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Abstract—Given the soaring amount of data being generated
daily, graph mining tasks are becoming increasingly challenging,
leading to tremendous demand for summarization techniques.
Feature selection is a representative approach that simplifies
a dataset by choosing features that are relevant to a specific
task, such as classification, prediction, and anomaly detection.
Although it can be viewed as a way to summarize a graph in
terms of a few features, it is not well-defined for exploratory
analysis, and it operates on a set of observations jointly rather
than conditionally (i.e., feature selection from many graphs vs.
selection for an input graph conditioned on other graphs).

In this work, we introduce EAGLE (Exploratory Analysis of
Graphs with domain knowLEdge), a novel method that creates in-
terpretable, feature-based, and domain-specific graph summaries
in a fully automatic way. That is, the same graph in different
domains—e.g., social science and neuroscience—will be described
via different EAGLE summaries, which automatically leverage the
domain knowledge and expectations. We propose an optimization
formulation that seeks to find an interpretable summary with
the most representative features for the input graph so that
it is: diverse, concise, domain-specific, and efficient. Extensive
experiments on synthetic and real-world datasets with up to
∼ 1M edges and ∼ 400 features demonstrate the effectiveness
and efficiency of EAGLE and its benefits over existing methods.
We also show how our method can be applied to various graph
mining tasks, such as classification and exploratory analysis.

I. INTRODUCTION

Technological advances have led to a tremendous increase

in the collected data at a finer granularity than ever, including

scientific data from different domains that has the potential to

lead to new knowledge. Graphs are prevalent in scientific and

other data, as they naturally encode various phenomena like

structural or functional brain connectivity in neuroscience [8],

compounds in chemistry, protein interactions in biology, symp-

tom relations in healthcare [23], behavioral patterns in social

sciences, mobility patterns in transportation engineering, and

more. However, the size and complexity of these graphs

call for statistical and programmatic tools that can harness

them. Motivated by this need, we focus on the problem of

summarizing graph data in a scalable and domain-aware way,

enabling the extraction of intelligible information.

The typical first step of exploring a new graph dataset (e.g.,

brain connectome; social, technological, or communication

network) often involves plotting, fitting, seeking for outliers in,

and summarizing the distributions of various graph invariants

(or features) such as degree, PageRank, radius, local clustering

coefficient, eigenvectors, node attributes, and many more.

Univariate and bivariate distributions are often used in graph

mining to discover anomalous patterns at the node or graph

Fig. 1: Overview of EAGLE: Given an input graph g and a set
of K baseline graphs Gi that encode the domain knowledge, we
seek to find a domain-specific, feature-based summary of g that
is diverse, concise, and interpretable. The summary consists of
univariate feature distributions (e.g., degree, PageRank).

level ([3], [16], [14]). However, the features to be explored are

usually determined in a feature engineering approach, which

heavily depends on the analyst’s knowledge, intuition, and

prior studies. For example, in connectomics, typical features

for comparing healthy and non-healthy populations include the

average degree, clustering coefficient, path length [6], [8].

Moreover, the features selected in existing techniques are

determined by the choice of evaluation metrics and are task-

dependent. For example, highly correlated features are more

likely to be chosen in clustering; independent features are more

likely to be chosen for classification. Recent developments

in representation learning study latent feature representations

via optimization frameworks. Although they are promising

and remove the ad-hoc property of feature engineering, they

return latent representations which are hard to interpret and

are mostly suited for specific tasks such as link prediction and

multi-label classification. Therefore, there is need for a general

summarization or feature selection technique for exploring

graph properties independent of specific tasks.

Proposed Approach: Motivated by these observations, our

proposed method, EAGLE, aims to model the exploratory

analysis of graph data as a mathematically rigorous feature

selection problem which is automatically guided by and, thus,

conditioned on the domain of the data. Throughout the paper,

features is used to refer to a combination of graph invariants, or

structural node attributes (discrete or continuous—e.g., degree,

PageRank, clustering coefficient), and categorical or numerical

node attributes. Each feature is represented by its (univariate)

distribution over the nodes in the graph. Specifically, EAGLE
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seeks to summarize an input graph g with the aid of a small

set of features by leveraging the information encoded in a

set of “baseline” graphs Gi for i ∈ {1, 2, . . . , k}, which, in

combination with their invariant distributions, represent the

domain knowledge.

For instance in Fig. 1, let the input graph be a new social

network (g) and the domain contain well-established social

networks (Gi). A ‘surprising’ summary of g would consist

of a small set of features including the degree distribution

(the leftmost distribution in the central box) which follows

the Gaussian distribution, while in the domain a power-law

distribution is expected. Our approach can be seen either as

feature-based graph summarization, or domain-specific feature

selection that seeks to choose some features for an input

graph conditioned on the features of the baseline graphs.

This conditional property sets our work apart from traditional

feature selection methods that jointly operate on a set of

observations (e.g., select features from multiple graphs).

We formalize the problem as an optimization model

that outputs an interpretable, feature-based summary satisfy-

ing four important properties: diversity, conciseness, domain

specificity, and efficiency. Application-wise, we consider the

cases where the number of features in the summary (i) can be

defined via prior knowledge or domain expertise, or (ii) need

to be defined automatically. Our main contributions are:

• Novel Formulation: We propose a new mathematical formu-

lation of graph exploration as a conditional feature selection

problem over structural or other node attributes. The goal of

our proposed constrained optimization framework is to find

a diverse, succinct, domain-specific summary for the input

graph, which is also interpretable.

• Scalable Algorithms: We propose EAGLE-FIX and EAGLE-

FLEX, two efficient methods for obtaining the desired sum-

maries. To speed up our methods, we carefully handle the

correlations between graph features by systematically investi-

gating their affinities in a data-driven way.

• Experiments: We compare EAGLE with baseline approaches

on a variety of real-world datasets (including social networks,

citation networks, and human connectomes) and show that it

satisfies all the desired properties and it is scalable. Although

our approach is task-independent, we show that it can be

applied to traditional graph mining tasks, such as classification.

For reproducibility, the source code is available at https:

//github.com/DerekDiJin/Domain_Knowledge.

