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Abstract. 

The Dry Land Belt (DLB) in Northern Eurasia is the largest contiguous dryland on Earth. During the last 

century, changes here have included land use change (e.g., expansion of croplands and cities), resource 

extraction (e.g., coal, ores, oil and gas), rapid institutional shifts (e.g., collapse of the Soviet Union), 

climatic changes, and natural disturbances (e.g., wildfires, floods, and dust storms). These factors 

intertwine, overlap, and sometimes mitigate, but can sometimes feedback upon each other to exacerbate 

their synergistic and cumulative effects. Thus, it is important to properly document each of these external 

and internal factors and to characterize the structural relationships among them in order to develop 

better approaches to alleviating negative consequences of these regional environmental changes. This 

paper addresses the climatic changes observed over the DLB in recent decades and outlines possible links 

of these changes (both impacts and feedbacks) with other external and internal factors of contemporary 

regional environmental changes and human activities within the DLB. 

 

Social Media Abstract.

Brief overview of recent climatic and environmental changes over the Dry Lands of Northern Eurasia  
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1. Introduction  

Northern Eurasia Earth Science Partnership Initiative (NEESPI, launched in 2003) and its successor 

Northern Eurasia Future Initiative (NEFI, launched in 2016) have been internationally supported 

diversified research programs with overarching Science questions “How do Northern Eurasia’s terrestrial 

ecosystem dynamics interact with and alter the biosphere, atmosphere, and hydrosphere of the Earth?” 

and “What dynamic and interactive changes will affect societal activities, human well-being, and health, 

and what might be the mitigation and adaptation strategies that could support sustainable development 

and decision-making activities?” respectively. The NEESPI is currently waning through attrition (Soja and 

Groisman 2018) and the second Initiative has just released it programmatic documents and keynote 

publication (Groisman et al 2017).  Research domains of NEESPI and NEFI coincide and are shown in Figure 

1a.   The southern tier of this domain falls within by the Dry Land Belt (DLB) of Northern Eurasia that 

occupies the interior of the Earth’s largest continent and spans the territory of 16 countries:   Armenia, 

Azerbaijan, China Dry Land Region, Georgia, Hungary, Kazakhstan, Kyrgyzstan, Moldova, Mongolia, 

Romania, Russia Dry Land Region, Slovakia, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan. To 

delineate the DLB in Figure 1, we used boundaries of deserts, semi-deserts, steppes, and forest-steppes 

within the NEESPI/NEFI research domain north of 37°N and south of 52°N (Figure 1a). 

The DLB occupies the interior of the Earth’s largest continent and spans the territory of 16 countries. 

Mountain ridges and high plateaus of the central regions of Asia mostly cut off the DLB from water vapor 

transported from the tropics (Figure 1).  Some parts of the DLB have fertile land and are quite densely 

populated.  However, there exist strong physical limitations on the production of crops and rangelands.  

The region has a very limited fresh water supply, which is highly dependent upon irregular extra-tropical 

cyclones and a shrinking regional cryosphere (Shver 1976, Bliss et al 2014). Increases in evapotranspiration 

(ET) arising from increases in warm season temperatures and expansions of the growing season in the DLB 

are generally not compensated by precipitation increases (IPCC AR5 WG1 2013).  Furthermore, spatio-
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temporal shifts in precipitation pattern increase the likelihood that various unusual or extreme events 

(e.g., heatwaves, dzuds, and dust storms) will negatively affect the livelihoods of regional societies and 

their interactions with the global economy (e.g., Henebry et al 2013, Chen et al 2015, Yu et al 2018). The 

DLB region is a source of dust storms that can adversely impact the environment, climate, and human 

well-being over the region and beyond including densely populated areas of East Asia (Goudie and 

Middleton 1992, Darmenova et al 2009). 

Over the past three decades, the DLB went through several major socioeconomic changes that drove 

regional changes in agricultural and pastoral lands. The regional population has increased at a moderate 

rate similar to the global population trend, and there have been profound institutional shifts in the 

agricultural sector over the past three decades. Increased global demand for meat and dairy products 

have produced higher pressure on agro-pastoral lands where fragile developing economies are subject to 

frequent institutional shifts, water scarcity, and changing climatic conditions that interact to alter DLB 

ecosystem services and the societies that rely on them (Groisman et al 2017, Qi et al 2017; see also Suppl. 

1). 

{insert Figure 1 here} 

Within the transforming socioeconomic context of the DLB, our objectives here are threefold:  

(1) To document the current tendencies of ongoing climatic changes in the DLB;  

(2) To partition, where possible, the natural and regional anthropogenic signals of these changes; and  

(3) To provide projections, where possible, of the future changes within the region arising from both 

natural and anthropogenic factors. 

