FIGURE 5. A circular 2-D filter.
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FIGURE 6. A fan 2-D filter.
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Logan L. Grado, Matthew D. Johnson, and Theoden I. Netoff

The Sliding Windowed Infinite Fourier Transform

he discrete Fourier transform (DFT)
is the standard tool for spectral
analysis in digital signal process-
ing, typically computed using the fast
Fourier transform (FFT). However, for
real-time applications that require recal-
culating the DFT at each sample or over

Digital Object Identifier 10.1109/MSP.2017.2718039
Date of publication: 6 September 2017

1053-5888/17©2017IEEE

only a subset of the NV center frequencies
of the DFT, the FFT is far from optimal.
The sliding DFT (SDFT), first devel-
oped by Springer in 1988 [1] and then
improved and popularized by Jacobsen
and Lyons in 2003 [2], [3], is an algorithm
that computes individual DFT bins recur-
sively, allowing for efficient computation
of the DFT on a sample-by-sample basis.
The SDFT is efficient; however, it is lim-
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ited in that it is only marginally stable
and requires storing N previous inputs.
Furthermore, the SDFT’s rectangular
window causes spectral leakage and is
limited to computing the N center fre-
quencies of the DFT.

Here, we present a novel sliding dis-
crete-time Fourier transform (DTFT),
which we call the sliding windowed infi-
nite Fourier transform (SWIFT), that
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has several advantages over the SDFT.
The SWIFT is guaranteed stable, reduc-
es spectral leakage without increasing
computational complexity, improves
frequency-domain sampling, and gives
greater weight to more recent samples,
allowing for improved real-time spec-
tral and phase analysis. Additionally, we
present a modified version of the SWIFT
algorithm, called the aSWIFT, which
further reduces spectral leakage. We con-
clude by comparing all three algorithms
with a brief numerical simulation.

The sliding DFT

The SDFT performs an N-point DFT
on samples within a sliding rectangular
window. The DFT is initially computed
on the first N samples. The time
window is then advanced one sample,
and a new N-point DFT is calculated
directly from the results of the previous
DFT. The SDFT can be expressed com-
pactly as

Xn [k] :Xn—] [k] ejZﬂk/N_x[n _N] +X[Yl] .
D

The SDFT’s output is discrete in the
frequency domain and limited to normal-
ized frequencies of 27k/N, k € 7. Using
this method, the DFT can be efficiently
recalculated at each sample using only a
few operations.

The single-bin SDFT algorithm can
be implemented as an infinite-impulse
response (IIR) filter with a comb filter
followed by a complex resonator. The
recursive nature of the SDFT dictates
the requirement of some initialization
method; the output X, [k] is only valid if

X, —1(k] is valid. There are two methods

for initializing the algorithm:

1) Reset all X,,—1[k]s to zero, and then
begin cycling data; after N samples
have cycled, the output will be valid.

2) Initialize all X, —[k] with an FFT of
the previous N samples.

For a full description of the SDFT, see

Jacobsen and Lyons [2], [3].

While the SDFT is an efficient algo-
rithm, the use of a rectangular window
results in spectral leakage. To address
this, Jacobsen and Lyons described how
to implement time-domain windowing
via frequency-domain convolution. This
can be performed with almost any finite
window, but it significantly increases
the computational complexity and com-
promises the simplicity of the SDFT.

The sliding windowed infinite
Fourier transform

The SWIFT is a type of sliding DTFT
that is windowed with an infinite-length,
causal exponential function

mlt m<0

e
W[m]_{ 0 m>0

@

where w[m] is the window function,
m = 0 is the current sample, and T > 0
is the time constant of the window, with
units of samples. The exponential win-
dow gives greater weight to more recent
samples, allowing the SWIFT to be more
sensitive to transient changes in signal
power than the rectangular window. The
exponential windowed DTFT is

0
Xo(@) = Y, " x[n+mle™", (3)

m=-—o0

where @ has normalized units of radi-
ans/sample (@ =27zflfs) and is continu-
ous in the frequency domain. We can
derive a recursive formula for (3) by relat-
ing X,+1(w) back to X,(w) [see (4) in
the box at the bottom of the page]. Finally,
we decrement the result of (4) one sample
to yield the recursive SWIFT formulation

Xo(@) =e "X, 1 (w) +x[n]. (5)

The SWIFT operates by rotating
the phase of the previous DTFT by
o, decaying the amplitude by e,
and adding in the new data sample. Fig-
ure 1(a) demonstrates how the SWIFT’s
window advances one sample at a time,
picking up the new data sample and
updating the previous samples. (The
incremental advance and infinite nature
of the time window are what led us to
the name sliding windowed infinite Fou-
rier transform.)

