


matchings by greedily aligning their latent feature representa-

tions (Fig. 1). REGAL is both highly intuitive and extremely pow-

erful given suitable node feature representations. For use within

this framework, we propose Cross-Network Matrix Factorization

(xNetMF), which we introduce specifically to satisfy the require-

ments of the task at hand. xNetMF differs from most existing repre-

sentation learning approaches that (i) rely on proximity of nodes in

a single graph, yielding embeddings that are not comparable across

disjoint networks [11], and (ii) often involve some procedural ran-

domness (e.g., random walks), which introduces variance in the

embedding learning, even in one network. By contrast, xNetMF

preserves structural similarities rather than proximity-based simi-

larities, allowing for generalization beyond a single network.

To learn node representations through an efficient, low-variance

process, we formulate xNetMF asmatrix factorization over a similar-

ity matrix that incorporates structural similarity and attribute agree-

ment (if the latter is available) between nodes in disjoint graphs. To

avoid explicitly constructing a full similarity matrix, which requires

computing all pairs of similarities between nodes in the multiple

input networks, we extend the Nyström low-rank approximation

commonly used for large-scale kernel machines [6]. xNetMF is

thus a principled and efficient implicit matrix factorization-based

approach, requiring a fraction of the time and space of the naïve

approach while avoiding ad-hoc sparsification heuristics.

Our contributions may be stated as follows:

• Problem Formulation. We formulate the important unsuper-

vised graph alignment problem as a problem of learning and

matching node representations that generalize to multiple graphs.

To the best of our knowledge, we are the first to do so.

• PrincipledAlgorithms.We introduce a flexible alignment frame-

work, REGAL (Fig. 1), which learns node alignments by jointly

embedding multiple graphs and comparing the most similar em-

beddings across graphs without performing all pairwise compar-

isons. Within REGAL we devise xNetMF, an elegant and princi-

pled representation learning formulation. xNetMF learns embed-

dings from structural and, if available, attribute identity, which

are characteristics most conducive to multi-network analysis.

• Extensive Experiments. Our results demonstrate the utility of

representation learning-based network alignment in terms of

both speed and accuracy. Experiments on real graphs show that

xNetMF runs up to 30× faster than several existing network em-

bedding techniques, and REGAL outperforms traditional network

alignment methods by 20-30% in accuracy.

For reproducibility, the source code of REGAL and xNetMF is

publicly available at https://github.com/GemsLab/REGAL.

2 RELATEDWORK

Our work focuses on the problem of network alignment, and is

related to node representation learning and matrix approximation.

NetworkAlignment. Instances of the network alignment ormatch-

ing problem appear in various settings: from data mining to security

and re-identification [2, 18, 42], chemistry, bioinformatics [16, 34,

36], databases, translation [2], vision, and pattern recognition [41].

Network alignment is usually formulated as the optimization prob-

lem minP | |PA1P
T −A2 | |

2
F
[18], where A1 and A2 are the adjacency

matrices of the two networks to be aligned, and P is a permutation

Table 1: Qualitative comparison of structure-based embeddings.

struc2vec [31] xNetMF (Proposed)

Variable-length degree sequences com-
pared with dynamic time warping

Fixed length vectors capturing neigh-
borhood degree distributions

Variance-inducing, time-consuming
random walk-based sampling

Efficient matrix factorization

Heuristic-based omission of similarity
computations

Low-rank implicit approximation of
full similarity matrix

>0.5 hours to embed Arxiv network
(Table 5) [4] using optimizations

<90 sec to embed Arxiv network; ∼
22× speedup

Table 2: Qualitative comparison of related work to the embedding

module of REGAL. (*: Method not based on random walks, RW)

Structure Attributes RW-free* Scalable Cross-net

LINE [35] ✗ ✗ ✓ ✓ ✗

TADW [40] ✗ ✓ ✓ ? ✗

node2vec [9] ? ✗ ✗ ? ✗

struc2vec [31] ✓ ✗ ✗ ✗ ?