 

2. Current and Anticipated Climatic Changes 

 

2.1 Regional surface air temperature changes 
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Surface air temperature across the DLB region had been stable from the beginning of the 20th century 

until mid-1960s, but has increased rapidly in the past five decades (Figure 1b). These changes are mostly 

illustrated by changes during the winter and spring seasons with mean rates of change of 1.8°C (100yr)-1 

and 1.6°C (100yr)-1, respectively.  In winter, the temperature variability is higher with the 1.8°C (100yr)-1 

linear trend explaining 23% of the variation; whereas, a slightly smaller warming trend explains 37% of 

the variation in spring temperatures. For autumn and summer seasons, the warming signals have been 

much smaller with 0.7°C (100yr)-1 in autumn and 0.4°C (100yr)-1 in summer, with the changes concentrated 

solely in the past three decades. This warming shifts the temperature seasonal cycle, particularly the 

earlier dates of snowmelt (ACIA 2005, Bulygina et al 2013, Tomaszewska and Henebry 2018), earlier spring 

onset in the biosphere, and freshet in river discharge. In summer, the warming causes the glacial retreat 

in Central Asia, Caucasus, and Southern Siberia (Khromova et al 2014) and exacerbates water deficit for 

the DLB landscapes. In the past three decades, warming in the DLB has spread from Hungary in the west 

(Mátyás et al 2018) to Northeast China in the East (Zhao et al 2013) exaggerating dry weather conditions. 

These and many other negative consequences of the DLB warming could be avoided, were precipitation 

to increase.  Indeed, oceanic warming must result in more evaporation, and the additional atmospheric 

water vapor could mitigate the water deficits in lands of the continental interior through increased 

precipitation. However, this water vapor must first be transported to the interior by atmospheric 

circulation.   

2.2 Changes in atmospheric circulation 

The DLB receives an abundance of heat through insolation, although the drylands do not have sufficient 

holding capacity to retain heat in soil, biosphere, or hydrological objects.  Consequently, day/night 

temperature differences are very high in comparison to maritime climates. Soil moisture that could 

mitigate strong diurnal temperature swings is limited in drylands and is often concentrated below the 

rooting zone. Dryland areas also have limited heat capacity and finite water storage in glaciers, interior 
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lakes, and permafrost accumulated during the past pluvial epochs and/or during cold seasons. The 

remaining water that the region receives comes from atmospheric precipitation, ground water, and inland 

lakes. However, precipitation is not necessarily transferred inland via the atmosphere. The role of 

atmospheric circulation is critical here.  There appear two competing major components of the global 

warming process that are, among others, responsible for water vapor transport into the interior drylands 

of Northern Eurasia.  

Disproportional warming at high latitudes and in the Arctic (ACIA 2005, Blunden and Arndt 2017) 

decreases the equator-to-pole temperature differential with the latitudinal temperature gradient 

instrumental for the westerlies circulation in the extratropics.  In particular, in the Northern Hemisphere 

westerlies move the water vapor from the North Atlantic Ocean into the Eurasian interior. The weaker 

the westerlies, the less water vapor penetrates into the northern part of the continent exposed to the 

Atlantic and Arctic air transfer (i.e., most of Northern Eurasia).  Another feature associated with weaker 

westerlies is the meandering of their flow and more frequent formation of atmospheric blocking (Lupo et 

al 2014, Mokhov et al 2013).  These changes in atmospheric circulation lead, in the cold season, to a larger 

variability when unusually cold and warm weather conditions occur over the entire Northern Eurasia 

(Schubert et al 2014). In the warm season, it results in prolonged periods of days with and/or without 

precipitation (Zolina et al 2013, Groisman and Soja 2009, Lupo et al 2014). 

In summer, the land warms more strongly than the ocean, which is projected to strengthen the monsoon 

circulation with global warming (IPCC 2013). The southern edge of the DLB is mostly blocked from the 

warm Indian Ocean, but its eastern edge is exposed to the Pacific Ocean and warm humid air from the 

Pacific penetrates northwestward.  Thus, with the stronger monsoons, a more humid climate would occur 

on the eastern edge of the DLB and will be expected to continue in the future with continued global 

warming (Collins et al 2013). However, the observations in Northeast China (Guo et al 2013) and analysis 

for the eastern edge of the DLB do not support these expectations (Figure 2).     

Page 6 of 48AUTHOR SUBMITTED MANUSCRIPT - ERL-105668.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt

old seasons. Theasons. The

und water, and inlander, and in

atmosphere. The role of osphere. The ro

or components of the glomponents of the glo

ransport into the interior drt into the int

c (ACIA 2005, Blunden aA 2005, Blun

l with the latitudinal tethe latitudi

atropics.  In particular, in tcs.  In particu

 Atlantic Ocean into the tic Ocean into

tes into the northern pares into the norther

of Northern Eurasia).hern Eurasia An

flow and more frequent fow and more freq

se changes in atmospherise changes in atmos

old and warm weather cd warm we

n the warm season, it reswarm season, 

et alal 2013, Groisman and2013, Groisma

land warms more stronglwarms more s

with global warming (IPCobal warmin

ndian Ocean, but its eastOcean, but its east

cific penetrates northwestnetrates nort

on the eastern edge of he eastern ed

Acwarmingming (Col

Acfor the ea

https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-16-0892.1


12 
 

{insert Figure 2 here} 

{insert Table 1 here} 

Figure 2 and Table 1 show major statistics of cyclone characteristics for the four regions of the Asian part 

of the DLB.  In Figure 2, these regions are identified with four figure inserts that visualize the time series 

of annual count of individual cyclones that crossed the regions. Tilinina et al (2013) showed that the total 

cyclone count is dependent of the spatial resolution of the post-USSR period tracks.  Here we use the ERA-

