Engineering, Rice University, Houston, TX
2School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

Abstract—Massive multi-user multiple-input multiple-output
(MU-MIMO) relies on large antenna arrays that serve tens
of user equipments in the same time-frequency resource. The
presence of hundreds of antenna elements and radio-frequency
(RF) chains at the base station (BS) enables high spectral
efficiency via fine-grained beamforming, but poses significant
practical implementation challenges. In particular, conventional
linear equalization algorithms used in the massive MU-MIMO
uplink (users transmit to the BS), such as zero-forcing, typically
require centralized architectures, which cause excessively high
computational complexity and interconnect bandwidth between
the baseband processing unit and the RF chains. In order to
mitigate the complexity and bandwidth bottlenecks, we propose
a VLSI design of a decentralized feed-forward architecture and a
parallel equalization algorithm relying on large-MIMO approxi-
mate message passing (LAMA). We use high-level synthesis (HLS)
to develop the VLSI architecture and provide corresponding
FPGA implementation results. Our results demonstrate that the
proposed decentralized LAMA equalizer achieves competitive
performance and complexity as existing centralized solutions that
have been designed on register-transfer level.

I. INTRODUCTION

Massive multi-user multiple-input multiple-output (MU-

MIMO) is widely believed to be a core technology in fifth-

generation (5G) wireless systems [1]. By equipping the base

station (BS) with hundreds of antenna elements that serve

tens of user equipments (UEs) simultaneously and in the same

frequency band, massive MU-MIMO promises significantly

higher spectral efficiency and link reliability than traditional,

small-scale MIMO systems [2]. In the uplink phase (UEs

communicate to the BS), equalization and data detection at

the BS are necessary to recover the transmitted data streams

from each UE. In order to realize the full spectral-efficiency

benefits of massive MU-MIMO, linear equalizers, such as zero-

forcing (ZF) or minimum mean-square error (MMSE)-based

equalizers, are required [3]. Such linear equalization schemes

typically rely on centralized processing, i.e., all receive signals

and full channel state information (CSI) must be available at a

single baseband processing unit that carries out the necessary

computations. Such centralized solutions, however, require that

The work of KL, CJ, JRC, and CS was supported in part by Xilinx, Inc., the
US National Science Foundation (NSF) under grants CNS-1265332, ECCS-
1232274, ECCS-1408370, CNS-1717218, ECCS-1408006, CCF-1535897,
CAREER CCF-1652065, CNS-1717559, and with hardware and software
support from Texas Advanced Computing Center, Intel Hardware Accelerator
Research Program, and Amazon EC2 cloud instances with Xilinx FPGAs.

raw baseband and CSI data from hundreds of antennas must

be transferred into a single computing fabric, which results

in excessively high data rates that cannot be sustained by

existing interconnect technologies, such as the common public

radio interface (CPRI) [4], and by typical chip input/output

(I/O) bandwidths [5]. In addition, even if there were means

to transport the required data into a single computing fabric,

processing these large amounts of data (e.g., for equalization)

easily exceeds the storage capabilities and processing power of

modern signal-processing fabrics, such as field-programmable

gate arrays (FPGAs). Put simply, centralized massive MU-

MIMO architectures will be unable to support systems with

hundreds of antenna elements and RF chains.

A. Decentralized Baseband Processing

In order to mitigate these bandwidth and processing bottle-

necks, existing massive MU-MIMO prototype designs, such

as the Argos [6], the LuMaMi [7], and the Bigstation [8]

testbeds, either rely on maximum ratio combining (MRC)

which enables fully distributed equalization at the antenna

elements, or on parallel processing across subcarriers in the

frequency domain. However, MRC results in rather low spectral

efficiency and parallel processing in the frequency domain

still requires access to data from all BS antennas, which

limits the scalability in terms of the number of antennas.

In order to avoid theses issues while enabling high spectral

efficiency via ZF or MMSE equalization, recent work in [5],

[9], [10] proposed decentralized baseband processing (DBP).

This approach enables parallel equalization and precoding

on multiple computing fabrics, and scales well to massive

MU-MIMO systems with a large number of antennas.1 The

proposed algorithms, however, rely on repeated consensus-

information exchange [5], which suffers from high chip-to-chip

transfer latency that limits the achievable throughput. To avoid

this issue, reference [13] proposed a feedforward architecture

in combination with the nonlinear large MIMO approximate

message passing (LAMA) equalizer [14], which minimizes the

latency issues of DBP without sacrificing spectral efficiency.

