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Abstract.
The Dry Land Belt (DLB) in Northern Eurasia is the largest contiguous dryland on Earth. During. the last
century, changes here have included land use change (e.g., expansion of croplands'and cities), resource
extraction (e.g., coal, ores, oil and gas), rapid institutional shifts (e.g., collapse of the Soviet Union),
climatic changes, and natural disturbances (e.g., wildfires, floods, and. dust.storms). These factors
intertwine, overlap, and sometimes mitigate, but can sometimes feedback'upon each other to exacerbate
their synergistic and cumulative effects. Thus, it is important to properly document each of these external
and internal factors and to characterize the structural relationships among them in order to develop
better approaches to alleviating negative consequences of these. regional environmental changes. This
paper addresses the climatic changes observed aver the DLB in recent decades and outlines possible links
of these changes (both impacts and feedbacks) with other external and internal factors of contemporary

regional environmental changes and human activities within the DLB.

Social Media Abstract.

Brief overview of recent climatic and environmental changes over the Dry Lands of Northern Eurasia
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1. Introduction
Northern Eurasia Earth Science Partnership Initiative (NEESPI, launched in 2003) and (its successor
Northern Eurasia Future Initiative (NEFI, launched in 2016) have been internationally supported
diversified research programs with overarching Science questions “How do Northern Eurasia’s terrestrial
ecosystem dynamics interact with and alter the biosphere, atmosphere, and hydrosphere of the Earth?”
and “What dynamic and interactive changes will affect societal activities, humanwell-being, and health,
and what might be the mitigation and adaptation strategies that could support sustainable development
and decision-making activities?” respectively. The NEESPI is currently waning through attrition (Soja and
Groisman 2018) and the second Initiative has just released/it programmatic documents and keynote
publication (Groisman et al 2017). Research domains of NEESPI'and NEFI coincide and are shown in Figure
la. The southern tier of this domain falls within by the Dry Land Belt (DLB) of Northern Eurasia that
occupies the interior of the Earth’s largest continent and spans the territory of 16 countries: Armenia,
Azerbaijan, China Dry Land Region, Georgia, Hungary, Kazakhstan, Kyrgyzstan, Moldova, Mongolia,
Romania, Russia Dry Land Region, Slovakia, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan. To
delineate the DLB in Figure 1, we used boundaries of deserts, semi-deserts, steppes, and forest-steppes

within the NEESPI/NEFI research domain.north of 37°N and south of 52°N (Figure 1a).

The DLB occupies the interior of the/Earth’s largest continent and spans the territory of 16 countries.
Mountain ridges and high plateaus of the central regions of Asia mostly cut off the DLB from water vapor
transported from the tropics (Figure 1). Some parts of the DLB have fertile land and are quite densely
populated. Howeyer, there exist strong physical limitations on the production of crops and rangelands.
The region‘has a very limited fresh water supply, which is highly dependent upon irregular extra-tropical
cyclones andashrinking regional cryosphere (Shver 1976, Bliss et al 2014). Increases in evapotranspiration
(ET)arising from increases in warm season temperatures and expansions of the growing season in the DLB

are.generally not compensated by precipitation increases (IPCC AR5 WG1 2013). Furthermore, spatio-
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temporal shifts in precipitation pattern increase the likelihood that various unusual or extreme events
(e.g., heatwaves, dzuds, and dust storms) will negatively affect the livelihoods of regional societies and
their interactions with the global economy (e.g., Henebry et al 2013, Chen et al 2015, Yu et a/ 2018). The
DLB region is a source of dust storms that can adversely impact the environment, climate, and human
well-being over the region and beyond including densely populated areas f East Asia (Goudie and

Middleton 1992, Darmenova et al 2009).

Over the past three decades, the DLB went through several major socioeconomic changes that drove
regional changes in agricultural and pastoral lands. The regional population has increased at a moderate
rate similar to the global population trend, and there have beenprofound institutional shifts in the
agricultural sector over the past three decades. Increased global démand for meat and dairy products
have produced higher pressure on agro-pastoral lands where fragile developing economies are subject to
frequent institutional shifts, water scarcity, and changing.climatic conditions that interact to alter DLB
ecosystem services and the societies that rely onthem (Groisman et al 2017, Qi et al 2017; see also Suppl.

1).

{insert Figure 1 here}

Within the transforming socioeconomic context of the DLB, our objectives here are threefold:

(1) To document the current tendencies of ongoing climatic changes in the DLB;

(2) To partition, wherg possible, the natural and regional anthropogenic signals of these changes; and

(3) To provide projections,.where possible, of the future changes within the region arising from both

natural and anthropogenic factors.

