
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 147, Number 1, January 2019, Pages 21–34

http://dx.doi.org/10.1090/proc/13776

Article electronically published on October 19, 2018

MODULAR CATEGORIES OF DIMENSION p3m

WITH m SQUARE-FREE

PAUL BRUILLARD, JULIA YAEL PLAVNIK, AND ERIC C. ROWELL

(Communicated by Kailash Misra)

Abstract. We give a complete classification of modular categories of dimen-
sion p3m where p is prime and m is a square-free integer relatively prime to
p. When p is odd, all such categories are pointed. For p = 2 one encounters
modular categories with the same fusion ring as orthogonal quantum groups

at certain roots of unity, namely SO(2m)2. We also classify the more general
class of modular categories with the same fusion rules as SO(2N)2 with N

odd.

1. Introduction

Weakly integral modular categories, i.e. modular categories of integral FP-
dimension, arise in a number of settings such as quantum groups at certain roots
of unity [23], equivariantizations of Tambara-Yamagami categories [16], and by
gauging pointed modular categories [1,3,8]. Several key conjectures characterizing
weakly integral categories are found in the literature, e.g. the Property-F Conjec-
ture [23, Conjecture 2.3], the Weakly Group-Theoretical Conjecture [14, Question
2], and the Gauging Conjecture [1, Abstract]. In particular, it is known [27] that
the braid group representations associated with the weakly integral modular cat-
egories SO(M)2 factor over finite groups for all M ; that is, these categories have
property F .

We will assume throughout that all objects in our categories have positive di-
mensions. This is not a significant loss of generality; see Remark 2.1. In the spirit of
[18], we call any modular category with the same fusion rules as the 4M -dimensional
modular category SO(M)2 with M even an even metaplectic modular category.1

Our main results are summarized as follows:

Theorem. If C is a non-pointed modular category of dimension p3m where p is a
prime and m is a square-free integer relatively prime to p, then p = 2 and one of
the following is true:
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1In fact they require unitarity. It is not known if this is a strictly stronger assumption than
positivity of dimensions.
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(i) C is a Deligne product of an even metaplectic modular category of dimension
8� and a pointed Zk-cyclic modular category with k odd, or

(ii) C is the Deligne product of a Semion modular category with a modular
category of dimension 4m (see [5]).

Furthermore, we extend the work of [5, Theorem 3.1] characterizing modular
categories of dimension p2m to include the case p odd: in this case such categories
are pointed (see Theorem 4.5). In particular, all modular categories of dimension
p2m and p3m satisfy the Weakly Group-Theoretical Conjecture [14, Question 2]
and Gauging Conjecture [1]. Moreover, we obtain the following result similar to
that of [1, Theorem 3.1]:

Theorem (Theorem 3.8). If C is an even metaplectic modular category of dimen-
sion 8N , with N an odd integer, then C is a gauging of the particle-hole symmetry
of a Z2N -cyclic modular category. Moreover, there are exactly 2r+2 inequivalent
even metaplectic modular categories of dimension 8N for N = pk1

1 · · · pkr
r , with pi

distinct odd primes.

2. Preliminaries

In this section we recall results and notation that are presumably well-known to
the experts. Further details can be found in [2, 12, 15].

A premodular category, C, is a braided, balanced, fusion category. Throughout
we will denote the isomorphism classes of simple objects of C by Xa ordered such
that X0 = 1 is the unit object. The set of isomorphism classes of simple objects
will be denoted by Irr (C). Duality in C introduces an involution on the label
set of the simple objects by X∗

a
∼= Xa∗ . The fusion matrices, Nc

a,b = (Na)b,c
provide the multiplicity of Xc in Xa⊗Xb. These matrices are non-negative integer
matrices and thus are subject to the Frobenius-Perron Theorem. The Frobenius-
Perron eigenvalue of Na, da is called the Frobenius-Perron dimension of Xa, or
FP-dimension for short. An object is said to be invertible if its FP-dimension is 1
and integral if its FP-dimension is an integer. The invertible and integral simple
objects generate full fusion subcategories called the pointed subcategory, Cpt, and the
integral subcategory, Cint. If C = Cint, then C is said to be integral. The categorical
FP-dimension is given by FPdimC =

�
a d

2
a. If FPdimC ∈ Z, then C is said to be

a weakly integral category. A weakly integral category that is not integral is called
strictly weakly integral.

Remark 2.1. Let C be any weakly integral modular category. By [15, Proposition
5.4] the underlying braided fusion category C has a unique pivotal (in fact, spherical)
structure so that each object in C has positive dimension. Moreover, the spherical
structures on the braided fusion category underlying any modular category are in
1-1 correspondence with simple objects a with a⊗2 ∼= 1, and each spherical structure
again yields a modular category [6, Lemma 2.4]. Thus a classification of some
class of weakly integral modular categories with positive dimensions can be easily
extended to a classification of all modular categories in that class. This motivates
our assumption that the categorical and FP-dimensions coincide.

