

Intrinsic phase separation in low-temperature quenched arsenic trisulfide glass

O. Shpotyuk^{1,2*}, A. Kovalskiy³, J. Trimble³, M. Vlček⁴, Ya. Shpotyuk^{5,6}, S. Kozyukhin⁷

¹ Vlokh Institute of Physical Optics

23, Dragomanov str., Lviv, 79005, UKRAINE

²Institute of Physics of Jan Dlugosz University

13/15, al. Armii Krajowej, Czestochowa, PL-42201, POLAND

³ Department of Physics & Astronomy, Austin Peay State University
Clarksville, TN 37044, USA

⁴ Department of General and Inorganic Chemistry, Faculty of Chemistry
University of Pardubice, 532 10 Pardubice, CZECH REPUBLIC

⁵ Centre for Innovation and Transfer of Natural Sciences and Engineering Knowledge

1, Pigonia str., 35310 Rzeszow, POLAND

⁶ Ivan Franko National University of Lviv,
1, Universytetska str., 79000 Lviv, UKRAINE

⁷ N.S. Kurnakov Institute of General and Inorganic Chemistry
31 Leninsky Pr., Moscow, 199991, RUSSIA

PACS codes / keywords:

61.43.Fs, 64.70.Pf / chalcogenide glass, Raman scattering, disorder

Highlights:

Intrinsic phase separation in binary As-S glasses near As₂S₃ stoichiometry

Chemical disorder in glassy As₂S₃ under rapid quenching from high temperatures

Phase demixing in As₂S₃ glass under prolonged low-temperature homogenization

Coordination disordering in As₂S₃ glass under reduced low-temperature homogenization

*Corresponding author. Tel.: +38 032 2638303

E-mail address: olehshpotyuk@yahoo.com

Abstract

The nature of intrinsic phase separation initiated under different homogenization routes is studied in arsenic trisulfide As₂S₃ glass using Raman scattering spectroscopy.

It is shown that As₂S₃ glass prepared within conventional melt-quenching route is subjected to essential phase separation dependent on the homogenization of elemental constituents sealed in evacuated ampoules. Under condition of low-temperature homogenization at 450-550°C, chemical interaction due to limited solubility of liquid S in solid As results in structurally intrinsic As- and S-rich phases with high content of homoatomic As-As and S-S bonds, respectively, which are “wrong” from the point of As₂S₃ stoichiometry. This process can be essentially facilitated with more rapid heating and greater amount of initial elemental ingredients taken for synthesis. During prolonged homogenization of this intrinsically-decomposed melt (such as lasting 2 days in a rocking furnace), these products are partially separated giving main glassy phase enriched on As in the form of realgar- and dimorphite-type molecules, isolated As-As bonds in a glassy network and volatilized S-rich phase, which condenses on the walls of ampoules. If such melt is insufficiently homogenized as under 6-hours heating at 500°C with only 2-hours rocking, the coordination disordering is maintained in the ultimate glass. This provides that volatilized S-rich phase does not form, and all decomposition products are stabilized in glassy state as quasi-tetrahedral units and compensating homoatomic As-As bonds.

Introduction.

Stoichiometric arsenic trisulfide glass g-As₂S₃ possessing excellent network-forming ability with full saturation of covalent bonding is known to be a model glass former, allowing wide range of related As-S glassy compounds [1,2]. This glass can be prepared by melt quenching or cooling, ensuring some features proper to liquid being frozen in a stabilized solid state [1]. Despite lack of crystalline long-range ordering, the influence of melt-quenching route on properties of g-As₂S₃ remains still essential in view of some deviations in the distribution of covalent bonds composing glassy network (*chemical disordering*) and interlinking between principal glass-forming structural units (*medium-range disordering*) [3,4]. So changing melt-quenching conditions, it seems possible to synthesize this glass with different content of “wrong” homoatomic As-As and S-S bonds (which appear in addition to regular heteroatomic As-S bonds) and structural-topological perfectness [3-8]. Most frequently, the overall technological process of g-As₂S₃ preparation is arranged using pure elemental constituents (no worse than three nines) sealed in evacuated ampoules homogenized above 600°C [5-12]. In many cases [5,6,10-12], the melt is kept in rocking furnace for 12-24 hours at the temperatures as high as $T_q=800\text{-}900^\circ\text{C}$, which exceed the boiling point of this compound $T_b=709^\circ\text{C}$ [1,2,13], and further it quenched from this T_q in a certain temperature-time regime. Under such high-temperature (HT) conditions, the quenching rate attains an essential role to stabilize the finalized glassy state with high (rapidly quenched glass) or low (slowly quenched or cooled glass) level of “wrong” homoatomic bonding. It means, in an alternative formulation, that *structurally-intrinsic phase separation* is frozen in the equilibrium glass as a result of *HT bond dissociation*, this process being temperature dependent provided sharp difference between slowly- and rapidly-quenched glasses with growing homogenization temperature above boiling point [5].