1Distributed processing was also proposed for coordinated multipoint
(CoMP) [11] and cloud radio access networks (C-RANs) [12] for multi-cell
transmission. In contrast to these methods, DBP as in [5], [9], [10], [13] and
this work are targeted for massive MU-MIMO systems in which the baseband
processors are collocated with one antenna array in a single cell.

1532978-1-5386-1823-3/17/$31.00 ©2017 IEEE Asilomar 2017

CHEST

equalization

RF

RF

K antennas

equalization

CHEST

RF

RF

C
centralized

processor

𝑥�1 ,𝜎12

𝑥�𝐶 ,𝜎𝐶2
𝑥� ,𝜎2

K antennas

Fig. 1. Fully-decentralized feed-forward equalization architecture. Channel
estimation (CHEST) and equalization are performed in a decentralized manner
at each of the C clusters. The local equalization estimates are fused at a
centralized processor which calculates a final estimate via weighted addition.

B. Contributions

In this paper, we build upon the fully-decentralized feed-

forward DBP architecture put forward in [13] and develop

a reference FPGA design that enables scalable and high-

throughput DBP in massive MU-MIMO systems. We consider

the architecture illustrated in Fig. 1, in which the BS antenna

array is divided into C clusters, each associated with indepen-

dent RF circuitry and computing hardware. In each cluster, we

perform equalization based on the LAMA equalizer [13], [14]

solely using the signals received from the associated antennas

and local CSI. The C equalization results from each cluster

are then fused at a centralized BS processor which enables an

error-rate performance that is close to that of centralized linear

MMSE equalization. As a proof-of-concept of our approach,

we use high-level synthesis (HLS) to design a configurable and

modular single-FPGA implementation that can be adapted to

perform DBP on multi-FPGA systems in the future. By using

a number of optimization strategies on HLS and hardware

level, our implementation results show that one can achieve

competitive error-rate performance, throughput, and hardware

complexity compared to existing centralized solutions that have

been designed on register-transfer level (RTL) using hardware

description languages (HDL).

II. FULLY-DECENTRALIZED EQUALIZATION VIA LAMA

We now introduce the system model and summarize fully-

decentralized equalization via the LAMA algorithm.

A. System Model

We consider a massive MU-MIMO uplink system that

uses orthogonal frequency-division multiplexing (OFDM). The

system consists of U single-antenna UEs, each of which is

associated to a dimension of the data vectors xw ∈ OU

with subcarrier indices w = 1, . . . ,W ; these data vectors

are transmitted to a B-antenna BS, where O denotes the

transmit constellation alphabet (e.g., QPSK). The input-output

relation of the uplink channel at subcarrier w is modeled by

yw = Hwxw + nw, where yw ∈ C
B corresponds to the

received signal vector at the BS, Hw ∈ C
B×U represents the

uplink channel matrix, and nw ∈ C
B models i.i.d. circularly

symmetric complex Gaussian noise with variance N0 per com-

plex entry. For each subcarrier, the BS performs equalization

followed by data detection to extract estimates x̂w of the

transmitted data vectors xw ∈ C
U using the received signal

vector yw and the channel matrix Hw. In what follows, we

consider perfect synchronization and channel state information

at the BS; we also omit the subcarrier index w.

B. Algorithm Details

As shown in Fig. 1, the estimates of the transmitted data

vector x̂ are computed in a decentralized manner by partitioning

the BS antenna array into C clusters. Each cluster is associated

with K = B/C antennas and RF chains, and each cluster

contains a dedicated baseband processor. Each cluster c =
1, . . . , C only has access to the local receive vector yc ∈
C

K , which contains the received signal from the associated

antenna elements, and access to local CSI2 Hc ∈ C
K×U ,

which represents the channel matrix associated to the antennas

connected to cluster c. We focus on fully-decentralized (FD)

equalization as put forward by [13]: each cluster c performs

equalization using yc and Hc to compute a local estimate x̂c as

well as the associated post-equalization noise-and-interference-

variance σ2
c . A centralized processor is then used to fuse all C

estimates into a final estimate via the weighted sum x̂ =
∑C

c=1
λcx̂c where λc = 1

σ2
c
(ΣC

c′=11/σ
2
c′)

−1, c = 1, . . . , C,

that minimizes the post-equalization noise variance [13].