II. RELATED WORK

Our work is related to several research directions:

Feature selection. The process of feature selection con-

sists of two parts: a search technique for proposing new

feature subsets, and a measure for evaluating these different

feature subsets. Search techniques vary from exhaustive [12]

to improved ones, such as greedy hill climbing. Evaluation

metrics are divided into three categories: wrappers (which

use predictive models to score feature subsets, e.g., [19]),

filters (which use measures, such as pointwise mutual informa-

tion [27]), and embedded methods (which perform selection

as part of the model construction process [4]). Our proposed

method, EAGLE, is the first approach searching for features

greedily based on the domain knowledge and expectations and

specifically targeting the graph setting. Moreover, while the

above methods select features by jointly learning from all the

available observations, our method performs a ‘customized’

feature selection for a given graph conditioned on observations

from a set of baseline graphs. Though EAGLE is used for

summarizing a dataset with desired properties and there is no

particular task guiding its evaluation, we showcase how to

adapt it for task-dependent evaluation too.

Pattern mining and Summaries. Mining static graphs

often involves analyzing the distributions of specific graph

invariants (e.g., skewed degree distribution [9] in numerous

settings, small-worldness in connectomics [6], [8]), and speed-

ing up their computations (e.g., betweenness centrality [5]).

Moreover, systems [3], [16] have been proposed for anomaly

detection via analyzing specific distributions of graph invari-

ants, and spam detection on bivariate distributions. These

methods focus on modeling manually-chosen distributions of

invariants and potentially finding outliers in them, while our

work aims to automatically detect the features that summarize

a given graph depending on its domain. Moreover, we assume

that fast methods are used prior to applying EAGLE in order to

obtain the distributions of various node invariants. Although

EAGLE finds feature-based summaries for an input graph, our

work differs significantly from graph summarization [18], [17],

which typically seeks to find a compact representation of a

network with fewer nodes/links.

Similarity/Distance and Interestingness measures. An

excellent review of existing distance/similarity measures for

distributions is given in [7]. Attempts to define the interest-

ingness of a plot or distribution by studying its geometric

properties [11] include: SCAGNOSTICS [26], which ranks and

guides the interactive exploration of bivariate distributions,

and motif-based interestingness measures for local patterns in

scatterplots [21]. However, unlike our work, these methods are

unaware of the domain and introduce generic measures that

define the ‘interestingness’ of each plot independently.

III. PROPOSED METHOD

Motivated by the large amounts of graph data and the preva-

lent need for exploratory analysis in various areas (e.g., neuro-

science, social science), we focus on generating interpretable

graph summaries by leveraging the domain knowledge:

DEFINITION 1. [Domain Knowledge] We refer to the

expected patterns (or laws) for the distributions of node

invariants or other attributes in a specific area as the domain

knowledge.

Examples of graph invariants include global structural statis-

tics such as the degree and PageRank; local structural statis-

tics such as the egonet size, interactions to neighbors, and

properties revealed by different algorithms such as community

detection. In social science, examples of categorical and nu-

merical attributes are the gender and age of a user, respectively.
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Our assumption is that the domain expectations are implicitly

encoded in a set of baseline graphs which belong to that

domain. For example, in social networks many distributions

of structural attributes (e.g., degree variants, PageRank) are

expected to follow a power law [9], while in functional con-

nectomes that are produced via neuroimaging techniques more

uniform distributions are expected. Based on this definition,

we state the problem that we tackle as follows:

PROBLEM. [Exploratory Analysis of Graph Data using

Domain Knowledge] Given the node features of a plain or

attributed input graph g and a set G of baseline graphs Gi,

i = 1, . . . ,K, we seek to find a domain-specific summary

consisting of a small set of representative and interpretable

features in an efficient way.

If g is attributed, the features consist of invariants and node

attributes. Otherwise, the features include only node invariants.

Our main idea is to formulate the exploratory analysis of

graphs as an optimization model that will produce as an output

a feature-based summary with four desired properties:

• P1. High Diversity / Coverage. The summary is required

to ‘cover’ the information or patterns or laws encoded in the

baseline graphs: the features in the summary should provide

diverse aspects of the domain knowledge. We measure diver-

sity between the features through the concept of “similarity”,

so the features in the summary should have trivial dependence.

• P2. Conciseness. Although diversity is crucial for good

summaries, it connives the “greed” to select features: the

most diverse summary should contain many features. To

avoid duplication and verbosity, conciseness indicates that the

number of features in the summary should be small.

• P3. Domain-specificity. Based on the information of the

baseline graphs G, the summary of g should be related or

contrasted to the features of the baseline graphs. For example,

if a ‘contrasted’ summary is required and all the baselines

follow a power law degree distribution (e.g., social networks)

while g does not, the degree distribution should be included in

the summary. However, a ‘contrasted’ summary in a different

domain (e.g., neuroscience) would include different features.

• P4. Efficiency. Given the soaring amount of data being

generated daily, the computation of the summary must be

efficient and scale to large amounts of data.

Moreover, an informal desired property is that the selected

features are interpretable and easy-to-understand. To that end,

unlike network embedding or factorization-based methods, we

seek summaries that do not rely on latent features. Next we

introduce our proposed optimization framework. For reference,

we list the major symbols in Table I.
A. Proposed Formulation

We propose to model the Exploratory Analysis of Graph
Data problem as an optimization problem that encodes the
above-mentioned desired properties and selects the features to
add in the summary such that:

argmin
f

λ1 f
T
SFf

︸ ︷︷ ︸

1st term

+λ2 ‖f‖0
︸︷︷︸

2nd term

+λ3 · φ(g,G1, G2, . . . , GK)
︸ ︷︷ ︸

3rd term

(1)

TABLE I: Table of symbols

Symbol Definition

G a collection of baseline graphs, G = {G1, G2, . . . , GK}
g input graph

K total number of baseline graphs
F size of feature space
B number of buckets in a distribution
λ1,2,3 regularization parameters

f F × 1 indicator vector for selected features, f ∈ {0, 1}F

SF F × F pairwise feature relevance matrix for the baseline graphs G
SFi F × F pairwise feature relevance matrix for baseline graph Gi

w K × 1 weight vector for the baseline graphs in G,
∑K

i wi = 1
h F × 1 vector denoting similarity / distance between

equivalent marginal distributions (e.g., degree) of g and G
s(, ), d(, ) similarity and distance between two objects o1 and o2, resp.
φ(·) coupling function of the input graph g and the baseline graphs G

where f ∈ {0, 1}F is the vector indicating the selected fea-

tures; SF is the aggregated matrix that represents the pairwise

feature relevance in the domain of interest, as encoded in the

baseline graphs G; ‖f‖0 is the l0-norm of the indicator feature

vector; φ() is a function that couples the input graph g and

the baseline graphs, thus grounding the summary to domain;

and λ1, λ2, λ3 are regularization parameters which are set so

that the three terms are comparable (cf. Sec. IV-A).

