Session 1C: Graph Learning 1

CIKM’18, October 22-26, 2018, Torino, ltaly

REGAL: Representation Learning-based Graph Alignment

Mark Heimann
University of Michigan, Ann Arbor
mheimann@umich.edu

Tara Safavi
University of Michigan, Ann Arbor
tsafavi@umich.edu

ABSTRACT

Problems involving multiple networks are prevalent in many scien-
tific and other domains. In particular, network alignment, or the
task of identifying corresponding nodes in different networks, has
applications across the social and natural sciences. Motivated by re-
cent advancements in node representation learning for single-graph
tasks, we propose REGAL (REpresentation learning-based Graph
AlLignment), a framework that leverages the power of automatically-
learned node representations to match nodes across different graphs.
Within REGAL we devise xNetMF, an elegant and principled node
embedding formulation that uniquely generalizes to multi-network
problems. Our results demonstrate the utility and promise of unsu-
pervised representation learning-based network alignment in terms
of both speed and accuracy. REGAL runs up to 30X faster in the
representation learning stage than comparable methods, outper-
forms existing network alignment methods by 20 to 30% accuracy
on average, and scales to networks with millions of nodes each.

CCS CONCEPTS

« Information systems — Data mining; « Computing method-
ologies — Learning latent representations;

KEYWORDS

graph mining, network alignment, graph matching, node represen-
tation learning, node embedding

ACM Reference Format:

Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. 2018. RE-
GAL: Representation Learning-based Graph Alignment. In The 27th ACM
International Conference on Information and Knowledge Management (CIKM
’18), October 22-26, 2018, Torino, Italy. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3269206.3271788

1 INTRODUCTION

Networks are powerful structures that naturally capture the wealth
of relationships in our interconnected world, such as co-authorships,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM 18, October 22-26, 2018, Torino, Italy

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6014-2/18/10...$15.00
https://doi.org/10.1145/3269206.3271788

117

Haoming Shen
University of Michigan, Ann Arbor
hmshen@umich.edu

Danai Koutra
University of Michigan, Ann Arbor

dkoutra@umich.edu
Input Graphs Leal;\e‘;‘ldpode II_l;ferrtadt(spatr§e)lVI
embeddings alignment matrix
o) |l :
| H . “ 8 Embeddin 2
[‘ B bl ‘ (3 | xNetMF 8 Y -based 9 8
‘ e ‘ ®
G, [] [I (Fig. 2) skirgilarity 6
(k-d tree) ax
‘ / \/_\ H Y2 Angq. (AR
FIRe] o

Figure 1: Pipeline of proposed graph alignment method, REGAL,
based on our xNetMF representation learning method.

email exchanges, and friendships [17]. The data mining commu-
nity has accordingly proposed various methods for numerous tasks
over a single network, like anomaly detection, link prediction, and
user modeling. However, many graph mining tasks involve joint
analysis of nodes across multiple networks. Some problems, like
network alignment [2, 18, 42] and graph similarity [19], are in-
herently defined in terms of multiple graphs. In other cases, it is
desirable to perform analysis across a collection of graphs, such
as the MRI-based brain graphs of patients [7], or snapshots of a
temporal graph [33].

In this work, we study network alignment or matching, which
is the problem of finding corresponding nodes in different net-
works. Network alignment is crucial for identifying similar users
in different social networks, analyzing chemical compounds, study-
ing protein-protein interaction, and various computer vision tasks,
among others [2]. Many existing methods try to relax the com-
putationally hard optimization problem, as designing features that
can be directly compared for nodes in different networks is not
an easy task. However, recent advances [9, 28, 35, 39] have auto-
mated the process of learning node feature representations and
have led to state-of-the-art performance in downstream prediction,
classification, and clustering tasks. Motivated by these successes,
we propose network alignment via matching latent, learned node
representations. Formally, the problem can be stated as:

PROBLEM 1. Given two graphs Gy and G with node-sets ‘Vy and
V., and possibly node attributes Ay and Ay resp., devise an efficient
network alignment method that aligns nodes by learning directly
comparable node representations Y1 and Yo, from which a node
mapping ¢ : Vi — Vs between the networks can be inferred.

To this end, we introduce REGAL, or REpresentation-based
Graph ALignment, a framework that efficiently identifies node

Session 1C: Graph Learning 1

matchings by greedily aligning their latent feature representa-
tions (Fig. 1). REGAL is both highly intuitive and extremely pow-
erful given suitable node feature representations. For use within
this framework, we propose Cross-Network Matrix Factorization
(xNetMF), which we introduce specifically to satisfy the require-
ments of the task at hand. xNetMF differs from most existing repre-
sentation learning approaches that (i) rely on proximity of nodes in
a single graph, yielding embeddings that are not comparable across
disjoint networks [11], and (ii) often involve some procedural ran-
domness (e.g., random walks), which introduces variance in the
embedding learning, even in one network. By contrast, xNetMF
preserves structural similarities rather than proximity-based simi-
larities, allowing for generalization beyond a single network.

To learn node representations through an efficient, low-variance
process, we formulate xNetMF as matrix factorization over a similar-
ity matrix that incorporates structural similarity and attribute agree-
ment (if the latter is available) between nodes in disjoint graphs. To
avoid explicitly constructing a full similarity matrix, which requires
computing all pairs of similarities between nodes in the multiple
input networks, we extend the Nystrom low-rank approximation
commonly used for large-scale kernel machines [6]. xNetMF is
thus a principled and efficient implicit matrix factorization-based
approach, requiring a fraction of the time and space of the naive
approach while avoiding ad-hoc sparsification heuristics.

Our contributions may be stated as follows:

e Problem Formulation. We formulate the important unsuper-
vised graph alignment problem as a problem of learning and
matching node representations that generalize to multiple graphs.
To the best of our knowledge, we are the first to do so.
Principled Algorithms. We introduce a flexible alignment frame-
work, REGAL (Fig. 1), which learns node alignments by jointly
embedding multiple graphs and comparing the most similar em-
beddings across graphs without performing all pairwise compar-
isons. Within REGAL we devise xNetMF, an elegant and princi-
pled representation learning formulation. xNetMF learns embed-
dings from structural and, if available, attribute identity, which
are characteristics most conducive to multi-network analysis.

o Extensive Experiments. Our results demonstrate the utility of
representation learning-based network alignment in terms of
both speed and accuracy. Experiments on real graphs show that
xNetMF runs up to 30X faster than several existing network em-
bedding techniques, and REGAL outperforms traditional network
alignment methods by 20-30% in accuracy.

For reproducibility, the source code of REGAL and xNetMF is
publicly available at https://github.com/GemsLab/REGAL.

2 RELATED WORK

Our work focuses on the problem of network alignment, and is
related to node representation learning and matrix approximation.

