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Figure 5. A circular 2-D filter.
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Figure 6. A fan 2-D filter.
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The Sliding Windowed Infinite Fourier Transform

T he discrete Fourier transform (DFT) 
is the standard tool for spectral 
analysis in digital signal process-

ing, typically computed using the fast 
Fourier transform (FFT). However, for 
real-time applications that require recal-
culating the DFT at each sample or over 

only a subset of the N  center frequencies 
of the DFT, the FFT is far from optimal. 

The sliding DFT (SDFT), first devel-
oped by Springer in 1988 [1] and then 
improved and popularized by Jacobsen 
and Lyons in 2003 [2], [3], is an algorithm 
that computes individual DFT bins recur-
sively, allowing for efficient computation 
of the DFT on a sample-by-sample basis. 
The SDFT is efficient; however, it is lim-

ited in that it is only marginally stable 
and requires storing N  previous inputs. 
Furthermore, the SDFT’s rectangular 
window causes spectral leakage and is 
limited to computing the N  center fre-
quencies of the DFT. 

Here, we present a novel sliding dis-
crete-time Fourier transform (DTFT), 
which we call the sliding windowed infi-
nite Fourier transform (SWIFT), that 
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has several advantages over the SDFT. 
The SWIFT is guaranteed stable, reduc-
es spectral leakage without increasing 
computational complexity, improves 
frequency-domain sampling, and gives 
greater weight to more recent samples, 
allowing for improved real-time spec-
tral and phase analysis. Additionally, we 
present a modified version of the SWIFT 
algorithm, called the aSWIFT, which 
further reduces spectral leakage. We con-
clude by comparing all three algorithms 
with a brief numerical simulation.

The sliding DFT
The SDFT performs an N-point DFT 
on samples within a sliding rectangular 
window. The DFT is initially computed 
on the f irst N  samples. The time 
window is then advanced one sample, 
and a new N-point DFT is calculated 
directly from the results of the previous 
DFT. The SDFT can be expressed com-
pactly as

[ ] [ ] [ ] [ ] .X k X k e x n N x n/
n n

j k N
1

2= - - +r
-

� (1)

The SDFT’s output is discrete in the 
frequency domain and limited to normal-
ized frequencies of / ,  .k N k2 Z!r  Using 
this method, the DFT can be efficiently 
recalculated at each sample using only a 
few operations.

The single-bin SDFT algorithm can 
be implemented as an infinite-impulse 
response (IIR) filter with a comb filter 
followed by a complex resonator. The 
recursive nature of the SDFT dictates 
the requirement of some initialization 
method; the output [ ]X kn  is only valid if 

[ ]X kn 1-  is valid. There are two methods 
for initializing the algorithm: 
1)	 Reset all [ ]X kn 1- s to zero, and then 

begin cycling data; after N  samples 
have cycled, the output will be valid. 

2)	 Initialize all [ ]X kn 1-  with an FFT of 
the previous N  samples. 

For a full description of the SDFT, see 
Jacobsen and Lyons [2], [3].

While the SDFT is an efficient algo-
rithm, the use of a rectangular window 
results in spectral leakage. To address 
this, Jacobsen and Lyons described how 
to implement time-domain windowing 
via frequency-domain convolution. This 
can be performed with almost any finite 
window, but it significantly increases 
the computational complexity and com-
promises the simplicity of the SDFT. 

The sliding windowed infinite 
Fourier transform
The SWIFT is a type of sliding DTFT 
that is windowed with an infinite-length, 
causal exponential function

	 [ ] ,w m
e m

m0
0
0

/m

2
#

=
x

' � (2)

where [ ]w m  is the window function, 
m 0=  is the current sample, and 02x  
is the time constant of the window, with 
units of samples. The exponential win-
dow gives greater weight to more recent 
samples, allowing the SWIFT to be more 
sensitive to transient changes in signal 
power than the rectangular window. The 
exponential windowed DTFT is

 ( ) [ ] ,X e x n m e/
n

m j m

m

0

~ = +
3

x ~-

=-

/ � (3)

where ~ has normalized units of radi-
ans/sample ( / )f f2 s~ r=  and is continu-
ous in the frequency domain. We can 
derive a recursive formula for (3) by relat-
ing ( )Xn 1 ~+  back to ( )Xn ~  [see (4) in 
the box at the bottom of the page]. Finally, 
we decrement the result of (4) one sample 
to yield the recursive SWIFT formulation

	 ( ) ( ) [ ].X e e X x n/
n

j
n

1
1~ ~= +x ~-

- � (5)

The SWIFT operates by rotating 
the phase of the previous DTFT by 
,~  decaying the amplitude by ,e /1 x-  

and adding in the new data sample. Fig-
ure 1(a) demonstrates how the SWIFT’s 
window advances one sample at a time, 
picking up the new data sample and 
updating the previous samples. (The 
incremental advance and infinite nature 
of the time window are what led us to 
the name sliding windowed infinite Fou-
rier transform.)