But this technological process can also be performed exploring slow or fast melt-quenching (cooling) technological route from essentially lower T_q such as 450-550°C [14-19], which are far below boiling point $T_b=709^\circ\text{C}$, but above melting temperature $T_m=310^\circ\text{C}$ of As₂S₃. Since elemental sulfur S has $T_m=113^\circ\text{C}$ and $T_b=445^\circ\text{C}$ [20], this allows chemical interaction between solid As (with melting point close to $T_m\approx615^\circ\text{C}$ [21]) and liquid S even at such relatively low temperatures. However, such chemical interaction seems to be highly time-consuming because of limited S solubility in solid As [22]. So it is expected that under reduced melt homogenization at low T_q , the elemental S is not distributed uniformly in a glassy network composed by three-fold coordinated As-branching sites, producing specific kind of structural imperfections. Thus, as was first shown in [23,24], the g-As₂S₃ slowly cooled (with a rate of 10°C/h) in low-temperature (LT) regime ($T_q=450\text{-}525^\circ\text{C}$) demonstrated *extended defect structures* filled with inter-coupled “wrong” As-As and S-S chemical bonds, which disrupt a continuity of glassy network like macroscopic internal surfaces or dislocation lines in defective crystals. Recently [25], it was found that insufficiently homogenized g-As₂S₃ prepared by cooling from $T_q=500^\circ\text{C}$ possessed *coordination disordering* in the form of quasi-tetrahedral (QT) $\text{S}_{3/2}\text{As}=\text{S}$ units overcompensated by homoatomic As-As bonding. Possible configurations of such extended defects were examined with *ab-initio* quantum chemical modeling and experimentally verified using micro-Raman spectroscopy and X-ray diffraction patterning in the measuring mode related to the first sharp diffraction peak [25].

In fact, all these cases verify that structural anomalies in the LT-quenched g-As₂S₃ result from *intrinsic phase separation* due to spatially inhomogeneous distribution of elemental constituents in a bulk glassy matrix. In this work, we continue experimental research on these anomalies in g-As₂S₃ subjected to different homogenization routes using Raman scattering technique.

Experimental: sample preparation and measuring procedures.

Samples of g-As₂S₃ were synthesized in evacuated (10^{-5} Pa) and sealed fused quartz ampoules by conventional melt-quenching technique in a rocking furnace. Elemental constituents (S and As) additionally purified with distillation (to purity of no worse than three nines) were melted at maximal temperature of 500°C. The synthesis procedure was portioned into few step-wise stages:

- (1) initial heating from room temperature to 250 °C for a few hours,
- (2) heating from 250 to $T_q=500^\circ\text{C}$ for 6 hours with increment 50°C,

(3) rocking at $T_q=500^\circ\text{C}$ for 48 hours, and then

(4) cooling from this $T_q=500^\circ\text{C}$ to room temperature under *rapid quenching* (RQ) by inserting the ampoule in a water bath or *slow cooling* (SC) with a turned-off furnace.

Thus, we prepared two batches of g-As₂S₃ homogenized in the LT regime at $T_q=500^\circ\text{C}$ and further stabilized under RQ or SC. Visual inspection testifies that both types of samples have conchoidal fracture characteristic for glasses, but inner walls of ampoules were covered with bright-red layer. So for microstructure study we took large pieces from deeper part of each ingots and remainder of the deposited phase inside the ampoule. The wide-stretched halos on X-ray diffraction patterns registered from these samples provides additional confirmation on their amorphous state.

For a comparison, we also used samples of g-As₂S₃ prepared in the HT regime, when the ampoules were kept at $T_q=700^\circ\text{C}$ or 900°C for 30 hours in a rocking furnace and then subjected to the same RQ stabilization procedure. Other batch of samples was composed by stoichiometric g-As₄₀S₆₀ and near-stoichiometric g-As₄₂S₅₈ and g-As₃₈S₆₂ prepared by cooling from $T_q=500^\circ\text{C}$, which were only shortly homogenized at this temperature for 6 hours with 2 hours rocking [25].

The room temperature Raman scattering spectra were measured by using fast Fourier-transform (FFT) spectrometer IFS 55 supplied with FRA 106 accessory (Bruker, Germany). A back-scattering method with Nd:YAG laser line (1064 nm) of 90 mW power was used for the excitation. The resolution of the Raman spectrometer was 4 cm^{-1} at 300 scans. The raw experimental spectra were processed using the Bruker software, normalized by standard technique of matching the most intensive peaks in the studied spectral region and compared by subtraction method.

Results and discussion.

The normalized FFT Raman scattering spectra of g-As₂S₃ synthesized in the LT regime at $T_q=500^\circ\text{C}$ under RQ and SC are shown in Fig. 1 and 2, respectively. It is obvious these spectra differ essentially for glassy bulk ingots (Fig. 1a and 2a) and remainders of deposited vapour phase taken from the upper part of the ampoules (Fig. 1b and 2b).