Interim reanalysis (Dee et al 2011) that has spatial resolution of 1.5° × 1.5°.  Climatology of the cyclone 

counts shown in Table 1 depends on this resolution.  The Asian DLB includes many mountain and plateau 

systems. Reanalyses have shown that these areas are very sensitive to the observational network used 

for their generation. In particular, when these networks have been changing, there can be spurious 

inhomogeneity in the data (Arsenault and Brissette 2014).  Therefore, we used only the post-Soviet Union 

period (prior to this period the networks were much denser in the Central Asia and in the eastern half of 

the DLB, but these data were less available to the developers of the reanalysis products). 

The one central and two western regions of the Asian DLB in Figure 2 receive most of their atmospheric 

water vapor from the west (Kuznetsova 1983, Shver 1976), but the easternmost DLB region—

northeastern China and western Mongolia—resides in a monsoon climate benefiting from major water 

transport from the Pacific Ocean.  Over the past three decades, we do not see systematic changes in 

cyclone counts in this region (Figure 2).  In contrast, the numbers of cyclones in Central Asia, Northwest 

China, and Mongolia increase.  We cautiously conclude that these increases indicate improvement in the 

water budgets of these drylands.  

Water vapor transport into these regions during recent decades can provide an estimate of integral 

precipitation changes related to atmospheric circulation.  Table 2 reports the results of processing of the 

ERA-Interim Reanalysis data for the post-USSR period. It demonstrates that most of water vapor 
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integrated over the atmospheric column comes from the west, while the southward water vapor transfer 

is substantially less.   Moreover, a dramatic reduction of the eastward water vapor transport into the 

Central Asia (~15% during the last three decades) is not only the result of weakening of the westerlies but 

may be related to the simultaneous retreat of the Aral Sea (the 60°E longitude crosses its remnants). The 

extent of the Aral Sea had been shrinking since 1960s with the largest decrease in the past two decades 

(Zavialov 2007, Gaybullaev et al 2012). In addition, large-scale climate oscillations can affect precipitation 

patterns in Central Asia (de Beurs et al 2018). Whatever was the cause of the water vapor transport 

decline, it contributed to drier weather conditions in the Central Asia (see Section 2.5). 

{insert Table 2 here} 

2.3 Changes in atmospheric precipitation 

Atmospheric precipitation, its amount (totals), form (frozen, mixed or liquid), intensity (for rainfall), 

intraseasonal distribution, and their systematic changes (trends) remain the most variable characteristics 

of the DLB climate.  Past studies documented earlier onset of spring across the entire Northern 

Hemisphere (Schwartz et al 2006), increases in daily rainfall intensity during the heavy rain events that 

may coincide with prolonged no-rain periods (Groisman et al 2013, Zolina et al 2010, Zolina et al 2013), 

and uncertainties in quantifying the changes in precipitation. The uncertainty emerges in this part of the 

globe both from the relatively sparse observational networks and from time-dependent systematic biases 

in precipitation records (Groisman and Legates 1995).  Groisman et al (2014) quantified these biases for 

Russia, while Ding et al (2007) did the same for China. They showed how each improvement in rain gauge 

instrumentation, wind shielding of gauges, and observing routines resulted in increases of “observed” 

precipitation while the actual “ground-true” precipitation was quite different and had different decadal 

trends.  As a result, the latest Second National Climate Change Assessment for the Russian Federation 

contains two estimates of the past precipitation changes over the nation rather than just one (Second 

National Climate Change Assessment  2014).  The first set of estimates is based on high quality 
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observations from the national meteorological network and the second set of estimates is based on the 

same observations but corrected for the time-dependent biases that provide the real ground-true 

precipitation values.  The first set of estimates reports nationwide increase of annual precipitation; 

whereas, the second set reports moderate multi-directional changes. For the Russian part of the DLB 

(steppes in the south of West Siberia and the Trans-Baikal Region), the Assessment reports a long-term 

decrease in precipitation. Using bias-corrected precipitation time series, Akhmadiyeva and Groisman 

(2008) reported only a 4% increase in annual precipitation over Kazakhstan during the 1990-2006 period 

compared to previous three decades (1960-1989).  Furthermore, significant discrepancies between a 

global precipitation reanalysis and a fuller representation of regional precipitation stations was 

documented for Kazakhstan (Wright et al 2009). 

Difficulties with reporting of precipitation trends in other parts of the former USSR as well as in Mongolia 

are the same and, therefore, alternative approaches based on remote sensing land surface products were 

used (cf, Lioubimtseva and Henebry 2009, de Beurs et al 2015). In Kazakhstan in the 1990s, precipitation 

deficit growth was reported using normalized difference vegetation index (NDVI) analyses. Farther 

southward, Wang and Zhou (2005) and Ding and Chan (2005) reported an increase in precipitation in the 

northwest of Xinjiang Province of China.  Ding et al (2007) show an importance of bias-corrections for 

precipitation reports in China and addressed the possible time-dependence of biases in these reports.  