A straightforward way for performing FD equalization would

be to use conventional linear MMSE equalization in each

cluster c = 1, . . . , C. For example, in each cluster c, one could

compute a local estimate x̂c =
(

HH
c Hc +

N0

Ex
IU

)

−1
HH

c yc,

where Ex denotes the average per-user transmit power, and

IU represents the U × U identity matrix. In order to obtain

a superior local estimate, we resort to the nonlinear LAMA

algorithm proposed in [13]. Specifically, we compute a slightly

modified version of the FD-LAMA algorithm proposed in [13].

Algorithm 1 (FD-LAMA [13]). In the first iteration, we initial-

ize s1c,` = 0 and φ1
c,l = Ex for c = 1, . . . , C, ` = 1, . . . , U . We

furthermore set v1
c = 0 and x̂1

c = yMRC
c +(IU−Gc)s

1
c+v1

c for

c = 1, . . . , C, where yMRC
c = HH

c yc is the local MRC output,

and Gc = HH
c Hc is the local Gram matrix. For each of the

following FD-LAMA iterations t = 2, . . . , Tmax, we compute

stc = F(x̂t−1
c , N0 + βφt−1

c)

φt
c = 〈G(x̂t−1

c , N0 + βφt−1
c)〉

vt
c =

βφt
c

N0+βφt−1

c

(x̂t−1
c − st−1

c)

x̂t
c = yMRC

c + (IU −Gc)s
t
c + vt

c,

where 〈z〉 = 1

U

∑U
`=1

z`. The functions F(x̂c,`, τc) and

G(x̂c,`, τc) operate entry-wise on vectors and are defined by

F(x̂c,`, τc) =
∫

x`
x`f(x`|x̂c,`)dx`

G(x̂c,`, τc) =
∫

x`
|x`|2 f(x`|x̂c,`)dx` − |F(x̂c,`, τc)|2.

Here, f(x`|x̂c,`) is the posterior probability density function

of the transmit symbol x` which is calculated as in [13].

2Each cluster estimates the local channel matrix Hc independently; local
CSI is not made available to the other clusters. See [5] for more details.

1533

-10 -5 0 5 10
10

-3

10
-2

10
-1

10
0

average SNR per receive antenna [dB]

s
y
m

b
o
l
e
rr

o
r

ra
te

 (
S

E
R

)

MMSE

MRC

FD-LAMA Tmax=1

FD-LAMA Tmax=2

FD-LAMA Tmax=3

(a) K = 32, C = 2, B = 64, and U = 8.

-15 -10 -5 0 5
10

-3

10
-2

10
-1

10
0

average SNR per receive antenna [dB]

s
y
m

b
o
l
e
rr

o
r

ra
te

 (
S

E
R

)

MMSE

MRC

FD-LAMA Tmax=1

FD-LAMA Tmax=2

FD-LAMA Tmax=3

(b) K = 32, C = 4, B = 128, and U = 8.

Fig. 2. Symbol error-rate (SER) performance of centralized and decentralized equalization. We compare the SER of FD-LAMA with that of centralized linear
MMSE and fully distributed MRC equalization. FD-LAMA approaches the performance of MMSE equalization for a small number of iterations.

In each algorithm iteration, we update the parameters in the

order of sc, φc, vc, and x̂c, so that we can directly extract

x̂Tmax
c at the end of the last iteration to obtain the final estimate

x̂ = ΣC
c=1λcx̂

Tmax
c at the centralized BS processor.