In the spectrum of bulk ingots (Fig. 1a, 2a), a group of sharp lines corresponding to Raman-active vibration modes of β -As₄S₄ molecules can be easily identified due to specific doublet at 345-362 cm^{-1} completed by relatively slight shoulders near 310 and 380 cm^{-1} [11,26-33]. The first of these bands (345 cm^{-1}) also corresponds to symmetric stretching vibrations of As-S bonds in trigonal AsS₃ pyramids [26], which can be considered as representatives of regular glassy network built of corner-sharing AsS_{3/2} pyramids, while the second band (362 cm^{-1}) is rather attributed to these vibrations in realgar-type molecules [27-29]. In such configuration, these Raman scattering lines are well pronounced in the As-rich As-S glasses [11,18,25,26,32], as-evaporated (freshly-prepared) thin films of stoichiometric arsenic sulfide As₂S₃ [30,31], as well as high-temperature β -As₄S₄ or so-called χ -phase, which can be accepted as a precursor of pararealgar appeared in light-induced transformation from realgar [27,28]. So, in fact, the bulk ingot condensed in the LT-regime at $T_q=500^\circ\text{C}$ is the As-rich glass of As-S system, the As excess being in the form of realgar-type molecules. Presence of homoatomic As-As bonds in these probes follows also from intense scattering bands observed near ~ 146 , 188, 212 and 222 cm^{-1} , which can be attributed to β -As₄S₄ [26-30]. The appearance of slight band near 234 cm^{-1} , which is quite close to one (234 cm^{-1}) observed in the Raman spectra of amorphous As [34], can be ascribed in harmony with interpretation [32,35] to isolated As-As bonds within glassy network (network-type As-As bonds). Other band slightly pronounced near 275 cm^{-1} can be attributed to dimorphite As₄S₃ molecules, both cage-type crystalline forms of which possess strong mode in this region [36-38]. An alternative interpretation allows ascribing this band to pararealgar As₄S₄, but corresponding Raman activity of this mode in this crystalline state is only weak [29].

Thus, at the basis of this analysis, the bulk ingots obtained in the LT regime can be classified as As-rich arsenic sulfide glass, where excess of As is mainly present in the form of β -As₄S₄ molecules, as well as isolated As-As bonds incorporated in a glassy network and cage-type dimorphite As₄S₃ molecules. Noteworthy that no any bands proper to S-rich configurations were observed in the spectra of bulk ingots (Fig. 1a, 2a). In contrast, the Raman scattering spectra of

supplemented vapour phases (Fig. 1b and 2b) contain such bands at 494 cm^{-1} ascribed to S-S chains and 474 cm^{-1} ascribed to S_n-like rings [11,26,30,39], which are superimposed on sharp Raman-active vibrations of regular AsS_{3/2} pyramids (umbrella mode stretched around $\sim 160\text{ cm}^{-1}$ and dominant broad band of symmetric-asymmetric modes at $\sim 340\text{ cm}^{-1}$ modified by the same shoulders at ~ 310 and $\sim 380\text{ cm}^{-1}$ [28]). Therefore, we can certainly declare the vapour phase deposited on the inner walls of the ampoule consist of S-rich entities from binary As-S system. Surprisingly, but no any differences were observed between Raman spectra of g-As₂S₃ subjected to RQ (Fig. 1) or SC (Fig. 2) procedures, testifying in a favor of insignificant impact of post-technological conditions on the glass stabilized in the LT-regime.

At the same time, no any phase-separation products (neither As-rich, nor S-rich ones) were found in g-As₂S₃ synthesized in the HT regime ($T_q=700$ and 900°C) under RQ (see Fig. 3). Raman spectra of these glasses demonstrate only main attributes of corner-shared AsS_{3/2} pyramids, e.g. the intense high-frequency peak of As-S stretches with centroid near 343 cm^{-1} and shoulders at 312 and 380 cm^{-1} , as well as weaker low-frequency modes attributed to As-S-As bond-bending vibrations with only slightly pronounced peaks at 188 and 234 cm^{-1} . Insignificant effect of homoatomic bonding follows also from under-margin band near 494 cm^{-1} (corresponding to S-S vibrations in ring-like configurations) and practically full absence of characteristic As-As stretches typical for spectra on Fig. 1 and 2. It is worthy to note that main centroid of As-S stretches lies near 343 cm^{-1} , corresponding thereby to the glassy network of corner-shared AsS_{3/2} pyramids, but not shifts towards 340 cm^{-1} , which is character for S-rich As-S glasses (Fig. 1b and 2b) [11,26,33].