The biases can be caused by changes in observations, but they can be also introduced by changes in other 

“natural” factors that affect precipitation measurements.  In particular, systematic continent-wide 

reduction in the near-surface wind speeds (cf., Bulygina et al 2013, Ding et al 2007) may “increase” the 

observed cold season precipitation while the ground-true precipitation is unchanged or even decreased.  

Figure 3a shows that during the most of the year (autumn, winter and spring), there were no significant 

changes in the total precipitation over the DLB (a region-wide increase by 16 mm per 8 months).  

{insert Figure 3 here} 
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Liquid precipitation observations are less prone to biases than those for frozen precipitation; thus, 

changes in liquid precipitation can be presented in absolute numbers (in mm instead of percent). In Figure 

3b, we show the latest changes in summer rainfall totals over the DLB during the past 13 years compared 

to the previous 25 years estimated from the MERRA2 reanalysis output. These changes are mainly 

negative illustrating the Northern Eurasian heat waves and droughts described by Schubert et al (2014). 

These waves over the western part of the DLB (Hungary, the Ukraine, European Russia), manifested 

themselves by several severe droughts (including extreme drought of 2010). Over the eastern part of the 

DLB (the Baikal Lake Basin, Trans-Baikal area, and northeastern China, the waves are responsible for 

increasing water deficit and severe forest fires centered in the Trans-Baikal area (Loboda and Chen 2017).  

2.4. Changes in the cryosphere 

All components of the cryosphere in the DLB have been changing in recent decades, with most of these 

changes showing stable decreases (AMAP 2011, AMAP 2017): 

Duration of seasonal spring snow cover has been steadily decreasing making the earlier onset of spring 

(e.g., the start of vegetation growth and spring freshet on rivers) earlier by several days (Bulygina et 

al 2011, Second National Climate Change Assessment 2014); 

Period with stable snow cover over Europe has become shorter and/or disappears causing river ice 

break-up, and increases in winter runoff (cf., section 2.5); 

Permafrost at the edge of the permafrost zone, especially, in the areas of discontinuous permafrost, 

has begun to thaw (Romanovsky et al 2017);  

The depth of seasonal frozen ground thawing has increased from the Arctic to mountains of the 

Central Asia affecting infrastructure, such as roads and buildings; (Shiklomanov et al 2017); and  

The area and volume of land ice (i.e., glaciers) has been decreasing across the entire Northern Eurasia 

including the montane areas of the DLB (Shahgedanova et al 2010, Shahgedanova et al 2014, 

Syromyatina et al 2015, Khromova et al 2014, Kotlyakov et al 2015). 
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{insert Figure 4} 

 

Ice storage on and below the ground is an important source of the water supply for the DLB.  For centuries 

(or millennia) water was transported to the remote mountains of the Eurasian continent and, instead of 

entering the global water cycle via runoff, was fixed and stored there in frozen form. This storage served 

as a cushion for the water balance of the DLB regions located at the foothills of high mountains.  Currently, 

this storage is being gradually depleted. 

Ongoing global warming is more prominent at higher elevations than in lowlands (Barry 2008).  The 

temperature increases, particularly during the warm season, escalate glacial melt and thawing of 

subsurface ice. Although the abundant summer streamflow promises a strong future water supply in the 

drylands, the storage of water in glaciers is limited. As illustrated in Figure 4, three rivers in neighboring 

valleys have distinctively different tendencies of their discharge depending upon the glaciation level at 

their higher elevations. Snow-free high dry plains and disappearing lakes in northwest China (e.g., in 

Qinghai Province) and west Kazakhstan are good examples.  

2.5. Changes in water supply and availability 

Runoff data for the Russian Federation as well as for most of the Central Asian countries show an increase 

in river discharge. However, it is not clear how persistent these increases will be into the future once 

several factors that are currently favorable for these increases change (Suppl. 2). 

We have a complete set of socio-economic and meteorological data for the Central Asia nations, and our 

analysis of climate change impacts on different aspects of water availability here was made using 

combination of economic census data with hydrological modeling (Suppl. 3). The dynamics of water use 

for domestic, industrial and livestock needs have been simulated using the University of New Hampshire 
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Water Balance Model (WBM, Suppl. 3) using country-based statistical socio-economic information along 

with spatially distributed population density. Water Scarcity Index (WSI; Damkjaer and Taylor 2017) and 

Water Availability Indexes (WAI; Schyns et al 2015) for the Central Asian countries were estimated with 

WBM simulations using only locally generated water resources (Figure 5, left panels) and total available 

water resources (including inflow) (Figure 5, right panels).  