2. Current and Anticipated Climatic Changes

2.1 Regional surface air temperature changes
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Surface air temperature across the DLB region had been stable from the beginning of the 20™ century
until mid-1960s, but has increased rapidly in the past five decades (Figure 1b). These changes are mostly
illustrated by changes during the winter and spring seasons with mean rates of change.of 1.8°C(200yr)*
and 1.6°C (100yr)?, respectively. In winter, the temperature variability is higher with the 1.8°C (100yr)*
linear trend explaining 23% of the variation; whereas, a slightly smaller warming trend explains 37% of
the variation in spring temperatures. For autumn and summer seasons, the warming signals have been
much smaller with 0.7°C (100yr)*in autumn and 0.4°C (100yr)* in summer, with the changes concentrated
solely in the past three decades. This warming shifts the temperature seasonal cycle, particularly the
earlier dates of snowmelt (ACIA 2005, Bulygina et al 2013, Tomaszewska and Henebry 2018), earlier spring
onset in the biosphere, and freshet in river discharge. In summer,the warming causes the glacial retreat
in Central Asia, Caucasus, and Southern Siberia{Khromova et al 2014) and exacerbates water deficit for
the DLB landscapes. In the past three decades, warmingin the DLB has spread from Hungary in the west
(Matyas et al 2018) to Northeast China.in the East (Zhao et al 2013) exaggerating dry weather conditions.
These and many other negative consequences ofthe DLB warming could be avoided, were precipitation
to increase. Indeed, oceanic warming must result in more evaporation, and the additional atmospheric
water vapor could mitigate the_water.deficits in lands of the continental interior through increased
precipitation. However, this ‘water vapor must first be transported to the interior by atmospheric

circulation.

2.2 Changesin atmospheric circulation
The DLB receives an abundance’of heat through insolation, although the drylands do not have sufficient
holding capacity to retain heat in soil, biosphere, or hydrological objects. Consequently, day/night
temperature differences are very high in comparison to maritime climates. Soil moisture that could
mitigate strong diurnal temperature swings is limited in drylands and is often concentrated below the

rooting zone. Dryland areas also have limited heat capacity and finite water storage in glaciers, interior
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lakes, and permafrost accumulated during the past pluvial epochs and/or during cold seasons. The
remaining water that the region receives comes from atmospheric precipitation, ground water, andinland
lakes. However, precipitation is not necessarily transferred inland via the atmosphere. The role of
atmospheric circulation is critical here. There appear two competing major components of the global
warming process that are, among others, responsible for water vapor transport into the interior drylands

of Northern Eurasia.

Disproportional warming at high latitudes and in the Arctic (ACIA. 2005, Blunden and Arndt 2017)
decreases the equator-to-pole temperature differential with /the latitudinal temperature gradient
instrumental for the westerlies circulation in the extratropics. In particular, in the Northern Hemisphere
westerlies move the water vapor from the North Atlantic.Ocean into the Eurasian interior. The weaker
the westerlies, the less water vapor penetrates into the northern part of the continent exposed to the
Atlantic and Arctic air transfer (i.e., most of Northern Eurasia). Another feature associated with weaker
westerlies is the meandering of their flow and more frequent formation of atmospheric blocking (Lupo et
al 2014, Mokhov et al 2013). These changes in atmospheric circulation lead, in the cold season, to a larger
variability when unusually cold and warm.weather conditions occur over the entire Northern Eurasia
(Schubert et al 2014). In the warm season, it results in prolonged periods of days with and/or without

precipitation (Zolina et a/ 2013,/ Groisman and Soja 2009, Lupo et al 2014).

In summer, the land warms more'strongly than the ocean, which is projected to strengthen the monsoon
circulation with global.warming (IPCC 2013). The southern edge of the DLB is mostly blocked from the
warm Indian Oceah, but its eastern edge is exposed to the Pacific Ocean and warm humid air from the
Pacific penetrates northwestward. Thus, with the stronger monsoons, a more humid climate would occur
on the-eastern edge of the DLB and will be expected to continue in the future with continued global
warming {Collins et al 2013). However, the observations in Northeast China (Guo et al 2013) and analysis

for the eastern edge of the DLB do not support these expectations (Figure 2).
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{insert Figure 2 here}

{insert Table 1 here}

Figure 2 and Table 1 show major statistics of cyclone characteristics for the four regions of the Asianpart
of the DLB. In Figure 2, these regions are identified with four figure inserts that visualize the time series
of annual count of individual cyclones that crossed the regions. Tilinina et al (2013) showed that the total
cyclone count is dependent of the spatial resolution of the post-USSR period tracks. Here we use the ERA-
Interim reanalysis (Dee et al 2011) that has spatial resolution of 1.5° % 1.5°."Climatology of the cyclone
counts shown in Table 1 depends on this resolution. The Asian DLB includes many mountain and plateau
systems. Reanalyses have shown that these areas are very /sensitive to the observational network used
for their generation. In particular, when these networks have been changing, there can be spurious
inhomogeneity in the data (Arsenault and Brissette 2014). Therefore, we used only the post-Soviet Union
period (prior to this period the networks were much denser in the Central Asia and in the eastern half of

the DLB, but these data were less available toithe developers of the reanalysis products).