By comparing these results with Raman spectra of As-S glasses synthesized in the LT regime under SC, but at condition of reduced melt homogenization (only 6-hours keeping at $T_q=500^\circ\text{C}$ and 2-hours rocking), close similarity between As-rich g-As₄₂S₅₈ (Fig. 4) and LT-prepared g-As₂S₃ (Fig. 1a, 2a) is evidenced testifying in favor of correct Raman modes ascribing. Other important feature is great background fluorescence observed in these under-homogenized glasses at such excitation, which essentially prevent reliable identification of some modes, especially at high frequencies (above 400 cm^{-1}). As it was shown in [25], under another excitation (785 nm diode laser) with careful filtering used to limit output power to $80\text{ }\mu\text{W}$, it was possible to register the Raman-active bands of S-rich products in these glasses at 474 , 494 and 530 - 540 cm^{-1} (Fig. 5). The latter band was ascribed, at the basis of first-principle cluster-modeling calculations [33], to mode of stretch double-bond As=S vibrations at 537 cm^{-1} within S_{3/2}As=S unit (other modes of this QT unit are expected to contribute mainly to modes of normal trigonal AsS_{3/2} pyramids). This finding was also concomitant with earlier *ab-initio* Hartree-Fock method calculations for different structural configurations in g-As₂S₃, giving As=S group frequencies in 525 - 530 cm^{-1} domain [40]. These S_{3/2}As=S units introduce coordination disordering in a glassy network built of three-fold coordinated As-branching sites and two-fold coordinated S atoms along with some portion of chemical disordering owing to compensating input of homoatomic As-As bonding. Possible topological configurations of such structural anomalies were examined with *ab-initio* quantum chemical simulation [25], showing that As-As bonds try to be deeper in a glass structure from S_{3/2}As=S units. In other words, the network of g-As₂S₃ prepared under such technological conditions does not dissociate on well-separated heavy As-rich and light-volatilized S-rich products, giving a possibility to stabilize the energetically unfavorable double covalent bonding (As=S) in a glassy network.

Thus, the above results testify that intrinsic phase separation in g-As₂S₃ can be activated from HT liquid state of melt (above boiling point) as a consequence of thermally-induced dissociation of main glass-forming structural units, e.g. corner-sharing AsS_{3/2} pyramids built of heteroatomic As-S bonds. This result is quite well predicted, as we accept the molar fraction of different chemical species in As_xS_{1-x} liquid identified at the HT conditions such as $T_q=900^\circ\text{C}$ [41]. At this temperature, this liquid melt around stoichiometric As₂S₃ composition can be considered as a homogeneous mixture of different chemical species, these being AsS_{3/2} chain branching units, As₄S₄ separate molecules, as well as elemental As and S compounds. Only for high S-enriched compositions ($x<0.3$), the liquid evolves two of these species (AsS_{3/2} units and elemental S), while in other

concentration range the liquid is composed, at least, by three of them. Since a final glass is frozen from this state, it preserves, with a necessity, some of these species. In this case, the time-consuming phase demixing is essentially governed by melt quenching rate revealing itself in a temperature-dependent manner (the growing difference between rapidly- and slowly-quenched glasses with increased homogenization temperature).

In conditions of metastable liquid-solid equilibria such as realized under LT synthesis regime ($T_q=500^\circ\text{C}$), only quenching at unreally high rates (typical for vapour quenching of $\sim 10^7 \text{ K/s}$) can prevent the mixture from essential phase separation [42]. The metastable liquid-solid immiscibility cannot result in a homogeneous amorphous solution stable to phase separation at melt-quenching conditions employed in typical glass synthesis routes (10^{-2} - 10^2 K/s). In such cases, the phase demixing is not further dependent on quenching/cooling rate showing similar effects for both RQ and SC samples. The only way to affect this process is to modify time durations of the homogenization stage. If the LT-cooling process is arranged under a prolonged homogenization (48-hours keeping in a rocking furnace), the ultimate products can be well decomposed in two distinguished phases, the As-rich phase in bulk glass ingot and light-vaporized S-rich phase deposited at the ampoule walls. But under insufficient homogenization of liquid-solid mixture (reduced or short-term homogenization in a rocking furnace), these phases cannot be well separated in the evacuated ampoule remaining dissolved in the amorphous phase enriched on coordination disordering due to QT $\text{S}_{3/2}\text{As}=\text{S}$ units and excess of homoatomic As-As bonds.

Thus, the intrinsic phase separation is permanent feature of glassy As-S system in a wide range of compositions. Nevertheless, the stoichiometric $\text{g-As}_2\text{S}_3$ demonstrates nearly catastrophic response on HT-LT-deviations in the glass preparation technology because of variety of chemical species characteristic for this glass, when coordination anomalies (double As=S bonding) can be fully compensated by chemical ones ("wrong" As-As bonds). This specificity explains numerical misleading attempts to register experimentally double covalent bonding in different glassy arsenic chalcogenides near average coordination numbers of $Z=2.286$, which corresponds to exact chemical composition of $\text{S}_{3/2}\text{As}=\text{S}$ [14,33,43]. This QT unit can appear as a requisite of S-rich phase near stoichiometric As_2S_3 , being balanced by chemical disordering due to excess of homoatomic As-As bonds. Absence of such possibility in the HT-stabilized ($T_q=900^\circ\text{C}$) molten $\text{As}_x\text{S}_{1-x}$ liquid near $Z=2.29$ [41] is in a good agreement with this conclusion.

