
183IEEE Signal Processing Magazine | September 2017 |

mathematics and natural sciences facul-
ty of South-West University, Blago-
evgrad, Bulgaria. He is the author of
two books and more than 60 articles,
conference papers, and research works
in mathematical logics, Hausdorff’s
approximations, and bioinformatics.

Alexey K. Stefanov (astef@abv.bg)
has been an associate professor with the
technical faculty of South-West Universi-
ty, Blagoevgrad, Bulgaria, since 2012.
He was a previously deputy director of
the Telecommunication Department, the
Telecommunication Department of the
Ministry of Interior, Sofia, Bulgaria. His
research interests include digital audio
and video processing and devices. He is
the author of two books and more than 40
articles, as well as the chief designer of
10 constructive developments.

References
[1] W. S. Lu and A. Antoniou, Two-Dimensional
Digital Filters. New York: Marcel Dekker, 1992.

[2] J. S. Lim and A. Antoniou, Two-Dimensional
Signal and Image Processing. Englewood Cliffs, NJ:
Prentice Hall, 1990.

[3] S. Kockanat and N. Karaboga, The Design
Approaches of Two-Dimensional Digital Filters
Based on Metaheuristic Optimization Algorithms: A
Review of the Literature. New York: Springer-Verlag,
2015, pp. 265–287.

[4] X. Y. Hong, X. P. Lai, and R. J. Zhao, “Matrix-
based algorithms for constrained least-squares and min-
imax designs of 2-d FIR filters,” IEEE Trans. Signal
Process., vol. 64, no. 14, pp. 3620–3631, July 2013.

[5] L. Andrews, Special Functions of Mathematics for
Engineers. London, U.K.: Oxford Univ. Press, 1998.

0

–50

–100

–150

–200

–250

–300
1

0.5
0

–0.5
–1 –1

–0.5
0

0.5
1

H
 (

dB
)

fx

fy

Figure 5. A circular 2-D filter.

0

–50

–100

–150

–200

–250

–300
1

0.5
0

–0.5
–1 –1

–0.5
0

0.5
1

H
 (

dB
)

fx
fy

Figure 6. A fan 2-D filter.

Logan L. Grado, Matthew D. Johnson, and Theoden I. Netoff

The Sliding Windowed Infinite Fourier Transform

T he discrete Fourier transform (DFT)
is the standard tool for spectral
analysis in digital signal process-

ing, typically computed using the fast
Fourier transform (FFT). However, for
real-time applications that require recal-
culating the DFT at each sample or over

only a subset of the N center frequencies
of the DFT, the FFT is far from optimal.

The sliding DFT (SDFT), first devel-
oped by Springer in 1988 [1] and then
improved and popularized by Jacobsen
and Lyons in 2003 [2], [3], is an algorithm
that computes individual DFT bins recur-
sively, allowing for efficient computation
of the DFT on a sample-by-sample basis.
The SDFT is efficient; however, it is lim-

ited in that it is only marginally stable
and requires storing N previous inputs.
Furthermore, the SDFT’s rectangular
window causes spectral leakage and is
limited to computing the N center fre-
quencies of the DFT.

Here, we present a novel sliding dis-
crete-time Fourier transform (DTFT),
which we call the sliding windowed infi-
nite Fourier transform (SWIFT), that

Digital Object Identifier 10.1109/MSP.2017.2718039
Date of publication: 6 September 2017

1053-5888/17©2017IEEE

184 IEEE Signal Processing Magazine | September 2017 |

has several advantages over the SDFT.
The SWIFT is guaranteed stable, reduc-
es spectral leakage without increasing
computational complexity, improves
frequency-domain sampling, and gives
greater weight to more recent samples,
allowing for improved real-time spec-
tral and phase analysis. Additionally, we
present a modified version of the SWIFT
algorithm, called the aSWIFT, which
further reduces spectral leakage. We con-
clude by comparing all three algorithms
with a brief numerical simulation.