Important data for a premodular category are the S-matrix and T -matrix, S =
(Sa,b) and T = (θaδa,b). These matrices are indexed by the simple objects in C,
and the diagonal entries of the T -matrix are referred to as twists. These data
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obey (see [2]) Sa,b = Sb,a, S0,a = da, Sa,b = Sa,b∗ and the balancing relation
θaθbSa,b =

�
c N

c
a∗,bdcθc.

For D ⊂ C premodular categories the centralizer of D in C is denoted by CC (D)
and is generated by the objects {X ∈ C | SX,Y = dXdY ∀Y ∈ D} (see [4]). The
category CC (C) is called theMüger center of C and is often denoted by C�. Note that
a useful characterization of a simple object being outside of the Müger center is that
its column in the S-matrix is orthogonal to the first column of S. If C� = Vec, then
C is said to be a modular category, whereas if C� = C, then C is called symmetric.
Symmetric categories are classified in terms of group data:

Theorem 2.2 ([9]). If C is a symmetric fusion category, then there exists a finite
group G such that C is equivalent to the super-Tannakian category Rep(G, z) of
super-representations (i.e. Z2 graded) of G where z ∈ Z(G) is a distinguished
central element with z2 = 1 acting as the parity operator.

Observe that C ∼= Rep(G, z) with z = e ∈ G if and only if the Z2-grading is trivial
so that Rep(G, z) = Rep(G). In this case we say C is Tannakian, and otherwise
we say it is non-Tannakian. The smallest non-Tannakian symmetric category is
Rep(Z2, 1), which we will denote by sVec when equipped with the (unique) structure
of a ribbon category with dim(χ) = 1 for a non-trivial object χ.

An invertible object in C that generates a Tannakian category (i.e. Rep (Z2)) is
referred to as a boson, while an invertible object in C generating sVec is referred to
as a fermion. By [20, Lemma 5.4] we find that if sVec ⊂ C� for some premodular
category C and χ is the generator of sVec, then χ ⊗ Y � Y for all simples Y in C.
Bosons are useful through a process known as de-equivariantization, which we will
discuss shortly.

The Semion and Ising categories will appear frequently in the sequel in factoriza-
tions of modular categories. The Semion categories, denoted by Sem, are modular
categories with the same fusion rules as Rep (Z2); see [26] for details. The Ising cat-
egories are rank 3 modular categories with simple objects: 1, ψ (a fermion), and σ

(the Ising anyon) of dimension
√
2. The key fusion rules are ψ2 = 1 and σ2 = 1+ψ,

while the modular datum can be found in [26]. There are exactly 8 inequivalent
Ising categories. They are the smallest examples of generalized Tambara-Yamagami
categories, i.e. non-pointed fusion categories with the property that the tensor prod-
uct of any two non-invertible simple objects is a direct sum of invertible objects. In
fact, by [24] any modular generalized Tambara-Yamagami category is a (Deligne)
product of an Ising category and a pointed modular category. Characterizations of
the Ising categories can be found in [5,12]. In Lemmas 4.7, 4.8 and 4.9 we find new
conditions implying a category must contain an Ising category.

A grading of a fusion category C by a finite group G is a decomposition of
the category as direct sum C =

�
g∈G Cg, where the components are full abelian

subcategories of C indexed by the elements of G, such that the tensor product maps
Cg ×Ch into Cgh. The trivial component Ce (corresponding to the unit of the group
G) is a fusion subcategory of C. The grading is called faithful if Cg �= 0, for all g ∈ G,
and in this case all the components are equidimensional with |G|dim Cg = dim C.

Every fusion category C is faithfully graded by the universal grading group U (C),
and every faithful grading of C is a quotient of U (C). Furthermore, the trivial
component under the universal grading is the adjoint subcategory Cad, the full fusion
subcategory generated by the objects X⊗X∗, for X simple. The universal grading
was first studied in [17], and it was shown that if C is modular, then U (C) is
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canonically isomorphic to the character group of the group G(C) of isomorphism
classes of invertible objects in C.

When C is a weakly integral fusion category there is another useful grading called
the GN-grading first studied in [17]:

Theorem 2.3 ([17, Theorem 3.10]). Let C be a weakly integral fusion category.
Then there is an elementary abelian 2-group E, a set of distinct square-free positive
integers nx, x ∈ E, with n0 = 1, and a faithful grading C =

�
x∈E C(nx) such that

dim(X) ∈ Z
√
nx for each X ∈ C(nx).