xNetMF (in REGAL) ✓ ✓ ✓ ✓ ✓

matrix or a relaxed version thereof, such as doubly stochastic ma-

trix [38] or some other concave/convex relaxation [41]. Popular

proposed solutions to the network alignment problem span genetic

algorithms, spectral methods, clustering algorithms, decision trees,

expectation maximization, probabilistic approaches, and distributed

belief propagation [2, 16, 34, 36]. These methods usually require

carefully tailoring for special formats or properties of the input

graphs. For instance, specialized formulations may be used when

the graphs are bipartite [18] or contain node/edge attributes [42], or

when some łseedž alignments are known a priori [15]. Prior work

using node embeddings designed for social networks to align users

[26] has required such seed alignments. In contrast, our approach

can be applied to attributed and unattributed graphs with virtually

no change in formulation, and is unsupervised: it does not require

prior alignment information to find high-quality matchings. Recent

work [12] has used hand-engineered features, while our proposed

approach leverages the power of latent feature representations.

Node Representation Learning. Representation learning meth-

ods try to find similar embeddings for similar nodes [8]. They may

be based on shallow [9] or deep architectures [39], and may dis-

cern neighborhood structure through random walks [28] or first-

and second-order connections [35]. Recent work inductively learns

representations [10] and/or incorporates textual or other node at-

tributes [14, 40]. However, all these methods use node proximity or

neighborhood overlap to drive embedding, which has been shown

to lead to inconsistency across networks [11].

Unlike these methods, the recent work struc2vec [31] preserves

structural similarity of nodes, regardless of their proximity in the

network. Prior to this work, existing methods for structural role

discovery mainly focused on hand-engineered features [32]. How-

ever, for structurally similar nodes, struc2vec embeddings were

found to be visually more comparable [31] than those learned by

state-of-the-art proximity-based node embedding techniques as

well as existing methods for role discovery [13]. While this work

is most closely related to our proposed node embedding method,

we summarize some crucial differences in Table 1. Additionally,

we note that struc2vec, like work on structural node embeddings

concurrent to ours [5], cannot natively use node attributes.
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Many well-known node embedding methods based on shallow

architectures such as the popular skip-gramwith negative sampling

(SGNS) have been cast in matrix factorization frameworks [30, 40].

However, ours is the first to cast node embedding using SGNS to

capture structural identity in such a framework. In Table 2we extend

our qualitative comparison to some other well-known methods

that use similar architectures. Their limitations inspire many of our

choices in the design of REGAL and xNetMF.

In terms of applications, very few works consider using learned

representations for problems that are inherently defined in terms

of multiple networks, where embeddings must be compared. [27]

computes a similarity measure between graphs based on the Earth

Mover’s Distance [23] between simple node embeddings generated

from the eigendecomposition of the adjacency matrix. Here, we

consider the significantly harder problem of learning embeddings

that may be individually matched to infer node-level alignments.

Low-Rank Matrix Approximation. The Nyström method has

been used for low-rank approximations of large, dense similarity

matrices [6]. While the quality of its approximation has been exten-

sively studied theoretically and empirically in a statistical learning

context for kernel machines [1], to the best of our knowledge it has

not been considered in the context of node embedding.

3 REGAL: REPRESENTATION
LEARNING-BASED GRAPH ALIGNMENT

In this section we introduce our representation learning-based

network alignment framework, REGAL, for Problem 1. For sim-

plicity we focus on aligning two graphs (e.g., social or protein

networks), though our method can easily be extended to more

networks. Let G1(V1, E1) and G2(V2, E2) be two unweighted and

undirected graphs with node sets V1 and V2; edge sets E1 and

E2; and possibly node attributes A1 and A2, respectively. Note

that these graphs do not have to be the same size, unlike many

other network alignment formulations that have this (often unreal-

istic) restriction. Let n be the number of nodes across graphs, i.e.,

n = |V1 | + |V2 |. We define the main symbols in Table 3.

The steps of REGAL may be summarized as:

(1) Node Identity Extraction: The first step extracts structure-

and attribute-related information for all n nodes.

(2) Efficient Similarity-basedRepresentation: The second step

obtains the node embeddings, conceptually by factorizing a sim-

ilarity matrix of the node identities from the previous step. To

avoid the expensive computation of pairwise node similarities

and explicit factorization, we extend the Nyström method for

low-rank matrix approximation to perform an implicit similar-

ity matrix factorization by (a) comparing the similarity of each

node only to a sample of p ≪ n łlandmarkž nodes, and (b) using

these node-to-landmark similarities to construct our represen-

tations from a decomposition of its low-rank approximation.