The sliding DFT
The SDFT performs an N-point DFT
on samples within a sliding rectangular
window. The DFT is initially computed
on the f irst N samples. The time
window is then advanced one sample,
and a new N-point DFT is calculated
directly from the results of the previous
DFT. The SDFT can be expressed com-
pactly as

[] [] [] [] .X k X k e x n N x n/
n n

j k N
1

2= - - +r
-

� (1)

The SDFT’s output is discrete in the
frequency domain and limited to normal-
ized frequencies of / , .k N k2 Z!r Using
this method, the DFT can be efficiently
recalculated at each sample using only a
few operations.

The single-bin SDFT algorithm can
be implemented as an infinite-impulse
response (IIR) filter with a comb filter
followed by a complex resonator. The
recursive nature of the SDFT dictates
the requirement of some initialization
method; the output []X kn is only valid if

[]X kn 1- is valid. There are two methods
for initializing the algorithm:
1)	 Reset all []X kn 1- s to zero, and then

begin cycling data; after N samples
have cycled, the output will be valid.

2)	 Initialize all []X kn 1- with an FFT of
the previous N samples.

For a full description of the SDFT, see
Jacobsen and Lyons [2], [3].

While the SDFT is an efficient algo-
rithm, the use of a rectangular window
results in spectral leakage. To address
this, Jacobsen and Lyons described how
to implement time-domain windowing
via frequency-domain convolution. This
can be performed with almost any finite
window, but it significantly increases
the computational complexity and com-
promises the simplicity of the SDFT.

The sliding windowed infinite
Fourier transform
The SWIFT is a type of sliding DTFT
that is windowed with an infinite-length,
causal exponential function

	 [] ,w m
e m

m0
0
0

/m

2
#

=
x

' � (2)

where []w m is the window function,
m 0= is the current sample, and 02x
is the time constant of the window, with
units of samples. The exponential win-
dow gives greater weight to more recent
samples, allowing the SWIFT to be more
sensitive to transient changes in signal
power than the rectangular window. The
exponential windowed DTFT is

 () [] ,X e x n m e/
n

m j m

m

0

~ = +
3

x ~-

=-

/ � (3)

where ~ has normalized units of radi-
ans/sample (/)f f2 s~ r= and is continu-
ous in the frequency domain. We can
derive a recursive formula for (3) by relat-
ing ()Xn 1 ~+ back to ()Xn ~ [see (4) in
the box at the bottom of the page]. Finally,
we decrement the result of (4) one sample
to yield the recursive SWIFT formulation

	 () () [].X e e X x n/
n

j
n

1
1~ ~= +x ~-

- � (5)

The SWIFT operates by rotating
the phase of the previous DTFT by
,~ decaying the amplitude by ,e /1 x-

and adding in the new data sample. Fig-
ure 1(a) demonstrates how the SWIFT’s
window advances one sample at a time,
picking up the new data sample and
updating the previous samples. (The
incremental advance and infinite nature
of the time window are what led us to
the name sliding windowed infinite Fou-
rier transform.)

Derivation and equivalence
The SWIFT is derived directly from,
and shows exact equivalence to, the
windowed DTFT; therefore there is no
loss of information or distortion tradeoff
with the SWIFT as compared to other
means of calculating the DTFT. The
SWIFT algorithm calculates ()Xn ~ by
phase shifting and decaying the previ-
ous ()Xn 1 ~- and adding the current
[]x n sample; thus, the SWIFT requires

only one complex multiply and one real
add per sample per bin.

Initialization
Like the SDFT, the SWIFT can be ini-
tialized by sliding onto the data or by

�

(4)

() []

[]

[] [] []

[] []

() () []

X e x n m e

e x n m e

e x n m e e x n e e x n e

e e e x n m e x n

X e e X x n

1

1

1

1

/

()/ ()

()/ () ()/ ()

[]

()/ ()

/ /

()

/

n
m j m

m

m j m

m

m j m

m

j

x n

j

j m j m

m

X

n
j

n

1

0

1 1

1

1

1 1
0

1 1 1 1

1

1 1

0

1
0

1
1

n

3

~

~ ~

= + +

= +

= + + + - -

= + + +

= + +

3

3

3

3 3

3

x ~

x ~

x ~ x ~ x ~

x ~ x ~

~

x ~

+
-

=-

- - -

=- +

- - -

=-

- - -

+

- - - - -

- -

=-

+
-

1 2 3444444 444444 1 2 34444444 4444444

1 2 3444444 444444

/

/

/

/

185IEEE Signal Processing Magazine | September 2017 |

calculating the DTFT with an exponential
window on all previous data. However,
because the window is infinite in length,
the output will never truly become valid
but will instead asymptote to the true
value with a time constant of .x In prac-
tice, however, if x is short enough, this
is not an issue.