Derivation and equivalence 
The SWIFT is derived directly from, 
and shows exact equivalence to, the 
windowed DTFT; therefore there is no 
loss of information or distortion tradeoff 
with the SWIFT as compared to other 
means of calculating the DTFT. The 
SWIFT algorithm calculates ( )Xn ~  by 
phase shifting and decaying the previ-
ous ( )Xn 1 ~-  and adding the current 
[ ]x n  sample; thus, the SWIFT requires 

only one complex multiply and one real 
add per sample per bin.

Initialization 
Like the SDFT, the SWIFT can be ini-
tialized by sliding onto the data or by 

�
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calculating the DTFT with an exponential 
window on all previous data. However, 
because the window is infinite in length, 
the output will never truly become valid 
but will instead asymptote to the true 
value with a time constant of .x  In prac-
tice, however, if x  is short enough, this 
is not an issue.

Transfer function and impulse 
response 
The z-domain transfer function of the 
SWIFT filter with normalized angular 
frequency ~ is given by

	 ( ) .H z
e e z1

1
/ j1 1SWIFT =

- x ~- - � (6)

The SWIFT IIR filter has one zero 
at the origin and a single pole lying 
inside the unit circle at .e e/ j1 x ~-  The 
SWIFT’s impulse response and pole/
zero map are shown in Figure 1(b) and 
(c), with 50x =  samples and /10~ r=  
radians/sample.

IIR filter implementation 
Like the SDFT algorithm, the SWIFT 
algorithm can be implemented as an 
IIR filter with a complex resonator, as 
shown in Figure 1(d). The major dif-
ference between the SWIFT filter and 
an SDFT filter [Figure 1(e)] is that the 
SWIFT filter does not require a comb 
filter. Any arbitrary number of frequ
ency bins can be calculated by add-

ing more complex resonators at the 
desired frequencies.

SWIFT versus SDFT
The SWIFT has several advantages over 
the SDFT, as discussed in the following.

Computational efficiency 
The SWIFT is more efficient than the 
SDFT. To objectively compare the algo-
rithms, we will consider only the costs 
of computing a single bin for each. 

Both the SWIFT and SDFT share the 
property that the number of computa-
tions required to calculate ( )Xn ~  from 

( )Xn 1 ~-  (or [ ]X kn  from [ ])X kn 1-  is 
fixed and independent of the window 
length. However, the SWIFT requires one 
complex multiply and one real add to com-
pute the next output, whereas the SDFT 
requires one complex multiply and two 
real adds. In addition to increased compu-
tational efficiency, the SWIFT has drasti-
cally reduced memory requirements. 

To facilitate comparison, we have 
converted complex operations into real 

operations, assuming that one com-
plex multiply requires two real adds 
and four real multiplies (although it 
is possible to compute with three real 
multiplies and five additions [4]). Both 
the SWIFT and SDFT require storing 
one previous complex output and one 
complex constant (four floating points). 
However, the SDFT must store N  pre-
vious input samples, while the SWIFT 
does not require storage of any previ-
ous input samples. The storage and re
trieval of N  previous samples may be 
a significant limitation for small sensors 
and embedded devices. Table 1 com
pares the computational efficiency and 
memory requirements of the SDFT and 
SWIFT algorithms.

Frequency-domain sampling 
As a type of DFT, the SDFT’s out-
put is limited to normalized frequen-
cies of / ,  .k N k2 Z!r  To achieve finer 
frequency-domain sampling, the SDFT 
requires a larger ,N  reducing temporal 
resolution and thus producing a tradeoff 
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Figure 1. (a) The signal windowing for the SWIFT algorithm. The data samples and window used for the first computation (blue) and second computation 
(green). (b) The impulse response and (c) the pole/zero map for a single bin SWIFT with 50x =  samples and / 01r~ =  radians/sample. (d) The single-
bin SWIFT filter structure and (e) the single-bin SDFT filter structure.