{insert Figure 5} 

The WSI is the ratio of annual freshwater abstractions (i.e., system losses due to water consumption, 

evapotranspiration, and deep drainage) to the annual water availability. This information was aggregated 

over administrative units and adjusted using census data. Water stress is classified from high water stress 

(red in Figure 5) to water abundance (blue in Figure 5). The WSI neglects temporal and spatial variations 

as well as water quality data. There was a general and substantial decline in available water between 

1990s and 2014 (Figure 5). The water security situation across the region is more stressful despite 

significant political and socio-economic transformations during the 1990s, which led to decreased water 

use and increases in river runoff in some montane areas, as mentioned above. The current trend toward 

increasing water stress results primarily from changing climatic conditions coupled with fast population 

growth (https://www.populationpyramid.net/central-asia/2017/). 

2.6. Land use and land cover change and some of their consequences 

One of the biggest episodes of land cover change over the steppes of the DLB was the so called “Virgin 

Lands” development during 1954-1964, when the area of arable land in Kazakhstan was expanded from 

7-8 to 21-23 million hectares. These changes were also spread across the steppe zone of western Siberia 

and southern Russia but were centered over northern Kazakhstan (Jackson 1962).  This massive 

conversion of grassland to cropland resulted in statistically significant increases of monthly surface air 

temperatures by 0.3° to 0.5°C during spring, summer and autumn seasons and significant changes in ET 
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(Yesserkepova 1988).  Even within the interdecadal variability of the near surface temperature and 

humidity in this part of the world, the impacts of large-scale virgin land development are evident in Figure 

6.   

{insert Figure 6 here} 

The latest land cover types and their changes within the Asian part of DLB were examined using the MODIS 

land cover product (MCD12Q1V6; https://earthdata.nasa.gov/) through re-grouping IGBP classification 

cover types between 2001 and 2016. This product provides global land cover types at yearly intervals 

(2001-to date) at 500 m spatial resolution and is a combined product derived from Terra and Aqua 

reflectance data. Version 6 MCD12Q1V6 data product was derived from different classification 

schemes, of which we used the International Geosphere-Biosphere Programme (IGBP) classification 

scheme validated to Stage 2 maturity level (Friedl and Sulla-Menashe 2015). Because land cover changes 

within a short time period (i.e., <3 years) are likely minimal and difficult to detect with MODIS imagery, 

we compared the difference between 2001 and 2014, 2002 and 2015, and 2003 and 2016 to ensure that 

the three differences are consistent and, hence, representative of the actual land cover changes during 

the 15-year study period.  

We used the tabulate area function in ArcGIS to categorize area by cover type and their relative 

proportions by the 10 administrative units in the Asian part of the DLB (8,779,162 km2).  We created a 

triad of image difference datasets, namely 2001-2014, 2002-2015, and 2003-2016 to compare change 

across six years, thereby making the findings robust (three years in early period of observations and three 

in the last three years). We then labeled and visualized the pixels with consistent change (red), some 

change (blue, when one of the three triads shows a different change) and no change (light grey) with 

5.58%, 0.18% and 94.24 % of the area respectively. The pixels with “some change” are labeled with blue 

dots. They are nearly invisible in Figure 7b. The small number of such dots indicates that the post 
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classification land cover changes due to uncertainties in the land cover labels for any one year and do not 

seriously impact our conclusions about the regional land cover change.   

The DLB is dominated by arid barrens and temperate grasslands that accounted for 56.85% and 31.36% 

of the total land area (total = 88.21%), respectively, during 2001-2016 (Figure 7a).  The arid barrens are 

the largest on the Earth’s surface and stretch from the Gobi Desert in the southwest Mongolia to the 

Western portion of Central Asia (Chen et al 2014, Mildrexler et al 2006). The grasslands included those on 

the Mongolia Plateau, which are experiencing higher warming trends than the global average due to a 

combination of high latitude, high elevation, and a continental climate (Tian et al 2018, John et al 2018). 

The croplands (4.80%), shrublands (1.48%) and forests (1.14%) are the next three major cover types in the 

region.  However, the distributions of these cover types varied substantially by country. East Asian 

countries have a similar proportion of grasslands (45.86%) than those in Central Asia (45.50%). Kazakhstan 

has the highest grassland cover (85.2%) among all administrative units (Figure 7a). Overall croplands in 

East and Central Asian countries occupy 4.13% and 7.60%, respectively. Forests were found in northeast 

Inner Mongolia, and on northern aspects slopes in the Tian Shan Mountains of Central Asia. 

{insert Figure 7 here} 

Land use was also very extensive and intensive across the DLB, with 5.58% of the land experiencing 

consistent cover change from 2001 to 2016 (Figure 7b).  Overall, it appeared that countries in Central Asia 

experienced more cover changes than those in East Asia.  Several visual hotspots included land cover 

changes that are apparent around the Caspian Sea in Turkmenistan, Uzbekistan and southwest 

Kazakhstan (I) and around the edges of the East Asian drylands of Western Xinjiang-Inner Mongolia-

Mongolia (III and V). Other major hotspots of land cover change were found in the Yellow River Delta or 

Hetao region (IV), forested regions of northeast Inner Mongolia (VII), Northern Mongolia (VI) and 

Northwestern Kazakhstan (II).  These hotspots have been widely reported as the results of major policy 

shifts by the individual countries and, to a lesser degree, due to the changing temperature and ET (i.e., 
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water loss) (Jung et al 2011, Liu et al 2013, ; Chen et al 2014, Groisman et al 2017, Qi et al 2017, John et 

al 2018). For example, the large increases in forest cover in the Yellow River Delta and northeast Inner 

Mongolia are likely due to afforestation/reforestation program of China’s Green for Grain Program (Liu et 

al 2014), whereas hotspots in Western Xinjiang are due to the rapid expansion of agricultural lands. 

