
Learning Approximate Stochastic Transition Models

Yuhang Song1, Christopher Grimm2, Xianming Wang3, Michael L. Littman4

1Beijing University of Aeronautics and Astronautics, 2University of Michigan,
3Renmin University of China, 4Brown University

yuhangsong@buaa.edu.cn, crgrimm@umich.edu, wxm@ruc.edu.cn, michael littman@brown.edu

Abstract

We examine the problem of learning mappings from state to
state, suitable for use in a model-based reinforcement-learning
setting, that simultaneously generalize to novel states and
can capture stochastic transitions. We show that currently
popular generative adversarial networks struggle to learn these
stochastic transition models but a modification to their loss
functions results in a powerful learning algorithm for this class
of problems.

Introduction and Background

Model-based approaches separate the reinforcement-learning
(RL) problem into two components. The first component
learns a transition model that predicts the next state from
the current state and action. The second component uses that
model to make decisions by looking ahead to predict the
consequences of different courses of actions. This paper fo-
cuses on the first problem of acquiring the model, specifically
addressing the development of a mechanism for learning to
approximate a stochastic transition function.

A Markov decision process (MDP) model of an environ-
ment consists of a set of states S and actions A, a transition
function T : S × A → Π(S) mapping state–action pairs
to a probability distribution over next states, and a reward
function R : S ×A→ <.

Since the focus of this paper is not on decision making but
on learning the dynamics, we simplify the transition function
to T (x̄, a, x′) = P

x̄
r (x

′), which represents the probability
that state x′ will follow x̄. A separate function can be learned
for each action a ∈ A. Although some authors have found
there to be an advantage to representing the transitions jointly
for all actions (Oh et al. 2015), this issue is orthogonal to the
representation issue we address here.

To review methods for learning P
x̄
r (x

′), we begin by sepa-
rating out three representations for transition models. A query
model is one that can answer, for any x̄, x′ pair, the probabil-
ity of x′ given x̄. Such a model can be represented as a table if
the state space is relatively small (Kearns and Singh 2002). It
can also be captured by a dynamic Bayesian network (Kearns
and Koller 1999; Degris, Sigaud, and Wuillemin 2006). Some

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

types of planners, such as ones based on policy iteration (Put-
erman 1994), require access to these probabilities to compute
expected values. Query models can be very challenging to
work with and learn when the size of the state space if enor-
mous, however, because looping over all the possible values
of x′ can be too expensive. It is especially problematic when
most x̄, x′ pairs have zero probability, since considering each
of them is expensive and pointless.

A sparse model is a refinement of the query model that
takes a state x̄ as input and returns a list of states N(x̄)
such that x′ ∈ N(x̄) if and only if P

x̄
r (x

′) > 0. Such a
representation can be used much more efficiently as it only
needs to consider the non-zero entries of P

x̄
r (x

′). Tabular
and DBN methods can be used in this setting, but a general
approach has yet to be articulated. In addition, they provide
no advantage over the query model in environments in which
|N(x̄)| is intractably large.

An alternative is a generative model, which is a function
G that, given, x̄, produces x′. Learning a generative model
is closely related to classical supervised learning problems.
Given examples of x̄, x′ pairs, they learn a mapping such that
G(x̄) produces x′. When the target mapping is deterministic,
many learning algorithms can be brought to bear to learn the
transition model (Atkeson, Moore, and Schaal 1997). These
learning algorithms can be applied to stochastic transition
models, but, as we show, there are significant pitfalls to doing
so. An exception is in control problems where the transition
model has the form x′ ∼ G(x) + η, where the η is state
independent and typically small and zero-mean noise, so that
planning using G(x) results in an approximation to planning
with the stochastic model—the noise can be safely ignored
during planning (Bradtke 1993).

In our work1, we capture the transition function adopting
a generative adversarial network (GAN) perspective (Good-
fellow et al. 2014). In the next section, we present GANs
and derive our novel variant that is more effective at captur-
ing detailed probability distributions. We provide empirical
comparisons between GANs and other approaches to learn-
ing, showing that our GAN approach can learn to generalize
probabilistic functions effectively.