Table 1. A single-bin comparison of the computational cost and memory requirements  
of computing the next Xn[k]/Xn(~) using the DFT, SDFT, and SWIFT.

Method Real multiplies Real adds Memory (floats)

DFT Two N Two N N

SDFT Four Four N + Four

SWIFT Four Three Four
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between time and frequency resolution. 
Conversely, the SWIFT’s output, as a 
type of DTFT, is continuous in the fre-
quency domain, providing the SWIFT 
with great flexibility in tuning the fre-
quencies of interest.

Time-frequency tradeoff 
When operating multiple SWIFTs in 
parallel, each time constant can be tuned 
to the frequency bin of interest without 
increasing computational complexity, 
e.g., x  can be set as a multiple of the 
period such that / ,c fx =  where c is a 
unitless constant and f  is the center fre-
quency. Conversely, to achieve a similar 
effect with parallel SDFTs, one must add 
additional comb filters for each SDFT 
bin, further increasing computational 
complexity and memory requirements. 
This allows the SWIFT algorithm to be 
implemented with a multiresolution pro
perty, similar to a wavelet transform, 
which provides better time resolution at 
higher frequencies and better frequency 
resolution at lower frequencies.

Stability 
The SWIFT is guaranteed stable, 
whereas the SDFT is only marginally 
stable. The SWIFT is guaranteed sta-
ble because its pole resides within the 
z-domain’s unit circle. In contrast, the 
SDFT’s pole resides on the z-domain’s 
unit circle, which can lead to instabili-
ties if numerical rounding causes the 
pole to move outside the unit circle. 

To guarantee stability, the SDFT must 
add a damping factor, but this causes the 
SDFT’s output no longer to be exactly 
equivalent to the N-point DFT. Other 
SDFTs have been developed that are 
both accurate and guaranteed stable, but 
at the cost of increased computational 
complexity [5].

Spectral leakage 
The SWIFT’s exponential window 
reduces spectral leakage compared to the 
SDFT’s rectangular window, as shown 
in Figure 2. It is difficult to compare the 
leakage of finite-length windows to infi-
nite-length windows directly; therefore, 
instead of requiring that each window 
have the same length, we required that 
each window have the same halfmass, i.e., 
the length of the window in which half 
the area is contained. For instance, a rect-
angular window of length N 20=  and an 
exponential window with .14 43x =  both 
have a halfmass of ten. The exponential 
window has a narrower main lobe and 
smoother falloff compared to the rectan-
gular window. We can further reduce the 
SWIFT’s spectral leakage with another 
window, which we will introduce in the 
aSWIFT algorithm.

Despite these advantages, there may 
be situations in which the traditional 
SDFT is called for. For instance, the 
sharpness of the SWIFT/aSWIFT’s 
window may be too narrow for some ap-
plications that require tracking a broad 
oscillation. Additionally, any window 

can be implemented with the SDFT (at 
the cost of increased complexity), while 
the SWIFT is limited to the exponential 
window. The SDFT is also more directly 
comparable to the FFT.

The aSWIFT
The spectral leakage of the SWIFT 
can be further mitigated by removing 
the exponential window’s discontinu-
ity at .m 0=  The discontinuity can  
be removed by modifying the win-
dow function to be the difference of 
two exponentials:

[ ] ,w m
e e m

m0
0
0

/ /m mslow fast

2
#

=
-

a

x x

'  

� (7)

where .0slow fast2 2x x  We will refer 
to this as the a  function, which goes 
smoothly to zero at m 0= . 

Figure 2 compares the spectral 
leakage of the a  window with the ex-
ponential, rectangular, and Hanning 
windows. We have chosen to compare 
the aSWIFT to the Hanning SDFT, 
which is among the simplest windowed 
SDFTs and was presented by Jacobsen 
and Lyons in 2003 [2]. As compared to 
the exponential window, the a  window 
has a similarly narrow main lobe but 
significantly faster fall off at surround-
ing frequencies. On the other hand, the 
Hanning window has a significantly 
wider main lobe, but its side lobes fall 
off faster than the a  function’s.