The one central and two western regions of the Asian DLB in Figure 2 receive most of their atmospheric
water vapor from the west (Kuznetsova 1983, Shver 1976), but the easternmost DLB region—
northeastern China and western ,Mongolia—resides in a monsoon climate benefiting from major water
transport from the Pacific Ocean. Over the past three decades, we do not see systematic changes in
cyclone counts in this region (Figure 2). In contrast, the numbers of cyclones in Central Asia, Northwest
China, and Mongolia increase. We cautiously conclude that these increases indicate improvement in the

water budgets of these drylands.

Water vapor transport into these regions during recent decades can provide an estimate of integral
precipitation changes related to atmospheric circulation. Table 2 reports the results of processing of the

ERA-Interim Reanalysis data for the post-USSR period. It demonstrates that most of water vapor
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integrated over the atmospheric column comes from the west, while the southward water vapor transfer
is substantially less. Moreover, a dramatic reduction of the eastward water vapor transport into the
Central Asia (~15% during the last three decades) is not only the result of weakening of the westerlies but
may be related to the simultaneous retreat of the Aral Sea (the 60°E longitude crosses its remnants). The
extent of the Aral Sea had been shrinking since 1960s with the largest decrease in the past two decades
(zavialov 2007, Gaybullaev et al 2012). In addition, large-scale climate oscillations'can affect precipitation
patterns in Central Asia (de Beurs et al 2018). Whatever was the cause of the water vapor transport

decline, it contributed to drier weather conditions in the Central Asia (see Section 2.5).

{insert Table 2 here}

2.3 Changes in atmospheric precipitation
Atmospheric precipitation, its amount (totals), form (frozen, mixed or liquid), intensity (for rainfall),
intraseasonal distribution, and their systematic changes (trends) remain the most variable characteristics
of the DLB climate. Past studies documented earlier onset of spring across the entire Northern
Hemisphere (Schwartz et al 2006), increases in daily rainfall intensity during the heavy rain events that
may coincide with prolonged no-rain periods (Groisman et al 2013, Zolina et al 2010, Zolina et al 2013),
and uncertainties in quantifying the changes in precipitation. The uncertainty emerges in this part of the
globe both from the relatively sparse observational networks and from time-dependent systematic biases
in precipitation records (Groisman and Legates 1995). Groisman et al (2014) quantified these biases for
Russia, while Ding et al (2007) did the same for China. They showed how each improvement in rain gauge
instrumentation,/wind shielding of gauges, and observing routines resulted in increases of “observed”
precipitation while the actual “ground-true” precipitation was quite different and had different decadal
trends. As a result, the latest Second National Climate Change Assessment for the Russian Federation
containsitwo estimates of the past precipitation changes over the nation rather than just one (Second

National Climate Change Assessment 2014). The first set of estimates is based on high quality
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observations from the national meteorological network and the second set of estimates is basedion the
same observations but corrected for the time-dependent biases that provide the real ground-true
precipitation values. The first set of estimates reports nationwide increase of annual precipitation;
whereas, the second set reports moderate multi-directional changes. For the Russian part of the DLB
(steppes in the south of West Siberia and the Trans-Baikal Region), the Assessment reports a long-term
decrease in precipitation. Using bias-corrected precipitation time series; Akhmadiyeva and Groisman
(2008) reported only a 4% increase in annual precipitation over Kazakhstan during the 1990-2006 period
compared to previous three decades (1960-1989). Furthermorej significant discrepancies between a
global precipitation reanalysis and a fuller representation of ‘regional precipitation stations was

documented for Kazakhstan (Wright et al 2009).

Difficulties with reporting of precipitation trends in other parts of the former USSR as well as in Mongolia
are the same and, therefore, alternative approaches based.on remote sensing land surface products were
used (cf, Lioubimtseva and Henebry 2009, de Beurs et.al 2015). In Kazakhstan in the 1990s, precipitation
deficit growth was reported using normalized difference vegetation index (NDVI) analyses. Farther
southward, Wang and Zhou (2005) and Ding and Chan (2005) reported an increase in precipitation in the
northwest of Xinjiang Province.of.China:"Ding et al/ (2007) show an importance of bias-corrections for
precipitation reports in.China‘and addressed the possible time-dependence of biases in these reports.
The biases can be caused by changes in observations, but they can be also introduced by changes in other

|II

“natural” factors that affect precipitation measurements. In particular, systematic continent-wide
reduction in the near-surface wind speeds (cf., Bulygina et al 2013, Ding et al 2007) may “increase” the
observed cold season precipitation while the ground-true precipitation is unchanged or even decreased.