1Code to reproduce this work is publicly available online for
facilitating future research: https://github.com/YuhangSong/SGAN.

a
rX

iv
:1

7
1
0
.0

9
7
1
8
v
1

[c

s.
L

G
]

 2
6
 O

c
t

2
0
1
7

Modeling Stochastic Transitions with GANs

The GAN approach to modeling stochastic transition func-
tions focuses on creating a generator G, which takes in cur-
rent state x̄ and random noise n and generates a possible next
state xg ,

xg = Gµ(x̄, n), (1)

where µ is a set of parameters defining G to be set by learn-
ing. We assessed the error in G by the L1 distance between
the distribution produced by G and the true distribution2. A
second model D, the discriminator, takes in current state x̄
and next state x′. Here, x′ is either a state xg generated by G
or a real state xr from the observed data. The output of the
discriminator is interpreted as a score of whether it believes
x′ = xr. We write

Dθ(x̄, x
′), (2)

where θ is the parameters defining D.

WGANs and GP-WGANs

In the Wasserstein GAN or WGAN (Arjovsky, Chintala, and
Bottou 2017), the generator and discriminator attempt to min-
imize a metric known as the Earth Mover’s distance between
the generated probability distribution and the real probability
distribution:

W (Pr,Pg) = sup
‖f‖L≤1

Exr∼Pr [f(xr)]− Exg∼Pg [f(xg)] ,

(3)
where ‖ · ‖L ≤ 1 denotes the space of 1-Lipschitz functions.

Computing the supremum over 1-Lipschitz functions in
Equation (3) is computationally intractable. However, Ar-
jovsky, Chintala, and Bottou (2017) showed how to approx-
imate this operation by optimizing the function f as the
discriminator3 DW

θ and maximizing the expression over pa-
rameters θ. This choice leads to the following expression,
which encapsulates the optimization procedure for the dis-
criminator and generator networks in the conditional setting:

min
µ

max
θ:‖DW

θ ‖L≤1
Exr∼Pr

[

DW
θ (x̄, xr)

]

−Exg∼PGµ

[

DW
θ (x̄, xg)

]

.

(4)
In words, we are looking for the generator such that even the
most discriminating discriminator is unable to assign real data
high scores and generated data low scores—the generated
and real data are indistinguishable. The training procedure
for this loss is performed by taking gradient steps to optimize
the discriminator while holding the generator’s parameters
fixed, and the generator while holding the discriminator’s
parameters fixed.

Notice that the optimization of θ requires that DW
θ is 1-

Lipschitz throughout the process. The most popular way
of enforcing this constraint is by introducing a penalty

2We choose L1 because it is common to measure the error in tran-
sition functions this way—a bound in L1 error can be translated to a
bound in the reward obtained via the simulation lemma (Kearns and
Singh 2002). Of course, other measures of distribution difference
are also valid.

3Because the function assigns scores, it is sometimes referred to
as the critic instead of the discriminator.

term (Gulrajani et al. 2017) in the discriminator’s optimiza-
tion steps, giving the updated expression:

min
µ

max
θ:‖DW

θ ‖L≤1
Exr∼Pr

[

DW
θ (x̄, xr)

]

− Exg∼PGµ

[

DW
θ (x̄, xg)

]

− λExτ∼Pxτ

[

(‖∇xτ
DW

θ (x̄, xτ)‖ − 1)2
]

,
(5)

where λ > 0 is a hyperparameter controlling how strongly to
enforce the penalty term and xτ is a point drawn from some-
where in the space of Pr or PGµ

. Specifically, xτ is generated
as an interpolation between a pair of real and generated sam-
ples: xτ = τxr + (1 − τ)xg with xr ∼ Pr, xg ∼ PGµ

and
τ ∼ [U](0, 1). For a detailed derivation of this loss term, see
Lemma 1 of Gulrajani et al. (2017). This method, because it
combines a gradient penalty with the WGAN, is known as
GP-WGAN.

Algorithm 1 SGAN Training Algorithm for learning to
match an observed probability distribution. Default values:
number of discriminator iterations per generator iteration
C = 5; batch size B = 32; hyper-parameter δ = 0.3;
l = 128
Require: C, B, α, β1, β2, δ, dataset containing multiple
transition pairs (x̄, xr).
Require: Initial parameters θ0 for discriminator DS

θ , initial
parameters µ0 for generator Gµ.