Meanwhile, hotspots in Central Asia may have been the direct results of elevated ET loss, salinization of 

soils, or new agricultural enterprises.  

3. Projections to the nearest decades of environmental changes 

3.1. Land cover transitions and potential climate-driven land cover transitions over northern Asia in 

the 21st century  

Biosphere modeling employed for this projection is described in Suppl. 3. Here we present and 

discuss the biosphere modeling output.  In the baseline climate, drylands were projected to cover about 

50% of the Siberian window that was allocated equally between steppe and semi-desert/desert. 

Simulations indicated that Siberian vegetation would be altered by the 2080s over the study area. Almost 

no change in the forest distribution was projected in the 20 GCM ensemble under both RCP 2.6 and RCP 

8.5 scenarios, while drylands extent changed minimally. A 6% increase in drylands was projected under 

RCP 8.5 scenario for the 20 GCM ensemble (Table 3, Figure 8c). According to the ensemble of the five 

driest GCMs under RCP 8.5, drylands would cover 63% of the study area with 10% predominance of 

steppe. The semi-desert/desert area would increase only slightly compared to its current extent. Forest 

coverage would remain similar to the current conditions (i.e., ± 1.5-2%), because the forest would shift 

into the current tundra distribution and tundra would nearly vanish. Only in a dry climate its coverage 

would decrease by about 12.5%. 

Ecological consequences for forestry and agriculture in the rapidly changing environment of southern 

Siberia will require adaptive management to adjust agricultural and mixed agro-forestry practices to the 

newly emerging forest-steppe and steppe habitats of the late 21st century. 
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Increased tree mortality in a drier climate along the southern Taiga border would lead to accumulation of 

woody debris, which in turn, paired with increased ”fire” weather, could result in destructive fires and 

shift forests northward to wetter habitats. Grasslands that follow in the wake of the forest are better 

adapted to frequent fire events because of a shorter life cycle, a stronger adaptability to less precipitation 

and droughts, and capabilities to recover due to allocation of perennating plant parts belowground 

(Tchebakova et al 2009). Generally, the projected warmer and drier climates will promote dry lands to 

extend over southern Siberia (Tchebakova et al 2010, Tchebakova et al 2011a) and the steppe area would 

increase by 50%.  South of 60°N, tundra is observed only in highlands on mountains and in the RCP8.5 

scenario it vanishes completely. 

{insert Table 3 here} 

To minimize the negative consequences and to enhance the benefit from climate change in Siberian 

forests and drylands, adaptive measures need to be implemented, including forest restoration on failed 

forest lands and planting different crops suitable for the new climates. Due to recent and predicted 

climatic changes, concerns about food security increase. However, in the cold climates 

of Siberia, agriculture would benefit from climatic warming, only when and where appropriate 

infrastructure development and population growth permit. 

3.2. Current livestock distribution, C consumption by grazing and their projections 

Spatial distribution of livestock density on temperate Eurasian steppe in 2006 was estimated based on 

province/prefecture level of inventory data of livestock. The carbon ingested by livestock (Cgraze) was 

calculated using the pasture system simulator in boreal ecosystem productivity simulator (BEPS; Chen et 

al 2017). These distribution and Cgraze are tightly controlled by sub-regional socioeconomic conditions 

(Chen et al 2014). Spatial heterogeneity exists across and within different administrative divisions (Figure 

9). In the Mongol Steppe, major consumption by livestock was concentrated in China, particularly in Inner 
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Mongolia. The most extensively grazed grasslands were located in traditional natural pastures with 

relatively high productivity, such as the XilinGol Prairie in mid-Inner Mongolia, and in some areas of desert 

steppe in Southwestern Inner Mongolia. Livestock density and Cgraze in those areas exceeded 800 sheep 

unit per km2 and 30 gC m-2 yr, respectively. In contrast, the livestock density and Cgraze in Mongolia were 

much lower (John et al 2016). This contrast can be seen in the bordering areas of Eastern Mongolia 

(Dornod province), where livestock density is lower than 40 sheep unit per km2 and Northeastern Inner 

Mongolia (Hulunbuir City), where density is higher than 200 sheep unit per km2.  

In the Kazakh Steppe, Cgraze was highly concentrated in the south, especially in the desert countries of 

Turkmenistan and Uzbekistan. These two countries contain huge numbers of livestock within limited 

pasture ecosystems. Livestock density and Cgraze are generally higher than 500 sheep unit per km2 and 12 

gC m-2 yr for the two countries (Figure 9), while livestock density is generally lower than 40 sheep unit per 

km2 over the steppe of Kazakhstan. 