Transfer function and impulse
response
The z-domain transfer function of the
SWIFT filter with normalized angular
frequency ~ is given by

	 () .H z
e e z1

1
/ j1 1SWIFT =

- x ~- - � (6)

The SWIFT IIR filter has one zero
at the origin and a single pole lying
inside the unit circle at .e e/ j1 x ~- The
SWIFT’s impulse response and pole/
zero map are shown in Figure 1(b) and
(c), with 50x = samples and /10~ r=
radians/sample.

IIR filter implementation
Like the SDFT algorithm, the SWIFT
algorithm can be implemented as an
IIR filter with a complex resonator, as
shown in Figure 1(d). The major dif-
ference between the SWIFT filter and
an SDFT filter [Figure 1(e)] is that the
SWIFT filter does not require a comb
filter. Any arbitrary number of frequ
ency bins can be calculated by add-

ing more complex resonators at the
desired frequencies.

SWIFT versus SDFT
The SWIFT has several advantages over
the SDFT, as discussed in the following.

Computational efficiency
The SWIFT is more efficient than the
SDFT. To objectively compare the algo-
rithms, we will consider only the costs
of computing a single bin for each.

Both the SWIFT and SDFT share the
property that the number of computa-
tions required to calculate ()Xn ~ from

()Xn 1 ~- (or []X kn from [])X kn 1- is
fixed and independent of the window
length. However, the SWIFT requires one
complex multiply and one real add to com-
pute the next output, whereas the SDFT
requires one complex multiply and two
real adds. In addition to increased compu-
tational efficiency, the SWIFT has drasti-
cally reduced memory requirements.

To facilitate comparison, we have
converted complex operations into real

operations, assuming that one com-
plex multiply requires two real adds
and four real multiplies (although it
is possible to compute with three real
multiplies and five additions [4]). Both
the SWIFT and SDFT require storing
one previous complex output and one
complex constant (four floating points).
However, the SDFT must store N pre-
vious input samples, while the SWIFT
does not require storage of any previ-
ous input samples. The storage and re
trieval of N previous samples may be
a significant limitation for small sensors
and embedded devices. Table 1 com
pares the computational efficiency and
memory requirements of the SDFT and
SWIFT algorithms.

Frequency-domain sampling
As a type of DFT, the SDFT’s out-
put is limited to normalized frequen-
cies of / , .k N k2 Z!r To achieve finer
frequency-domain sampling, the SDFT
requires a larger ,N reducing temporal
resolution and thus producing a tradeoff

ImagRealt = 25 t = 26

0 0 20 40 60 80 1005 10 15

Sample

(a)

(c)

(b)

Sample
20 25 30

1

0

–1

1

0

–1

1

0

–1
–1 0

Real
1

Im
ag ω

(e)

x [n] Xn [k]

Xn–1[k]

z–N z–1
–

+ +

e j2πk /N

×

(d)

Xn–1(ω)

z–1e–1/τe jω

+

×

x [n] xn(ω)

Figure 1. (a) The signal windowing for the SWIFT algorithm. The data samples and window used for the first computation (blue) and second computation
(green). (b) The impulse response and (c) the pole/zero map for a single bin SWIFT with 50x = samples and / 01r~ = radians/sample. (d) The single-
bin SWIFT filter structure and (e) the single-bin SDFT filter structure.

Table 1. A single-bin comparison of the computational cost and memory requirements
of computing the next Xn[k]/Xn(~) using the DFT, SDFT, and SWIFT.

Method Real multiplies Real adds Memory (floats)

DFT Two N Two N N

SDFT Four Four N + Four

SWIFT Four Three Four

186 IEEE Signal Processing Magazine | September 2017 |

between time and frequency resolution.
Conversely, the SWIFT’s output, as a
type of DTFT, is continuous in the fre-
quency domain, providing the SWIFT
with great flexibility in tuning the fre-
quencies of interest.