Network Alignment. Instances of the network alignment or match-
ing problem appear in various settings: from data mining to security
and re-identification [2, 18, 42], chemistry, bioinformatics [16, 34,
36], databases, translation [2], vision, and pattern recognition [41].
Network alignment is usually formulated as the optimization prob-
lem minp ||PA;PT — A2||12: [18], where A; and A; are the adjacency
matrices of the two networks to be aligned, and P is a permutation

118

CIKM’18, October 22-26, 2018, Torino, Italy

Table 1: Qualitative comparison of structure-based embeddings.

struc2vec [31]

xNetMF (Proposed)

Variable-length degree sequences com-
pared with dynamic time warping

Fixed length vectors capturing neigh-
borhood degree distributions

Variance-inducing, time-consuming
random walk-based sampling

Efficient matrix factorization

Heuristic-based omission of similarity
computations

Low-rank implicit approximation of
full similarity matrix

>0.5 hours to embed Arxiv network
(Table 5) [4] using optimizations

<90 sec to embed Arxiv network; ~
22X speedup

Table 2: Qualitative comparison of related work to the embedding
module of REGAL. (*: Method not based on random walks, RW)

Structure Attributes RW-free* Scalable | Cross-net
LINE [35] X X v v X
TADW [40] X v v ? X
node2vec [9] ? X X ? X
struc2vec [31] v X X X ?
XNetMF (in REGAL) 7 v v 7 7

matrix or a relaxed version thereof, such as doubly stochastic ma-
trix [38] or some other concave/convex relaxation [41]. Popular
proposed solutions to the network alignment problem span genetic
algorithms, spectral methods, clustering algorithms, decision trees,
expectation maximization, probabilistic approaches, and distributed
belief propagation [2, 16, 34, 36]. These methods usually require
carefully tailoring for special formats or properties of the input
graphs. For instance, specialized formulations may be used when
the graphs are bipartite [18] or contain node/edge attributes [42], or
when some “seed” alignments are known a priori [15]. Prior work
using node embeddings designed for social networks to align users
[26] has required such seed alignments. In contrast, our approach
can be applied to attributed and unattributed graphs with virtually
no change in formulation, and is unsupervised: it does not require
prior alignment information to find high-quality matchings. Recent
work [12] has used hand-engineered features, while our proposed
approach leverages the power of latent feature representations.

Node Representation Learning. Representation learning meth-
ods try to find similar embeddings for similar nodes [8]. They may
be based on shallow [9] or deep architectures [39], and may dis-
cern neighborhood structure through random walks [28] or first-
and second-order connections [35]. Recent work inductively learns
representations [10] and/or incorporates textual or other node at-
tributes [14, 40]. However, all these methods use node proximity or
neighborhood overlap to drive embedding, which has been shown
to lead to inconsistency across networks [11].

Unlike these methods, the recent work struc2vec [31] preserves
structural similarity of nodes, regardless of their proximity in the
network. Prior to this work, existing methods for structural role
discovery mainly focused on hand-engineered features [32]. How-
ever, for structurally similar nodes, struc2vec embeddings were
found to be visually more comparable [31] than those learned by
state-of-the-art proximity-based node embedding techniques as
well as existing methods for role discovery [13]. While this work
is most closely related to our proposed node embedding method,
we summarize some crucial differences in Table 1. Additionally,
we note that struc2vec, like work on structural node embeddings
concurrent to ours [5], cannot natively use node attributes.

Session 1C: Graph Learning 1

Many well-known node embedding methods based on shallow
architectures such as the popular skip-gram with negative sampling
(SGNS) have been cast in matrix factorization frameworks [30, 40].
However, ours is the first to cast node embedding using SGNS to
capture structural identity in such a framework. In Table 2 we extend
our qualitative comparison to some other well-known methods
that use similar architectures. Their limitations inspire many of our
choices in the design of REGAL and xNetMF.

In terms of applications, very few works consider using learned
representations for problems that are inherently defined in terms
of multiple networks, where embeddings must be compared. [27]
computes a similarity measure between graphs based on the Earth
Mover’s Distance [23] between simple node embeddings generated
from the eigendecomposition of the adjacency matrix. Here, we
consider the significantly harder problem of learning embeddings
that may be individually matched to infer node-level alignments.

Low-Rank Matrix Approximation. The Nystrom method has
been used for low-rank approximations of large, dense similarity
matrices [6]. While the quality of its approximation has been exten-
sively studied theoretically and empirically in a statistical learning
context for kernel machines [1], to the best of our knowledge it has
not been considered in the context of node embedding.

3 REGAL: REPRESENTATION
LEARNING-BASED GRAPH ALIGNMENT

In this section we introduce our representation learning-based
network alignment framework, REGAL, for Problem 1. For sim-
plicity we focus on aligning two graphs (e.g., social or protein
networks), though our method can easily be extended to more
networks. Let G1(V1, 81) and G2(Vz, E2) be two unweighted and
undirected graphs with node sets V; and V; edge sets &; and

&y; and possibly node attributes A; and Ay, respectively. Note

that these graphs do not have to be the same size, unlike many

other network alignment formulations that have this (often unreal-

istic) restriction. Let n be the number of nodes across graphs, i.e.,

n = |Vi| + |'V,|. We define the main symbols in Table 3.

The steps of REGAL may be summarized as:

(1) Node Identity Extraction: The first step extracts structure-

and attribute-related information for all n nodes.

(2) Efficient Similarity-based Representation: The second step
obtains the node embeddings, conceptually by factorizing a sim-
ilarity matrix of the node identities from the previous step. To
avoid the expensive computation of pairwise node similarities
and explicit factorization, we extend the Nystrém method for
low-rank matrix approximation to perform an implicit similar-
ity matrix factorization by (a) comparing the similarity of each
node only to a sample of p < n “landmark” nodes, and (b) using
these node-to-landmark similarities to construct our represen-
tations from a decomposition of its low-rank approximation.
Fast Node Representation Alignment: Finally, we align nodes
between graphs by greedily matching the embeddings with an
efficient data structure that allows for fast identification of the
top-a most similar embeddings from the other graph(s).

In the rest of this section we discuss and justify each step of

REGAL, the pseudocode of which is given in Algorithm 1. Note

that the first two steps, which output a set of node embeddings,

119

CIKM’18, October 22-26, 2018, Torino, Italy

Table 3: Major symbols and definitions.

Symbols Definitions

Gi(Vi, &, A;) graph i with nodeset V;, edgeset &;, and node attributes A;
i adjacency matrix of G;

n; number of nodes in graph G;

V=VUYV, combined set of vertices in G; and G,

[VI=n total number of nodes in graphs G; and G,

davg average node degree

RK set of k-hop neighbors of node u

dk vector of node degrees in a single set RX

K maximum hop distance considered

S discount factor in (0, 1] for distant neighbors

d, = Zlk(:l 8%~1dk combined neighbor degree vector for node u

b number of buckets for degree binning

fu F-dimensional attribute vector for node u

S, S combined structural and attribute-based similarity matrix, and

its approximation

Y. Y matrix with node embeddings as rows, and its approximation

P number of landmark nodes in REGAL

a the number of alignments to find per node

comprise our xNetMF method, which may be independently used,
particularly for further cross-network analysis tasks.