Figure 3a showsrthat during the most of the year (autumn, winter and spring), there were no significant

changes in the total precipitation over the DLB (a region-wide increase by 16 mm per 8 months).

{insert'Figure 3 here}
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Liquid precipitation observations are less prone to biases than those for frozen precipitation;. thus,

changes in liquid precipitation can be presented in absolute numbers (in mm instead of percent). In Figure

3b, we show the latest changes in summer rainfall totals over the DLB during the past 13 years compared

to the previous 25 years estimated from the MERRA2 reanalysis output. These changes are mainly

negative illustrating the Northern Eurasian heat waves and droughts described by Schubert et al (2014).

These waves over the western part of the DLB (Hungary, the Ukraine, European‘Russia), manifested

themselves by several severe droughts (including extreme drought of 2010). Over the eastern part of the

DLB (the Baikal Lake Basin, Trans-Baikal area, and northeastern/China, the waves are responsible for

increasing water deficit and severe forest fires centered in the/Trans-Baikal area (Loboda and Chen 2017).

2.4. Changes in the cryosphere

All components of the cryosphere in the DLB have been'changing in recent decades, with most of these

changes showing stable decreases (AMAP 2011, AMAP 2017):

e Duration of seasonal spring snow coverhas beensteadily decreasing making the earlier onset of spring
(e.g., the start of vegetation growth and springfreshet on rivers) earlier by several days (Bulygina et
al 2011, Second National Climate Change Assessment 2014);

e Period with stable snow cover over-Europe has become shorter and/or disappears causing river ice
break-up, and increases inwinterrunoff (cf., section 2.5);

e Permafrost at the edge of the permafrost zone, especially, in the areas of discontinuous permafrost,
has begun to thaw (Romanovsky et al 2017);

e The depth/of seasonal frozen ground thawing has increased from the Arctic to mountains of the
Central“Asia affecting infrastructure, such as roads and buildings; (Shiklomanov et a/ 2017); and

e The areaiand volume of land ice (i.e., glaciers) has been decreasing across the entire Northern Eurasia
including the montane areas of the DLB (Shahgedanova et al 2010, Shahgedanova et al 2014,

Syromyatina et al 2015, Khromova et al 2014, Kotlyakov et al 2015).
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{insert Figure 4}

Ice storage on and below the ground is an important source of the water supply for the DLB. For centuries
(or millennia) water was transported to the remote mountains of the Eurasian’continent and, instead of
entering the global water cycle via runoff, was fixed and stored there in frozen form: This storage served
as a cushion for the water balance of the DLB regions located at the foothills of high mountains. Currently,

this storage is being gradually depleted.

Ongoing global warming is more prominent at higher elevations than in lowlands (Barry 2008). The
temperature increases, particularly during the warm_season, escalate glacial melt and thawing of
subsurface ice. Although the abundant summer streamflow promises a strong future water supply in the
drylands, the storage of water in glaciers is limited. As illustrated in Figure 4, three rivers in neighboring
valleys have distinctively different tendencies of their.discharge depending upon the glaciation level at
their higher elevations. Snow-free.high dry plains and disappearing lakes in northwest China (e.g., in

Qinghai Province) and west Kazakhstan are good examples.

2.5. Changes in water'supply.and availability

Runoff data for the Russian Federation as well as for most of the Central Asian countries show an increase
in river discharge. However;, it is not clear how persistent these increases will be into the future once

several factors that are currently favorable for these increases change (Suppl. 2).

We have a_complete set of socio-economic and meteorological data for the Central Asia nations, and our
analysis of.climate change impacts on different aspects of water availability here was made using
combination of economic census data with hydrological modeling (Suppl. 3). The dynamics of water use

for domestic, industrial and livestock needs have been simulated using the University of New Hampshire
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Water Balance Model (WBM, Suppl. 3) using country-based statistical socio-economic information.along
with spatially distributed population density. Water Scarcity Index (WSI; Damkjaer and Taylor 2017) and
Water Availability Indexes (WAI; Schyns et al 2015) for the Central Asian countries were estimated with
WBM simulations using only locally generated water resources (Figure 5, left panels) and total available

water resources (including inflow) (Figure 5, right panels).

{insert Figure 5}

The WSI is the ratio of annual freshwater abstractions (i.e., system losses due to water consumption,
evapotranspiration, and deep drainage) to the annual water availability. This information was aggregated
over administrative units and adjusted using census data. Waterstress is classified from high water stress
(red in Figure 5) to water abundance (blue in Figure 5). The WSI-nheglects temporal and spatial variations
as well as water quality data. There was a general and substantial decline in available water between
1990s and 2014 (Figure 5). The water/security_situation across the region is more stressful despite
significant political and socio-economic transformations during the 1990s, which led to decreased water
use and increases in river runoff in some montane areas, as mentioned above. The current trend toward
increasing water stress results primarily from changing climatic conditions coupled with fast population

growth (https://www.populationpyramid.net/central-asia/2017/).