In final, these results explain a lot of controversies observed in physical-chemical properties of glassy arsenic trisulfide $\text{g-As}_2\text{S}_3$ prepared in various laboratories exploring fine-different specifics in their synthesis. Special attention have to be paid to cases, when glass was stabilized in the LT regime under reduced short-term homogenization, since many of anomalies could result from possible coordination disordering realized under such conditions.

Conclusions.

Intrinsic phase separation in wide range of As-S glasses is shown to reveal catastrophic feedback near stoichiometric As_2S_3 composition due to essential differences in the microstructure of glasses quenched from high (800 - 900°C) and low (450 - 550°C) temperatures. In respect to FFT Raman scattering spectra, the former ones demonstrate no essential phase decomposition, some portion of chemical disordering in the form of "wrong" homoatomic As-As and S-S bonding being possible in them in dependence on quenching temperature and rate. In contrast, the glasses prepared from relatively lower temperatures do not form homogeneous amorphous solution because of metastable immiscibility of liquid S and solid As, the phase demixing being not dependent on the melt quenching rate. If the melt cooling is arranged with prolonged homogenization (such as under 48-hours heating in a rocking furnace), the ultimate products of low-temperature synthesis can be well decomposed in two distinguished phases, the As-rich bulk glass and S-rich vaporized compound. The first of them are composed of cage-type $\beta\text{-As}_4\text{S}_4$ and As_4S_3 molecules, as well as isolated As-As bonds incorporated in a glassy network, while the second is S-rich As-S glass. In case of insufficient melt homogenization (such as under 6-hours keeping at 500°C and 2-hours

rocking), the ultimate product close to As-rich glass, where essential coordination disordering in the form of $S_{3/2}As=S$ units compensated by excess of As-As bonds are present.

Acknowledgement

AK, JT and MV thank U.S. National Science Foundation, through International Materials Institute for New Functionality in Glass (Grant No. DMR-0844014), for initiating the international collaboration and providing financial support for this work. AK and JT acknowledge also financial support from NSF Grant DMR-1409160. MV thanks to project CZ.1.05/4.1.00/11.0251 „Center of Materials and Nanotechnologies“, cofinanced by the European Fund of the Regional Development and the state budget of the Czech Republic.

References

1. A. Feltz, *Amorphe und glasartige Festkorper*, Akademie Verlag, Berlin, 1983.
2. Z.U. Borisova, *Glassy semiconductors*, Plenum Press, New York-London, 1981.
3. K. Tanaka, Chemical and medium-range orders in As_2S_3 glass, *Phys. Rev. B* 36 (1987) 9746-9752.
4. K. Tanaka, Interrelations between optical absorption edges and structural order in glassy As_2S_3 , *Solid State Commun.* 56 (1985) 899-903.
5. S.L. Kuznetsov, M.D. Mikhailov, I.M. Pecheritsyn, E.Yu. Turkina, Structural chemical processes at the synthesis of chalcogenide glasses, *J. Non-Cryst. Sol.* 213-214 (1997) 68-71.
6. S. Mamedov, A. Kisliuk, D. Quitmann, Effect of preparation conditions on the low frequency Raman spectrum of glassy As_2S_3 , *J. Mater. Science* 33 (1998) 41-43.
7. O.V. Luksha, E.I. Borkach, V.P. Ivanitsky, Structural-technological modification of As_2S_3 glasses, *J. Optoelectron. Adv. Mat.* 4 (2002) 45.
8. I.V. Fekesgazi, K.V. Mai, N.I. Mateleshko, V.M. Mitsa, E.I. Borkach, *Semiconductors* 39 (2005) 951.
9. S.N. Yannopoulos, K.S. Andrikopoulos, D.Th. Kastrissios, G.N. Papatheodorou, Origin of photoinduced defects in glassy As_2S_3 under band gap illumination studied by Raman scattering: A revisory approach, *Phys. Stat. Solidi B* 249 (2012) 2005-2012.
10. A. Feltz, G. Pfaff, Ordering states in noncrystalline compounds, *J. Non-Cryst. Sol.* 77-78 (1985) 1137-1140.
11. T. Wagner, S.O. Kasap, M. Vlcek, A. Sklenar, A. Stronski, Modulated-temperature differential scanning calorimetry and Raman spectroscopy studies of As_xS_{100-x} glasses, *J. Mater. Sci.* 33 (1998) 5581-5588.
12. T. Cardinal, K.A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoec, C. Meneghini, J.F. Viens, A. Villeneuve, Non-linear optical properties of chalcogenide glasses in the system As-S-Se, *J. Non-Cryst. Sol.* 256-257 (1999) 353-360.
13. M. Hansen, K. Anderko, *Constitution of binary alloys*, McGraw-Hill, New York, 1965.
14. S. Tsuchihashi, Y. Kawamoto, Properties and structure of glasses in the system As-S, *J. Non-Cryst. Sol.* 5 (1971) 286-305.
15. R. Blachnik, A. Hoppe, Glass transition and specific heats in the systems P-S, P-Se, As-S and As-Se, *J. Non-Cryst. Sol.* 34 (1979) 191-201.
16. K. Murayama, M.A. Bosch, Hot photoluminescence in amorphous As_2S_3 , *Phys. Rev. B* 25 (1982) 6542-6544.
17. J.S. McCloy, B.J. Riley, S.K. Sundaram, H.A. Qiao, J.V. Crum, B.R. Johnson, Structure-optical property correlations of arsenic sulfide glasses in visible, infrared, and sub-millimeter regions, *J. Non-Cryst. Solids* 356 (2010) 1288-1293.
18. R. Golovchak, O. Shpotyuk, J.S. McCloy, B.J. Roley, C.F. Windisch, S.K. Sundaram, A. Kovalskiy, H. Jain, Structural model of homogeneous As-S glasses derived from Raman spectroscopy and high-resolution XPS, *Phil. Mag.* 90 (2010) 4489-4501.
19. S.K. Sundaram, J.S. McCloy, B.J. Riley, M.K. Murphy, H.A. Qiao, C.F. Windisch, E.D. Walter, J.V. Crum, R. Golovchak, O. Shpotyuk, Gamma radiation effects on physical, optical, and