Notice the trivial component of the GN -grading is the integral subcategory Cint.
Our approach to classification relies upon equivariantization and its inverse func-

tor de-equivariantization (see for example [12]), which we now briefly describe.
An action of a finite group G on a fusion category C is a strong tensor functor
ρ : G → End⊗(C). The G-equivariantization of the category C is the category
CG of G-equivariant objects and morphisms of C. When C is a fusion category
over an algebraically closed field K of characteristic 0, the G-equivariantization,
CG, is a fusion category with dim CG = |G| dim C. The fusion rules of CG can
be determined in terms of the fusion rules of the original category C and group-
theoretical data associated to the group action [7]. De-equivariantization is the
inverse to equivariantization. Given a fusion category C and a Tannakian subcate-
gory Rep(G) ⊂ C, consider the algebra A = Fun (G) of functions on G. Then A is a
commutative algebra in C. The category of A-modules on C, CG, is a fusion category
called a G-de-equivariantization of C. We have |G|dim CG = dim C, and there are

canonical equivalences (CG)
G ∼= C and

�
CG

�
G

∼= C. An important property of the

de-equivariantization is that if the Tannakian category in question is C�, then CG is
modular and is called the modularization of C [4, 20].

One may also construct modular categories from a given modular category C
with an action of a finite group G by the gauging introduced and studied in [3] and
[8]. Gauging is a 2-step process. The first step is to extend the modular category
C to a G-crossed braided fusion category D ∼=

�
g∈G Dg such that De = C with a

G-braiding; see [12]. The second step is to equivariantize D by G. One important
remark is that there are certain obstructions to the first step [13], while the second
is always possible.

3. Even metaplectic categories of dimension 8N ,

with N an odd integer

In this section we consider even metaplectic modular categories. A general un-
derstanding of these categories will facilitate a classification of modular categories
of dimension 8N for any odd square-free integer N . Metaplectic categories were
defined and studied in [1]. To conform with their notation we define:

Definition 3.1. An even metaplectic modular category is a modular category
C with positive dimensions that is Grothendieck equivalent to (i.e. has the same
fusion rules as) SO(2N)2, for some integer N ≥ 1.

Remark 3.2. There are significant differences between N odd and even; see [23]. For
our results only the case N odd plays a role. Notice the case N = 1 is degenerate,
corresponding to SO(2)2, which has fusion rules like Z8. Our results carry over to
this (pointed) case with little effort, so we include it.
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Throughout the remainder of this section, C will denote an even metaplectic
category with N an odd integer. In particular, C has dimension 8N . In this case
it follows from the definition that C has rank N + 7 [23]. While the dimension and
rank of C are straightforward, the fusion rules strongly depend on the parity of N .
While the full fusion rules and S-matrix can be found in [23, Subsection 3.2], we
review here some of the fusion rules that will be relevant in later proofs. The group
of isomorphism classes of invertible objects of C is isomorphic to Z4. We will denote
by g a generator of this group and will abuse notation referring to the invertible
objects as gk. The only non-trivial self-dual invertible object is g2. In C, there
are N − 1 self-dual simple objects, Xi and Yi, of dimension 2. Furthermore, one
may order the 2-dimensional objects such that X1 generates Cad and Y1 generates
Cint. The remaining four simples in C, Vi, have dimension

√
N . C has the following

fusion rules:

• g ⊗ Xa � YN+1
2

−a, and g2 ⊗ Xa � Xa, and g2 ⊗ Ya � Ya for 1 ≤ a ≤
(N − 1) /2.

• Xa ⊗Xa = 1⊕ g2 ⊕Xmin{2a,N−2a}; Xa ⊗Xb = Xmin{a+b,N−a−b} ⊕X|a−b|

(a �= b).

• V1 ⊗ V1 = g ⊕
N−1

2�
a=1

Ya.

• gV1 = V3, gV3 = V4, gV2 = V1, gV4 = V2 and g3Va = V ∗
a , V2 = V ∗

1 ,
V4 = V ∗

3 .

We remark that it is immediately clear that an even metaplectic modular cate-
gory of dimension 8N with N odd is prime (not the Deligne product of two modular
subcategories): V1 is a tensor generator, hence cannot reside in any proper fusion
subcategory.

For SO (2N)2 we order the simple objects by their highest weights as follows:
0, 2λ1, 2λN−1, 2λN ,λ1, . . . ,λN−2,λN−1 + λN ,λN−1,λN ,λN−1 + λ1,λN + λ1. The
correspondence with the notation used in this paper is

1, g2, g, g3, Y1, X1, . . . , YN−1
2

, XN−1
2

, V1, V2, V3, V4.

The S- and T -matrices have the following forms:

S =
� A B C

Bt D 0
Ct 0 E

�
, T = diag

�
1, 1, iN , iN , . . . , (−1)ae−a2πi/2N , . . . , θ�, θ�,−θ�,−θ�

�

where θ� = eπi
2N−1

8 , and A, E, and C are 4× 4 matrices, B is a 4× (N − 1) matrix
and D is (N − 1)× (N − 1). To give their explicit forms we first define a C-valued
function:

G(N) =

�
(−1
N )

√
N if N ≡ 1 mod 4,

i(−1
N )

√
N if N ≡ 3 mod 4,

where
�−1

N

�
is the Jacobi symbol, and set α = G (N)θ2ε and β = i2N−1θ2εG (N).