C. Error-Rate Simulation Results

We simulate the symbol error-rate (SER) performance of

Algorithm 1 in a massive MU-MIMO system for two system

configurations, {K = 32, C = 2, B = 64, U = 8} and {K =
32, C = 4, B = 128, U = 8}, with QPSK modulation and for

i.i.d. Rayleigh fading channels. Figures 2(a) and 2(b) show the

SER performance of centralized linear MMSE equalization,

fully distributed MRC, as well as FD-LAMA. We see that FD-

LAMA significantly outperforms MRC and is able to approach

the SER performance of centralized MMSE equalization, even

for a small number of iterations. This observation is consistent

with the achievable rate results shown in [13], which implies

that FD-LAMA incurs only little performance loss compared to

that of centralized solutions. Furthermore, since the number of

antennas per cluster K = 32 is fixed for Figures 2(a) and 2(b),

we see that by doubling the total number B of BS antennas

(effectively by doubling C), FD-LAMA still performs similarly

to the linear MMSE equalizer—this indicates that FD-LAMA-

based equalization scales well with the number of BS antennas.

III. VLSI DESIGN

We now describe the VLSI architecture of FD-LAMA. As

a proof-of-concept, we implement our algorithm on a single

FPGA to demonstrate its modularity and scalability. Our design

can be distributed to multiple FPGAs in order to enable true

DBP as is required by massive MU-MIMO systems—the

implementation of such a design is part of ongoing work. We

implemented FD-LAMA via high-level synthesis (HLS) using

Xilinx Vivado HLS (v2017.3), which provides high design

reconfigurability, supports numerous compiler directives for

performance optimization, and often requires lower design

effort than traditional RTL-based design using Verilog or

VHDL. The HLS code is written in C++ and synthesized to

FPGA chip

LAMA

DPE 1

LAMA

DPE 2

LAMA

DPE C

CPE

𝑯𝒄 𝒚𝒄

𝒙�

𝑮𝒄 𝒚𝒄𝑴𝑹𝑪
preprocessing

systolic mat. mult.

LAMA iteration

systolic

mat.

mult.

tanh

unit

recip.

unit

𝒙�𝒄 @ T
max

iters

𝒙�𝟏 𝒙�𝟐 𝒙�𝒄

Fig. 3. Overview of the proposed VLSI architecture. In the context of a
decentralized design on a single FPGA fabric, we implement C decentralized
processing elements (DPEs), and each DPE serves as a local baseband processor
for local FD-LAMA equalization at each of C clusters; local equalization
estimates are fused at a centralized processing element (CPE), which emulates
the centralized BS processor in a decentralized architecture shown in Fig 1.

RTL using Vivado HLS. To optimize the hardware efficiency,

we rely on fixed-point arithmetic. We use the ap fixed〈16, 5〉
data type for most values in our design in order to support

16-bit precision fixed-point numbers with 5-bit integer bits.

A. Architecture Overview

Fig. 3 shows the proposed architecture and the data flow.

We implement a total number of C decentralized processing

elements (DPEs) on a single FPGA fabric for local FD-LAMA

equalization to compute local estimates. The results are fused

at a centralized processing element (CPE) to calculate the

final estimate, i.e., a weighted sum of local estimates. Each

local DPE uses the local channel matrix Hc and local receive

vector yc and performs preprocessing to obtain the local

Gram matrix Gc and the local MRC output yMRC
c . The DPE

then calculates the local equalization estimate x̂c according

to Algorithm 1. After Tmax LAMA iterations, all the local

estimates x̂Tmax
c are passed from DPEs to the CPE which

computes x̂. Since all DPEs and the CPE are integrated on

1534

a single FPGA, the transfer of local estimates between the

DPEs and the CPE can be realized with on-chip memory and

buses with very short latency (using only a few clock cycles).

We note that a multi-FPGA design would require substantially

higher transfer latencies, which will reduce the throughput.

B. Architecture Details and Optimizations

We now focus on the key computations carried out within

the DPEs and the CPE.

1) Preprocessing at DPE: To calculate the local Gram ma-

trix Gc and the MRC output yMRC
c at high throughput and low

latency, we implement efficient matrix-matrix multiplications

and matrix-vector multiplications using a systolic architecture.