3.1 Step 1: Node Identity Extraction

The goal of REGAL’s representation learning module, xNetMF, is to
define node “identity” in a way that generalizes to multi-network
problems. This step is critical because many existing works define
identity based on node-to-node proximity, but in multi-network
problems nodes have no direct connections to each other and thus
cannot be sampled in each other’s contexts by random walks on sep-
arate graphs. To overcome this problem, we focus instead on more
broadly comparable, generalizable quantities: structural identity,
which relates to structural roles [13], and attribute-based identity.

Structural Identity. In network alignment, the well-established
assumption is that aligned nodes have similar structural connectiv-
ity or degrees [18, 42]. Adhering to this assumption, we propose to
learn about a node’s structural identity from the degrees of its neigh-
bors. To gain higher-order information, we also consider neighbors
up to k hops from the original node.

For a node u € V, we denote 7?,15 as the set of nodes that are
exactly k > 0 steps away from u in its graph G;. We want to capture
degree information about the nodes in ‘Rfj . A basic approach would
be to store the degrees in a D-dimensional vector dﬁ, where D is the
maximum degree in the original graph G, with the i-th entry of d¥,
or dk (i), the number of nodes in RX with degree i. For simplicity,
an example of this approach is shown for the vectors d 4, dp, etc.
in Fig. 2. However, real graphs have skewed degree distributions.
To prevent one high-degree node from inflating the length of these
vectors, we bin nodes together into b = [log, D] logarithmically
scaled buckets such that the i-th entry of dﬁ contains the number of
nodes u € R{j such that |log,(deg(u))] = i. This has two benefits:
(1) it shortens the vectors dﬁ to a manageable [log, D] dimensions,
and (2) it makes their entries more robust to small changes in
degree introduced by noise, especially for high degrees when more
different degree values are combined into one bucket.

Attribute-Based Identity. Node attributes, or features, have been
shown to be useful for cross-network tasks [42]. Given F node
attributes, we can create for each node u an F-dimensional vector

Session 1C: Graph Learning 1

Input Graphs Step 1. Node Identity Extraction
(feature extraction not shown for simplicity)
ol Al
) = du=
I = .
12 %Pl 7 q-
-7 dg _ dB:
¢ [l [.
§ %ol d-
[' =

1Y

|

Step 2. Efficient Similarity-based Representation

2a. Reduced nxp
Similarity Computation

(ANE)

CIKM’18, October 22-26, 2018, Torino, ltaly

Step 3. Fast

2b. Similarity to Representation Node Alignment

using the SVD of wi=uszv

(A)
A ~ Uullse|©®
(B) Y, ®
Slny =n ¢ o
. P i~ (E)
Ye
A p o
A D @4—»
alw
nodes Alignments

Figure 2: Proposed REGAL approach, consisting of 3 main steps. In the example, for the structural identity, up to K = 2 hop away neighbor-
hoods are taken into account (the 1-hop and 2-hop neighborhoods for nodes A and 1 are shown with dashed and dash-dotted lines, respectively).

The discount factor is set to § = 0.5. For simplicity, no logarithmic binning is applied on dﬁ.

f,, representing its values (or lack thereof). For example, f,,(i) cor-
responds to the i*" attribute value for node u. Since we focus on
node representations, we mainly consider node attributes, although
we note that statistics such as the mean or standard deviation of
edge attributes on incident edges to a node can easily be turned
into node attributes. Note that while REGAL is flexible to incor-
porate attributes, if available, it can also rely solely on structural
information when such side information is not available.

Cross-Network Node Similarity. We now incorporate the above
aspects of node identity into a combined similarity function that
can be used to compare nodes within or across graphs, relying on
the comparable notions of structural and attribute identity, rather
than direct proximity of any kind:

1)
where ys and y, are scalar parameters controlling the effect of the
structural and attribute-based identity respectively; dist(fy, f,) is
the attribute-based distance of nodes u and v, discussed below (this
term is ignored if there are no attributes); d,, = Zszl sk-1dk is
the neighbor degree vector for node u aggregated over K different
hops; § € (0, 1] is a discount factor for greater hop distances; and K
is a maximum hop distance to consider (up to the graph diameter).
Thus, we compare structural identity at several levels by combining
the neighborhood degree distributions at several hop distances,
attenuating the influence of distant neighborhoods with a weighting
schema that is often encountered in diffusion processes [19].

The distance between attribute vectors depends on the type of
node attributes (e.g., categorical, real-valued). A variety of functions
can be employed accordingly. For categorical attributes, which have
been studied in attributed network alignment [42], we propose us-
ing the number of disagreeing features as a attribute-based distance
measure of nodes u and v: dist(fy, f,) = Zf;l Ly (i)#f.(i)» Where
1 is the indicator function. Real-valued attributes can be compared
by Euclidean or cosine distance, for example.

sim(u, v) = exp [~ys - [|du — o[— ya - dist(fy,)],

3.2 Step 2: Efficient Similarity-based
Representation

As we have mentioned, many representation learning methods are

stochastic [9, 28, 31, 35, 39]. A subset of these rely on random walks

on the original graph [9, 28] or a generated multi-layer similarity

graph [31]) to sample context for the SGNS embedding model. For

120

cross-network analysis, we avoid random walks for two reasons:
(1) The variance they introduce in the representation learning often
makes embeddings across different networks non-comparable [11];
and (2) they can add to the computational expense. For example,
node2vec’s total runtime is dominated by its sampling time [9].
To overcome the aforementioned issues, we propose a new im-
plicit matrix factorization-based approach that leverages a com-
bined structural and attribute-based similarity matrix S, which is
induced by our similarity function in Eq. (1) and considers affinities
at different neighborhoods. Intuitively, the goal is to find n X p ma-
trices Y and Z such that: S ~ YZT, where Y is the node embedding
matrix and Z is not needed for our purposes. We first discuss the
limitations of traditional approaches, then propose an efficient way
of obtaining the embeddings without ever explicitly computing S.

Limitations of Existing Approaches. A natural but naive ap-
proach is to compute combined structural and attribute-based simi-
larities between all pairs of nodes within and across both graphs to
form the matrix S, such that S;; = sim(i, j) Vi, j € V. Then S can be
explicitly factorized, for example by minimizing a factorization loss
function given S as input, (e.g., the Frobenius norm |[|S — YZT||12,
[21]). However, both the computation and storage of S have qua-
dratic complexity in n. While this would allow us to embed graphs
jointly, it lacks the needed scalability for multiple large networks.

Another alternative is to create a sparse similarity matrix by
calculating only the “most important” similarities, for each node
choosing a small number of comparisons using heuristics like simi-
larity of node degree [31]. However, such ad-hoc heuristics may be
fragile in the context of noise. We will have no approximation at
all for most of the similarities, and there is no guarantee that the
most important ones are computed.

Step 2a: Reduced n X p Similarity Computation. Instead, we
propose a principled way of approximating the full similarity matrix
S with a low-rank matrix S, which is never explicitly computed.
To do so, we randomly select p < n “landmark” nodes chosen
across both graphs G; and Gy and compute their similarities to all
n nodes in these graphs using Eq. (1). This yields an n X p similarity
matrix C, from which we can extract a pxp “landmark-to-landmark”
submatrix W. As we explain below, these two matrices suffice to
approximate the full similarity matrix and allow us to obtain node
embeddings without actually computing and factorizing S.