structural properties of binary As-S glasses, *J. Am. Ceram. Soc.* 95 (2011) 1048-1055.

20. R. Steudel, B. Eckert, *Topics in Current Chemistry*, Springer-Verlag, Berlin-Heidelberg, 2003.

21. R. Blachnik, A. Hoppe, U. Wickel, *Die Systeme Arsen-Schwefel und Arsen-Selen und die thermodynamischen Daten ihrer Verbindungen*, *Z. Anorg. Allg. Chem.* 463 (1980) 78-90.

22. L.A. Clark, The Fe-As-S system – Phase relations and applications, *Econom. Geol.* 55 (1969) 1345-1381.

23. M. Malyj, J.E. Griffiths, Extended defect structures in bulk As_2S_3 glass. I. The effects of thermal treatment on Raman spectra, *Solid State Commun.* 62 (1987) 667-670.

24. M. Malyj, G.P. Espinosa, J.E. Griffiths, Extended defect structures in bulk As_2S_3 glass. II. Low-frequency Raman spectra and the glass transition, *Solid State Commun.* 62 (1987) 671-676.

25. O. Shpotyuk, S. Kozyukhin, Ya. Shpotyuk, P. Demchenko, V. Mitsa, M. Veres, Coordination disordering in near-stoichiometric arsenic sulfide glass, *J. Non-Cryst. Solids* 402 (2014) 236-243.

26. E.F. Venger, A.V. Melnychuk, A.V. Stronski, Photostimulated processes in chalcogenide vitreous semiconductors and their practical using, *Akademperiodioka*, Kiev, 2007.

27. W. Bues, M. Somer, W. Brockner, Schwingungsspektren von As_4S_4 und As_4Se_4 , *Z. anor. Allg. Chem.* 499 (1983) 7-14.

28. P. Bonazzi, S. Manchetti, G. Pratesi, M. Muniz-Miranda, G. Sbrana, Light-induced variations in realgar and β - As_4S_4 : X-ray diffraction and Raman studies, *Amer. Mineralogist* 81 (1996) 874-880.

29. K. Trentelman, L. Stodulski, Characterization of pararealgar and other light-induced transformation products from realgar by Raman microspectroscopy, *Anal. Chem.* 68 (1996) 1755-1761.

30. A. Kovalskiy, J. Cech, M. Vlcek, C.M. Waits, M. Dubey, W.R. Haffner, H. Jain, Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning, *J. Micro/Nanolith. MEMS MOEMS*. 8 (2009) 043012-1-11.

31. R.P. Wang, S.J. Madden, C.J. Zha, A.V. Rode, B. Luther-Davies, Annealing induced phase transformations in amorphous As_2S_3 films, *J. Appl. Phys.* 100 (2006) 063524-1-063524-4.

32. D.G. Georgiev, P. Boolchand, K.A. Jackson, Intrinsic nanoscale phase separation of bulk As_2S_3 glass, *Phil. Mag.* 83 (2003) 2941-2953.

33. P. Chen, C. Holbrook, P. Boolchand, D.G. Georgiev, K.A. Jackson, M. Micoulaut, Intermediate phase, network demixing, boson and floppy modes, and compositional trends in glass transition temperatures of binary As_xS_{1-x} system, *Phys. Rev. B* 78 (2008) 224208-1224208-15.