Derivation and equivalence

The SWIFT is derived directly from,
and shows exact equivalence to, the
windowed DTFT; therefore there is no
loss of information or distortion tradeoff
with the SWIFT as compared to other
means of calculating the DTFT. The
SWIFT algorithm calculates X, (w) by
phase shifting and decaying the previ-
ous X,-1(w) and adding the current
x[n] sample; thus, the SWIFT requires
only one complex multiply and one real
add per sample per bin.

Initialization
Like the SDFT, the SWIFT can be ini-
tialized by sliding onto the data or by

m=-oo
1
m=—oo+1

m=-—oc

m=—oc0

0 o
Xn+1(@) = Z " x[n+m+1]e "
e(m—l)/‘rx [n +m]e—jw(m—l)

0
_ z e(m—l)/rx[n+m]e—_,w(m—|)+e(1—1)/1x[n+He—,m(l—l)_e(—oc—lwx[n_Oo]e—Jw(—oo—l)

x[n+1]

= Tl Z e x[n +mle " +x[n +1]

Xn(w)
Xo+1(@) =e "X, (w) +x[n +1]

0

“)
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FIGURE 1. (a) The signal windowing for the SWIFT algorithm. The data samples and window used for the first computation (blue) and second computation
(green). (b) The impulse response and (c) the pole/zero map for a single bin SWIFT with = =50 samples and @ = /10 radians/sample. (d) The single-
bin SWIFT filter structure and (e) the single-bin SDFT filter structure.

calculating the DTFT with an exponential
window on all previous data. However,
because the window is infinite in length,
the output will never truly become valid
but will instead asymptote to the true
value with a time constant of 7. In prac-
tice, however, if T is short enough, this
is not an issue.

Transfer function and impulse
response

The z-domain transfer function of the
SWIFT filter with normalized angular
frequency w is given by

1

T ©

Hswirr(z) = e p

The SWIFT IIR filter has one zero
at the origin and a single pole lying
inside the unit circle at e ""e’®. The
SWIFT’s impulse response and pole/
zero map are shown in Figure 1(b) and
(©), with T = 50 samples and @ = 7/10
radians/sample.

IIR filter implementation

Like the SDFT algorithm, the SWIFT
algorithm can be implemented as an
IIR filter with a complex resonator, as
shown in Figure 1(d). The major dif-
ference between the SWIFT filter and
an SDFT filter [Figure 1(e)] is that the
SWIFT filter does not require a comb
filter. Any arbitrary number of frequ-
ency bins can be calculated by add-

ing more complex resonators at the
desired frequencies.

SWIFT versus SDFT

The SWIFT has several advantages over
the SDFT, as discussed in the following.

Computational efficiency

The SWIFT is more efficient than the
SDFT. To objectively compare the algo-
rithms, we will consider only the costs
of computing a single bin for each.

Both the SWIFT and SDFT share the
property that the number of computa-
tions required to calculate X, (@) from
Xu-1(w) (or X,[k] from X,-i[k]) is
fixed and independent of the window
length. However, the SWIFT requires one
complex multiply and one real add to com-
pute the next output, whereas the SDFT
requires one complex multiply and two
real adds. In addition to increased compu-
tational efficiency, the SWIFT has drasti-
cally reduced memory requirements.

To facilitate comparison, we have
converted complex operations into real

operations, assuming that one com-
plex multiply requires two real adds
and four real multiplies (although it
is possible to compute with three real
multiplies and five additions [4]). Both
the SWIFT and SDFT require storing
one previous complex output and one
complex constant (four floating points).
However, the SDFT must store N pre-
vious input samples, while the SWIFT
does not require storage of any previ-
ous input samples. The storage and re-
trieval of N previous samples may be
a significant limitation for small sensors
and embedded devices. Table 1 com-
pares the computational efficiency and
memory requirements of the SDFT and
SWIFT algorithms.

Frequency-domain sampling

As a type of DFT, the SDFT’s out-
put is limited to normalized frequen-
cies of 27k/N, k € 7. To achieve finer
frequency-domain sampling, the SDFT
requires a larger N, reducing temporal
resolution and thus producing a tradeoff

Table 1. A single-bin comparison of the computational cost and memory requirements

of computing the next X,[kl/X.(co) using the DFT, SDFT, and SWIFT.

Method Real multiplies Real adds Memory (floats)
DFT Two N Two N N

SDFT Four Four N + Four
SWIFT Four Three Four
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FIGURE 2. The normalized Fourier transform of four windows [rectangular (blue, N = 20), Hanning
(black, N =20), exponential (green, T = 14.4)] and of « (red, Tsiow = 14.4, Trast = 2.89).

between time and frequency resolution.
Conversely, the SWIFT’s output, as a
type of DTFT, is continuous in the fre-
quency domain, providing the SWIFT
with great flexibility in tuning the fre-
quencies of interest.