Session 1C: Graph Learning 1

xNetMF: Proposed Fast Approximation Typical Approach

skips the computation of matricesS and ZT EI‘HGWS’S computation of S, Y, Z"
' «D> —n—
~ U=z IRINE
S = S = C = T i S = Y

Figure 3: Proposed xNetMF (using the SVD of W) vs. typical matrix
factorization for computing the node embeddings Y. Our xNetMF
method leads to significant savings in space and runtime.

To do so, we extend the Nystrom method, which has applications
in randomized matrix methods fqr kernel machines [6], to node
embedding. The low-rank matrix S is given as:

S=cw'cT, (2)
where C is an n X p matrix formed by sampling p landmark nodes
from V and computing the similarity of all n nodes of G; and Gz
to the p landmarks only, as shown in Fig. 2. Meanwhile, W' is
the pseudoinverse of W, a p X p matrix consisting of the pairwise
similarities among the landmark nodes (it corresponds to a subset of
p rows of C). We choose landmarks randomly; more elaborate (and
slower) sampling techniques based on leverage scores [1] or node
centrality measures offer little, if any, performance improvement.
Because S contains an estimate for the similarity between any
pair of nodes in either graph, it would still take Q(n?) time and
space to compute and store. However, as we discuss below, to learn
node representations we never have to explicitly construct S either.

Step 2b: From Similarity to Representation. Recall that our
ultimate interest is not in the similarity matrix S or even an approx-
imation such as S, but in the node embeddings that we can obtain
from a factorization of the latter. We now show that we can actually
obtain these from the decomposition in Eq. (2):

THEOREM 3.1. Given graphs G1(V1, E1) and Go(Va, E2) withnxn
Jjoint combined structural and attribute-based similarity matrix S =
YZT, its node embedding matrix Y can be approximated as

¥ = cux/?,

where C is the n X p matrix of similarities between the n nodes and p
randomly chosen landmark nodes, and W' = USVT is the full rank
singular value decomposition of the pseudoinverse of the small p X p
landmark-to-landmark similarity matrix W.

PrOOF. Given the full-rank SVD of the pxp matrix W' as ULV,
we can rewrite Eq. (2) as S # § = C(UZVT)CT = (CUx!/?).
(EV/2vTCT) = YZT. o

Now, we never have to construct an n X n matrix and then fac-
torize it (i.e., by optimizing a nonconvex factorization objective).
Instead, to derive Y, the only node comparisons we need are for the
nXp “skinny” matrix C, while the expensive SVD is performed only
on its small submatrix W. Thus, we can obtain node representations
by implicitly factorizing S, a low-rank approximation of the full
similarity matrix S. The p-dimensional node embeddings of the two
input graphs G and Gy are then subsets of Y: Y; and Y, respec-
tively. This construction corresponds to the explicit factorization
(Fig. 3), but at significant runtime and storage savings.

121

CIKM’18, October 22-26, 2018, Torino, ltaly

Algorithm 1 REGAL (G1, G2, p, K, ¥s, Ya, @)

2: [Y1, Y,] = xNetMF (Gy, Gz, p, K, ¥s. Va)
embeddings

: M = empty
: T =KDTree(Y2)

> sparse nj X nz matrix M of possible alignments
> Build a k-d tree on the node embeddings of G,

4

5

6: /* Match embeddings to infer alignments */

7: fori =1— n; do

8 /* For embedding i in Gy, get the o most similar embed. in G and distances*/
9 [TOP-a, TOP-dist] = QueryKDTree(T, Y1[i], @) » Yy[i]: i*" embedding
0 for j in TOP-a do

11: mij = ¢~ TOP-distl/] > Populating alignment matrix M with embed.
istli AN AN

12: end for > similarities: e TOP-distli] = o=lIY1l]=Yalilll;

13: end for

14: return M > alignments are largest entries in each row or column (Fig. 1)

Algorithm 2 xNetMF (G1, Go, p, K, s, Ya)

1: ================STEP 1. Node Identity Extraction ================
: for node uin V; UV, do

2

3 for hop k up to K do > counts of node degrees of k-hop neighbors of u
4: dk = CountDegreeDistributions(RX) >1 < K < graph diameter
5 end for
6 dy =YK sk1dk
7: end for

> discount factor § € (0, 1]

=== STEP 2a. Reduced n X p Similarity Computation
10: L = ChooseLandmarks(G;, Gz,p) > choose p nodes from Gy, Gy
11: for node u in V do

12: for node v in L do

13: o = ¢ V5 1u—doll} - ya-distfu.fo)

14: end for

15: end for > Used in low-rank approx. of similarity graph (not constructed)
16: =========== STEP 2b. From Similarity to Representation ============
17: W =C[L, L] > Rows of C corresponding to landmark nodes
18: [U, %, V] = SVD(W)

19: Y= CUZ_% > Embedding: implicit factorization of similarity graph
20: Y = Normalize(Y) v Postprocessing: make embeddings have magnitude 1
21: ?1, ?2 = Split(?) > Separate representations for nodes in Gy, G2
22: return ?1, ?2

As stated earlier, xNetMF, which we summarize in Alg. 2, forms
the first two steps of REGAL. The postprocessing step, where we
normalize the magnitude of the embeddings, makes them more
comparable based on Euclidean distance, which we use in REGAL.

Connection between xNetMF and SGNS. We show a formal
connection between matrix factorization, the technique behind
our xNetMF, and a variant of the struc2vec framework: another
form of structure-based embedding optimized with SGNS [31] in
Appendix A. Indeed, similar equivalences between SGNS and matrix
factorization have been studied [24, 25] and applied to proximity-
based node embedding methods [30], but ours is the first to explore
such connections for methods that preserve structural identity.

3.3 Step 3: Fast Node Representation
Alignment

The final step of REGAL is to efficiently align nodes using their
representations, assuming that two nodes u € V; and v € V, may
match if their xNetMF embeddings are similar. Let Y; and Y3 be
matrices of the p-dimensional embeddings for nodes in graphs G;
and Gy. We take the likeliness of (soft) alignment to be proportional

Session 1C: Graph Learning 1

to the similarity between the nodes’ embeddings. Thus, we greedily
align nodes to their closest match in the other graph based on
embedding similarity, as shown in Fig. 2. This method is simpler
and faster than optimization-based approaches, and works thanks
to high-quality node feature representations.

Data structures for efficient alignment. A natural way to find
the alignments for each node is to compute all pairs of similarities
between node embeddings (i.e., the rows of §~(1 and Yz) and choose
the top-1 for each node. Of course, this is not desirable due to its
inefficiency. Since in practice only the top-a most likely alignments
are used, we turn to specialized data structures for quickly finding
the closest data points. We store the embeddings ?2 in a k-d tree, a
data structure used to accelerate exact similarity search for nearest
neighbor algorithms and many other applications [3].