2.6. Land use and land cover change and some of their consequences

One of the biggest episodes of land cover change over the steppes of the DLB was the so called “Virgin
Lands” development during 1954-1964, when the area of arable land in Kazakhstan was expanded from
7-8 to 21-23 million hectares. These changes were also spread across the steppe zone of western Siberia
and southern Russia but were centered over northern Kazakhstan (Jackson 1962). This massive
conversion of grassland to cropland resulted in statistically significant increases of monthly surface air

temperatures by 0.3° to 0.5°C during spring, summer and autumn seasons and significant changes in ET
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(Yesserkepova 1988). Even within the interdecadal variability of the near surface temperature and
humidity in this part of the world, the impacts of large-scale virgin land development are evident in Figure

6.

{insert Figure 6 here}

The latest land cover types and their changes within the Asian part of DLB were examined using the MODIS

land cover product (MCD12Q1V6; https://earthdata.nasa.gov/) through re-grouping IGBP classification

cover types between 2001 and 2016. This product provides global/land. cover types at yearly intervals
(2001-to date) at 500 m spatial resolution and is a combined product derived from Terra and Aqua
reflectance data. Version 6 MCD12Q1V6 data product was derived from different classification
schemes, of which we used the International Geosphere-Biosphere Programme (IGBP) classification
scheme validated to Stage 2 maturity level (Friedl and Sulla-Menashe 2015). Because land cover changes
within a short time period (i.e., <3 years) are likely:minimal and difficult to detect with MODIS imagery,
we compared the difference between 2001 and 2014, 2002 and 2015, and 2003 and 2016 to ensure that
the three differences are consistent:and, hence, representative of the actual land cover changes during

the 15-year study period.

We used the tabulate area function in ArcGIS to categorize area by cover type and their relative
proportions by the 10 administrative units in the Asian part of the DLB (8,779,162 km?). We created a
triad of image difference datasets, namely 2001-2014, 2002-2015, and 2003-2016 to compare change
across six years, thereby making the findings robust (three years in early period of observations and three
in the last three/years). We then labeled and visualized the pixels with consistent change (red), some
change (blue, when one of the three triads shows a different change) and no change (light grey) with
5.58%, 0.18% and 94.24 % of the area respectively. The pixels with “some change” are labeled with blue

dots. They are nearly invisible in Figure 7b. The small number of such dots indicates that the post
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classification land cover changes due to uncertainties in the land cover labels for any one year and:do not

seriously impact our conclusions about the regional land cover change.

The DLB is dominated by arid barrens and temperate grasslands that accounted for 56:85% and 31.36%
of the total land area (total = 88.21%), respectively, during 2001-2016 (Figure 7a).»The arid barrens are
the largest on the Earth’s surface and stretch from the Gobi Desert in the southwest Mongolia to the
Western portion of Central Asia (Chen et al 2014, Mildrexler et al 2006). The:grasslands included those on
the Mongolia Plateau, which are experiencing higher warming trends than the global average due to a
combination of high latitude, high elevation, and a continental climate (Tian et al 2018, John et al 2018).
The croplands (4.80%), shrublands (1.48%) and forests (1.14%) are the next three major cover types in the
region. However, the distributions of these cover types variedssubstantially by country. East Asian
countries have a similar proportion of grasslands (45.86%) than/those in Central Asia (45.50%). Kazakhstan
has the highest grassland cover (85.2%) among all admihnistrative units (Figure 7a). Overall croplands in
East and Central Asian countries occupy 4.13% and 7.60%, respectively. Forests were found in northeast

Inner Mongolia, and on northern aspects slopes in the Tian Shan Mountains of Central Asia.

{insert Figure 7 here}

Land use was also very extensive and intensive across the DLB, with 5.58% of the land experiencing
consistent cover change from 2001 to 2016 (Figure 7b). Overall, it appeared that countries in Central Asia
experienced more cover changes than those in East Asia. Several visual hotspots included land cover
changes that are_apparent” around the Caspian Sea in Turkmenistan, Uzbekistan and southwest
Kazakhstan (1) ‘and around the edges of the East Asian drylands of Western Xinjiang-Inner Mongolia-
Mongolia (Il and V). Other major hotspots of land cover change were found in the Yellow River Delta or
Hetao region (IV), forested regions of northeast Inner Mongolia (VII), Northern Mongolia (VI) and
Northwestern Kazakhstan (llI). These hotspots have been widely reported as the results of major policy