Then:

A =

	
1 1 1 1
1 1 1 1
1 1 −1 −1
1 1 −1 −1



, B = 2

�
1 ··· 1
1 ··· 1

−1··· (−1)a ···1
−1··· (−1)a ···1

�
, C =

√
N

�
1 1 1 1
−1 −1 −1 −1
−iN iN −iN iN

iN −iN iN −iN

�
,

E =

⎛
⎝

α α β β

α α β β

β β α α

β β α α

⎞
⎠ , Da,b = 4 cos(

πab

N
), 1 ≤ a, b ≤ N − 1.
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Finally, we note that in terms of the simple objects the basis in which S and T is
expressed is ordered such that the first two columns of A correspond to invertibles
in Cad, and the even indexed columns of B correspond to the 2-dimensional objects
in Cad.

Lemma 3.3. If C is an even metaplectic modular category, then the unique non-
trivial self-dual invertible object is a boson.

Proof. For N = 1, we have the degenerate case where C is Grothendieck equivalent

to Rep (Z8) with twists θj = ej
2πi/8. There is a unique non-trivial self-dual object,

j = 4, and the corresponding twist is θ4 = e16πi/8 = 1; thus it is a boson.
If N ≥ 2, consider Xi one of the 2-dimensional simple objects in Cad and recall

that g2 ⊗ Xi = Xi. Of course, g2 ∈ Cad. Since C is modular we know that
CC (Cad) = Cpt [17]. In particular, g2 is in CCad

(Cad). Thus g2 is not a fermion by
[20, Lemma 5.4]. �

It follows that such a category, C, contains a Tannakian category equivalent to
Rep(Z2).

Definition 3.4. A cyclic modular category is a modular category that is Grothen-
dieck equivalent to Rep(Zn) for some integer n. When the specific value of n is
important we will refer to such a category as a Zn-cyclic modular category.

For more details regarding cyclic modular categories see [1, Section 2].

Lemma 3.5. If C is an even metaplectic modular category of dimension 8N with
N odd, then CZ2

is a generalized Tambara-Yamagami category of dimension 4N . In
particular, the trivial component of CZ2

is a cyclic modular category of dimension
2N .

Proof. As we noted previously, by Lemma 3.3, �g2� ∼= Rep (Z2) is a Tannakian
subcategory of C. In particular we can form the de-equivariantization CZ2

which
is a Z2-crossed braided fusion category of dimension 4N . In particular, the trivial
component of CZ2

under the Z2-crossed braiding is modular of dimension 2N [12,
Proposition 4.56(ii)].

Since g2 fixes the 2-dimensional objects of C, these 2-dimensionals give rise to
pairs of distinct invertibles in CZ2

. This produces 2(N − 1) invertibles in CZ2
. On

the other hand, g2 ⊗ 1 = g2 and g2 ⊗ g = g3. This leads to two more invertibles
in CZ2

. Since the non-integral objects are moved by g2, we can conclude that CZ2

has only two non-integral objects which each have dimension
√
N . In particular,

CZ2
is a generalized Tambara-Yamagami category, and the trivial component of

CZ2
is a pointed modular category with 2N invertible objects [19]. To conclude

that this pointed category is cyclic we apply the proof of [1, Lemma 3.4] mutatis
mutandis. �

Remark 3.6. By the previous lemmas, every even metaplectic category with N odd
can be obtained as a Z2-gauging of a cyclic modular category of dimension 2N . We
refer the reader to [3] and [8] for a precise definition of gauging and its properties.

So to classify even metaplectic categories with N odd, we must understand Z2

actions by braided tensor autoequivalences of a cyclic modular category of dimen-
sion 2N . Note that a Zn-cyclic modular category with n odd has a fixed-point-free
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Z2 action by braided tensor autoequivalences associated to the Zn group automor-
phism j �→ n− j. We refer to this automorphism as the particle-hole symmetry. In
fact, it is shown in [1] that for n = pa an odd prime power, this is the only non-trivial
Z2 action by braided tensor autoequivalences. By decomposing a Zn-cyclic modular
category into its prime power Deligne tensor factors, we see that every Z2 action
by braided tensor autoequivalences on a Zn cyclic modular category (for n odd)
is obtained by choosing either particle-hole symmetry or the identity on each Zpa

cyclic modular Deligne factor. Of course particle-hole symmetry for Zn corresponds
to choosing particle-hole symmetry on each Deligne factor. On the other hand, the
Semion (or its conjugate) has exactly one non-trivial Z2 action by braided tensor
autoequivalences corresponding to the non-trivial element of H2(Z2,Z2) = Z2 [3].

For a Z2N cyclic modular category (N odd) let us define the particle-hole sym-
metry to be the Z2 action by braided tensor autoequivalences corresponding to the
non-trivial tensor autoequivalence on the Semion factor and ordinary particle-hole
symmetry on the odd ZN factor.