(3) FastNodeRepresentationAlignment: Finally, we align nodes

between graphs by greedily matching the embeddings with an

efficient data structure that allows for fast identification of the

top-α most similar embeddings from the other graph(s).

In the rest of this section we discuss and justify each step of

REGAL, the pseudocode of which is given in Algorithm 1. Note

that the first two steps, which output a set of node embeddings,

Table 3: Major symbols and definitions.

Symbols Definitions

Gi (Vi , Ei , Ai ) graph i with nodeset Vi , edgeset Ei , and node attributes Ai

Ai adjacency matrix of Gi

ni number of nodes in graphGi

V = V1 ∪ V2 combined set of vertices in G1 and G2

|V | = n total number of nodes in graphsG1 and G2

davg average node degree

Rk
u set of k -hop neighbors of node u

dku vector of node degrees in a single set Rk
u

K maximum hop distance considered
δ discount factor in (0, 1] for distant neighbors

du =

∑
K

k=1 δ
k−1dku combined neighbor degree vector for node u

b number of buckets for degree binning
fu F -dimensional attribute vector for node u

S, S̃ combined structural and attribute-based similarity matrix, and
its approximation

Y, Ỹ matrix with node embeddings as rows, and its approximation
p number of landmark nodes in REGAL
α the number of alignments to find per node

comprise our xNetMF method, which may be independently used,

particularly for further cross-network analysis tasks.

3.1 Step 1: Node Identity Extraction

The goal of REGAL’s representation learning module, xNetMF, is to

define node łidentityž in a way that generalizes to multi-network

problems. This step is critical because many existing works define

identity based on node-to-node proximity, but in multi-network

problems nodes have no direct connections to each other and thus

cannot be sampled in each other’s contexts by randomwalks on sep-

arate graphs. To overcome this problem, we focus instead on more

broadly comparable, generalizable quantities: structural identity,

which relates to structural roles [13], and attribute-based identity.

Structural Identity. In network alignment, the well-established

assumption is that aligned nodes have similar structural connectiv-

ity or degrees [18, 42]. Adhering to this assumption, we propose to

learn about a node’s structural identity from the degrees of its neigh-

bors. To gain higher-order information, we also consider neighbors

up to k hops from the original node.

For a node u ∈ V , we denote Rk
u as the set of nodes that are

exactly k ≥ 0 steps away fromu in its graphGi . We want to capture

degree information about the nodes in Rk
u . A basic approach would

be to store the degrees in aD-dimensional vector dku , whereD is the

maximum degree in the original graphG , with the i-th entry of dku ,

or dku (i), the number of nodes in Rk
u with degree i . For simplicity,

an example of this approach is shown for the vectors dA, dB , etc.

in Fig. 2. However, real graphs have skewed degree distributions.

To prevent one high-degree node from inflating the length of these

vectors, we bin nodes together into b = ⌈log2 D⌉ logarithmically

scaled buckets such that the i-th entry of dku contains the number of

nodes u ∈ Rk
u such that ⌊log2(deд(u))⌋ = i . This has two benefits:

(1) it shortens the vectors dku to a manageable ⌈log2 D⌉ dimensions,

and (2) it makes their entries more robust to small changes in

degree introduced by noise, especially for high degrees when more

different degree values are combined into one bucket.

Attribute-Based Identity. Node attributes, or features, have been

shown to be useful for cross-network tasks [42]. Given F node

attributes, we can create for each node u an F -dimensional vector
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to the similarity between the nodes’ embeddings. Thus, we greedily

align nodes to their closest match in the other graph based on

embedding similarity, as shown in Fig. 2. This method is simpler

and faster than optimization-based approaches, and works thanks

to high-quality node feature representations.