For each node in Gy, we can quickly query this tree with its
embedding to find the « << n closest embeddings from nodes
in Gy. This allows us to compute “soft” alignments for each node
by returning one or more nodes in the opposite graph with the
most similar embeddings, unlike many existing alignment methods
that only find “hard” alignments [2, 16, 34, 42]. Here, we define the
similarity between the p-dimensional embeddings of nodes u and v
as simgp,p (Y1[ul], Y2[0]) = e~ 1Milu] - Ya[o] ||§) which converts the
Euclidean distance to similarity. Since we only want to align nodes
to counterparts in the other graph, we only compare embeddings
in Y; with ones in Y. If multiple top alignments are desired, they
may be returned in sorted order by their embedding similarity; we
use sparse matrix notation in the pseudocode just for simplicity.

3.4 Complexity Analysis

Here we analyze the computational complexity of each step of
REGAL. To simplify notation, we assume both graphs have n; =
ns = n’ nodes.

(1) Extracting node identity: It takes approximately O(n’Kd2,, g)
time, finding neighborhoods up to hop distance K by joining
the neighborhoods of neighbors at the previous hop: formally,
we can construct RK = UUE,Rﬁﬂ RL - Uf:_ll R, We could
also use breadth-first search from each node to compute the
k-hop neighborhoods in O(n’®) worst case time—in practice
significantly lower for sparse graphs and/or small K—but we
find that this construction is faster in practice.

(2) Computing similarities: We compute the similarities of the
length-b features (weighted counts of node degrees in the k-hop
neighborhoods, split into b buckets) between each node and p
landmark nodes: this takes O(n’pb) time.

(3) Obtaining representations: We first compute the pseudoin-
verse and SVD of the p X p matrix W in time O(p®), and then
left multiply it by C in time O(n’p?). Since p << n’, the total
time complexity for this step is O(n’p?).

(4) Aligning embeddings: We construct a k-d tree and use it to
find the top alignment(s) in G for each of the n’ nodes in G;
in average-case time complexity O(n’ log n’).

The total complexity is O(n’ max{pb, p, Kdtzwg, logn’}). As we
show experimentally, it suffices to choose small K as well as p and
b logarithmic in n’. With dg.4 often being small in practice, this
can yield sub-quadratic time complexity. It is straightforward to
show that the space requirements are sub-quadratic as well.

122

CIKM’18, October 22-26, 2018, Torino, Italy

4 EXPERIMENTS

We answer three important questions about our methods:

(Q1) How does REGAL compare to baseline methods for network
alignment on noisy real world datasets (Table 5), with and without
attribute information, in terms of accuracy and runtime?

(Q2) How scalable is REGAL?

(Q3) How sensitive are REGAL and xNetMF to hyperparameters?

Experimental Setup. Following the network alignment litera-
ture [18, 42], for each real network dataset with adjacency matrix
A, we generate a new network with adjacency matrix A’ = PAPT,
where P is a randomly generated permutation matrix with the
nonzero entries representing ground-truth alignments. We add
structural noise to A’ by removing edges with probability ps with-
out disconnecting any nodes.

For experiments with attributes, we generate synthetic attributes
for each node if the graph does not have any. We add noise to
these by flipping binary values or choosing categorical attribute
values uniformly at random from the remaining possible values with
probability p,. For each dataset and noise level, noise is randomly
and independently added.

All experiments are performed on an Intel(R) Xeon(R) CPU E5-
1650 at 3.50GHz with 256GB RAM, with hyperparameters § = 0.01,
K =2,y = ya = 1, and p = |10log, n] unless otherwise stated.
Landmarks for REGAL are chosen arbitrarily from among the nodes
in our graphs, in keeping with the effectiveness and popularity
of sampling uniformly at random [6]. In Sec. 4.3, we explore the
parameter choices and find that these settings yield stable results
at reasonable computational cost.

Baselines. We compare against six baselines. Four are well known
existing network alignment methods and two are variants of our
proposed framework that match embeddings produced by existing
node embedding methods (i.e., not xNetMF). The four existing
network alignment methods are: (1) FINAL, which introduces a
family of algorithms optimizing quadratic objective functions [42];
(2) NetAlign, which formulates alignment as an integer quadratic
programming problem and solves it with message passing algo-
rithms [2]; (3) IsoRank, which solves a version of the integer
quadratic program with relaxed constraints [34]; and (4) Klau’s
algorithm (Klau), which imposes a linear programming relaxation,
decomposes the symmetric constraints and solves it iteratively [16].
These methods all require as input a matrix containing prior align-
ment information, which we construct from degree similarity, tak-
ing the top |log, n| entries for each node; REGAL, by contrast, does
not require prior alignment information.

For the two variants of our framework, which we refer to as
(5) REGAL-node2vec and (6) REGAL-struc2vec, we replace our
own xNetMF embedding step (i.e., Steps 1 and 2 in REGAL) with
existing node representation learning methods node2vec [9] or
struc2vec [31]: two recent, state-of-the-art node embedding meth-
ods that make a claim about being able to capture some form of
structural equivalence. To apply these embedding methods, which
were formulated for a single network, we create a single input graph
G by combining the graphs with respective adjacency matrices A
and A’ into one block-diagonal adjacency matrix [A 0;0 A’]. Be-
yond the input, we use their default parameters: 10 random walks

Session 1C: Graph Learning 1

CIKM’18, October 22-26, 2018, Torino, ltaly

+ REGAL oo
o0 FINAL [=

NetAlign
IsoRank

¢ Klau
$—$ REGAL-node2vec

o REGAL-struc2vec

Table 4: Average (stdev) runtime in sec of align-

1.0 1.0

0.8

° °
>)

Accuracy
°
>

°
=

Accuracy
Accuracy

o
=
¢

®

&

~

ment methods from 5 trials. The two fastest
methods per dataset are in bold. REGAL is faster
than its closest competitors in accuracy (Fig. 4).

°
N
°
N

° o o o

°
o

0.

0.02 0.03

Noise level

(a) Arxiv (198 110 edges)

0.04 0.0!

o
S

0.02 0.03

Noise level

(b) PPI (76 584 edges)

0.04

Figure 4: Accuracy of network alignment methods with varying p;. REGAL (in dark blue)

o Dataset Arxiv PPI Arenas

FINAL 4182 (180) 62.88 (32.20) 3.82(1.41)

o o - o NetAlign 149.62 (282.03) 22.44 (0.61) 1.89 (0.07)
0.01 0.02 0.03 0.04 0.05 IsoRank 17.04 (6.22) 6.14 (1.33) 0.73 (0.05)
Noise level Klau 1291.00 (373) 476.54 (8.98) 43.04 (0.80)

(c) Arenas Email (5451 edges) REGAL-node2vec 709.04(20.98) 139.56 (1.54) 15.05 (0.23)
REGAL-struc2vec 1975.37 (223.22) 441.35(13.21) 74.07 (0.95)

REGAL 86.80 (11.23) 18.27(2.12) 2.32(0.31)

achieves consistently high accuracy and runs faster than its closest competitors (Table 4).

Table 5: Real data used in our experiments.