1: while θ has not converged do
2: for c = 1, · · · , C do
3: for b = 1, · · · , B do
4: Sample real transition pair (x̄, xr) from dataset
5: Sample noise vector n ∼ [U][0, 1]l

6: xg ← Gµ(x̄, n) //generate next state

7: Tb ←
‖xr−xg‖

δ
8: for t = 1, · · · , Tb do
9: Sample τ ∼ [U][0, 1]

10: xτ ← τxr + (1− τ)xg

11: L
(b,t)
D ← (‖∇xτ

DS
θ (x̄, xτ)−

xr−xg

‖xr−xg‖
‖)2

12: end for
13: end for
14: θ ← θ −∇θ

1
B

∑B
b=1

1
Tb

∑Tb

t=1 L
(b,t)
D

15: end for
16: for b = 1, · · · , B do
17: Sample noise vector n ∼ [U][0, 1]l.
18: Lb

G ← −D
S
θ (Gµ(x̄, n))

19: end for
20: µ← µ−∇µ

1
B

∑B
b=1 L

b
G

21: end while

SGANs

As we demonstrate, WGAN and GP-WGANs struggle to
learn generators that closely match the observed transition
data. In response, we propose our SGAN in Algorithm 1. Its
basic steps are:

• Sample a real transition pair (x̄, xr) from the dataset.

• Generate a transition pair (x̄, xg) with xg = Gµ(x̄, n),
where the components of the noise vector n are drawn from
[U][0, 1] and Gµ denotes the generator with parameter µ.

• Train the discriminator DS
θ with parameter θ to minimize

LSGAN
D , which we will define later.

• Train the generator Gµ with its loss LG =
E
n∼[U][0,1]{−D

S
θ (Gµ(x̄, n))}.

Apart from the new loss function LSGAN
D , the above proce-

dure is shared with that of WGANs and GP-WGANs.
Now, we define the new discriminator loss function LSGAN

D ,

LSGAN
D = Exr∼Pr,xg∼Pg,τ∼[U][0,1]

[

(‖∇xτ
DS

θ (x̄, xτ)−
xr − xg

‖xr − xg‖
‖)2

]

, (6)

where xτ is
xτ = τxr + (1− τ)xg, (7)

τ ∼ [U][0, 1]. (8)

But, unlike the way xτ is sampled in the GP-WGAN, the
SGAN samples xτ for T times given each xr, xg pair. The
value T is computed by

T =
‖xr − xg‖

δ
. (9)

Here, δ is a hyper-parameter of the algorithm, the choice of
which is discussed in the experiment section.

Training the discriminator in SGANs
By executing Algorithm 1, our DS

θ is modelling a differ-

ent discriminator from the DW
θ in WGAN—we refer to our

new discriminator as the SGAN discriminator. Following
the derivation of the optimal WGAN discriminator, we now

express the optimal SGAN discriminator, denoted by DS∗

:

DS∗

(x) =

∫ x

0

(

∫ 1

x

Pr(x̂)dx̂−

∫ 1

x

Pg(x̂)dx̂)dx.

This section focuses on proving the SGAN algorithm can

minimize DS∗

. Our argument proceeds in two steps:

• Lemma 1 shows an important property arising from sam-
pling xτ for T times in the SGAN algorithm.

• Building on this property, Theorem 1 shows that the loss
function of D in the SGAN algorithm (Equation (6)) leads

to DS∗

.

We restrict our argument to a one-dimensional setting for
simplicity even though the algorithm is implemented in tested
in high dimensional problems.

Lemma 1 Consider an event denoted by: xτ
T
= xn, defined

to means we sample xτ T times and the xτ = xn at least
once. To be clear, xτ xr, xg are all random variables while
xn represents a specific fixed value. Assuming

T = |xr − xg|/δ, (10)

it follows that

P (xτ
T
= xn|xr, xg) (11)

=

{

c xr < xn < xg, xg < xn < xr

0 else,
(12)

where c is a constant independent of the values of the random
variables.

Proof of Lemma 1: We begin with a derivation in which we
have discretized the one-dimensional space into intervals of
size ε. Notationally, the discretized versions of the variables
are marked with a check over the variable name. Later on,
we will derive what happens to these expressions as we take
the limit of ε → 0, bringing us back to statements about
continuous space. We have

P (x̌τ
1
= x̌n|x̌r, x̌g) =

{

1
|x̌r−x̌g|/ε

x̌r < x̌n < x̌g, x̌g < x̌n < x̌r

0 otherwise.