Remark 3.7. Let C be a Z2N -cyclic modular category with N odd. It follows from
[3, 8] that if we choose a Z2 action by braided tensor autoequivalences on C that
restricts to the identity on some Zpa -cyclic modular subcategory Ppa of C (including

p = 2, a = 1), then the corresponding gauging C×,G
G will have a Deligne factor of

Ppa . Indeed, in the extreme case of N = 1, if we gauge Sem by the trivial Z2 action
we obtain Sem�Rep(DωZ2) for some cocycle ω. Indeed, gauging Vec by the trivial
Z2 action produces the factor on the right.

Theorem 3.8. If C is an even metaplectic category of dimension 8N , with N
an odd integer, then C is a gauging of the particle-hole symmetry of a Z2N -cyclic

modular category. Moreover, for 2N = 2pk1

1 · · · p
kr−1
r , with pi distinct odd primes,

there are exactly 2r+2 many inequivalent even metaplectic modular categories of this
form.

Proof. By Remark 3.6, each even metaplectic modular category, with N odd, is
obtained as a Z2-gauging of a Z2N -cyclic modular category. However, since an
even metaplectic modular category is prime, Remark 3.7 implies that it can only
be obtained by gauging particle-hole symmetry. This proves the first statement.

To count the inequivalent even metaplectic categories of dimension 8N with N
odd, we note that for each of the r+1 prime divisors of 2N = 2pk1

1 · · · pkr
r there are

exactly two cyclic modular categories (see [1, Section 2]). Gauging the particle-hole
symmetry leads to an additional choice of H3(Z2, U(1)) = Z2, yielding a total of
2r+2 choices. �

4. Modular categories of dimension 8m,

with m odd square-free integer

Metaplectic categories are a large class of dimension 8m weakly integral modular
categories for m odd and square-free. In this section we show that the only non-
metaplectic modular categories of dimension 8m are pointed or products of smaller
categories. In order to accomplish this we will first determine the structure of the
pointed subcategory. This will enable us to show that the integral subcategory is
Grothendieck equivalent to Rep (D4m). This will be sufficient to establish that C
is metaplectic if it is prime. Along the way we will resolve the case that C has
dimension p3m for p an odd prime and m a square-free integer.
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We begin by considering integral categories of dimension p2m and p3m. This
will allow us to quickly reduce to the case of 8m.

Lemma 4.1. Let p be a prime and m a square-free integer such that gcd(m, p) = 1.
If C is a modular category of dimension pkm with pk | dim Cpt, then C is pointed.

Proof. First note that dim Cad=
pkm

dim Cpt
. Since pk |dim Cpt we know that dim Cad |m.

On the other hand, Cad ⊂ Cint and all simples in Cint have dimension pj , j ≥ 0. Thus
the dimensions of simples in Cad are 1 since gcd(p,m) = 1 and p � dim Cad, thus
Cad ⊂ Cpt. In particular, C is nilpotent and is given by Cpk �Cq1 � · · ·�Cq� where qj
are primes such that m = q1q2 · · · q� and Cn is a modular category of dimension n;
see [11, Theorem 1.1]. By the classification of prime dimension modular categories
we know Cq1 � · · ·� Cq� is pointed, but pk does not divide its dimension. Thus Cpk

must be pointed. �
For an integral modular category of dimension p2m with p and m as in the above

lemma, we have that p2m = dim C = |Cpt| + ap2, where a is the number of simple
objects of dimension p. Thus we have the following corollary.

Corollary 4.2. If p is prime, m is a square-free integer with gcd (m, p) = 1 and C
is an integral modular category with dimension p2m, then C is pointed.

Lemma 4.3. Any integral modular category C of dimension p4 or p3m where p is
a prime and m is a square-free integer relatively prime to p is pointed.

Proof. The case m = 1 (i.e. p3) is well-known and easily verified using the grading
and |U(C)| = rankCpt.

First we consider dim C = p4. By [10, Lemma 4.9] C is a Drinfeld center
Z(VecωG)

∼= Rep(DωG) for some group G of order p2. By [25] such a DωG is
commutative; i.e. C is pointed.

Assume that C is not pointed. Since C is modular we know that the simples
have dimensions 1 and/or p. In particular, there is an integer b such that p3m =
dim Cpt+p2b and thus p2 | dim Cpt. By Lemma 4.1 we may assume p3 does not divide
dim Cpt. In particular, there exists an integer k such that k | m and dim Cpt = p2k.
Next let Ci denote the components of the universal grading of C. Then pm/k =
dim Ci = ai + bip

2 where ai is the number of invertibles in component Ci and bi is
the number of dimension p objects in Ci. So we can conclude that p | ai and ai �= 0
for all i. Thus dim Cpt =

�
i ai ≥

�
i p = p dim Cpt, an impossibility. �

Next we note that the condition that C is integral in the previous statements is
vacuous if p is odd. This is made explicit by the following lemma.

Lemma 4.4. If C is a strictly weakly integral modular category, then 4 | dim C.