Name Nodes Edges Description
Facebook [37] 63731 817090 social network
Arxiv [22] 18722 198110 collaboration network
DBLP [29] 9143 16338 collaboration network
PPI [4] 3890 76584 protein-protein interaction
Arenas Email [20] 1133 5451 communication network

of length 80 for each node to sample context with a window size of
10. For node2vec, we set p = ¢ = 1 (other values make little differ-
ence). For struc2vec, we use the recommended optimizations [31]
to compress the degree sequences and reduce the number of node
comparisons, which were found to speed up computation with little
effect on performance [31]. As we do for our xNetMF method, we
consider a maximum hop distance of K = 2.

Metrics. We compare REGAL to baselines with two metrics: align-
ment accuracy, which we take as (# correct alignments) / (total #
alignments), and runtime. When computing results, we average
over 5 independent trials on each dataset at each setting (with dif-
ferent random permutations and noise additions) and report the
mean result and the standard deviation (as bars around each point
in our plots.) We also show where REGAL'’s soft alignments con-
tain the “correct” similarities within its top & << n choices using
the more general top-a accuracy: (# correct alignments in top-a
choices) / (total # alignments). This metric does not apply to the
existing network alignment baselines that do not directly match
node embeddings and only find hard alignments.

4.1 Q1: Comparative Alignment Performance

To assess the comparative performance of REGAL versus existing
network alignment methods on a variety of challenging datasets,
we perform two experiments studying the effects of structural and
attribute noise, respectively.

4.1.1 Effects of structural noise. In this experiment we study how
well REGAL matches nodes based on structural identity alone. This
also allows us to compare to the baseline network alignment meth-
ods NetAlign, IsoRank, and Klau, as well as the node embedding
methods node2vec and struc2vec, none of which was formulated to
handle or align attributed graphs (which we study in Sec. 4.1.2). As
we discuss further below, REGAL is one of the fastest network align-
ment methods, especially on large datasets, and has comparable or
better accuracy than all baselines.

123

Results. (1) Accuracy. The accuracy results on several datasets
are shown in Figure 4. The structural embedding REGAL variants
consistently perform best. Both REGAL (matching our proposed
xNetMF embeddings) and REGAL-struc2vec are significantly more
accurate than all non-representation learning baselines across noise
levels and datasets. As expected, REGAL-node2vec does hardly bet-
ter than random chance because rather than preserving structural
similarity, it preserves similarity to nodes based on their proximity
to each other, which means there is no way of identifying similarity
to corresponding nodes in other, disconnected graphs (even when
we combine them into one large graph, because they form discon-
nected components.) This major limitation of embedding methods
that use proximity-based node similarity criteria [11] justifies the
need for structural embeddings for cross-network analysis.

Between REGAL and REGAL-struc2vec, the two highest perform-
ers, REGAL performs better with lower amounts of noise. This is
likely because struc2vec’s randomized context sampling introduces
some variance into the representations that xNetMF does not have,
as nodes that should match will have different embeddings not
only because of noise, but also because they had different contexts
sampled. With higher amounts of noise (4-5%), REGAL outperforms
REGAL-struc2vec in speed, but at the cost of some accuracy. It is
also worth noting that their accuracy margin is smaller for larger
graphs. On larger datasets, our simple and fast logarithmic binning
scheme (Step 1 in Sec. 3.1) provides a robust enough way of compar-
ing nodes with high expected degrees. However, on small graphs
with a few thousand nodes and edges, it appears that struc2vec’s
use of dynamic time warping (DTW) better handles misalignment
of degree sequences from noise because it is a nonlinear alignment
scheme. Still, we will see that REGAL is significantly faster than its
struc2vec variant, since DTW is computationally expensive [31],
as is context sampling and SGNS training.

(2) Runtime. In Table 4, we compare the average runtimes of
all different methods across noise levels. We observe that REGAL
scales significantly better using xNetMF than when using other
node embedding methods. Notably, REGAL is 6-8% faster than
REGAL-node2vec and 22-31x faster than REGAL-struc2vec. This is
expected as both dynamic time warping (in struc2vec) and context
sampling for SGNS (in struc2vec and node2vec) come with large
computational costs. REGAL, at the cost of some robustness to high
levels of noise, avoids both the variance and computational expense
of random-walk-based sampling. This is a significant benefit that
allows REGAL to achieve up to an order of magnitude speedup over

Session 1C: Graph Learning 1

CIKM’18, October 22-26, 2018, Torino, ltaly

500,

% REGAL $—+ REGAL 4 REGAL +—+ REGAL - ':\ENGA/tL
08 44 FINAL 08 44 FINAL 0s[® 44 FINAL 08 44 FINAL 400/ [
\ -
206 0.6 0.6 306 & 300
8 8 8 8 . Y
g ’\\ 2 3 3 £
Qo4 i Loa o4 204 o E200
2
0.2 0.2 0.2 o 0.2 100}
-
0 ° s © 0 o
0 0 0.3 0.0 0 0.3 0.0 0 0.3 0 0 0.3 1:2 3:2 5:2 1:29

01 0.2 0.1 0.2
Noise level Noise level

(a) 1 synthetic binary attribute (b) 3 synthetic binary attributes (c) 5 synthetic binary attributes

0.1 0.2
Noise level

01 0.2 : :
Noise level Number of attributes:values

(d) Real attribute (29 values) (e) Runtime with attributes

Figure 5: DBLP Network alignment with varying p,: REGAL is more robust to attribute noise (plots a-d) and runs faster (plot e) than FINAL
for various numbers and types of attributes. In (e) the x axis consists of <# of attributes: # of values> pairs corresponding to plots (a)-(d).

the other node embedding methods. Additionally, REGAL is able to
leverage the power of node representations and also use attributes,
unlike the other representation learning methods.

Comparing to baselines that do not use representation learning,
we see that REGAL is competitive in terms of runtime as well
as significantly more accurate. REGAL is consistently faster than
FINAL and Klau, the next two best-performing methods by accuracy
(NetAlign is virtually tied for third place with Klau on all datasets).
Although NetAlign runs faster than REGAL on small datasets like
Arenas, on larger datasets like Arxiv NetAlign’s message passing
becomes expensive. Finally, while IsoRank is consistently the fastest
method, it performs among the worst on all datasets in accuracy.
Thus, we can see that our REGAL framework is also one of the
fastest network alignment methods as well as the most accurate.

4.1.2 Effects of attribute-based noise. In the second experiment,
we study REGAL’s comparative sensitivity to p, when we use node
attributes. Here we compare REGAL to FINAL because it is the only
baseline that handles attributes. We also omit embedding methods
othen than xNetMF, since they operate on plain graphs.

We study a subnetwork of a larger DBLP collaboration network
extracted in [42] (Table 5). This dataset has 1 node attribute with 29
values, corresponding to the top conference in which each author
(a node in the network) published. This single attribute is quite
discriminatory: with so many possible attribute values, a compar-
atively smaller number of nodes share the same value. We add
ps = 0.01 structural noise to randomly generated permutations.