Intuitively, the first quadratic term, fTSFf , forces the

selected features to be diverse. It uses the baseline graphs to

establish the ‘norms’ in the domain of interest and uses them

to capture the relevance between all pairs of graph invariants.

Specifically, SF represents the aggregate of the ‘correlation’ or

relevance between all F features over the baseline graphs G,

while the quadratic term evaluates the sum of relevance scores

of selected features. The regularization parameter λ1 is set to

a positive number (discussed later). Unlike existing work, this

term quantifies the relevance between different graph invariants

(e.g., PageRank and local clustering coefficient) in the domain

by harnessing the information in the baseline graphs.

The second term, ‖f‖0, which is multiplied by a positive

regularization parameter λ2, requires that the summary is

concise, i.e., it consists of a few features. Although, ideally,

the l0-norm encodes this requirement, we will later relax this

constraint to the l2-norm which is mathematically tractable.

The last term, φ(g,G1, . . . , Gk), is crucial because it

couples the input graph g and the domain knowledge. It can

be interpreted as the term that forces the features that will be

selected for the summary to come as close (or far) as possible

to those of the baseline graphs. That way, it can be tuned

to provide an ‘ordinary/expected’ summary or a ‘surprising’

summary. This is useful when an analyst who knows the

information that is being captured in the baseline graphs

(e.g., connectomes of subjects with depression) wants to see a

holistic overview of the feature-based similarities and possible

differences of a newly obtained graph (e.g., connectome of a

new subject). When φ() is a positive, increasing function of

f , we have the so-called “0 pit” problem of Equation (1):

DEFINITION 2. [The 0-pit problem] When the three terms of

Equation (1) are positive, the solution is 0F×1 irrespectively

of the input and baseline node invariants, i.e., the objective

function falls into a “pit” with optimal value 0.

To handle this problem, we add constraints to our optimiza-
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tion problem. We elaborate more on the design choices of this

term and the additional constraints in Section III-C.

The efficiency of computing the summary comes from our

proposed framework, which we discuss in Section IV. The

additional (informal) requirement for interpretability follows

from our feature representation in f . As opposed to latent

representations that are hard to interpret, in our work the

selected features correspond to node invariants (e.g., degree,

PageRank) or node attributes, which depend on the domain.

Throughout our formulation, we assume that the graph fea-

tures are represented by their PDFs (Probability Density

Function) and adapt appropriate measures to quantify their

relevance/dissimilarities.

B. Proposed Model for Feature Diversity

As we mentioned above, the first term in our proposed opti-

mization function enforces diversity in the selected features so

that they are not correlated. In this subsection we discuss how

we design SF in order to capture the ‘correlation’ between

the node invariants per baseline graph. Assuming that only

the PDFs of the node invariants are provided, computing the

correlation between the corresponding invariants is not feasible

(more information per node would be needed). Thus, we use

feature relevance or similarity between different invariants as

a surrogate correlation model.

In general, the features (node invariants) that are considered

can be: discrete (e.g., degree distribution) or continuous (e.g.,

PageRank distribution). If we view each PDF i as a vector of

length li, it can be seen that different invariants are represented

by distribution vectors of different lengths, which leads to

two main challenges: (i) What is the right length for each

distribution vector, or, put differently, what is the proper size

of buckets to be used in different node invariant distributions?

and (ii) How can we compute the relevance between two PDFs

of different lengths? We address these two questions next.

(i) A general feature representation model. In order to

compute the relevance between the features in the baseline

graphs, we first need to define the feature model. As we

mentioned, we view each feature i as the PDF of the cor-

responding invariant, which can be represented as a vector of

length li or, equivalently, li ‘buckets’. If the PDF is organized

in a large number of buckets, the histogram “looks” uniform,

while a small number of buckets results in information loss

by aggregating many original values into one bucket.

Visualizing the feature distributions involves selecting the

number of buckets li. For example, for a degree distribution,

the number of buckets is equal to the number of unique node

degrees, while for a PageRank distribution the number of

buckets depends on the analyst and the data at hand. As

we see in Fig. 2, the number of buckets is critical when

computing the relevance between two features via their PDFs,

as they can lead to different ‘shapes’ of distributions, and help

with or prevent the detection of patterns (e.g., spikes). Fig. 2

indicates that a large number of buckets helps show the pattern

of discrete PDFs such as the power-law of the out-degree

distribution with 10−4 range in Fig. 2a, yet a small number

of buckets fails to reflect the actual pattern and may miss

the spikes that often indicate anomalies. On the contrary, for

continuous PDFs, many buckets blur the patterns as the values

in the distribution may differ slightly, while fewer buckets may

address this problem. This is illustrated through the “uniform”

distribution with unique bucketing in Fig. 2b.

We propose to find proper bucket sizing for any (discrete

or continuous) PDF by adapting Scott’s reference rule [20]:

Bucket size = 3.5 · δ̂/n1/3 (2)

where δ̂ is the sample standard deviation and n is the

number of elements in the distribution. The distribution plots

labeled “Scott” in Fig. 2 illustrate the effectiveness of Scott’s

rule by capturing not only the pattern, but also existing

spikes. Scott’s rule generates a flexible number of buckets for

different PDFs, and it applies to both big and small graphs.

There are several variants such as Sturges’ formula [25] and

Freedman–Diaconis’ rule [10], all apply to different settings.

For generality, we integrate all these rules including the fixed

sizing in the proposed framework and use Scott’s rule to

conduct computation and experiments.

(ii) A surrogate feature correlation model. Assuming that

only the PDFs of the node invariants are provided, computing

the correlation between the corresponding invariants is not fea-

sible (more information per node would be needed). Thus, we

use feature relevance or similarity between different invariants

as a surrogate correlation model. Other traditional distance-

based measures [7] can be applied when two distribution

vectors are of the same length, but, as we saw above, this

is usually not the case when dealing with distributions of

different invariants, e.g., degree vs. PageRank. For PDFs of

different lengths, such as the ones generated by Scott’s rule,

those measures are not suitable unless they are normalized to

have the same length. We discussed the challenges of such

normalization above (a general feature representation model).

To emphasize the importance of ‘shape’ match between

distributions of different invariants, and not point-wise match,

we propose to leverage the dynamic time warping (DTW)

algorithm. DTW is designed to calculate an optimal match

between two given sequences by “warping” them non-linearly,

so that the distance calculated is independent of variations

in the warped dimension. For PDFs that denote the graph

statistics distributions, DTW calculates the feature-by-feature

distance independent of variations in the number of buckets,

which can be converted to similarity in many ways, including

s = (1 + d)−1. DTW-based similarity works for both cases

whether two PDFs are of the same or different lengths.