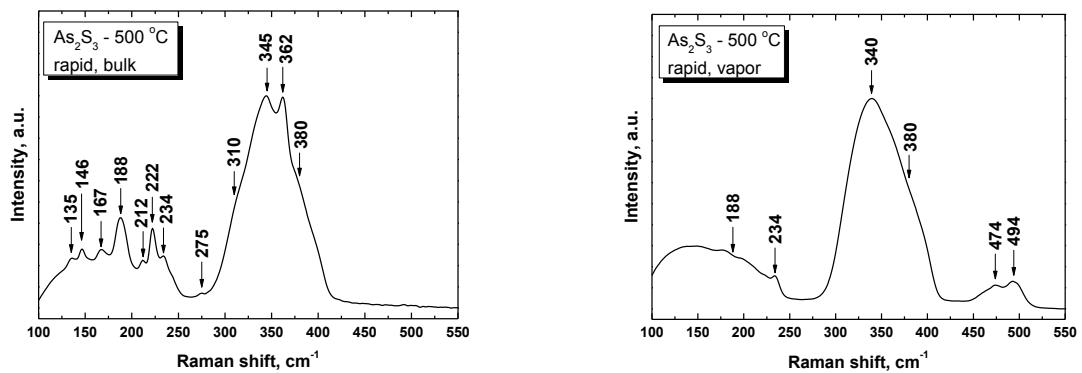
34. J.S. Lannin, Raman scattering properties of amorphous As and Sb, *Phys. Rev. B* 15 (1977) 3863-3871.

35. R. Holomb, V. Mitsa, P. Johansson, N. Mateleshko, A. Matic, M. Veresh, Energy-dependence of light-induced changes in g - $As_{45}S_{55}$ during recording the micro-Raman spectra, *Chalcogenide Lett.* 7 (2005) 63-69.

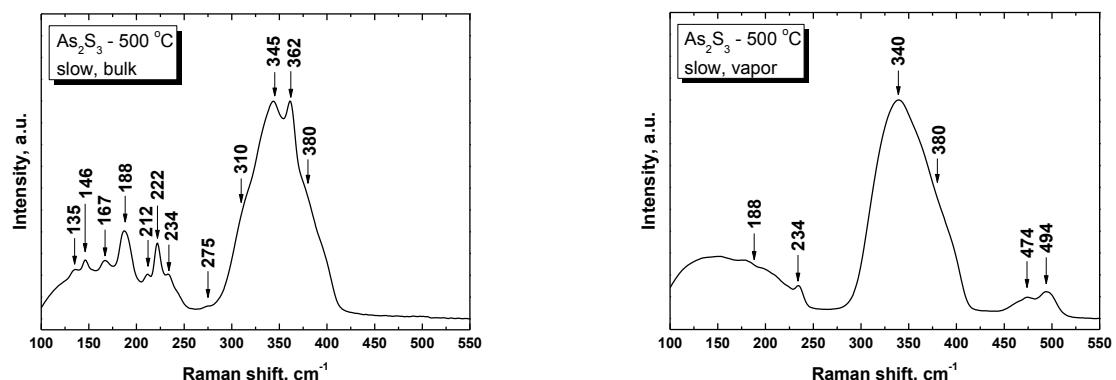
36. T. Chattopadhyay, C. Carbone, A. Jayaraman, H.G.V. Schnering, Effect of temperature and pressure on the Raman spectrum of As_2S_3 , *J. Phys. Chem. Sol.* 43 (1982) 277-284.

37. S. Mamedov, D.G. Georgiev, Tao Qu, P. Boolchand, Evidence for nanoscale phase separation of stressed-rigid glasses, *J. Phys.: Condens. Matter* 15 (2003) S2397-S2411.

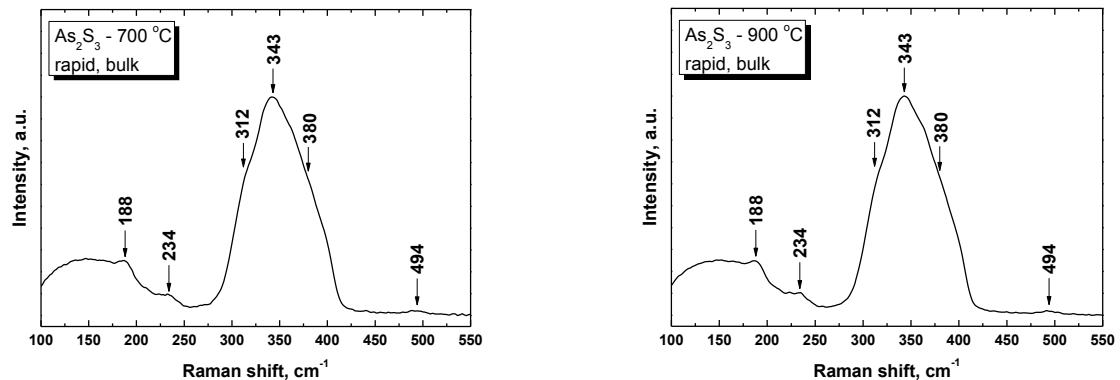
38. W. Bues, M. Somer, W. Brockner, Schwingungsspektren der käfigstrukturierten Verbindungen P_4S_3 , P_4Se_3 , As_4S_3 und As_4Se_3 , *Z. Naturforsch.* 35b (1980) 1063-1069.