Time-frequency tradeoff
When operating multiple SWIFTs in
parallel, each time constant can be tuned
to the frequency bin of interest without
increasing computational complexity,
e.g., x can be set as a multiple of the
period such that / ,c fx = where c is a
unitless constant and f is the center fre-
quency. Conversely, to achieve a similar
effect with parallel SDFTs, one must add
additional comb filters for each SDFT
bin, further increasing computational
complexity and memory requirements.
This allows the SWIFT algorithm to be
implemented with a multiresolution pro
perty, similar to a wavelet transform,
which provides better time resolution at
higher frequencies and better frequency
resolution at lower frequencies.

Stability
The SWIFT is guaranteed stable,
whereas the SDFT is only marginally
stable. The SWIFT is guaranteed sta-
ble because its pole resides within the
z-domain’s unit circle. In contrast, the
SDFT’s pole resides on the z-domain’s
unit circle, which can lead to instabili-
ties if numerical rounding causes the
pole to move outside the unit circle.

To guarantee stability, the SDFT must
add a damping factor, but this causes the
SDFT’s output no longer to be exactly
equivalent to the N-point DFT. Other
SDFTs have been developed that are
both accurate and guaranteed stable, but
at the cost of increased computational
complexity [5].

Spectral leakage
The SWIFT’s exponential window
reduces spectral leakage compared to the
SDFT’s rectangular window, as shown
in Figure 2. It is difficult to compare the
leakage of finite-length windows to infi-
nite-length windows directly; therefore,
instead of requiring that each window
have the same length, we required that
each window have the same halfmass, i.e.,
the length of the window in which half
the area is contained. For instance, a rect-
angular window of length N 20= and an
exponential window with .14 43x = both
have a halfmass of ten. The exponential
window has a narrower main lobe and
smoother falloff compared to the rectan-
gular window. We can further reduce the
SWIFT’s spectral leakage with another
window, which we will introduce in the
aSWIFT algorithm.

Despite these advantages, there may
be situations in which the traditional
SDFT is called for. For instance, the
sharpness of the SWIFT/aSWIFT’s
window may be too narrow for some ap-
plications that require tracking a broad
oscillation. Additionally, any window

can be implemented with the SDFT (at
the cost of increased complexity), while
the SWIFT is limited to the exponential
window. The SDFT is also more directly
comparable to the FFT.

The aSWIFT
The spectral leakage of the SWIFT
can be further mitigated by removing
the exponential window’s discontinu-
ity at .m 0= The discontinuity can
be removed by modifying the win-
dow function to be the difference of
two exponentials:

[] ,w m
e e m

m0
0
0

/ /m mslow fast

2
#

=
-

a

x x

'

� (7)

where .0slow fast2 2x x We will refer
to this as the a function, which goes
smoothly to zero at m 0= .

Figure 2 compares the spectral
leakage of the a window with the ex-
ponential, rectangular, and Hanning
windows. We have chosen to compare
the aSWIFT to the Hanning SDFT,
which is among the simplest windowed
SDFTs and was presented by Jacobsen
and Lyons in 2003 [2]. As compared to
the exponential window, the a window
has a similarly narrow main lobe but
significantly faster fall off at surround-
ing frequencies. On the other hand, the
Hanning window has a significantly
wider main lobe, but its side lobes fall
off faster than the a function’s.

Derivation
The aSWIFT cannot be derived using
the same method as the SWIFT because

[] ,w 0 0=a and so the aSWIFT cannot
be written as a difference equation in
the form of () () [].X aX x nn n 1~ ~= +a a-
However, the aSWIFT can be solved as
the difference between two SWIFTs with
different time constants through the lin-
earity property of the Fourier transform:

	 () () () ,X X Xn n nslow fast~ ~ ~= -a � (8)

where ()Xn ~ a is the aSWIFT and
()Xn slow~ and ()Xn fast~ are individual

SWIFTs with x’s equal to the slow and
fast time constants, respectively. We call
this form of the aSWIFT the parallel

0

–10

–20

–30

–40

–50

–60
–π π00

(ω)(ω)

(d
B

)
Rectangular
Hanning
Exponential
α

1
2
π1

2
– π

Figure 2. The normalized Fourier transform of four windows [rectangular (blue,),N 02= Hanning
(black,),N 02= exponential (green, .)14 4x =] and of a (red, . , .).14 4 2 89slow fastx x= =

187IEEE Signal Processing Magazine | September 2017 |

form. The aSWIFT can be seen operat-
ing on an example signal in Figure 3(a).