For generality, we integrate DTW and traditional distance-

based methods in the proposed framework and primarily use

DTW similarity in our experiments. Per baseline graph Gi, we

compute the pairwise feature relevance matrix SFi:

SFi(fj , fl) = s(PDFGi,fj , PDFGi,fl) (3)

where PDFGi,fj is the PDF for the jth feature of graph Gi,

and s() is the desired similarity between two distributions.

By definition, the diagonal elements of each relevance matrix
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(a) SOCIAL SCIENCE: SOC-SLASHDOT0811 [22] (b) Neuroscience: Functional connectome

Fig. 2: The discrete and continuous PDFs with different bucket sizing, from left to right, the bucket sizing is: 1

10
, 1

100
, 1

10000
times

the range of values; “unique” means the unique values in the PDF; “Scott” refers to the bucket sizing computed by Scott’s rule.

are 1. We can obtain the aggregate pairwise feature relevance

matrix as their weighted sum:

SF(fj , fl) =
∑K

i=1 wi · SFi(fj , fl) (4)

where wi is the weight or ‘importance’ of graph Gi in the

computation, and
∑K

i=1 wi = 1.

C. Proposed Model for Domain-Specificity

The last term, φ(g,G1, . . . , Gk), in Eq. (1) couples the

input graph g and the domain knowledge. Unlike prior work

in the literature which focuses on one graph only and assigns

interestingness or anomaly scores to a distribution indepen-

dently of the domain knowledge (e.g., Scagnostics [26]), the

third term aims to find the distributions that bear the most or

fewest number of similarities with other graphs in the domain.

We propose to model the domain specificity with a simple

and intuitive linear formulation, φ(g,G1, . . . , Gk) = fTh,

where hj in h = [h1, h2, . . . , hF ] is the aggregate relation

score between the jth marginal distributions (e.g., degree) of

g and the baseline graphs Gi. The relation can be set to be

a similarity or a distance measure resulting in an ‘ordinary’

or ‘surprising’ summary (Sec. IV-A). This choice is directly

related to the “0 pit” problem: (i) If h is modeled as similarity,

we need to force the solution of the optimization problem

to make selections by adding constraints on f ; and (ii) If h

is modeled as distance, the last term becomes negative (i.e.,

minimizing the ‘negative’ distance) by setting λ3 < 0.

Unlike SF which computes the relevance between different

invariant distributions of a single graph Gi, h focuses on the

relation between equivalent distributions of the input graph g
and the baseline graphs Gi. The aggregate relation between the

input g and the domain is computed as the weighted average

of the relations between all the combinations of g and the

baseline graphs Gi. We use hsj to represent the jth entry of

the relation vector based on similarity:

hsj =
∑K

i=1 wi · s(PDFg,fj , PDFGi,fj ) (5)

Similarly, hd represents the relation vector based on a distance

measure, and is defined equivalently (by replacing s() with a

distance measure d().

IV. EAGLE: PROPOSED ALGORITHM

Our proposed formulation in Optimization Problem 1 cor-

responds to a mixed-integer quadratic programming (MIQP)

problem. The problem of 0–1 integer programming is NP-

complete and the integral constraints bring challenges such

as intractability and poorly-behaved derivatives, which make

algorithms such as gradient descent unwarranted. To solve

these challenges, we first explain how we approximate MIQP

with a sequence of mixed-integer linear programming (MILP),

and then propose two solutions to the “0 pit” problem by

adding application-driven constraints in Section IV-A. We give

the theoretical analysis on complexity in Section IV-B.

Although the l0-norm in Eq. (1) encodes the conciseness

requirement, we relax it by using the l2-norm, which is

mathematically tractable. By rewriting ‖f‖22 = fT f and using

the F × F identity matrix IF, the equation takes the form:

arg min
f∈{0,1}F×1

fT (λ1SF + λ2IF)
︸ ︷︷ ︸

Q

f + fT λ3h
︸︷︷︸

r

. (6)

The integer vector f can be expressed as the linear constraint

to Eq. (6) thus obtaining the form of MIQP:

minimize
f

fTQf + rT f

subject to 0 ≤
∑F

i f(i) ≤ F

0 ≤ f(i) ≤ 1, i = 1, . . . , F.

(7)

We apply the cutting plane method [15] to convert Prob-

lem 7 to a series MILP by introducing a slack variable z:

minimize
f ,z

z + rT f

subject to 0 ≤
∑F

i f(i) ≤ F

0 ≤ f(i) ≤ 1, i = 1, . . . , F.

fTQf − z ≤ 0, z ≥ 0

(8)

Problem 8 gives the local MILP approximation to Problem 7

at one step. To further approximate the MIQP, we need to itera-

tively solve a series of MILP by updating the linear constraints

until convergence. To update the linear constraints, we denote

f at the tth iteration as ft such that ft = ft−1 + δ, where

ft−1 is the vector obtained in the previous iteration and δ is a
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variable vector. By using first-order Taylor approximation for

the last constraint in Problem (8), we obtain:

fTt Qft − z = fTt−1Qft−1 + 2fTt−1Qδ − z +O(|δ|2)

= −fTt−1Qft−1 + 2fTt−1Qft − z +O(|ft − ft−1|
2)

≈ −fTt−1Qft−1 + 2fTt−1Qf − z ≤ 0,

where we omitted the second-order terms. Thus, to solve the

MIQP of Problem (7), we need to solve a series of MILPs in

Problem (8) combined with this updated linear constraint.

A. EAGLE: Application-driven Constraints

As we mentioned in Section III-A, the last term of Eq. (6)

can be tuned to provide an ‘ordinary/expected’ summary or a

‘surprising’ summary by identifying features that are similar

or dissimilar to the ones in the baseline graphs, respectively.

During exploratory analysis, this allows for some flexibility

about the type of relevance that is sought between the sum-

mary of g and the baseline graphs G. Next, without loss of

generality, we focus on surprising summaries, and introduce

two application-driven constraints: (i) fixed, and (ii) flexible

number of features in the summary. Our analysis can be easily

extended to the case of ordinary summaries as well.