shifts by the individual countries and, to a lesser degree, due to the changing temperature and ET (i.e.,
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water loss) (Jung et al 2011, Liu et al 2013, ; Chen et al 2014, Groisman et al 2017, Qi et al 2017, John et
al 2018). For example, the large increases in forest cover in the Yellow River Delta and northeast.Inner
Mongolia are likely due to afforestation/reforestation program of China’s Green for Grain Program(Liu et
al 2014), whereas hotspots in Western Xinjiang are due to the rapid expansion.of agricultural lands.
Meanwhile, hotspots in Central Asia may have been the direct results of elevated ET loss, salinization of
soils, or new agricultural enterprises.
3. Projections to the nearest decades of environmental changes
3.1. Land cover transitions and potential climate-driven land cover.transitions over northern Asia in

the 21° century

Biosphere modeling employed for this projection.is described in Suppl. 3. Here we present and
discuss the biosphere modeling output. In thebaseline climate, drylands were projected to cover about
50% of the Siberian window that was allocated equally between steppe and semi-desert/desert.
Simulations indicated that Siberian vegéetation would be altered by the 2080s over the study area. Almost
no change in the forest distribution was projected in the 20 GCM ensemble under both RCP 2.6 and RCP
8.5 scenarios, while drylands extent changed minimally. A 6% increase in drylands was projected under
RCP 8.5 scenario for the 20 GCM.ensemble (Table 3, Figure 8c). According to the ensemble of the five
driest GCMs under RCR. 8.5, drylands would cover 63% of the study area with 10% predominance of
steppe. The semi-desert/desert.area would increase only slightly compared to its current extent. Forest
coverage would remain similar to the current conditions (i.e., + 1.5-2%), because the forest would shift
into the current tundra distribution and tundra would nearly vanish. Only in a dry climate its coverage

would decrease by about 12.5%.
Ecological consequences for forestry and agriculture in the rapidly changing environment of southern
Siberia. will require adaptive management to adjust agricultural and mixed agro-forestry practices to the

newly-emerging forest-steppe and steppe habitats of the late 21°* century.
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Increased tree mortality in a drier climate along the southern Taiga border would lead to accumulation of
woody debris, which in turn, paired with increased “fire” weather, could result in destructive fires and
shift forests northward to wetter habitats. Grasslands that follow in the wake of the:forest are‘better
adapted to frequent fire events because of a shorter life cycle, a stronger adaptability to less precipitation
and droughts, and capabilities to recover due to allocation of perennating/plant parts belowground
(Tchebakova et al 2009). Generally, the projected warmer and drier climates will-promote dry lands to
extend over southern Siberia (Tchebakova et al 2010, Tchebakova et al 2011a) and the steppe area would
increase by 50%. South of 60°N, tundra is observed only in highlands on ' mountains and in the RCP8.5

scenario it vanishes completely.

{insert Table 3 here}

To minimize the negative consequences and to enhance'the benefit from climate change in Siberian
forests and drylands, adaptive measures need to be implemented, including forest restoration on failed
forest lands and planting different crops suitable for the new climates. Due to recent and predicted
climatic changes, concerns about. food security increase. However, in the cold climates
of Siberia, agriculture would benefit from climatic warming, only when and where appropriate

infrastructure development and population growth permit.

3.2. Current livestock distribution, C consumption by grazing and their projections

Spatial distribution of livestock density on temperate Eurasian steppe in 2006 was estimated based on
province/prefecture level of.inventory data of livestock. The carbon ingested by livestock (Cgraze) Was
calculated using thespasture system simulator in boreal ecosystem productivity simulator (BEPS; Chen et
al 2017). These distribution and Cyze are tightly controlled by sub-regional socioeconomic conditions
(Chen et al 2014). Spatial heterogeneity exists across and within different administrative divisions (Figure

9). In the Mongol Steppe, major consumption by livestock was concentrated in China, particularly in Inner
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Mongolia. The most extensively grazed grasslands were located in traditional natural pastures with
relatively high productivity, such as the XilinGol Prairie in mid-Inner Mongolia, and in some areas of desert
steppe in Southwestern Inner Mongolia. Livestock density and Cyroze in those areas exceeded 800°sheep
unit per km? and 30 gC m2 yr, respectively. In contrast, the livestock density and Gz in Mongolia were
much lower (John et al 2016). This contrast can be seen in the bordering areas of Eastern Mongolia
(Dornod province), where livestock density is lower than 40 sheep unit per. km?and Northeastern Inner

Mongolia (Hulunbuir City), where density is higher than 200 sheep unit per km?.

In the Kazakh Steppe, Cgraze Was highly concentrated in the south, especially in the desert countries of
Turkmenistan and Uzbekistan. These two countries contain huge numbers of livestock within limited
pasture ecosystems. Livestock density and Cyqz are generally higherthan 500 sheep unit per km? and 12
gC m2 yr for the two countries (Figure 9), while livestock density is generally lower than 40 sheep unit per

km? over the steppe of Kazakhstan.