Time-frequency tradeoff

When operating multiple SWIFTs in
parallel, each time constant can be tuned
to the frequency bin of interest without
increasing computational complexity,
e.g., T can be set as a multiple of the
period such that T = ¢/f, where ¢ is a
unitless constant and f is the center fre-
quency. Conversely, to achieve a similar
effect with parallel SDFTs, one must add
additional comb filters for each SDFT
bin, further increasing computational
complexity and memory requirements.
This allows the SWIFT algorithm to be
implemented with a multiresolution pro-
perty, similar to a wavelet transform,
which provides better time resolution at
higher frequencies and better frequency
resolution at lower frequencies.

Stability

The SWIFT is guaranteed stable,
whereas the SDFT is only marginally
stable. The SWIFT is guaranteed sta-
ble because its pole resides within the
z-domain’s unit circle. In contrast, the
SDFT’s pole resides on the z-domain’s
unit circle, which can lead to instabili-
ties if numerical rounding causes the
pole to move outside the unit circle.

To guarantee stability, the SDFT must
add a damping factor, but this causes the
SDFT’s output no longer to be exactly
equivalent to the N-point DFT. Other
SDFTs have been developed that are
both accurate and guaranteed stable, but
at the cost of increased computational
complexity [5].

Spectral leakage

The SWIFT’s exponential window
reduces spectral leakage compared to the
SDFT’s rectangular window, as shown
in Figure 2. It is difficult to compare the
leakage of finite-length windows to infi-
nite-length windows directly; therefore,
instead of requiring that each window
have the same length, we required that
each window have the same halfmass, i.e.,
the length of the window in which half
the area is contained. For instance, a rect-
angular window of length N = 20 and an
exponential window with T = 14.43 both
have a halfmass of ten. The exponential
window has a narrower main lobe and
smoother falloff compared to the rectan-
gular window. We can further reduce the
SWIFT’s spectral leakage with another
window, which we will introduce in the
oSWIFT algorithm.

Despite these advantages, there may
be situations in which the traditional
SDFT is called for. For instance, the
sharpness of the SWIFT/aSWIFT’s
window may be too narrow for some ap-
plications that require tracking a broad
oscillation. Additionally, any window
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can be implemented with the SDFT (at
the cost of increased complexity), while
the SWIFT is limited to the exponential
window. The SDFT is also more directly
comparable to the FFT.

The ocSWIFT

The spectral leakage of the SWIFT
can be further mitigated by removing
the exponential window’s discontinu-
ity at m = 0. The discontinuity can
be removed by modifying the win-
dow function to be the difference of
two exponentials:

m=<0
m>0
@)

em/mow _ em/Tr;m
Wam] = 0

where Tsow> Trast > 0. We will refer
to this as the o function, which goes
smoothly to zero at m = 0.

Figure 2 compares the spectral
leakage of the oo window with the ex-
ponential, rectangular, and Hanning
windows. We have chosen to compare
the aSWIFT to the Hanning SDFT,
which is among the simplest windowed
SDFTs and was presented by Jacobsen
and Lyons in 2003 [2]. As compared to
the exponential window, the o window
has a similarly narrow main lobe but
significantly faster fall off at surround-
ing frequencies. On the other hand, the
Hanning window has a significantly
wider main lobe, but its side lobes fall
off faster than the o function’s.

Derivation

The aSWIFT cannot be derived using
the same method as the SWIFT because
wa[0] =0, and so the aSWIFT cannot
be written as a difference equation in
the form of X, (@) = aX,-1(®)« +x[n].
However, the aSWIFT can be solved as
the difference between two SWIFTs with
different time constants through the lin-
earity property of the Fourier transform:

Xn (CU) o =Xn (CU) slow — Xn ((U) fast, (8)

where X,(w)« is the aSWIFT and
Xu(@)siow and X, (@) fase are individual
SWIFTs with 7’s equal to the slow and
fast time constants, respectively. We call
this form of the aSWIFT the parallel



[ ]
_q|—t=25—1t=26] S
0 5) 10 15
Sample

(a)

* “| N X[n]
g ' A _fr"xﬁ
£ Op i
¢ 7
\ /
N\ 7’
\\\ /”
0 S~ =
-1 0 1
Real

1
[ ]
M
0 ) (] 0

®

20 25 30 0 20

X n—1(D)siow

Xn(@)g

ﬁ = e~ gowe/®
Y= e Vtastel@

| — Real — Imag |

40 60 80 100
Sample

(b)

(e)

FIGURE 3. (a) The signal windowing for the o SWIFT algorithm: the data samples and window used for the first computation (blue) and second computa-
tion (green). (b) The impulse response and (c) the pole/zero map for a single-bin o SWIFT with 7sow =50 samples, Trnst =10 samples, and @ = z/10
radians/sample. (d) The parallel o SWIFT filter structure and (e) the direct o SWIFT filter structure.