A1. EAGLE-FIX: Fixed number of features. In the case of

creating a surprising summary for the input graph, the last

term in Eq. (6) can be set such that h captures similarities

between the features of g and Gi, i.e., it is computed based

on Eq. (5) and denoted by hs. To solve the 0-pit problem, we

introduce a capacity constraint for the summary, in addition to

the constraints that are given in Problem (7), and set r = λ3hs:
∑F

i f(i) = c [new capacity constraint] (9)

To prevent the objective function from reaching the opti-

mum with some desired properties overwhelming the others,

λ{1,2,3} should be set such that the three terms in Optimization

Problem 1 are comparable (i.e., of the same scale). The values

of these normalization terms are primarily determined by the

maximums of (i) fTSFf , (i) ‖f‖22, or fT f and (iii) fTh. We

discuss the parameter setting in the experiments (Sec. V).

Putting everything together, in the case of finding surprising

summaries for a given input, we propose the EAGLE-FIX

algorithm, for which we give the pseudocode in Algorithm 1.

A2. EAGLE-FLEX: Flexible number of features. In the case

of creating a surprising summary for the input graph, we can

search for a flexible number of features by setting the last

term in Eq. (6) such that it captures the distances between

the features of g and Gi (i.e., h = hd) and λ3 < 0. Note

that a very small value λ3 may render the third term smaller

than other terms, which would lead the objective function to

fall into the “0 pit”. Therefore, to determine the regularization

parameters in this case, we propose a different technique that

obtains the range of λ3 based on λ1 and λ2 values.

• Upper bound for λ3. Suppose there are c ≥ 0 selections

in the solution f . Then, the value of the relaxed objective

function (6) can be calculated as:

λ1

∑

i,j∈S
SF (i, j) + λ2c+ λ3

∑

i∈S
hd(i) (10)

Algorithm 1 EAGLE-FIX

Input: Graph g with F invariant distributions; Graph database with
Gi (i = 1 . . .K) graphs with their F invariant distributions

Output: Binary vector f of selected features in the summary of g

1: I. Preprocessing Phase: Computations over the Domain

2: for i = 1 . . .K
3: // Step 1: Feature Representation Model
4: for j = 1 . . . F
5: PDFnew

Gi,fj
= Scott(PDFGi,fj ) � Scott’s rule, Eq. (2)

6: // Step 2: Feature Diversity Model
7: for j = 1 . . . F , and l = j + 1 . . . F
8: SFi(fj , fl) = s(PDFnew

Gi,fj
, PDFnew

Gi,fl
) � Eq. (3)

9: SF(fj , fl) =
∑K

i=1
wi · SFi(fj , fl) � Eq. (4)

10: II. Query Phase: Summary Creation

11: Step 1: Domain-specificity Model
12: for l = 1 . . . F
13: hsl =

∑K

i=1
wi · s(PDFnew

g,fl
, PDFnew

Gi,fl
) � Eq. (5)

14: Step 2: Feature Selection
15: Q = λ1SF + λ2IF � Regularization parameters λ1, λ2, λ3

16: r = λ3hs

17: f = MIQP(Q, r) � Solve Problem (7)

(a) First term: fTSFf (b) Third term: fThd

Fig. 3: Example: S = {2, 4, 5}, f = {0, 1, 0, 1, 1}, and degree
as the newly added feature (i.e., ε = 1). (a) The sum of the
shaded areas in SF corresponds to the first term. After adding
the degree, i.e., S ′ = S ∪ {1}, the sum of the blue rectangles
correspond to the first term. (b) Blue rounded rectangles in hd

indicate hd(ε); The sum of its shaded cells gives the third term.

where S denotes the collection of the indices of selected

features f , which is explained in Fig. 3. When c = 0, S = ∅
Similarly, when there are c + 1 selections, the value of the

objective function is:

λ1

∑

i,j∈S′ SF (i, j) + λ2(c+ 1) + λ3

∑

i∈S′ hd(i) (11)

where S ′ = S∪{ε}, and {ε} denotes the index of the newly

selected feature. Our proposed Optimization Problem 1 will

only select c+ 1 features if that further reduces the objective

function, which implies that Eq. (10) > (11), or:

λ3 < −
λ1(

∑

i,j∈S′ SF (i, j)−
∑

i,j∈S
SF (i, j)) + λ2

∑

i∈S′ hd(i)−
∑

i∈S
hd(i)

⇒

λ3 < −
λ1(

∑

i∈S
SF (i, ε) +

∑

i∈S
SF (ε, i) + 1) + λ2

hd(ε)

(12)

By assuming that ε corresponds to the maximum entry in

hd, we obtain the upper bound of λ3:

λ3 < −
λ1 + λ2

max(hd)
(13)
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• Lower bound for λ3. By requiring the three terms in the

optimization problem to be comparable, we can obtain a lower

bound for λ3. Assuming that λ3 < 0 and c = |S|, the third

term must be smaller or equal to the maximum of the others:

λ3 > −
max{λ1

∑

i,j∈S
SF (i, j), λ2|S|}

∑

i∈S
hd(i)

(14)

Inequality (14) indicates that the lower bound of λ3 is

determined by S (it is involved in all the terms of (14)). In

order to find the exact lower bound, we need to consider all

possible sets of S (or equivalently, all possible binary vectors

f ), which are O(2F ). Thus, to reduce the complexity of its

computation we provide an empirical lower bound, which

works well in practice:

λ3 ≥ −�
λ1 + λ2

max(hd)
� − 1 (15)

We discuss the choices of λ1, λ2 and λ3 more in Section V.

B. Complexity

The runtime of EAGLE consists of three parts: (1) computing

SF, (2) computing h, and (3) runtime of MIQP. In the first two

parts, the runtime τ of computing similarity / distance between

two PDFs is determined by the distance measure. Although τ
can be affected by the lengths of PDFs, it is generally trivial.

(1) Since SFi
is symmetric with diagonal elements equal

to 1, the number of similarity computations for one baseline

graph is O(F 2). SF aggregates K of them, so the complexity

for SF is O(KF (F−1)τ
2 ).

(2) The feature-by-feature relation between g and Gi con-

structs the hi vector with O(F ) similarity computations. Then,

h aggregates K of them, resulting in O(KFτ) complexity.

(3) The runtime complexity of MIQP depends on the speed

of convergence between the quadratic term and its linear

approximation. If the convergence criterion is not reached,

EAGLE would run with every possible value of f to reach the

minimum, which is O(2F ). However, empirical experiments

show that in general EAGLE takes about 20∼30 iterations

to reach satisfying approximation, if not converging. This is

illustrated in Fig. 4, where we set the maximum number of

iterations to be 150. Interestingly, we observe that the MIQP

runtime does not only depend on the length of vector f , but

also on the values of entries in f : If the values are small and

close to each other, MIQP would require more comparisons to

find the path towards the optimum (Fig. 4a); On the contrary, if

the values differ tremendously, this procedure becomes much

faster (Fig. 4b).