Derivation 
The aSWIFT cannot be derived using 
the same method as the SWIFT because 

[ ] ,w 0 0=a  and so the aSWIFT cannot 
be written as a difference equation in  
the form of ( ) ( ) [ ].X aX x nn n 1~ ~= +a a-  
However, the aSWIFT can be solved as 
the difference between two SWIFTs with 
different time constants through the lin-
earity property of the Fourier transform:

	 ( ) ( ) ( ) ,X X Xn n nslow fast~ ~ ~= -a � (8)

where ( )Xn ~ a  is the aSWIFT and 
( )Xn slow~  and ( )Xn fast~  are individual 

SWIFTs with x’s equal to the slow and 
fast time constants, respectively. We call 
this form of the aSWIFT the parallel 
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form. The aSWIFT can be seen operat-
ing on an example signal in Figure 3(a).

Transfer function and direct form
We can solve for the z-domain transfer 
function of (8) by substituting in (6) one for 
each of the slow and fast SWIFTs, to yield

( )
( )

( )
,  H z

z z
z

1 1 2

1

SWIFT
b c bc
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- + +

-
a - -

-
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�
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From this form, we can easily ana-
lyze the poles/zeros of the system. We 
can then derive the discrete difference 
form of the aSWIFT from the inverse 
z-transform of (9):

	
( ) ( ) ( )

( )

( ) [ ],

X X

X

x n 1

n n

n

1

2

~ b c ~

bc ~

b c

= +

-

+ - -

a a

a

-

-

� (10)

which we call the direct form. The 
aSWIFT’s impulse response and pole/
zero map are shown in Figure 3(b) and 
(c), with 50slowx =  samples, 10fastx =  
samples, and /10~ r=  rad/sample.

IIR filter implementation 
The aSWIFT can also be implemented 
as an IIR filter in either the parallel or 
direct form, as shown in Figure 3(d) 
and (e). Both filters produce identical 
impulse responses and pole/zero maps. 
However, the parallel form is more effi-
cient than the direct form, requiring 
three fewer memory locations and two 
fewer real multiplies to compute the 
next ( ) .Xn ~ a

Computational efficiency 
Like windowed SDFTs, the aSWIFT 
compromises computational efficien-
cy to reduce spectral leakage. Howev-
er, the aSWIFT is far more efficient 
than comparable windowed SDFTs. 
Table 2 compares the computational 
costs and memory requirements of 
the aSWIFT and the Hanning-win-
dowed SDFT.

Numerical simulation 
To demonstrate the differences between 
the three types of SFTs, Figure 4 depicts 
each transform operating on a chirp sig-
nal. Each transform’s center frequency is 
50 Hz, which the chirp crosses 5 s into 
the simulation (denoted by the dashed 
black line). To facilitate comparison, each 
window is set to have the same halfmass. 
Both the SDFT’s rectangular window 

)(N 100=  and the SWIFT’s exponential 
window ( . )72 1x =  have a halfmass of 
50 samples. As compared to the SDFT, 
both the SWIFT and aSWIFT have nar-
rower peaks and lower spectral leakage. 
In addition, both the SWIFT and SDFT 
have noise in their outputs, which is 
reduced in the aSWIFT. 

Each transform peaks at slightly dif-
ferent times, as well. The SDFT, with a 
rectangular window, peaks 0.05 s (or 50 
samples) after the chirp passes 50 Hz. 
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Table 2. A single-bin comparison of the computational cost and memory requirements of 
computing the next Xn[k]/Xn(~) using the Hanning-windowed SDFT and aSWIFT.

Method Real multiplies Real adds Memory (floats)

Hanning SDFT 18 14 N +15

aSWIFT Eight Eight Eight
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This corresponds well with the halfmass 
of the window. The SWIFT and aSWIFT 
behave differently, however, peaking 0.121 
s and 0.134 s after the chirp passes 50 Hz, 
despite also having halfmasses of 0.05 s.

Summary
The SWIFT algorithm for spectral anal-
ysis has been presented and shown to 
have several advantages over the SDFT 
algorithm, especially for applications 
that require successive calculations and 
real-time analysis. The SWIFT pro-
vides improved stability and frequency 
resolution while reducing computational 
complexity, memory requirements, and 
spectral leakage. Additionally, we pre-

sented the aSWIFT, which further reduc-
es spectral leakage and reduces noise.
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I n the July 2017 issue of IEEE Signal 
Processing Magazine, an error was 
introduced in the title of a feature article 

during the production process. The title of 
the article by Z. Zhang, N. Cummins, 
and B.W. Schuller printed incorrectly 
[1]. The correct title is “Advanced Data 
Exploitation in Speech Analysis.” We 
sincerely apologize for this error and any 
confusion it may have caused. 
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