Data structures for efficient alignment. A natural way to find

the alignments for each node is to compute all pairs of similarities

between node embeddings (i.e., the rows of Ỹ1 and Ỹ2) and choose

the top-1 for each node. Of course, this is not desirable due to its

inefficiency. Since in practice only the top-α most likely alignments

are used, we turn to specialized data structures for quickly finding

the closest data points. We store the embeddings Ỹ2 in a k-d tree, a

data structure used to accelerate exact similarity search for nearest

neighbor algorithms and many other applications [3].

For each node in G1, we can quickly query this tree with its

embedding to find the α << n closest embeddings from nodes

in G2. This allows us to compute łsoftž alignments for each node

by returning one or more nodes in the opposite graph with the

most similar embeddings, unlike many existing alignment methods

that only find łhardž alignments [2, 16, 34, 42]. Here, we define the

similarity between the p-dimensional embeddings of nodes u and v

as simemb (Ỹ1[u], Ỹ2[v]) = e−| | Ỹ1[u] − Ỹ2[v] | |
2
2 , which converts the

Euclidean distance to similarity. Since we only want to align nodes

to counterparts in the other graph, we only compare embeddings

in Ỹ1 with ones in Ỹ2. If multiple top alignments are desired, they

may be returned in sorted order by their embedding similarity; we

use sparse matrix notation in the pseudocode just for simplicity.

3.4 Complexity Analysis

Here we analyze the computational complexity of each step of

REGAL. To simplify notation, we assume both graphs have n1 =

n2 = n
′ nodes.

(1) Extracting node identity: It takes approximatelyO(n′Kd2avд)

time, finding neighborhoods up to hop distance K by joining

the neighborhoods of neighbors at the previous hop: formally,

we can construct Rk
u =

⋃
v ∈Rk−1

u
R1
v −

⋃k−1
i=1 Ri

u . We could

also use breadth-first search from each node to compute the

k-hop neighborhoods in O(n′3) worst case timeÐin practice

significantly lower for sparse graphs and/or small KÐbut we

find that this construction is faster in practice.

(2) Computing similarities: We compute the similarities of the

length-b features (weighted counts of node degrees in the k-hop

neighborhoods, split into b buckets) between each node and p

landmark nodes: this takes O(n′pb) time.

(3) Obtaining representations: We first compute the pseudoin-

verse and SVD of the p × p matrix W in time O(p3), and then

left multiply it by C in time O(n′p2). Since p << n′, the total

time complexity for this step is O(n′p2).

(4) Aligning embeddings: We construct a k-d tree and use it to

find the top alignment(s) in G2 for each of the n′ nodes in G1

in average-case time complexity O(n′ logn′).

The total complexity is O(n′max{pb,p2,Kd2avд , logn
′}). As we

show experimentally, it suffices to choose small K as well as p and

b logarithmic in n′. With davд often being small in practice, this

can yield sub-quadratic time complexity. It is straightforward to

show that the space requirements are sub-quadratic as well.

4 EXPERIMENTS

We answer three important questions about our methods:

(Q1) How does REGAL compare to baseline methods for network

alignment on noisy real world datasets (Table 5), with and without

attribute information, in terms of accuracy and runtime?

(Q2) How scalable is REGAL?

(Q3) How sensitive are REGAL and xNetMF to hyperparameters?

Experimental Setup. Following the network alignment litera-

ture [18, 42], for each real network dataset with adjacency matrix

A, we generate a new network with adjacency matrix A′
= PAP⊤,

where P is a randomly generated permutation matrix with the

nonzero entries representing ground-truth alignments. We add

structural noise to A′ by removing edges with probability ps with-

out disconnecting any nodes.

For experiments with attributes, we generate synthetic attributes

for each node if the graph does not have any. We add noise to

these by flipping binary values or choosing categorical attribute

values uniformly at random from the remaining possible valueswith

probability pa . For each dataset and noise level, noise is randomly

and independently added.

All experiments are performed on an Intel(R) Xeon(R) CPU E5-

1650 at 3.50GHz with 256GB RAM, with hyperparameters δ = 0.01,

K = 2, γs = γa = 1, and p = ⌊10 log2 n⌋ unless otherwise stated.

Landmarks for REGAL are chosen arbitrarily from among the nodes

in our graphs, in keeping with the effectiveness and popularity

of sampling uniformly at random [6]. In Sec. 4.3, we explore the

parameter choices and find that these settings yield stable results

at reasonable computational cost.