(13)
If we sample x̌τ for T times,

P (x̌τ
T
= x̌n|x̌r, x̌g) (14)

= 1− (1− P (x̌τ
1
= x̌n|x̌r, x̌g))

T

=

{

1− (1− 1
d/ε)

d/δ x̌r < x̌n < x̌g, x̌g < x̌n < x̌r

0 otherwise.

We relate ε to δ via a positive integer multiple4 z:

δ = zε, (15)

where z ∈ Z+. To connect back to Equation (14), we con-
sider following limit,

lim
δ=zε,ε→0

(1−
1

d/ε
)d/δ

= lim
δ=zε,ε→0

ed/δ ln(1− 1
d/ε

)

= lim
δ=zε,ε→0

e
ln(d−ε

d
)

δ/d

= lim
ε→0

e

d
d−ε

−1
d

z/d

= e−1/z (16)

Substituting Equation (16) into Equation (14) and taking the
limit as ε→ 0, we have

P (xτ
T
= xn|xr, xg) (17)

= lim
δ=zε,ε→0

P (x̌τ
T
= x̌n|x̌r, x̌g)

=

{

1− e−1/z xr < xn < xg, xg < xn < xr

0 otherwise,
(18)

where we have switched back to the continuous space and
finished the proof.

Theorem 1 Under all the assumptions in Lemma 1, if we
update DS

θ with loss

L = (|∇xτ
DS

θ (x̄, xτ)−
xr − xg

|xr − xg|
|)2, (19)

then DS
θ (x) approaches

DS
θ (x) = cDS∗

(x), (20)

for an undefined constant c.

4This is true when consider ε → 0 is the minimal value a
computer can operate.

Proof of Theorem 1: Equation (19) encourages∇xτD
S
θ (xτ)

to approach
xr−xg

|xr−xg|
. Since xr and xg are random variables,

∇xτ
DS

θ (xτ) is updated toward +1 and −1 randomly. As a

result, we should consider the learned value of ∇xτ
DS

θ (xτ)
as it relates to the probability that it gets different updates.
Let us take a look at ∇xτD

S
θ (xτ) at an arbitrary point xn:

Exr∼Pr,xg∼Pg,τ∼[U][0,1]

[

∇xτ=xn
DS

θ (xτ = xn, δ)
]

= Exr∼Pr,xg∼Pg,τ∼[U][0,1]

[

xr − xg

|xr − xg|

]

= P (xτ
T
= xn|xg < xn < xr)P (xg < xn < xr) (21)

−P (xτ
T
= xn|xr < xn < xg)P (xr < xn < xg).

From Lemma 1, we know that

P (xτ
T
= xn|xg < xn < xr) = c (22)

and

P (xτ
T
= xn|xr < xn < xg) = c, (23)

for some hyper-parameter controlled constant c. In the con-
text of Equation (21), we have

∇xτ=xnD
S
θ (xτ = xn)

= [P (xg < xn < xr)− P (xr < xn < xg)]c

= [P (xg < xn)P (xn < xr)

−P (xr < xn)P (xn < xg)]c

= [

∫ xn

0

Pg(x)dx

∫ 1

xn

Pr(x)dx

−

∫ xn

0

Pr(x)dx

∫ 1

xn

Pg(x)dx]c

=

[
∫ 1

xn

Pr(x)dx−

∫ 1

xn

Pg(x)dx

]

c. (24)

Further, based on Equation (24),

Exr∼Pr,xg∼Pg,τ∼[U][0,1]

[

DS
θ (xτ = xn)

]

=

[
∫ xn

0

(
∫ 1

x

Pr(x̂)dx̂−

∫ 1

x

Pg(x̂)dx̂

)

dx

]

c

=
[

DS∗

(xτ = xn)
]

c, (25)

completing the proof.

Experiments

This section presents experimental results.

Comparison Algorithms

We compare SGAN against a tabular learner, a deterministic
deep network and the state-of-the-art5 GP-WGAN.

Given a set S of 〈x̄, xr〉 samples, our tabular learner sim-
ply memorizes all of them. It then estimates P

x̄
r (x

′) =
|{〈x̄, x′〉 ∈ S}|/|{〈x̄, ·〉 ∈ S}. If x̄ was not observed, it

5In preliminary work, we evaluated GAN and WGAN and found
they were consistently worse than GP-WGAN.

returns a default value that is interpreted as an error in our
experiments.