Concern over increasing demands for animal. products-and preservation of grassland resources led to the
launch of regional conservation programs in Inner Mongolia since late 1990s, including the Grain to Green
Program (GTGP; Liu et al 2008) and/the Grazing Withdrawal Program (GWP; Chen et al 2017). As a result,
improvements to livestock habitat'and ecosystem service functions have been observed in recent years (Li
et al. 2012, Mu et al 2013)sIn contrast, the excessive stocking rates in the southern Kazakh Steppe have
not received enough attention from the scientific community or from governments (Blench and Sommer
1999, Mirzabaev et al.2016). Field investigations, large-scale assessments, and specific rehabilitation

programs are urgently needed in this area.

Figure 9.

Prior to 1990, the Central Asian economies were not economically independent. Most agricultural and

livestock production was focused on meeting demands dictated by the central planners of the USSR (e.g.,
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production cotton and meat). As a result, the reduction of livestock numbers during the 1990s was:mainly
induced by the institutional changes, loss of access to markets, and agricultural reforms following
dissolution of the USSR (de Beurs and Henebry 2004, Ojiima and Chulun 2008, Wright et.a/ 2012, de'Beurs
et al 2015, John et al 2016). Clearly, the situation in 1980s for 1990s cannot be considered as baseline for

future projections because of very different governance and socio-economic systems.

Future projections show that, with rapid population growth and dietary.transitions associated with
economic development, the demand for animal products will continue to increase. For example, global
meat demand is projected to double by 2050 (Flammini et al 2017).. This new demand level will lead to

continuously increasing production of meat and milk from East and €entral Asia (Bruinsma 2003).

This situation would require future expansion of the scale of pasture systems and/or enhanced feed
efficiency, such as through concentrated animal feeding operations (CAFOs). In order to meet the
increasing demand, pasture land would need to be expanded by ~8%, and feed efficiency to be enhanced
by ~30%, compared to the 1990s level in East and Central Asia (Wirsenius et al 2010). However, both
arable land and water resources limit further feed production expansion in many areas of the DLB (Qi et

al 2012, Qi et al 2017).

Meanwhile, large-scale unregulated grazing patterns have caused large reductions in biodiversity and
productivity, and led to degradation-and desertification, even in historically productive and stable pasture
systems (Chen et al 2014;John et al 2009, John et al 2018, Miao et al 2009, Yusupov 2003). Therefore,
addressing the question.of how to enhance feed efficiency in a sustainable way is urgently needed to meet

the challenges from both human activities and climatic changes to the pasture systems of the DLB.

4. Summary

Section 2 as,well as previous findings (e.g., those provided in the overview by Groisman et al 2017) report
indisputable increases in surface air temperature, retreating cryosphere, and uncertainties in precipitation

changes that have led to a generalized depletion of available water resources over most of the DLB.
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In the northern part of the DLB, which is presently occupied by forest, the large warming projected by
general circulation models for the end of the century is expected to impact vegetation significantly and
shift biomes northwards (Figure 8, Table 3). In particular, ecological-bioclimatic modeling of-climate
warming consequences for terrestrial ecosystems demonstrates a structural change of northern’Asia
vegetation: biomes shifts northwards, coniferous forests decrease, light‘needled coniferous and
broadleaved softwood forests and forest steppe dominant, and steppes.expands’in the south. From
modeling results, the risk zone of forest loss in Siberia would expand in favor of the steppe vegetation with

some limited desertification.

In the southern DLB, presently occupied by steppe and semi-deserts,, the human activity has already
interacted with climatic variation and extremes to impact.both environment and livelihood dependent on

livestock (Figures 7 - 9; see also Qi et al 2012, Qi et al 2017).

To minimize negative consequences and benefit from climate change in Siberian forest and drylands, the
following adaptive measures could be pursued: forest restoration on failed forest lands by assisting seed
transfer of appropriate species andphenotypes to their climatic optima in the new climates or using those
lands for agriculture by planting crops suitable for the new climates (Tchebakova et al 2010, 2011b).
Current and projected environmental changes (higher temperature, more droughts, more fires), raise
concerns about future food security:"However, in the cold climate of the northern DLB agriculture may
benefit from climatic warming only after the necessary infrastructure could be developed and a larger

rural population couldbe encouraged to move northward to this frontier.

It is expected that increasing global and regional populations and a growing demand for land use and
water resources will remain the major challenges for sustainable development in the DLB of Northern
Eurasia.» Therefore, in this part of the world, the role of conscientious human activity in land use, water
management, construction, and consumption habits become a major factor responsible for environmental

health-and human well-being.
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Figure Captions

Figure 1. a. The NEESPI research domain map with the Dry Land Belt (DLB) of Northern Eurasia outlined
(the dashed contour on the map from Groisman et al 2017). b. Mean annual surface air temperature
anomalies (°C) for 1881-2017 area-averaged over the DLB with the polynomial trend shown in the
graph describing 60% of the time series variation. Data source is an archive of the monthly surface air
temperature by Lugina et al (2006 updated). Anomalies were calculated from the mean values for the
1951-1975 period.