V. EXPERIMENTS

In this section we provide thorough experimental analysis

to evaluate our proposed approach. Specifically, we consider

the evaluation metrics: (1) The satisfaction of the desired

properties for exploratory analysis (P1-P3); (2) The scalability

of EAGLE algorithm (P4); and (3) Its robustness to the required

parameters. Moreover, we present an application of EAGLE

to a graph mining task, namely the classification of patients

(Schizophrenic) and healthy subjects based on fMRI data.

(a) HepPh citation graph: 21
features

(b) Slashdot0922 social
graph: 300 perturbed features

Fig. 4: Convergence of two runs with MIQP.

A. Baselines

No systematic empirical research exists that addresses

the problem of finding graph summaries by automatically

leveraging domain knowledge. Moreover, as we discussed in

Section II, unlike traditional feature selection methods that

choose features by jointly operating on a set of observations,

our method is ‘conditional’: It selects features for an input

graph conditioned on observations from other graphs (domain

knowledge). Despite these limitations in the literature, we

evaluate the effectiveness of EAGLE against:

• RANDOM: This approach randomly selects a subset of

features as the summary of the input graph. It is often used as

the preliminary analysis given little or no prior knowledge.

• SCAGNOSTICS [26]: This method was proposed to sum-

marize high-dimensional datasets by detecting anomalies in

density, shape, and trend. Since it applies on bivariate dis-

tributions, we modified it to compute 9 measures (area of

convex hull, skinniness, stringiness, straightness, monotonic

score, skewness, clumpy score, striation, and binning score)

on each one of F univariate distributions. Features with the

top score in at least one measure are included in the summary.

• SURPRISING: This method is a special case of EAGLE

with λ1 = λ2 = 0 and detects patterns that are different (or

surprising) from the ones that appear in the baseline graphs.

B. Datasets

The real datasets that we used in our experiments are from

three different domains: connectomics, citation networks, and

social science. We give short descriptions of these datasets

in Table II. The first two connectomes, Brain-Voxel1

and Brain-Voxel2, were generated using the traditional

network discovery [6] process: (i) computation of the pairwise

correlations between the 3789 time series obtained during

fMRI and (ii) application of threshold (θ = 0.9) to keep the

most significant associations and get sparse networks.

C. Experimental setup

EAGLE is implemented in MATLAB, and all the experi-

ments were performed on a laptop equipped with an Intel Core

i7-4870HQ Processor and 16GB memory.

EAGLE takes an arbitrary number of graph features as input

and outputs a small set of representative features as a summary
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TABLE II: Domains and graphs used in our experiments.

Domain Name Nodes Edges Description

Connectomics [1]
Brain-Voxel1 3 789 399 069 undirected unweighted
Brain-Voxel2 3 789 148 648 undirected unweighted

COBRE [2] 1 166 ∼679 000 undirected unweighted

Citation networks [22]
HepTh 27 770 352 807 directed unweighted
HepPh 34 546 421 578 directed unweighted

Social science [22]
Epinions 75 879 508 837 directed unweighted

Slashdot0811 77 360 905 468 directed unweighted
Slashdot0922 82 168 948 464 directed unweighted

based on the domain knowledge. The features used in the

experiments include 28 common node- and structure-specific

invariant distributions and other graph properties: The node-

specific features that we used are in-degree, out-degree, PageR-

ank, in-closeness, out-closeness, hubs, authorities, clustering

coefficient, betweenness, top eigenvectors, network constraint,

and roles [13]. The structure-specific statistics comprise egonet

features, such as out-degree, out-neighbors, in-degree, in-

neighbors, and size of egonets in edges and nodes. Moreover,

we considered other features, such as the distribution of com-

munities, weak / strong connected components, in / out-going

community affiliations, motifs, community profiles, random

left and right singular values, and hops [22].

Equation (6) defines the relationships between the regular-

ization terms λ1, λ2, and λ3: By observing that the maximum

values of the three terms are F 2, F and F , respectively,

we define the relationship between the regularization terms

Fλ1 = λ2 and λ2 = λ3. For EAGLE-FIX, we set λ1 = 1
F ,

λ2 = 1, and λ3 = 1; for EAGLE-FLEX, we set λ1 = 1
F ,

λ2 = 1, and compute λ3 according to Equation (15). We use

the default value w = { 1
K }F×1 to weigh the contribution of

baseline graphs. However, if prior information is available, the

weights can be set differently as long as
∑K

i wi = 1.

D. Satisfaction of Desired Properties

In this experiment, we quantitatively evaluate the satis-

faction of the desired properties by EAGLE and the base-

lines. We obtain EAGLE summaries for two input graphs,

HepPh and Slashdot0922, considering three domains

with different sets of baseline graphs: (i) connectomics using

Brain-Voxel1 and Brain-Voxel2; (ii) citation networks

using HepTh; and (iii) social networks using Epinions and

Slashdot0811. For fairness, we set all the methods to

give the same number of features as SCAGNOSTICS, and thus

run EAGLE-FIX. To evaluate the conciseness of our method,

we present experiments in Section. V-F. For all the methods,

we evaluate the diversity and domain-specificity (‘surprising’)

of the selected features f via correlation: We compute the

pairwise feature correlation matrix between the F univariate

distributions (with the same binning) of the baseline graphs,

CG , and quantify diversity as fTCGf . Similarly, based on

the correlation matrix C′
g between the input graph and the

baseline features, we quantify domain-specificity as fTC′
g. For

completeness, we apply three different correlation coefficients:

Pearson’s, Kendall’s Tau, and Spearman’s Rank. Figure 5

illustrates the results for Pearson’s correlation (dark shades

for diversity, light for domain specificity). Similar patterns are

Fig. 5: Effectiveness in terms of diversity and domain-specificity
evaluated using Pearson’s correlation coefficient (low values are
better). EAGLE achieves the best performance in every case.

detected by using the other two metrics, which are omitted for

brevity (they can be found in our code repository).

Diversity. Diversity is measured using pairwise feature cor-

relation in CG , so lower values indicate higher diversity.

The results show that EAGLE outperforms all the baselines

in every case. We observe an extreme case: the summary

of HepPh conditioned on citation networks yields almost 0
Pearson correlation value. This demonstrates the effectiveness

of EAGLE in selecting features that are diverse especially when

the baseline graphs and the input are very similar.