We also increase attribute information by increasing the number
of attributes. To do so, we simulate different numbers of binary
attributes. We study somewhat higher levels of attribute noise, as
they are not strictly required for network alignment.

Results. In Figure 5, we see that REGAL mostly outperforms FI-
NAL in the presence of attribute noise (both for real and multiple
synthetic attributes), or in the case of limited attribute information
(e.g., only 1-3 binary attributes in Fig. 5a-5c). This is because FINAL
relies heavily on attributes, whereas REGAL uses structural and
attribute information in a more balanced fashion.

While FINAL achieves slightly higher accuracy than REGAL with
abundant attribute information from many attributes or attribute
values and minimal noise (e.g. the real attribute with 29 values in
Figure 5d, or 5 binary attributes in Figure 5c¢), this is expected due to
FINAL's reliance on attributes. Also, in Figure 5e where we plot the
runtime with respect to number of <attributes : attribute values>,
we see FINAL incurs significant runtime increases as it uses extra

124

attribute information. Even without these added attributes, REGAL
is up to two orders of magnitude faster than FINAL.

4.2 Q2: Scalability

To analyze the scalability of REGAL, we generate Erd6s-Rényi
graphs with n = 100 to 1,000,000 nodes and constant average degree
10, along with one binary attribute. We generate a randomized,
noisy permutation (ps = 0.01, p; = 0.05) and look for the top a = 1
alignments. Thus, we embed both graphs—double the number of
nodes in a single graph. Figure 7 shows the runtimes for the major
steps of our methods. w
Results. We see that the w
total runtimes of REGAL’s -
steps are clearly sub-quadratic, "
which is rare for alignment
tasks. In practice this means . . i
that REGAL can scale to wl . oo donment
very large networks. The umber of nodes
dominant step is computing
O(nlog n) similarities to land-
marks in C and using this to form the Nystrom-based representa-
tion. The alignment time complexity grows the most steeply, as
the dimensionality p grows with the network size and increasingly
affects lookup times. In practice, though, the alignment adds little
overhead time, even for the largest graph, because of the k-d tree.
Without it, REGAL runs out of memory on 100K or more nodes.
From a practical perspective, while our current implementation
is single-threaded, many steps—including the expensive embedding
construction and alignment steps—are easily and trivially paral-
lelizable, offering possibilities for even greater speedups.

0 overall

total embed

Runtime (sec

0!

Figure 7: REGAL is sub-

quadratic.

4.3 Q3: Sensitivity Analysis

To understand how REGAL’s hyperparameters affect performance,
we analyze accuracy by varying hyperparameters in several ex-
periments. For brevity, we report results at ps = 0.01 and with
a single binary noiseless attribute, although further experiments
with different settings yielded similar results. Overall we find that
REGAL is robust to different settings and datasets, indicating that
REGAL can be applied readily to different graphs without requiring
excessive domain knowledge or fine-tuning.

Results. (1) Discount factor § and max hop distance K. Figures
6a and 6b respectively show the performance of REGAL as a func-
tion of §, the discount factor on further hop distances, and K, the
maximum hop distance to consider. We find that some higher-order

Session 1C: Graph Learning 1

CIKM’18, October 22-26, 2018, Torino, ltaly

10 10 1.0 1.0 1.0
" & 0 ¢ >0 -
08 b 038 ¥ 08 —t e 08 > 08
T °
> > > > >
0.6 0.6
g 0.6 g g g 06 g 0.6
5 E 5 5 5
3 3 3 3 3
Loa \. fLo4 Loa K04 Z04
$—$ Arenas $—4$ Arenas $—b Arenas $—4 Arenas $—+ topl accuracy
02|44 PPI 02{| 44 PPI 0.2f ¢ PPI 02| -4 PPI 0.2} $—4 top5 accuracy
Arxiv > o Arxiv © o Amxiv Arxiv © topl0 accuracy
0.0 0.0 00 0.0l 0.0,
0001 0.005 001 005 01. 03 05 T 2 3 0001 0.005 001 005 01 1 10 100 0001 0.005 001 005 01 1 10 100 "0.01 0.02 0.03 0.04
Hop distance discount factor Maximum layer Structure coefficient Attribute coefficient Noise level

(a) Discount factor & (b) Maximum hop distance K

(c) Coeff. ys (structural sim.)

(d) Coeff. y, (attribute sim.)

Figure 6: Robustness of REGAL to hyperparameters on different datasets: REGAL is generally robust for a range of values, without fine tuning.

100

¢ Arenas
0.8 $ & 8 8 80| | &—% PPI
o o Arxiv
o
06 8 60
e o
204 é aof
&—¢ Arenas
02|44 PPI 20 _
. o o
o o Arxiv o @
@ " = s
0'01 2 4 6 8 10 01 2 4 6 8

t t

(a) Accuracy w.r.t. # of landmarks

Figure 8: Robustness of REGAL to ¢, which controls the number of
landmarks p = |t log, n]: choosing more landmarks is more compu-
tationally expensive but can slightly increase accuracy.

structural information does help (thus K = 2 performs slightly bet-
ter than K = 1), but only up to a point. Beyond approximately 2 lay-
ers out, the structural similarity is so tenuous that it primarily adds
noise to the neighborhood degree distribution (furthermore, com-
puting further hop distances adds computational expense). Choos-
ing § between 0.01-0.1 tends to yield best performance. Larger
discount factors § tend to do poorly, though extremely small values
may lose higher-order structural information.

(2) Weights of structural y; and attributed y, similarity. Next,
we explore how to set the coefficients on the terms in the similarity
function weighting structural and attribute similarity, which also
governs a tradeoff between structural and attribute identity. In
Figs. 6¢ and 6d we respectively vary y, and y, while setting the
other to be 1. In general, setting these parameters to be 1, our
recommended default value, does fairly well. Significantly larger
values yield less stable performance.

(3) Dimensionality of embeddings p. To study the effects of the
rank of the implicit low-rank approximation, which is also the di-
mensionality of the embeddings, we set the number of landmarks
p equal to |tlog, n| and vary t. Figure 8a shows that the accuracy
is generally highest for the highest values of ¢, but Figure 8b shows
the expected increase in REGAL’s runtime as more similarities
are computed in C and higher-dimensional embeddings are com-
pared. To spare no expense in maximizing accuracy we use ¢ = 10.
However, fewer landmarks still yield almost as high accuracy if
computational constraints or high dimensionality are issues.

(4) Top-a accuracy. It is worth studying not just the proportion
of correct hard alignments, but also the top-a scores of the soft
alignments that REGAL can return. We perform alignment without
attributes on a large Facebook subnetwork [37] and visualize the
top-1, top-5, and top-10 scores in Fig. 6e. Across noise settings,

10

(b) Runtime w.r.t. # of landmarks

125

the top-a scores are considerably several percentage points higher
than the top-1 scores, indicating that even when REGAL misaligns
a node, it often still recognizes the similarity of its true counterpart.
REGAL’s ability to find soft alignments could be valuable in many
applications, like entity resolution across social networks [18].