Sform. The aSWIFT can be seen operat-
ing on an example signal in Figure 3(a).

Transfer function and direct form

We can solve for the z-domain transfer
function of (8) by substituting in (6) one for
each of the slow and fast SWIFTS, to yield

B-7z!
1=B+y)z " +pyz™

Haswirr(z) =

where

ﬁ — e—l/Tgloweja)
y= efl/‘rrmeja)' (9)

From this form, we can easily ana-
lyze the poles/zeros of the system. We
can then derive the discrete difference
form of the aSWIFT from the inverse

z-transform of (9):

Xn(@)a =(B+7)Xn-1(®)a
—BYXn-2(@)«a

+(B—yx[n—1], (10)

which we call the direct form. The
aSWIFT’s impulse response and pole/
zero map are shown in Figure 3(b) and
(©), with Tslow = 50 samples, Ttase = 10
samples, and @ = 7/10 rad/sample.

IIR filter implementation

The o SWIFT can also be implemented
as an IIR filter in either the parallel or
direct form, as shown in Figure 3(d)
and (e). Both filters produce identical
impulse responses and pole/zero maps.
However, the parallel form is more effi-
cient than the direct form, requiring
three fewer memory locations and two
fewer real multiplies to compute the
next X, (@)a.

Computational efficiency

Like windowed SDFTs, the aSWIFT
compromises computational efficien-
cy to reduce spectral leakage. Howev-
er, the aSWIFT is far more efficient
than comparable windowed SDFTs.
Table 2 compares the computational
costs and memory requirements of
the aSWIFT and the Hanning-win-
dowed SDFT.

Numerical simulation

To demonstrate the differences between
the three types of SFTs, Figure 4 depicts
each transform operating on a chirp sig-
nal. Each transform’s center frequency is
50 Hz, which the chirp crosses 5 s into
the simulation (denoted by the dashed
black line). To facilitate comparison, each
window is set to have the same halfmass.
Both the SDFT’s rectangular window
(N =100) and the SWIFT’s exponential
window (7 =72.1) have a halfmass of
50 samples. As compared to the SDFT,
both the SWIFT and oSWIFT have nar-
rower peaks and lower spectral leakage.
In addition, both the SWIFT and SDFT
have noise in their outputs, which is
reduced in the aSWIFT.

Each transform peaks at slightly dif-
ferent times, as well. The SDFT, with a
rectangular window, peaks 0.05 s (or 50
samples) after the chirp passes 50 Hz.

Table 2. A single-bin comparison of the computational cost and memory requirements of

computing the next X,[kl/X,(c) using the Hanning-windowed SDFT and oSWIFT.

Method Real multiplies Real adds Memory (floats)
Hanning SDFT 18 14 N+15
a SWIFT Eight Eight Eight
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FIGURE 4. A comparison of an SDFT (N = 100), SWIFT (z =72.1), and o SWIFT (Tsow = 72.1,
Trst = 14.2), with center frequencies at 50 Hz and comparable window lengths, operating on a

chirp signal (f; = 1 kHz).

This corresponds well with the halfmass
of the window. The SWIFT and aSWIFT
behave differently, however, peaking 0.121
s and 0.134 s after the chirp passes 50 Hz,
despite also having halfmasses of 0.05 s.

Summary

The SWIFT algorithm for spectral anal-
ysis has been presented and shown to
have several advantages over the SDFT
algorithm, especially for applications
that require successive calculations and
real-time analysis. The SWIFT pro-
vides improved stability and frequency
resolution while reducing computational
complexity, memory requirements, and
spectral leakage. Additionally, we pre-

sented the aSWIFT, which further reduc-
es spectral leakage and reduces noise.
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ERRATA

n the July 2017 issue of IEEE Signal
Processing Magazine, an error was
introduced in the title of a feature article

Digital Object Identifier 10.1109/MSP.2017.2727778
Date of publication: 6 September 2017

during the production process. The title of
the article by Z. Zhang, N. Cummins,
and B.W. Schuller printed incorrectly
[1]. The correct title is “Advanced Data
Exploitation in Speech Analysis.” We
sincerely apologize for this error and any
confusion it may have caused.
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