Concretely, to compute Gc = HH
c Hc, we partition Hc

into the column vectors h1,c,h2,c, . . . ,hU,c by using the

#pragma HLS ARRAY PARTITION directive; the row vectors

of HH
c are given by hH

1,c,h
H
2,c, . . . ,h

H
U,c. We partition the Gram

matrix Gc into isolated entries gu,v,c = Gc(u, v), u, v =
1, 2, . . . , U . By adding the #pragma HLS PIPELINE directive

at the top-level loop for this matrix-matrix multiplication, the

computation of gu,v,c = hH
u,chv,c for all values of u, v can be

pipelined via HLS and is executed in a systolic manner with

U ×U operations performed in parallel. Similarly, to compute

the local MRC vector yMRC
c = HH

c yc, we partition yMRC
c

into single entries yMRC
u,c , u = 1, 2, . . . , U , and exploit loop

pipelining to perform U vector multiplications yMRC
u,c = hH

u,cyc

for all u = 1, . . . , U in parallel.

The above explained array partition directives are necessary

for efficient scheduling and pipelining of memory read and

write operations. Arrays, as required to store the matrix Gc, if

not partitioned, are implemented as BRAMs that have two

data ports, limiting the throughput of intensive read/write

operations. By partitioning such arrays into smaller banks, we

can synthesize them to multiple smaller distributed BRAMs and

flip-flops on the FPGA, which increases the memory bandwidth

and enables multiple parallel read/write operations.

2) LAMA Iterations at the DPE: In each LAMA iteration,

we need to compute hyperbolic tangent functions and divi-

sions. Specifically, for QPSK modulation, the F function in

Algorithm 1 for updating sc is given by

F(x̂c,`, τc) =
(

Ex

2

)1/2
(

tanh
(√

2Ex<
{ x̂c,`

N0+βφc,`

})

+ j tanh
(√

2Ex={ x̂c,`

N0+βφc,`
}
)

)

.

Here, <{·} and ={·} extract the real and imaginary parts of a

complex value, respectively. While the square-root values are

constants for a given constellation set, the F function requires

tanh and division operations. In HLS, we could simply use the

division operator “/” and use tanh(·) from the math library3

for hyperbolic tangent computation in C++. However, such a

naı̈ve approach would be synthesized to complicated logic with

excessively high latency and resource utilization. We therefore

3The tanh(·) function from the math library supports 32-bit and 16-bit
floating-point values, but not fixed-point values. Nevertheless, one could
perform type conversions between fixed-point and floating-point values before
and after calling the tanh(·) function.

TABLE I
RESOURCE UTILIZATION, LATENCY, AND THROUGHPUT FOR VARIOUS

SYSTEM CONFIGURATIONS AT K = 32, U = 8, AND TMAX = 3.

Clusters C 1 2 4

BS antennas B 32 64 128

LUTs (%) 11739 (2.7) 22789 (5.3) 44420 (10.3)

FFs (%) 16429 (1.9) 35080 (4.1) 76270 (8.8)

DSP48s (%) 219 (6.1) 497 (13.8) 1197 (33.3)

BRAM18 2 6 10

Clock freq. [MHz] 429 427 427

Latency [cycles] 310 336 384

Throuhgput [Mb/s] 22.2 20.4 17.8

implement the hyperbolic tangent function and reciprocal unit

using FPGA look-up tables (LUTs).

The hyperbolic tangent unit (“tanh unit” in Fig. 3) takes

a real-valued input p and generates an output q, which is an

approximate value of tanh(p). We first detect the range of p: if

p ≥ 4, then q = 1; if p < −4, then q = −1. If p ∈ [−4, 4), we

use a LUT to get the corresponding approximate tanh(p) value.

Specifically, we create a 2048-entry LUT with a BRAM that

stores the pre-computed tanh results for a certain set of values

{a0, a1, . . . , a2047} which are evaluated at equidistant points

in the range [−4, 4), i.e., ai = (−4)+8i/2048. Given an input

p ∈ [−4, 4), we identify the value am that is closest to p, and

fetch tanh(am) from the LUT to generate an approximate value

of tanh(p). This approach entails only a small approximation

error while avoiding the need for costly tanh functions.

The reciprocal unit (“recip. unit” in Fig. 3) first normalizes

the input value to the range [0.5, 1) by a leading-zeros detector

and a bit shift. Similarly to the tanh LUT, we use a 2048-

entry LUT with a BRAM to store pre-computed reciprocal

values for a certain set of 2048 inputs {b0, b1, . . . , b2047} where

bi = 0.5 + 0.5i/2048. Given a normalized input d ∈ [0.5, 1),
we identify the value bm that is closest to d, fetch the reciprocal

value of bm in the LUT, and denormalize this reciprocal value

by compensating for the initial bit shift to get the final output.