Transfer function and direct form
We can solve for the z-domain transfer
function of (8) by substituting in (6) one for
each of the slow and fast SWIFTs, to yield

()
()

()
, H z

z z
z

1 1 2

1

SWIFT
b c bc

b c
=

- + +

-
a - -

-

where

	
.

e e

e e

 /

/

j

j

1

1

slow

fast

b

c

=

=

x ~

x ~

-

-
�

(9)

From this form, we can easily ana-
lyze the poles/zeros of the system. We
can then derive the discrete difference
form of the aSWIFT from the inverse
z-transform of (9):

	
() () ()

()

() [],

X X

X

x n 1

n n

n

1

2

~ b c ~

bc ~

b c

= +

-

+ - -

a a

a

-

-

� (10)

which we call the direct form. The
aSWIFT’s impulse response and pole/
zero map are shown in Figure 3(b) and
(c), with 50slowx = samples, 10fastx =
samples, and /10~ r= rad/sample.

IIR filter implementation
The aSWIFT can also be implemented
as an IIR filter in either the parallel or
direct form, as shown in Figure 3(d)
and (e). Both filters produce identical
impulse responses and pole/zero maps.
However, the parallel form is more effi-
cient than the direct form, requiring
three fewer memory locations and two
fewer real multiplies to compute the
next () .Xn ~ a

Computational efficiency
Like windowed SDFTs, the aSWIFT
compromises computational efficien-
cy to reduce spectral leakage. Howev-
er, the aSWIFT is far more efficient
than comparable windowed SDFTs.
Table 2 compares the computational
costs and memory requirements of
the aSWIFT and the Hanning-win-
dowed SDFT.

Numerical simulation
To demonstrate the differences between
the three types of SFTs, Figure 4 depicts
each transform operating on a chirp sig-
nal. Each transform’s center frequency is
50 Hz, which the chirp crosses 5 s into
the simulation (denoted by the dashed
black line). To facilitate comparison, each
window is set to have the same halfmass.
Both the SDFT’s rectangular window

)(N 100= and the SWIFT’s exponential
window (.)72 1x = have a halfmass of
50 samples. As compared to the SDFT,
both the SWIFT and aSWIFT have nar-
rower peaks and lower spectral leakage.
In addition, both the SWIFT and SDFT
have noise in their outputs, which is
reduced in the aSWIFT.

Each transform peaks at slightly dif-
ferent times, as well. The SDFT, with a
rectangular window, peaks 0.05 s (or 50
samples) after the chirp passes 50 Hz.

t = 25 t = 26

Real Imag1

0

–1

1

0

–1

1

0

–1

Im
ag

–1 0
Real

1

0 5 10 15

Sample

(a)

(c) (d) (e)

20 25 30 0 20 40 60 80 100

(b)

Sample

x [n]

×

×

+

+

+
–

Xn–1(ω)slow

xn–1(ω)fast

Xn(ω)α

e–1/τfaste jω

e–1/τslowe jω

z–1

z–1

x [n] z–1

z–2

z–1

×

×

×

–
+

β = e–1/τslowe jω

γ = e–1/τfaste jω
β–γ

β+γ

βγ
Xn(ω)α

ω

Figure 3. (a) The signal windowing for the aSWIFT algorithm: the data samples and window used for the first computation (blue) and second computa-
tion (green). (b) The impulse response and (c) the pole/zero map for a single-bin aSWIFT with 50slowx = samples, 10fastx = samples, and /10~ r=
radians/sample. (d) The parallel aSWIFT filter structure and (e) the direct aSWIFT filter structure.

Table 2. A single-bin comparison of the computational cost and memory requirements of
computing the next Xn[k]/Xn(~) using the Hanning-windowed SDFT and aSWIFT.