Domain-Specificity. Similar to diversity, we explore ‘surpris-

ing’ patterns of the input graph with respect to the baselines

via the feature-wise correlation (low values correspond to

high domain-specificity). Figure 5 shows that EAGLE outper-

forms all the baselines by up to ∼ 51.74%. Qualitatively,

the clustering coefficient distribution and community size

distribution are always selected when the input graph and the

baseline graphs are from different domains. Intuitively, this is

reasonable because the community structure differs in graphs

from different domains and both properties are related to it.

E. Scalability

We evaluate the scalability of the proposed methods with

regard to (a) number of features, and (b) size of the baseline

graphs. Here we extend the feature space beyond the original

28 by creating ‘perturbed’ features with up to 30% random

noise.

Number of features. We create a mixed domain containing

the citation graph (HepTh) and two social graphs (Epinions

and Slashdot0922) as baselines, and run EAGLE-FLEX to

summarize two input graphs: HepPh and Slashdot0811,

with the number of features (original and perturbed) varying

from 50 to 400. In Fig. 6a, we observe that, for both input

graphs, EAGLE-FLEX scales linearly and almost identically

with the number of features in the semi-logarithmic plot,

which indicates its quadratic complexity. Moreover, given

identical number of features, the runtime of MIQP on different

input graphs is almost the same.

Size of baseline graphs. In this experiment we test the

scalability in terms of the size of baseline graphs for a

fixed number of selected features. We create a series of syn-

thetic datasets with feature space including 7 global invariant

distributions and 13 perturbed invariants. The sizes of the
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(a) Number of features (b) Size of baseline graphs

Fig. 6: Scalability of EAGLE-FLEX on two input graphs (citation
and social). (a) In both cases, EAGLE-FLEX scales quadratically
in terms of the number of features with similar behavior of MIQP
(b) The runtime is independent of the size of baseline graphs.

synthetic graphs constructed are 10K, 20K, 40K, 80K, and

160K. The runtime of EAGLE-FLEX on these datasets is shown

in Fig. 6b. We observe a relatively “flat” pattern in running

time, which indicates that the optimization solver in EAGLE

is independent of the size of baseline graphs. Note that there

is some fluctuation in the curve: the running time of EAGLE-

FLEX on 40K graphs is the shortest, while that on 10K is the

longest. Despite the presence of randomness, this phenomenon

points to one direction of our future work, which is to explore

the behavior of MIQP in EAGLE on large-scale graphs.

F. Robustness to parameters

We run EAGLE-FLEX to evaluate the sensitivity of reg-

ularization parameters λ{1,2,3} and the corresponding con-

ciseness of the summary. The baseline graphs are HepTh,

Slashdot0811 and Brain-Voxel1, and a total of 28

features are generated (no perturbation). Per regularizer, we

perform a grid search over { 1
32 ,

1
16 , . . . , 16, 32} times its de-

fault value (Sec. V-C), while keeping the other regularizers at

their default values. We plot the number of selected features in

the summary and the percentage of common selected features

between that summary and the ‘default’ summary (based

solely on the default values). These quantities are illustrated

as a function of the regularizer values in Fig. 7. We note that

we do not depict the percentage for the default value (marked

with ’*’) in the blue curve, since it is 100% by definition.

The blue curves in Figures (7a)-(b) show that values of

regularization around the default give relatively stable results,

with 50%∼80% identical features to the default setting. Fig-

ure (7c) shows that the selection of features is stable up to

the default value, but sensitive for larger λ3 for which the last

term dominates (and thus puts more emphasis on ‘surprising’

patterns). From the red curves, we observe that the default

values lead to few selected features, indicating the conciseness

(property P2) of the EAGLE summaries.

G. Case study: classification on brain graphs

How can EAGLE be applied to graph classification, a

traditional data mining task? We focus on the domain of

neuroscience, and use COBRE [2], a dataset from the NIH

Center for Biomedical Research Excellence with resting-

state fMRI data from 72 patients with schizophrenia and 76

healthy controls. From the 1166 fMRI time series (avg. length

TABLE III: Classification on COBRE: AUC scores per method.

Method Category
Unweighted Weighted

Ordinary Surprising Ordinary Surprising

EAGLE-FLEX 0.6893 0.5499 0.7096 0.7296

EAGLE-FIX: 6 0.5114 0.5445 0.6961 0.7371

EAGLE-FIX: 8 0.6795 0.5904 0.7216 0.7079
EAGLE-FIX: 10 0.5003 0.4989 0.7032 0.6807

Full - - 0.6681 0.7147

Baselines Baseline 1: 0.7028 Baseline 2: 0.1099

100 timesteps), we created undirected, weighted graphs with

θ = 0.6 following the traditional method [6] (cf. Sec. V-B).

The task is to use the EAGLE summaries to classify the

healthy controls and patients. We create the feature space by

calculating the distributions of 11 features: weighted and un-

weighted degree, PageRank, closeness, eigenvector, clustering

coefficient, betweenness, neighbors of the egonets, degree of

the egonets, and sizes of egonets in edges and nodes. To obtain

feature representations that can be used for classification, we

used a random set of 36 healthy subjects as the baseline

graphs, and ran both EAGLE-FIX (with F = {6, 8, 10})

and EAGLE-FLEX on the remaining graphs (40 controls and

40 patients) and obtained both ‘surprising’ and ‘oridinary’

summaries for them. We consider two vector representations

for the summaries: (i) Unweighted: a binary vector b with

1s for the selected features by EAGLE; and (ii) Weighted: a

real vector with the importance of each selected feature, i.e.,

b
h where h is given in Eq. (5) (or its distance-based coun-

terpart), and 
 denotes component-wise multiplication. We

also consider ‘Full’, which uses vector h as the representation

of each connectome (without feature selection).

As baselines we considered two traditional methods in

neuroscience: (a) per connectome, a vector representation with

the mean of each feature distribution [8] and (b) a ‘flat’,

vectorized (1 × N2) representation of the N × N adjacency

matrix of the connectome [24]. For the classification task,

we trained an SVM classifier that uses the RBF (radial basis

function) kernel on the vector representations of our methods

and the baselines, by conducting 10-fold cross validation.

Table III gives the accuracy (AUC) of each method.

According to Table III, we have two observations: (1) With-

out knowing anything about the dataset, EAGLE-FLEX pro-

vides promising performance on the task of classification,

although EAGLE-FIX outperforms EAGLE-FLEX with some

explicit settings on F . The EAGLE-FLEX and EAGLE-FIX

summaries lead to better performance than the baseline meth-

ods, indicating the fact that although not designed explicitly

for this, features selected by EAGLE can be applied to specific

tasks such as classification; (2) Compared with the use of

all weighted features (Full) and selection (EAGLE-FLEX), we

observe that the latter improves the performance over the

former by eliminating the noise contained in the dataset,

which demonstrates the effectiveness of selected features.