Proof. Coupling the weakly integral grading of [17] and the fact that C is strictly
weakly integral, we have 2 | dim Cpt | dim Cint | dim C/2. �

Lemma 4.4, Corollary 4.2, and [5, Theorem 3.1] resolve the case of C a weakly
integral modular category of dimension p2m with m square-free and coprime to p.
We have:

Theorem 4.5. If p is a prime, m is a square-free integer coprime to p, and C
is a non-pointed modular category of dimension p2m, then p = 2 and one of the
following is true:
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(i) C contains an object of dimension
√
2 and is equivalent to a Deligne product

of an Ising modular category with a cyclic modular category, or
(ii) C contains no objects of dimension

√
2 and is equivalent to a Deligne product

of a Z2-equivariantization of a Tambara-Yamagami category over Zk and a
cyclic modular category of dimension n where 1 ≤ n = m/k ∈ Z.

Applying Lemmas 4.1 and 4.3 we have:

Corollary 4.6. If C is a modular category of dimension 8m with m an odd square-
free integer, then either C is pointed or C is strictly weakly integral and 8 � |U (C)|.

So to study weakly integral modular categories of dimension p3m it suffices to
study strictly weakly integral modular categories of dimension 8m by Lemmas 4.4
and 4.3.

Lemma 4.7. Let G be a finite group and C be the G-equivariantization of a fusion
category D which contains an Ising category. If C has the property that every
X ∈ Irr (C) such that dimX ∈ Z

�√
2
�
actually has dimension

√
2, then C contains

an Ising category.

Proof. By [7], the objects in C are pairs SX,π where X is the G-orbit of a simple
in D and π is a projective representation of StabG (X). Now let σ be the Ising
object in D. Then there exists a projective representation of StabG (σ) that is self-
dual; denote it by ρ. Then Sσ.ρ is a simple in C and is self-dual by [7]. Moreover,

dimSσ,ρ =
√
2 dim ρ [G : StabG (X)]. However, our hypotheses regarding C ensure

that dimSσ,ρ =
√
2. �

The next two lemmas deal with the cases dim C = 8 or 16, i.e. m = 1, 2.

Lemma 4.8. If C is a dimension 8 strictly weakly integral premodular category,
then C ∼= I �D where D is a Z2-cyclic premodular category.

Proof. Under the GN-grading (either (Z/2Z)2 or Z/2Z), C0 = Cint, so dim Cint = 2

or 4 (respectively). The first case would yield 3 objects of dimension
√
2, which

is inconsistent with the GN-grading. Thus dim Cint = 4, and we conclude that
Cint = Cpt and there are two distinct objects X and Y of dimension

√
2.

Observe that if either the universal grading group U (C) ∼= (Z/2Z)2 or X ∼= X∗,
then X⊗2 = 1⊕ z ∈ Cad with z �∼= 1 and z∗ ∼= z. Thus X,1, z form a braided Ising
category I by [12]. Now it follows from a dimension count and [21, Cor. 7.8] that
C ∼= I �D as claimed.

Thus it is enough to consider the case that X∗ ∼= Y . Then we have X ⊗ Y ∼=
1 ⊕ z for some self-dual z ∈ Cad with θ4z = 1 (i.e. z is a boson, a fermion or a
semion). If θz = 1, then �z� is Tannakian so that we may de-equivariantize C.
However, since (1 ⊕ z) ⊗ X ∼= 2X, under the de-equivariantization functor F we

have F (X) = X1 ⊕ X2 with dim(Xi) =
√
2
2 (see [22, Proposition 2.15]), which is

not an algebraic integer. So θz �= 1. Now if the remaining two invertible objects
satisfy θa = θb, the balancing equation implies that Sz,b = Sz,a = 1

θz
�= 1; hence

the Müger centers of both C and Cint are trivial. But by [21] we would then have
rankCint = 4 | rankC = 6, a contradiction. Thus we must have θa �= θb (so a � b∗)
and θz �= 1. Now if either a or b is a boson we may de-equivariantize and then apply
Lemma 4.7 to conclude that X generates an Ising category, contradicting X � X∗.
So each of z, a and b are fermions or semions. Now applying balancing and the
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fact that a ⊗ X ∼= X∗ ∼= b ⊗ X we have Sz,X = dX

θz
�= dXdz, Sa,X = dX

θa
�= dXda

and Sb,X = dX

θb
�= dXdb so that C is modular. Now if any of a, b or z is a semion

we may factor C as a Deligne product Sem � E , again contradicting X � X∗.
The only remaining possibility is that each of a, b and z is a fermion. From the
balancing equation we compute the S-matrix of Cint and find that Si,j = −1 for
1 �= i �= j �= 1, which implies that Cint is modular, and we obtain the contradiction
4 | 6 as above. �

Lemma 4.9. If C is a strictly weakly integral modular category of dimension 16,
then C contains an Ising subcategory. In particular, C ∼= I �D where D is Ising or
a pointed modular category of dimension 4.