Baselines.We compare against six baselines. Four are well known

existing network alignment methods and two are variants of our

proposed framework that match embeddings produced by existing

node embedding methods (i.e., not xNetMF). The four existing

network alignmentmethods are: (1) FINAL, which introduces a

family of algorithms optimizing quadratic objective functions [42];

(2) NetAlign, which formulates alignment as an integer quadratic

programming problem and solves it with message passing algo-

rithms [2]; (3) IsoRank, which solves a version of the integer

quadratic program with relaxed constraints [34]; and (4) Klau’s

algorithm (Klau), which imposes a linear programming relaxation,

decomposes the symmetric constraints and solves it iteratively [16].

These methods all require as input a matrix containing prior align-

ment information, which we construct from degree similarity, tak-

ing the top ⌊log2 n⌋ entries for each node; REGAL, by contrast, does

not require prior alignment information.

For the two variants of our framework, which we refer to as

(5) REGAL-node2vec and (6) REGAL-struc2vec, we replace our

own xNetMF embedding step (i.e., Steps 1 and 2 in REGAL) with

existing node representation learning methods node2vec [9] or

struc2vec [31]: two recent, state-of-the-art node embedding meth-

ods that make a claim about being able to capture some form of

structural equivalence. To apply these embedding methods, which

were formulated for a single network, we create a single input graph

G by combining the graphs with respective adjacency matrices A

and A′ into one block-diagonal adjacency matrix [A 0; 0 A′]. Be-

yond the input, we use their default parameters: 10 random walks
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A CONNECTIONS: xNetMF AND SGNS

Herewe unpack the key components of the struc2vec framework [31],

a random walk-based structural representation learning approach,

and we find a matrix factorization interpretation at the heart of it.

Given a (single-layer) similarity graph S, for each nodev , struc2vec

samples context nodes C withm random walks of length ℓ starting

from v . The probability of going from node u to node v is pro-

portional to the nodes’ (structural) similarity suv . This yields a

co-occurrence matrix D: duv = #(u,v) is the number of times node

v was visited in context of node u. Afterward, struc2vec optimizes

a skip-gram objective function with negative sampling (SGNS):

max
Y,C

∑

y∈V,c ∈C

#(y, c) logσ (y⊤c) + ℓ · Ec′∼PD logσ (−y⊤c′) (3)

where y and c are the embeddings of a node y, and its context node

c , resp.; PD (c) =
∑
y∈V #(y, c)/

∑
y∈V,c ∈C #(y, c) is the empirical

probability that a node is sampled as some other node’s context;

and σ (x) = (1 + e−x )−1 is the sigmoid function. Analysis of SGNS

for word embeddings [25] showed under some assumptions on the

upper bound of the co-occurrence count between two words that

the objective of SGNS in Eq. (3) is equivalent to matrix factorization

of the co-occurrence matrix D, or MF(D,Y⊤C). Here MF is the

objective of matrix factorization on D (formally defined in [25], but

in practice other matrix factorization techniques work well).

Now, under these assumptions, we show a connection between

optimizing Eq. (3) with context sampled from the similarity graph

(as in struc2vec), and factorizing the graph (as in xNetMF).

Lemma A.1. Equation (3), defined over a context sampled by per-

formingm length-1 random walks per node over S, is equivalent to

MF(S,Y⊤C) in the limit asm goes to ∞, up to scaling of S.

Proof. This follows from the Law of Large Numbers. Asm → ∞,

the co-occurrence matrix D converges to its expectation. This is

justm · S, since di j is the # of times node vj is sampled in a random

walk of length 1 fromvi , which is equal to the # of walks from node

vi times the probability that the walk goes to vj from vi , orm · si j .

(Since MF is invariant to scaling, we normalize D w.l.o.g.) □

Note that in struc2vec, increasing m to sample more context

reduces variance in D, but increasing ℓ simply causes the random

walks to move further from the original node v and sample context

based on similarity to more structurally distant nodes. Lemma A.1

connects xNetMF to a version of struc2vec with maximalm and

minimal ℓ, further justifying its success by comparison.
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