Figure 2. Annual number of atmospheric cyclones area-averaged of the four regions in the Asian part of
the DLB. Definition of individual cyclones and the follow up counting were made by Tilinina et a/ (2013
updated) within the IMILAST project (Neu et al 2013) activity and applied to the ERA-Interim Reanalysis
data for the post-USSR period.

Figure 3. Deviations of mean seasonal/precipitation totals (mm) across the Dry Land Belt during 2005-
2017 from a baseline average over the 1980-2004 period. a. October through May. b. June, July,
August, and September. Estimates are based on the Modern-Era Retrospective Analysis for Research
and Applications, version 2 (MERRA=2 reanalysis; Gelaro et al 2017) that has a cubed-sphere horizontal
discretization at an approximate resolution of 0.5° x 0.625° and allows relatively uniform grid spacing
at all latitudes.

Figure 4. River discharge tendencies within three neighboring valleys in the Tian Shan Mountains (Zailijskiy
Alatau; archive of Groisman et al 2017).

Figure 5. Evaluation of the Water Scarcity Index (WSI) for Central Asia based on combination of socio-
economic. data for administrative units with hydrological simulations on hydrological model taking into

account avarious natural and anthropogenic processes. Maps on left show water scarcity index (WSI)
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based only on available local water resources. The right maps account for both local water resources

and river inflow from other territories.
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Figure 6. Differences of averaged near surface temperature (a) and near surface specific air_ humidity
10 fields (b) between the years 1961-1970 and 1951-1960. These maps were constructed using the Global
12 Meteorological Forcing Dataset prepared at the Princeton University (MFD;Sheffield et al 2006). MFD
is available globally for the 1948-2016 period at 0.25 degree of spatial and 3-hourly temporal
17 resolutions. It was constructed by combining a suite of global observation-based datasets with the
19 NCEP/NCAR reanalysis.

21 Figure 7. a. Land cover in 2014 and b. land cover change from 2001 to 2016 in the DLB. The cover types
are re-grouped from the IGBP classification scheme_based on-the land cover product of MODIS
26 (MCD12Q1VS6). b. Land cover change represents type shift from 2001 to 2016. The areas encircled by
28 the blue lines are hotspots for the cover change across the DLB, which are mostly associated with
30 agricultural development, shrubland‘encroachment, desertification, and afforestation.

Figure 8. The biome and dryland (steppe, semi-desert/desert) distributions over Siberia and adjacent DLB
35 regions predicted a. for the baseline climate of 1960-1990, b. for the future climate in the 2080s by an
37 ensemble of 20 GCMs under RCP 2.6;.c..by an ensemble of 20 GCMs under RCP 8.5, and d. the ensemble
39 of the five driest GCMs under RCP 8.5. Tundra (1, cyan that is practically absent in these figures); forest
(2) is green; steppe (3) is gray; and semi-desert/desert (4) is brown.

44 Figure 9. Spatial distributions of a. livestock density and b. carbon ingested by grazing (Cgyraze) in the

46 temperate Eurasian steppe.
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Table 1. Long-term mean number of cyclones by season with atmospheric pressure at its center less than

1,000 hPa in four regions during 1979-2016 (see Figure 2). JFM: January-February-March; AMJ: April-

May-June; JAS: July-August-September, and OND: October-November-December

Region JFM AMJ JAS OND Annual
Kazakhstan 3 17 18 2 40
Kyrgyzstan 1 6 7 0 14
Central Mongolia 4 38 37 4 83
Northeastern China 8 35 29 8 80
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i Table 2. Southward and eastward water vapor transport into Central Asia across the 50°NM
2 Northern Asia from 60°E to 110° E and across the 50°E from 40°N to 50°N during the pos eriod
7
8 (1990-2017).
9
10
11
12 Period/Water  Southward annual flux Eastward
13
1;’ Vapor Flux through 50°N, kg (mxs)? throug
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selected CMIP5 GCMs ensemble for the 2080s.

o
Baseline 20 GCMs Ensemble 5 Drie@mbl

Vegetation Type Climate RCP 2.6 scenario  RCP 8.5 scenario 8.5 scenario
Tundra 3.0 1.2 0.0 0.0
Forest 49.9 51.3 47.2 % 37.4
Drylands: Q

(a) Steppe 23.6 25.4 36.6

(b) Semi-desert 26.0

& & desert

23.5 22.1 ]
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River Basin Level of glaciation Discharge tendency

Kaskelen Low glaciation Decrease

Malaya Almaatinka Moderate glaciation =~ Moderate increase
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Bolshaya Almaatinka  Extensive glaciation  Very strong increase
9 and buried ice
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