Proof. The squares of the dimensions of the simple objects must divide 16, and so
the possible simple object dimensions are 1, 2,

√
2, and 2

√
2. In particular, the GN

grading is Z/2Z and the dimension of the integral component is 8.
There are now five possibilities for the universal grading group: Z/2Z, Z/4Z,

(Z/2Z)2, (Z/2Z)3, or Z/8Z. The first case is not possible by dimension count in
the integral component.

In the case that the universal grading has order 8, each component has dimension
2. Then the integral components are rank 2 pointed categories and the non-integral
components each have a single simple object of dimension

√
2. Then the category

is a modular generalized Tambara-Yamagami category and C ∼= I � D where D is
a pointed modular category of dimension 4 by [24, Theorem 5.4].

In the case that the universal grading has order 4, dimension count reveals
that there are four invertible objects, one object of dimension 2, and four objects
of dimension

√
2. Moreover, Cad = Cpt. Since there is only one simple object

of dimension 2, it is self-dual. Moreover, Cint is a braided Tambara-Yamagami
category, and therefore G(C) ∼= U(C) ∼= Z2 × Z2, by [28, Theorem 1.2]. Then
the fusion subcategory generated by the adjoint component and one non-integral
component has dimension 8. Then, by Lemma 4.8, it contains Ising and the result
follows. �

Proposition 4.10. If C is a strictly weakly integral modular category of dimension
8m where m is an odd square-free integer, then one of the following is true:

(i) C is a Deligne product of a prime modular category of dimension 8� and a
pointed Zk-cyclic modular category with k odd, or

(ii) C = Sem � D, where Sem is a Semion category and D is a strictly weakly
integral modular category of dimension 4m (see [5]).

Proof. If C is prime, then we are in case (i) with k = 1. If C is not prime, then
it must factor into a Deligne product of modular categories [21, Theorem 4.2]. By
Lemma 4.4 we can conclude that C = C1 � C2, C1 is strictly weakly integral, and C2
is cyclic, pointed and non-trivial. The result now follows from earlier work [5, 26]:
if dim C2 is odd, then we are in case (i), otherwise 2 | dim C2, and hence C contains
a Semion category [1]. �

We have now reduced to the case that C is a prime strictly weakly integral
modular category of dimension 8m with m and odd square-free integer, and we
assume C has this form in what follows.
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Proposition 4.11. Suppose D is a non-symmetric premodular category that is
Grothendieck equivalent to Rep (Z2 × Z2). If D contains the symmetric category
Rep (Z2), then D contains a semion category.

Proof. Denote the simple objects in D by 1, g, h, gh, and g generates the symmetric
category Rep (Z2). Then examining the balancing relations for Sh,h, Sg,h, Sgh,gh,
and Sh,gh we see that θh = θgh, Sh,h = Sgh,gh = Sh,gh = θ2h. Since D is not
symmetric but �g� is, we can conclude that Sh,h �= 1. However, D is self-dual,
and hence Sh,h is a real root of unity. In particular, Sh,h = −1 and θh = ±i.
Consequently, h generates a Semion subcategory. �
Corollary 4.12. Let U (C) ∼= Z/4Z.

Proof. By Lemma 4.1 we know that 8 does not divide dim Cpt. Moreover, by invok-
ing the universal grading and examining the dimension equation for Cad modulo 4
we see that there exists an odd integer k such that dim Cpt = 4k. If k > 1, there
exists an odd prime p dividing k and a p-dimensional category D ⊂ Cpt.

Since C is prime we know that D is symmetric and Tannakian. If we de-equivari-
antize C by Zp, the trivial component of the resulting Zp-graded category has
dimension 8m/p2 [12, Proposition 4.56(i)]. This is not possible as p is odd and m
is square-free. Thus dim Cpt = 4.

By dimension count we can deduce that dim (Cad)pt = 2. Since CCCpt = Cad
we can deduce that Cpt is not symmetric. However, C is prime and so Vec �=
CCad

(Cad) ⊂ (Cad)pt and so CCad
(Cad) = (Cad)pt. Letting g be a generator of this

Müger center and X a 2-dimensional object in Cad, by dimension count g is a
subobject of X ⊗X∗. In particular, g fixes X and thus θg = 1 by [20, Lemma 5.4].

By applying Proposition 4.11 to D = Cpt and invoking the primality of C we
have that Cpt � Rep (Z2 × Z2). �

Henceforth, let g be a generator of Cpt and Cgk the component of the universal

grading of C corresponding to the simple gk ∈ Cpt. Furthermore, note that C1
and Cg2 each contain exactly two invertible objects. Finally, we will denote by
X1, X2, . . . , Xn the simple 2-dimensional objects in Cad and by Yi=g⊗Xi

the simple
2-dimensional objects in Cg2 .

Remark 4.13. Under this notation (Cad)pt = �g2� is a 2-dimensional Tannakian
category.