For all deep neural network based methods, that is, deter-
ministic deep network, GP-WGAN and SGAN, we used
the same Adam optimizer with parameters α = 0.0001,
β1 = 0.0, and β2 = 0.9. We kept the network structure
as uniform as possible. For all 3D convolutional neural net-
works (C) layers and 3D deconvolutional neural networks
(DC) layers (Ji et al. 2013), we used LeakyReLU activation
with a negative slope of 0.001 and kernel size D × 4 × 4,
stride 1×2×2, and padding 0×1×1 (sizes are sizes reported

as Depth × Height ×Width). We denote a C layer as [CD],
where D denotes different kernel depth D× 4× 4. Similarly,

we denote a DC layer as [DCD]. For all fully connected (F)
layers, we used LeakyReLU activation with a negative slope
of 0.001. We denote a F layer mapping size a to size b as

Fa→b.
To be able to precisely describe the networks in our exper-

iments, we define a few special terms:

• Squeeze layer [S]. This layer always appears after a C
layer, and it first flattens the output of the C layer, then
uses a F layer mapping the flattened vector to 512.

• Concatenate Layer [CL]. This layer always appears after a
F layer of size 512. It concatenates the output of the F layer
with noise vector n, which means it is a F layer mapping
from (512+l) to 512, and the dimensionality of the noise
vector is l = 128. For uniformity, we run deterministic
deep networks using the same structure, replacing n with
a zero vector of the same size.

• Unsqueeze layer [U]. This layer appears after a F layer of
size 512 and before a DC layer. It first uses a F layer that
maps 512 to the size of the input of the following DC layer,
then reshapes the output vector to the shape of the input of
the following DC layer.

• Linear output layer [L]. This layer appears after a F layer
of size 512. It is a linear layer that maps 512 to 1.

• Layer sequence. We use arrows to show how layers are
connected: [∗]→ [∗]→ [∗].

Network structure for all grid domains. For vector-
based domains, we denote the size of the vector as V . Our de-
terministic deep network, G of GP-WGAN and G of SGAN
used the same structure:

• [FV→512] → [F512→512] → [S] → [CL] → [U] →
[F512→512]→ [F512→V]

For vector-based domains, D of GP-WGAN and D of SGAN
use the same structure of:

• [F2V→512]→ [F512→512]→ [S]→ [L]

For image representations, deterministic deep network, G of
GP-WGAN and G of SGAN, used the same structure of:

• [C1]→ [C1]→ [S]→ [CL]→ [U]→ [DC1]→ [DC1]

For image representations, D of GP-WGAN and D of SGAN
used the same structure of:

• [C2]→ [C1]→ [S]→ [L]

L1 Loss/Sample Validity Representation Size Dynamic Tabular learner Deterministic deep network GP-WGAN SGAN

1D Grid

Vector

5 1/3:2/3 0.001/100% /0% 0.231/92% 0.046/99%

10 1/3:2/3 0.001/100% /0% 0.103/99% 0.038/99%

20 1/3:2/3 0.001/100% /0% 0.089/98% 0.035/98%

Image

5 1/3:2/3 0.001/100% /0% 0.149/97% 0.054/97%

10 1/3:2/3 0.001/100% /0% 0.221/94% 0.106/97%

20 1/3:2/3 0.001/100% /0% 0.152/94% 0.076/93%

2D Grid Image
5 0.8:0.1:0.0:0.1 0.018/100% /0% 0.180/92% 0.109/92%

5 0.25:0.25:0.25:0.25 0.018/100% /0% 0.450/77% 0.082/90%

Overall 0.005/100% /0% 0.196/93% 0.068/96%

Table 1: Results on Simple Domains.

L1 Loss/Sample Validity Representation Size Dynamic Tabular learner Deterministic deep network GP-WGAN SGAN

2D Grid with

Obstacles
Image 5

0.8:0.1:0.0:0.1 0.021/100% /0% 0.099/96% 0.098/97%

0.25:0.25:0.25:0.25 0.018/100% /0% 0.151/92% 0.120/94%

2D Grid with

Random Background
Image

5 0.8:0.1:0.0:0.1 2.000/100% /0% 0.255/90% 0.118/93%

5 0.25:0.25:0.25:0.25 2.000/100% /0% 0.619/71.4% 0.161/91%

Overall 1.009/100% /0% 0.281/87.35% 0.124/94%

Marble Image / / /
Up:Down:Invalid

100%:0%:0%

Up:Down:Invalid

80%:0%:20%

Up:Down:Invalid

43%:34%:23%

Table 2: Results on Complex Domains.