Qualitatively, among the 11 features, PageRank is the most

frequently picked feature by EAGLE-FLEX. Weighted and
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(a) Sensitivity to λ1. (b) Sensitivity to λ2. (c) Sensitivity to λ3.

Fig. 7: Robustness of EAGLE to the regularization parameters. Left y axis: percentage of identical selected features between λ and
its default value. Right y axis: total number of invariant distributions included in the summary.

unweighted degree are the most distinguishable features when

running EAGLE-FIX that are never picked in summaries for

controls, but are selected for patients.

VI. CONCLUSION

We propose a novel way to summarize a graph using a set

of informative, interpretable features, resulting in a diverse,

concise, domain-specific, and efficient-to-compute summary.

Our novel formulation targets early data exploration and

provides an alternative to the feature engineering process

that is often a part of graph mining tasks. We frame the

problem as constrained optimization, based on ‘conditional

feature selection, which is tailored to the domain expectations

and knowledge, in contrast to existing work which views

each graph as a unit independent of its domain or many

graph observations as a whole. We also introduce two efficient

algorithms, EAGLE-FIX and EAGLE-FLEX, which handle the

correlations between graph features and find summaries that

are fixed or flexible in size. Our experiments show that the

EAGLE variants are effective, their summaries satisfy all the

desired properties, outperform alternative approaches that can

be cast to solve this problem, and they are effective in data

mining tasks such as classification despite not being tailored

to it. Future work may explore extensions to more complex

design choices or bivariate distributions of features (often used

in spam detection), as well as scaling the method up more.

ACKNOWLEDGEMENTS

The authors thank Dr. Chandra Sripada for sharing the brain

network data and the anonymous reviewers for their insightful

comments. This material is based upon work supported by the

National Science Foundation under Grant No. IIS 1743088

and the University of Michigan. Any opinions, findings, and

conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the

views of the National Science Foundation or other funding

parties. The U.S. Government is authorized to reproduce and

distribute reprints for Government purposes notwithstanding

any copyright notation here on.

REFERENCES

[1] Penn dataset. http://www.humanconnectome.org/ccf/.
[2] Center for Biomedical Research Excellence. http://fcon\ 1000.projects.

nitrc.org/indi/retro/cobre.html, 2012.
[3] L. Akoglu*, D. H. Chau*, U. Kang*, D. Koutra*, and C. Faloutsos.

OPAvion: Mining and Visualization in Large Graphs. In SIGMOD, pages
717–720, 2012.

[4] F. R. Bach. Bolasso: model consistent lasso estimation through the
bootstrap. In ICML, pages 33–40. ACM, 2008.

[5] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail. Approximating
betweenness centrality. In WAW, pages 124–137, 2007.

[6] E. Bullmore and O. Sporns. Complex Brain Networks: Graph Theo-
retical Analysis of Structural and Functional Systems. Nature Reviews

Neuroscience, 10(3):186–198, 2009.
[7] S.-H. Cha. Comprehensive survey on distance/similarity measures

between probability density functions. J MMMAS, 1(2):1, 2007.
[8] Z. Dai and Y. He. Disrupted structural and functional brain connectomes

in mild cognitive impairment and alzheimer’s disease. Neuroscience

Bulletin, 30(2):217–232, 2014.
[9] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On Power-law Relation-

ships of the Internet Topology. SIGCOMM, pages 251–262, 1999.
[10] D. Freedman and P. Diaconis. On the histogram as a density estimator:

L 2 theory. Probability theory and related fields, 57(4):453–476, 1981.
[11] L. Geng and H. J. Hamilton. Interestingness measures for data mining:

A survey. ACM Comput. Surv., 38(3), Sept. 2006.
[12] I. Guyon and A. Elisseeff. An introduction to variable and feature

selection. JMLR, 3(Mar):1157–1182, 2003.
[13] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu,

L. Akoglu, D. Koutra, C. Faloutsos, and L. Li. RolX: Structural Role
Extraction & Mining in Large Graphs. In KDD, pages 1231–1239, 2012.

[14] M. Jiang, P. Cui, A. Beutel, C. Faloutsos, and S. Yang. Catchsync:
Catching synchronized behavior in large directed graphs. In KDD, pages
941–950, 2014.

[15] J. E. Kelley, Jr. The cutting-plane method for solving convex programs.
J Appl Math, 8(4):703–712, 1960.

[16] D. Koutra, D. Jin, Y. Ning, and C. Faloutsos. Perseus: an interactive
large-scale graph mining and visualization tool. VLDB Endowment,
8(12):1924–1927, 2015.

[17] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. VOG: Summarizing
and Understanding Large Graphs. In SDM. SIAM, 2014.

[18] Y. Liu, A. Dighe, T. Safavi, and D. Koutra. Graph Summarization: A
Survey. CoRR, abs/1612.04883, 2016.

[19] H. Peng, F. Long, and C. Ding. Feature selection based on mutual infor-
mation criteria of max-dependency, max-relevance, and min-redundancy.
IEEE TPAMI, 27(8):1226–1238, 2005.

[20] D. W. Scott. On optimal and data-based histograms. Biometrika, pages
605–610, 1979.

[21] L. Shao, T. Schleicher, M. Behrisch, T. Schreck, I. Sipiran, and D. A.
Keim. Guiding the exploration of scatter plot data using motif-based
interest measures. In BDVA, pages 1–8, 2015.

[22] SNAP. http://snap.stanford.edu/data/index.html#web.
[23] P. Sondhi, J. Sun, H. Tong, and C. Zhai. SympGraph: a framework for

mining clinical notes through symptom relation graphs. In KDD, pages
1167–1175, 2012.

[24] C. S. Sripada, D. Kessler, R. Welsh, M. Angstadt, I. Liberzon, K. L.
Phan, and C. Scott. Distributed effects of methylphenidate on the net-
work structure of the resting brain: a connectomic pattern classification
analysis. Neuroimage, 81:213–221, 2013.

[25] H. A. Sturges. The choice of a class interval. Journal of the American

Statistical Association, 21(153):65–66, 1926.
[26] L. Wilkinson, A. Anand, and R. L. Grossman. Graph-theoretic scagnos-

tics. In INFOVIS, volume 5, page 21, 2005.
[27] Y. Yang and J. O. Pedersen. A comparative study on feature selection

in text categorization. In ICML, volume 97, pages 412–420, 1997.

196