Concern over increasing demands for animal products and preservation of grassland resources led to the 

launch of regional conservation programs in Inner Mongolia since late 1990s, including the Grain to Green 

Program (GTGP; Liu et al 2008) and the Grazing Withdrawal Program (GWP; Chen et al 2017). As a result, 

improvements to livestock habitat and ecosystem service functions have been observed in recent years (Li 

et al. 2012, Mu et al 2013). In contrast, the excessive stocking rates in the southern Kazakh Steppe have 

not received enough attention from the scientific community or from governments (Blench and Sommer 

1999, Mirzabaev et al 2016). Field investigations, large-scale assessments, and specific rehabilitation 

programs are urgently needed in this area. 

Figure 9.  

Prior to 1990, the Central Asian economies were not economically independent. Most agricultural and 

livestock production was focused on meeting demands dictated by the central planners of the USSR (e.g., 
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production cotton and meat). As a result, the reduction of livestock numbers during the 1990s was mainly 

induced by the institutional changes, loss of access to markets, and agricultural reforms following 

dissolution of the USSR (de Beurs and Henebry 2004, Ojiima and Chulun 2008, Wright et al 2012, de Beurs 

et al 2015, John et al 2016). Clearly, the situation in 1980s for 1990s cannot be considered as baseline for 

future projections because of very different governance and socio-economic systems. 

Future projections show that, with rapid population growth and dietary transitions associated with 

economic development, the demand for animal products will continue to increase. For example, global 

meat demand is projected to double by 2050 (Flammini et al 2017). This new demand level will lead to 

continuously increasing production of meat and milk from East and Central Asia (Bruinsma 2003).  

This situation would require future expansion of the scale of pasture systems and/or enhanced feed 

efficiency, such as through concentrated animal feeding operations (CAFOs). In order to meet the 

increasing demand, pasture land would need to be expanded by ~8%, and feed efficiency to be enhanced 

by ~30%, compared to the 1990s level in East and Central Asia (Wirsenius et al 2010). However, both 

arable land and water resources limit further feed production expansion in many areas of the DLB (Qi et 

al 2012, Qi et al 2017).  

Meanwhile, large-scale unregulated grazing patterns have caused large reductions in biodiversity and 

productivity, and led to degradation and desertification, even in historically productive and stable pasture 

systems (Chen et al 2014, John et al 2009, John et al 2018, Miao et al 2009, Yusupov 2003). Therefore, 

addressing the question of how to enhance feed efficiency in a sustainable way is urgently needed to meet 

the challenges from both human activities and climatic changes to the pasture systems of the DLB. 

4. Summary  

Section 2 as well as previous findings (e.g., those provided in the overview by Groisman et al 2017) report 

indisputable increases in surface air temperature, retreating cryosphere, and uncertainties in precipitation 

changes that have led to a generalized depletion of available water resources over most of the DLB. 
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In the northern part of the DLB, which is presently occupied by forest, the large warming projected by 

general circulation models for the end of the century is expected to impact vegetation significantly and 

shift biomes northwards (Figure 8, Table 3). In particular, ecological-bioclimatic modeling of climate 

warming consequences for terrestrial ecosystems demonstrates a structural change of northern Asia 

vegetation: biomes shifts northwards, coniferous forests decrease, light-needled coniferous and 

broadleaved softwood forests and forest steppe dominant, and steppes expands in the south. From 

modeling results, the risk zone of forest loss in Siberia would expand in favor of the steppe vegetation with 

some limited desertification.  

In the southern DLB, presently occupied by steppe and semi-deserts, the human activity has already 

interacted with climatic variation and extremes to impact both environment and livelihood dependent on 

livestock (Figures 7 -  9; see also Qi et al 2012, Qi et al 2017).  

To minimize negative consequences and benefit from climate change in Siberian forest and drylands, the 

following adaptive measures could be pursued: forest restoration on failed forest lands by assisting seed 

transfer of appropriate species and phenotypes to their climatic optima in the new climates or using those 

lands for agriculture by planting crops suitable for the new climates (Tchebakova et al 2010, 2011b).  

Current and projected environmental changes (higher temperature, more droughts, more fires), raise 

concerns about future food security. However, in the cold climate of the northern DLB agriculture may 

benefit from climatic warming only after the necessary infrastructure could be developed and a larger 

rural population could be encouraged to move northward to this frontier. 

It is expected that increasing global and regional populations and a growing demand for land use and 

water resources will remain the major challenges for sustainable development in the DLB of Northern 

Eurasia.  Therefore, in this part of the world, the role of conscientious human activity in land use, water 

management, construction, and consumption habits become a major factor responsible for environmental 

health and human well-being. 
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Figure Captions 

 

Figure 1. a. The NEESPI research domain map with the Dry Land Belt (DLB) of Northern Eurasia outlined 

(the dashed contour on the map from Groisman et al 2017). b. Mean annual surface air temperature 

anomalies (°C) for 1881-2017 area-averaged over the DLB with the polynomial trend shown in the 

graph describing 60% of the time series variation. Data source is an archive of the monthly surface air 

temperature by Lugina et al (2006 updated). Anomalies were calculated from the mean values for the 

1951-1975 period.  