(a) (b) (c)

Figure 2: Transition pairs generated by different models on
the 5× 5 2D Grid with Random Backgrounds domain with
uniform random walk dynamics (0.25 : 0.25 : 0.25 : 0.25).
(a) Transition pairs generated by the deterministic deep net-
work. (b) Transition pairs generated by GP-WGAN. (c) Tran-
sition pairs generated by SGAN. For every subfigure, the left
row of images is the start state with agent fixed to the same
position for evaluation but backgrounds chosen at random,
and the right row of images is the generated next state based
on that start state.

The 2D Grid with Random Backgrounds domain is another
2D Grid domain. Unlike the previous domain, obstacles can
appear at any location. Each grid cell is represented by two
kinds of features—a ‘fence feature’ denoting the presence
of an obstacle and an ’agent feature’ denoting the presence
of the agent. Since the space of possible backgrounds is
enormous, models have to generalize from their limited data
set to learn the underlying rules governing the dynamics. The
size of the dataset we use for this domain is a 10−6 fraction
of the total number of possible transition pairs. As such, the
tabular learner performs extremely poorly in this task.

For these complex domains, we find that it is common
for networks to need to learn two things: How to copy the
background features and how to capture the probabilistic
aspects of the transitions. Learning one of these can interfere
with learning the other. A common failure mode is for the
output layers of the G network to lose their connection to n

when it learns the deterministic part of the transition. Once
those aspects are learned, it can be difficult to recover the
connections to the noise inputs n. To encourage the network
to retain these connections, we have an optional additional
loss in G:

Ln

G = − log(1 + ‖∇nGµ(x̄, n)‖), (26)

where the purpose of the log(1 + ·) operation is to restrain
from becoming too large. We combine this loss with the orig-
inal loss of G by simple addition with a weighting coefficient
of ρ = 1.0. We only implement this technique on the three
complex domains, as the deterministic part in the transition is
relatively complicated and important. In practice, we found
this additional loss of G gives a significant improvement on
all GAN-related methods.

As shown in Table 2, our SGAN results in improvements
in the most complex domains in terms of L1 loss and sample
validity. Once again, the deterministic deep net cannot gener-
ate any valid samples. Figure 2 gives a visualization from the
deterministic deep network, GP-WGAN, and SGAN on the
2D Grid with Random Backgrounds domain. From this fig-

Atkeson, C. G.; Moore, A. W.; and Schaal, S. 1997. Locally
weighted learning for control. Artificial Intelligence Review
11:75–113.

Bradtke, S. J. 1993. Reinforcement learning applied to linear
quadratic regulation. In Hanson, S. J.; Cowan, J. D.; and
Giles, C. L., eds., Advances in Neural Information Processing
Systems 5, 295–302. San Mateo, CA: Morgan Kaufmann.

Degris, T.; Sigaud, O.; and Wuillemin, P.-H. 2006. Learning
the structure of factored markov decision processes in rein-
forcement learning problems. In Proceedings of the 23rd in-
ternational conference on Machine learning, 257–264. ACM.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014.
Generative adversarial nets. In Advances in neural informa-
tion processing systems, 2672–2680.

Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and
Courville, A. 2017. Improved training of Wasserstein GANs.
arXiv preprint arXiv:1704.00028.

Ji, S.; Xu, W.; Yang, M.; and Yu, K. 2013. 3d convolu-
tional neural networks for human action recognition. IEEE
transactions on pattern analysis and machine intelligence
35(1):221–231.

Kearns, M. J., and Koller, D. 1999. Efficient reinforcement
learning in factored MDPs. In Proceedings of the 16th Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
740–747.

Kearns, M. J., and Singh, S. P. 2002. Near-optimal rein-
forcement learning in polynomial time. Machine Learning
49(2–3):209–232.

Oh, J.; Guo, X.; Lee, H.; Lewis, R. L.; and Singh, S. 2015.
Action-conditional video prediction using deep networks in
atari games. In Advances in Neural Information Processing
Systems, 2863–2871.

Puterman, M. L. 1994. Markov Decision Processes—Discrete
Stochastic Dynamic Programming. New York, NY: John
Wiley & Sons, Inc.

Russell, S. J., and Norvig, P. 1994. Artificial Intelligence: A
Modern Approach. Englewood Cliffs, NJ: Prentice-Hall.