In addition to the above operations, each LAMA itera-

tion requires matrix-vector multiplications and vector addi-

tions/subtractions. The matrix-vector multiplication required

for computing x̂c is realized by a systolic array as discussed

above. The vector addition/subtraction is performed for U
entries in parallel with the #pragma HLS PIPELINE directive

for entry-wise loop pipelining.

3) Result fusion at CPE: The CPE collects C local equal-

ization estimates, i.e., U -entry vectors x̂c, performs weighted

sum of C results for each user entry in parallel with loop

pipelining, and computes the final estimate x̂.

IV. IMPLEMENTATION RESULTS

We now show implementation results for the proposed FD-

LAMA architecture on a single Xilinx Virtex-7 XC7VX690T

FPGA. We benchmark the latency, throughput, and resource

utilization, and compare our design with existing FPGA

implementations for centralized massive MU-MIMO equalizers.

1535

TABLE II
COMPARISON OF CENTRALIZED DATA DETECTORS FOR A B = 128 BS ANTENNA SYSTEM WITH U = 8 UES ON A XILINX VIRTEX-7 XC7VX690T FPGA.

Algorithm CGLS [15] Neumann [16] Gauss-Seidel [17] TASER [18] FD-LAMA

Iterations 3 3 1 3 3

Modulation 64-QAM 64-QAM 64-QAM QPSK QPSK

LUTs (%) 3324 (0.8) 148797 (34) 18976 (4.3) 13779 (3.2) 11673 (2.7)

FFs (%) 3878 (0.4) 161934 (19) 15864 (1.8) 6857 (0.8) 15943 (1.8)

DSP48s (%) 33 (0.9) 1016 (28) 232 (6.3) 163 (5.7) 213 (5.9)

BRAM18 1 16 6 0 2

Clock [MHz] 412 317 309 225 429

Latency [clock cycles] 951 196 – 72 496

Throughput [Mb/s] 20 621 48 50 14

Throughput / LUTs 6017 4173 2530 3629 1186

Normalized at QPSK 2036 1391 783 3629 1186

Table I shows implementation results of FD-LAMA for

various antenna configurations with Tmax = 3 iterations and

QPSK modulation. We fix the number of users U = 8 and

number of antennas per cluster K = 32, and increase the total

number of BS antennas B = CK by increasing the number

of clusters C. For example, when C = {1, 2, 4}, we have a

total number of B = {32, 64, 128} antennas. We see from

Table I that the resource utilization increases roughly linearly

with the number of clusters C, which is also the number

of DPEs in our FPGA design. In contrast, the throughput

degrades only slightly when increasing C, which indicates that

the FD equalization architecture enables one to maintain the

throughput when increasing B simply by increasing the number

of computing fabrics. The use of multiple instances of our FD-

LAMA design on multi-FPGA systems has the potential to

further increase the throughput, which will be affected by the

FPGA-to-FPGA transfer latency and bandwidth.

Table II compares the FD-LAMA design with recently pro-

posed centralized data detectors for massive MU-MIMO [15]–

[18]. All of the referenced designs are implemented using

RTL with HDL, while our FD-LAMA HLS design is directly

synthesized from C++ code; this enables us to easily reconfigure

the parameters C, K, U , and LAMA iterations Tmax as C++

variables. To arrive at a fair comparison, we set C = 1 for

our design resulting in a centralized equalizer. We see that

compared to the existing RTL-based FPGA implementations,

our HLS-based design achieves competitive hardware efficiency

in terms of throughput/LUTs normalized at QPSK modulation,

while enabling higher design flexibility, shorter design cycles,

and improved design scalability with the proposed decentralized

architecture for supporting larger numbers of BS antennas.

While all of our above results are for a centralized version

of our HLS design measured on a single FPGA, a fully-

decentralized implementation on a multi-FPGA system using

high-speed serial interconnect is part of ongoing work.

REFERENCES

[1] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K.
Soong, and J. C. Zhang, “What Will 5G Be?,” IEEE J. Sel. Areas

Commun., vol. 32, no. 6, pp. 1065–1082, June 2014.