Lemma 4.14. All 2-dimensional simple objects in C are self-dual.2

Proof. Recall that under our notation, Xi are the simple 2-dimensional objects in
Cad, and Yi = gXi are the 2-dimensional simple objects in Cg2 . Then Y ∗

i = g3X∗
i =

g
�
g2X∗

i

�
= gX∗

i . So it suffices to show that Xi are self-dual. To this end, observe

thatXi⊗X∗
i = 1⊕g2⊕X̃i for some 2-dimensional simple X̃i. In particular, 1 and g2

are simples in (Cad)ad and all 2-dimensionals in (Cad)ad are self-dual. Now suppose
(Cad)ad �= Cad. Then Cad has a non-trivial universal grading, the trivial component
is (Cad)ad and it has dimension 2+4k for some integer k. The remaining components

2Note added in proof: a clearer proof that Cad is self-dual is sketched as follows. Cad has
Tannakian Müger center (generated by g2). The Z2 de-equivariantization of Cad is a cyclic modular
category C(Zm, q) of dimension m. The only Z2-equivariantization of C(Zm, q) with exactly two
invertible objects comes from Z2 acting by inversion on Zm and has self-dual fusion rules, namely
those of Rep(D2m) (see [7]).
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must also have this dimension, but consist entirely of 2-dimensional objects. This
is not possible and so (Cad)ad = Cad. �
Lemma 4.15. Cint is Grothendieck equivalent to Rep (Zm�Z4) and Cad is Grothen-
dieck equivalent to Rep (D2m).

Proof. Since Cad is a subcategory of Cint, then CCint
(Cint) ⊂ CCint

(Cad) = RepZ2.
Given that D is prime, Cint is not modular, and so its Müger center is Cint ∼= RepZ2

Tannakian. Thus (Cint)Z2
is pointed, modular, and of dimension 2m. In particular,

(Cint)Z2
is cycically generated, i.e., the category is tensor generated by a single

object. So by [12, Proposition 4.30(i)] Cint must be cyclically generated. The
remainder of the statement follows immediately from [23, Theorem 4.2 and Remark
4.4] and Lemma 4.14. �

To completely determine the Grothendieck class of C we must determine Xi⊗Vk

and g ⊗ Vk where Vk are the four non-integral objects.

Corollary 4.16. C has four non-integral objects: V , gV , g2V , g3V . Moreover,
V ∗ = g3V . In particular, the GN-grading of C is Z2 and all non-integral objects
have dimension

√
m.

Proof. We know that the GN-grading is given by a non-trivial abelian 2-group
and hence is Z/2Z, by Lemma 4.1 and Corollary 4.12. In particular, since m is
square-free, there is a square-free integer x such that the non-integral objects have
dimension

√
x and 2

√
x.

A straightforward application of the fusion symmetries and a dimension calcula-
tion reveals that g2 fixes all simples of dimension 2

√
x. Using this fact, we can ap-

peal to the balancing equation and find that Sg2,g2X = 2
√
x and Sg2,g2Y = θY

θ
g2Y

√
x

for any simples X and Y of dimension 2
√
x and

√
x respectively. However, g2 is

self-dual and so θY /θg2Y = ±1. Now observe that the orthogonality of the g2 and
1 columns of the S-matrix can only be satisfied if θY = −θg2Y and there are no
objects of dimension 2

√
x. In particular, g2 moves all simples of dimension

√
x.

Next, let V,W ∈ Cg be simples of dimension
√
x. Moreover, without loss of

generality we may assume that g is a subobject of V ⊗ V . Then 1 is a subobject
of

�
g3V

�
⊗ V and hence V ∗ = g3V . Next note that by the universal grading and

the parity of x we can deduce that either g or g3 is a subobject of V ⊗W (but not
both). In the former case 1 is a subobject of V ⊗ g3W , and in the latter case 1 is a
subobject of V ⊗gW . Thus g3W = V ∗ = g3V or gW = V ∗ = g3V , according to the
invertible subobject appearing in V ⊗W . Since W was arbitrary we can conclude
that there are exactly four non-integral objects: V, gV, g2V , and g3V . Moreover,
each of these objects has dimension

√
m. �

Lemma 4.17. Let Xi ⊗ V ∼= V ⊕ g2V .

Proof. By dimension count and the grading we have Xi ⊗ V = V ⊕ g2V , 2V , or
2g2V . The latter two are not possible as g2 fixes Xi and hence must fix Xi⊗V . �
Theorem 4.18. If C is a non-pointed modular category of dimension p3m where p
is a prime and m is a square-free integer that is coprime to p, then p = 2 and one
of the following is true:

(i) C is a Deligne product of an even metaplectic modular category of dimension
8� and a pointed Zk-cyclic modular category with k odd, or
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(ii) C is the Deligne product of a Semion modular category with a modular
category of dimension 4m (see [5]).

Proof. By Lemmas 4.4 and 4.3, Proposition 4.10, and Lemma 4.8 it suffices to
consider p = 2, m odd and square-free, and C prime. In this case we may apply
Lemmas 4.17, 4.15, and Corollary 4.16 to conclude that C is metaplectic. �
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