Figure 2. Annual number of atmospheric cyclones area-averaged of the four regions in the Asian part of 

the DLB. Definition of individual cyclones and the follow up counting were made by Tilinina et al (2013 

updated) within the IMILAST project (Neu et al 2013) activity and applied to the ERA-Interim Reanalysis 

data for the post-USSR period. 

Figure 3. Deviations of mean seasonal precipitation totals (mm) across the Dry Land Belt during 2005-

2017 from a baseline average over the 1980-2004 period. a. October through May. b. June, July, 

August, and September. Estimates are based on the Modern-Era Retrospective Analysis for Research 

and Applications, version 2 (MERRA-2 reanalysis; Gelaro et al 2017) that has a cubed-sphere horizontal 

discretization at an approximate resolution of 0.5° × 0.625° and allows relatively uniform grid spacing 

at all latitudes. 

Figure 4. River discharge tendencies within three neighboring valleys in the Tian Shan Mountains (Zailijskiy 

Alatau; archive of Groisman et al 2017). 

Figure 5. Evaluation of the Water Scarcity Index (WSI) for Central Asia based on combination of socio-

economic data for administrative units with hydrological simulations on hydrological model taking into 

account a various natural and anthropogenic processes.   Maps on left show water scarcity index (WSI) 
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based only on available local water resources. The right maps account for both local water resources 

and river inflow from other territories. 

Figure 6.  Differences of averaged near surface temperature (a) and near surface specific air humidity 

fields (b) between the years 1961-1970 and 1951-1960. These maps were constructed using the Global 

Meteorological Forcing Dataset prepared at the Princeton University (MFD; Sheffield et al 2006). MFD 

is available globally for the 1948-2016 period at 0.25 degree of spatial and 3-hourly temporal 

resolutions. It was constructed by combining a suite of global observation-based datasets with the 

NCEP/NCAR reanalysis. 

Figure 7. a. Land cover in 2014 and b. land cover change from 2001 to 2016 in the DLB. The cover types 

are re-grouped from the IGBP classification scheme based on the land cover product of MODIS 

(MCD12Q1V6). b. Land cover change represents type shift from 2001 to 2016. The areas encircled by 

the blue lines are hotspots for the cover change across the DLB, which are mostly associated with 

agricultural development, shrubland encroachment, desertification, and afforestation.  

Figure 8. The biome and dryland (steppe, semi-desert/desert) distributions over Siberia and adjacent DLB 

regions predicted a. for the baseline climate of 1960-1990, b. for the future climate in the 2080s by an 

ensemble of 20 GCMs under RCP 2.6, c. by an ensemble of 20 GCMs under RCP 8.5, and d. the ensemble 

of the five driest GCMs under RCP 8.5. Tundra (1, cyan that is practically absent in these figures); forest 

(2) is green; steppe (3) is gray; and semi-desert/desert (4) is brown. 

Figure 9. Spatial distributions of a. livestock density and b. carbon ingested by grazing (Cgraze) in the 

temperate Eurasian steppe. 
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Table 1. Long-term mean number of cyclones by season with atmospheric pressure at its center less than 

1,000 hPa in four regions during 1979-2016 (see Figure 2). JFM: January-February-March; AMJ: April-

May-June; JAS: July-August-September, and OND: October-November-December 

 

Region JFM AMJ JAS OND Annual 

      

Kazakhstan 3 17 18 2 40 

Kyrgyzstan 1   6   7 0 14 

Central Mongolia 4 38 37 4 83 

Northeastern China 8 35 29 8 80 
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Table 2. Southward and eastward water vapor transport into Central Asia across the 50°N latitude in 

Northern Asia from 60°E to 110° E and across the 50°E from 40°N to 50°N during the post-USSR period 

(1990-2017).  

 

Period/Water 

Vapor Flux 

Southward annual flux 

through 50°N, kg (m×s)-1 

Eastward annual flux 

through 50°E, kg (m×s)-1 

1990-1999  0.14 46.4 

2000-2009 -0.48 43.4 

2010-2017  1.11 39.6 
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Table 3.  Biome distribution (%) over the “Siberian window” (60 – 140° E and 40 – 60° N), predicted by 

selected CMIP5 GCMs ensemble for the 2080s.  

 

Vegetation Type 

Baseline 

 Climate 

                20 GCMs Ensemble 5 Driest GCMs Ensemble 

RCP 2.6 scenario RCP 8.5 scenario       RCP 8.5 scenario 

Tundra                                3.0                        1.2                              0.0                                          0.0 

Forest                               49.9                      51.3                            47.2                                       37.4 

Drylands: 

(a) Steppe                       23.6                      25.4                           29.6                                       36.6 

(b) Semi-desert              23.5                       22.1                          23.2                                       26.0 

&          & desert    
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Figure 1 
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Figure 2 
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Figure 3.
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Figure 4.
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Figure 5.
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Figure 6.
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Figure 7.
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Figure 8.

Page 47 of 48 AUTHOR SUBMITTED MANUSCRIPT - ERL-105668.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt



53 
 

Figure 9.
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