[2] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive
MIMO for next generation wireless systems,” IEEE Commun. Mag., vol.
52, no. 2, pp. 186–195, Feb. 2014.

[3] J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO in the UL/DL
of Cellular Networks: How Many Antennas Do We Need?,” IEEE J. Sel.

Areas Commun., vol. 31, no. 2, pp. 160–171, Feb. 2013.
[4] http://www.cpri.info, Common public radio interface.
[5] K. Li, R. Sharan, Y. Chen, T. Goldstein, J. R. Cavallaro, and C. Studer,

“Decentralized Baseband Processing for Massive MU-MIMO Systems,”
To appear in IEEE J. Emerg. Sel. Topics Circ. Sys., 2017.

[6] C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta, R. Yang, and L. Zhong,
“Argos: Practical Many-antenna Base Stations,” in ACM MobiCOM, Aug.
2012, pp. 53–64.

[7] J. Vieira, S. Malkowsky, K. Nieman, Z. Miers, N. Kundargi, L. Liu,
I. Wong, V. wall, O. Edfors, and F. Tufvesson, “A flexible 100-antenna
testbed for Massive MIMO,” in IEEE Globecom, Dec. 2014, pp. 287–293.

[8] Q. Yang, X. Li, H. Yao, J. Fang, K. Tan, W. Hu, J. Zhang, and Y. Zhang,
“BigStation: Enabling Scalable Real-time Signal Processingin Large MU-
MIMO Systems,” in ACM SIGCOMM, Oct. 2013, pp. 399–410.

[9] K. Li, R. Skaran, Y. Chen, J. R. Cavallaro, T. Goldstein, and C. Studer,
“Decentralized beamforming for massive MU-MIMO on a GPU cluster,”
in IEEE GlobalSIP, Dec. 2016, pp. 590–594.

[10] K. Li, Y. Chen, R. Sharan, T. Goldstein, J. R. Cavallaro, and C. Studer,
“Decentralized data detection for massive MU-MIMO on a Xeon Phi
cluster,” in Asilomar Conf. Sig. Sys. Comp., Nov. 2016, pp. 468–472.

[11] R. Irmer, H. Droste, P. Marsch, M. Grieger, G. Fettweis, S. Brueck, H. P.
Mayer, L. Thiele, and V. Jungnickel, “Coordinated multipoint: Concepts,
performance, and field trial results,” IEEE Commun. Mag., vol. 49, no.
2, pp. 102–111, Feb. 2011.

[12] M. Peng, Y. Li, Z. Zhao, and C. Wang, “System architecture and key
technologies for 5G heterogeneous cloud radio access networks,” IEEE

Network, vol. 29, no. 2, pp. 6–14, Mar. 2015.
[13] C. Jeon, K. Li, J. R. Cavallaro, and C. Studer, “On the achievable rates

of decentralized equalization in massive MU-MIMO systems,” in IEEE

Int. Symp. Inf. Theory (ISIT), June 2017, pp. 1102–1106.
[14] C. Jeon, R. Ghods, A. Maleki, and C. Studer, “Optimality of large

MIMO detection via approximate message passing,” in IEEE Int. Symp.

on Inf. Theory (ISIT), June 2015, pp. 1227–1231.
[15] B. Yin, M. Wu, J. R. Cavallaro, and C. Studer, “VLSI design of large-

scale soft-output MIMO detection using conjugate gradients,” in IEEE

ISCAS, May 2015, pp. 1498–1501.
[16] M. Wu, B. Yin, G. Wang, C. Dick, J. R. Cavallaro, and C. Studer,

“Large-Scale MIMO Detection for 3GPP LTE: Algorithms and FPGA
Implementations,” IEEE J. Sel. Topics Sig. Process., vol. 8, no. 5, pp.
916–929, Oct. 2014.

[17] Z. Wu, C. Zhang, Y. Xue, S. Xu, and X. You, “Efficient architecture
for soft-output massive MIMO detection with Gauss-Seidel method,” in
IEEE ISCAS, May 2016, pp. 1886–1889.

[18] O. Castañeda, T. Goldstein, and C. Studer, “FPGA design of approximate
semidefinite relaxation for data detection in large MIMO wireless
systems,” in IEEE ISCAS, May 2016, pp. 2659–2662.

1536