Method Real multiplies Real adds Memory (floats)

Hanning SDFT 18 14 N +15

aSWIFT Eight Eight Eight

188 IEEE Signal Processing Magazine | September 2017 |

This corresponds well with the halfmass
of the window. The SWIFT and aSWIFT
behave differently, however, peaking 0.121
s and 0.134 s after the chirp passes 50 Hz,
despite also having halfmasses of 0.05 s.

Summary
The SWIFT algorithm for spectral anal-
ysis has been presented and shown to
have several advantages over the SDFT
algorithm, especially for applications
that require successive calculations and
real-time analysis. The SWIFT pro-
vides improved stability and frequency
resolution while reducing computational
complexity, memory requirements, and
spectral leakage. Additionally, we pre-

sented the aSWIFT, which further reduc-
es spectral leakage and reduces noise.

Authors
Logan L. Grado (grado@umn.edu) is a
Ph.D. degree candidate in biomedical
engineering at the University of Min
nesota. He is broadly interested in the
field of neural engineering, specifically
deep brain stimulation technologies. He
is also working to develop and apply
machine-learning techniques to neuro-
logical disorders, such as Parkinson’s dis-
ease and essential tremor.

Matthew D. Johnson (john5101@
umn.edu) is an associate professor of bio-
medical engineering at the University of

Minnesota. He received his S.B. degree
in engineering sciences from Harvard
University, Cambridge, Massachusetts, in
2002 and his M.S. and Ph.D. degrees in
biomedical engineering from the Uni
versity of Michigan in 2003 and 2007,
respectively. Between 2007 and 2009, he
completed a postdoctoral fellowship at
the Cleveland Clinic. His primary re
search interests are the application of sig-
nal processing, control engineering, and
neural interface technology to neuromod-
ulation therapies.

Theoden I. Netoff (tnetoff@umn
.edu) is an associate professor of biomed-
ical engineering at the University of
Minnesota. He received his bachelor’s
degree in psychology from the University
of California, Berkeley, and his Ph.D
degree in neuroscience from George
Washington University. His research
focuses on closed-loop therapies to opti-
mize electrical stimulation as applied to
the brain for treatment of Parkinson’s dis-
ease and epilepsy.

References
[1] T. Springer, “Sliding FFT computes frequency-spec-
tra in real-time,” Electr. Design News Mag., vol. 33, no.
20, pp. 161, 1988.

[2] E. Jacobsen and R. Lyons, “The sliding DFT,” IEEE
Signal Process. Mag., vol. 20, no. 2, pp. 74–80, 2003.

[3] E. Jacobsen and R. Lyons, “An update to the sliding
DFT,” IEEE Signal Process. Mag., vol. 21, no. 1, pp.
110–111, 2004.

[4] R. G. Lyons, Understanding Digital Signal
Procesing. Englewood Cliffs, NJ: Prentice Hall, 2004.

[5] K. Duda, “Accurate, guaranteed stable, sliding dis-
crete fourier transform,” IEEE Signal Process. Mag.,
vol. 27, no. 6, pp. 124–127, 2010.� SP

SDFT
SWIFT
αSWIFT

0

–10

100

80

60

In
st

an
ta

ne
ou

s
C

hi
rp

 F
re

qu
en

cy
 (

H
z)

40

20

0

–20

–30

–40

–50
2 3 4 5

Time (s)

6 7 8

(d
B

)

5.0 5.1 5.2

0

–1

–2

Figure 4. A comparison of an SDFT (),N 001= SWIFT),(.72 1x = and a SWIFT (. ,72 1slowx =

.),14 2fastx = with center frequencies at 50 Hz and comparable window lengths, operating on a
chirp signal ().f 1 kHzs =

I n the July 2017 issue of IEEE Signal
Processing Magazine, an error was
introduced in the title of a feature article

during the production process. The title of
the article by Z. Zhang, N. Cummins,
and B.W. Schuller printed incorrectly
[1]. The correct title is “Advanced Data
Exploitation in Speech Analysis.” We
sincerely apologize for this error and any
confusion it may have caused.

Reference
[1] Z. Zhang, N. Cummins, and B. W. Schuller,
“Advanced data expoitation in speech analysis,” IEEE
Signal Process. Mag., vol. 34, no. 4, pp. 107–129,
July 2017.

�
SP

Digital Object Identifier 10.1109/MSP.2017.2727778
Date of publication: 6 September 2017

Errata