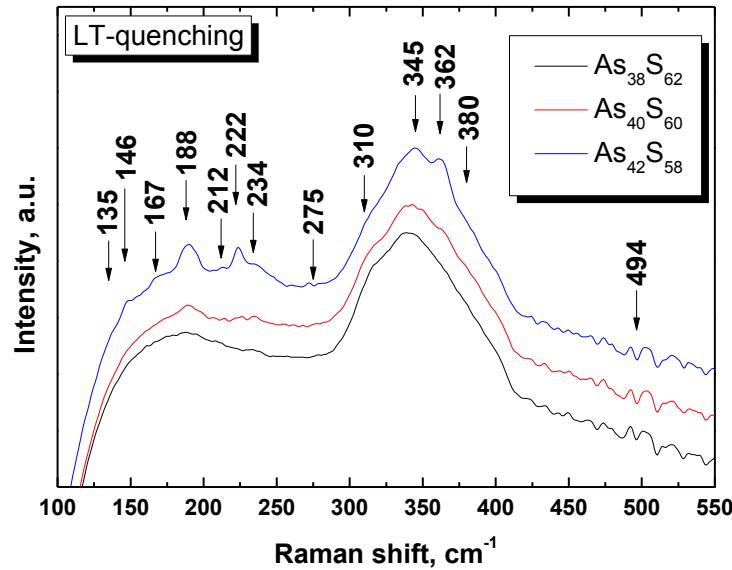

39. M. Bucchi, R. Bini, E. Castellucci, B. Eckert, H.J. Jodl, Mode assignment of sulfur α - S_8 by polarized Raman and FTIR studies at low temperatures, *J. Phys. Chem. B* 101 (1997) 2132-2137.

40. F. Billes, V. Mitsa, I. Fejes, N. Mateleshko, J. Fejsa, Calculation of the vibrational spectra of arsenic sulfide clusters, *J. Molec. Structures* 513 (1999) 109-115.


41. G. Chaussemy, J. Fornazero, J.-M. Mackowski, Relationship between viscosity and structure in As_xS_{1-x} molten materials, *J. Non-Cryst. Solids* 58 (1983) 219-234.

42. M.B. Myers, J.S. Berkes, Phase separation in amorphous chalcogenides, *J. Non-Cryst. Sol.* 8-10 (1972) 804-815.


43. E. Diemann, Amorphous arsenic pentasulfide. Structure and electronic structure, *Rev. Chim. Miner.* 16 (1979) 237-244.


Fig. 1. Normalized FFT Raman scattering spectra of g-As₂S₃ synthesized in the LT regime under RQ: a – bulk glass extracted from ampoule; b – vapor phase condensed on the ampoule walls.

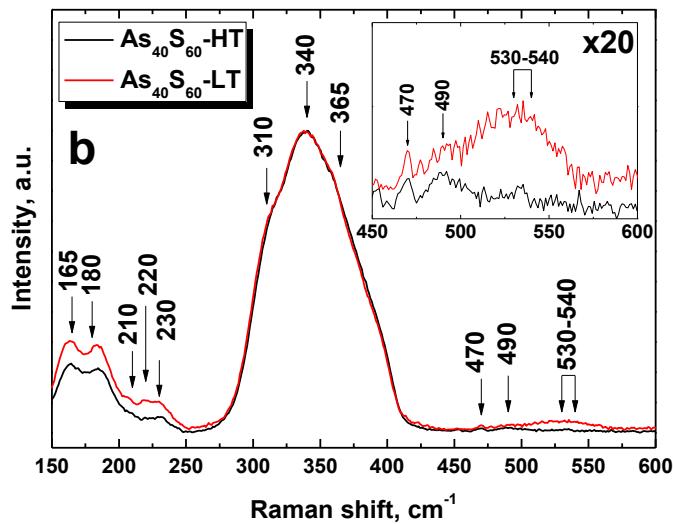

Fig. 2. Normalized FFT Raman scattering spectra of g-As₂S₃ synthesized in the LT regime under SC: a – bulk glass extracted from ampoule; b – vapor phase condensed on the ampoule walls.

Fig. 3. Normalized FFT Raman scattering spectra of g-As₂S₃ synthesized in the HT regime under RQ from 700 °C (a) and 900 °C (b).

Fig. 4. Normalized FFT Raman scattering spectra of g- $\text{As}_{38}\text{S}_{62}$, g- $\text{As}_{40}\text{S}_{60}$ and g- $\text{As}_{42}\text{S}_{58}$ synthesized in the LT regime under SC.

Fig. 5. Normalized micro-Raman scattering spectra of g- $\text{As}_{40}\text{S}_{60}$ synthesized in the LT regime under SC (the registration conditions are given in ref. [25]).