5 CONCLUSION

Motivated by the numerous applications of network alignment in
social, natural, and other sciences, we proposed REGAL, a network
alignment framework that leverages the power of node represen-
tation learning by aligning nodes via their learned embeddings.
To efficiently learn node embeddings that are comparable across
multiple networks, we introduced xNetMF within REGAL. To the
best of our knowledge, we are the first to propose an unsupervised
representation learning-based network alignment method.

Our embedding formulation captures node similarities using
structural and attribute identity, making it suitable for cross-network
analysis. Unlike other embedding methods that sample node con-
text with computationally expensive and variance-inducing random
walks, our extension of the Nystrom low-rank approximation al-
lows us to implicitly factorize a similarity matrix without having
to fully construct it. Furthermore, we showed that our formulation
is a matrix factorization perspective on the skip-gram objective
optimized over node context sampled from a similarity graph. Ex-
perimental results showed that REGAL is up to 30% more accurate
than baselines and 30X faster in the representation learning stage.
Future directions include extending our techniques to weighted
networks and incorporating edge signs or other attributes.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foun-
dation under Grant No. IIS 1743088, an Adobe Digital Experience research
faculty award, and the University of Michigan. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation or other funding parties. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation here on.

REFERENCES

[1] Ahmed Alaoui and Michael W Mahoney. 2015. Fast randomized kernel ridge
regression with statistical guarantees. In NIPS. 775-783.

[2] Mohsen Bayati, David F Gleich, Amin Saberi, and Ying Wang. 2013. Message-

passing algorithms for sparse network alignment. ACM TKDD 7, 1 (2013), 3.

Nitin Bhatia et al. 2010. Survey of Nearest Neighbor Techniques. International

Journal of Computer Science and Information Security 8, 2 (2010), 302-305.

3

(e) top-a scores on Facebook [37]

Session 1C: Graph Learning 1

(4]

[12]

[13

[14]

(15

[16

[17]
(18]

[19

[20

[
=

[22

[23]

[24

[25]

[26

[27

[28

[29]

[30

[31

[32

[33]

[34

[35

Bobby-Joe Breitkreutz, Chris Stark, Teresa Reguly, Lorrie Boucher, Ashton Bre-
itkreutz, Michael Livstone, Rose Oughtred, Daniel H Lackner, Jiirg Bahler, Valerie
Wood, et al. 2008. The BioGRID interaction database: 2008 update. Nucleic acids
research 36, suppl 1 (2008), D637-D640.

Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. 2018. Learning
Structural Node Embeddings via Diffusion Wavelets. In KDD.

Petros Drineas and Michael W Mahoney. 2005. On the Nystrom method for
approximating a Gram matrix for improved kernel-based learning. JMLR 6
(2005), 2153-2175.

Fabrizio De Vico Fallani, Jonas Richiardi, Mario Chavez, and Sophie Achard. 2014.
Graph analysis of functional brain networks: practical issues in translational
neuroscience. Phil. Trans. R. Soc. B 369, 1653 (2014), 20130521.

Palash Goyal and Emilio Ferrara. 2017. Graph Embedding Techniques, Applica-
tions, and Performance: A Survey. arXiv preprint arXiv:1705.02801 (2017).
Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In KDD. ACM, 855-864.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NIPS. 1025-1035.

Mark Heimann and Danai Koutra. 2017. On Generalizing Neural Node Embedding
Methods to Multi-Network Problems. In KDD MLG Workshop.

Mark Heimann, Wei Lee, Shengjie Pan, Kuan-Yu Chen, and Danai Koutra. 2018.
HashAlign: Hash-Based Alignment of Multiple Graphs. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining. Springer, 726-739.

Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato
Basu, Leman Akoglu, Danai Koutra, Christos Faloutsos, and Lei Li. 2012. Rolx:
structural role extraction & mining in large graphs. In KDD. ACM, 1231-1239.
Xiao Huang, Jundong Li, and Xia Hu. 2017. Label informed attributed network
embedding. In WSDM. ACM, 731-739.

Ehsan Kazemi, S Hamed Hassani, and Matthias Grossglauser. 2015. Growing a
graph matching from a handful of seeds. Proceedings of the VLDB Endowment 8,
10 (2015), 1010-1021.

Gunnar W Klau. 2009. A new graph-based method for pairwise global network
alignment. BMC bioinformatics 10 Suppl 1 (2009), S59.

Danai Koutra and Christos Faloutsos. 2017. Individual and Collective Graph
Mining: Principles, Algorithms, and Applications. Morgan & Claypool Publishers.
Danai Koutra, Hanghang Tong, and David Lubensky. 2013. Big-align: Fast bipar-
tite graph alignment. In ICDM. IEEE, 389-398.

Danai Koutra, Joshua T Vogelstein, and Christos Faloutsos. 2013. Deltacon: A
principled massive-graph similarity function. In SDM. SIAM, 162-170.

Jérome Kunegis. 2013. Konect: the koblenz network collection. In WWW. ACM,
1343-1350.

Daniel D Lee and H Sebastian Seung. 2001. Algorithms for non-negative matrix
factorization. In Advances in neural information processing systems. 556—562.
Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data. (June 2014).

Elizaveta Levina and Peter Bickel. 2001. The earth mover’s distance is the mallows
distance: Some insights from statistics. In ICCV, Vol. 2. IEEE, 251-256.

Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix
factorization. In NIPS. 2177-2185.

Yitan Li, Linli Xu, Fei Tian, Liang Jiang, Xiaowei Zhong, and Enhong Chen. 2015.
Word Embedding Revisited: A New Representation Learning and Explicit Matrix
Factorization Perspective. In IJCAL

Li Liu, William K Cheung, Xin Li, and Lejian Liao. 2016. Aligning Users across
Social Networks Using Network Embedding. In I[JCAL 1774-1780.

Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis. 2017.
Matching Node Embeddings for Graph Similarity. In AAAL

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In KDD. ACM, 701-710.

Adriana Prado, Marc Plantevit, Céline Robardet, and Jean-Francois Boulicaut.
2013. Mining graph topological patterns: Finding covariations among vertex
descriptors. IEEE TKDE 25, 9 (2013), 2090-2104.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE,
and node2vec. In WSDM. ACM.

Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017. struc2vec:
Learning Node Representations from Structural Identity. In KDD. ACM, 385-394.
Ryan A Rossi and Nesreen K Ahmed. 2015. Role discovery in networks. IEEE
Transactions on Knowledge and Data Engineering 27, 4 (2015), 1112-1131.

Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos.
2015. Timecrunch: Interpretable dynamic graph summarization. In KDD. ACM,
1055-1064.

Rohit Singh, Jinbo Xu, and Bonnie Berger. 2008. Global alignment of multiple
protein interaction networks with application to functional orthology detection.
PNAS 105, 35 (Sep 2008), 12763-8. https://doi.org/10.1073/pnas.0806627105

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015.
Line: Large-scale information network embedding. In WWW. ACM, 1067-1077.

126

CIKM’18, October 22-26, 2018, Torino, Italy

'S
&

Vipin Vijayan and Tijana Milenkovi¢. 2017. Multiple network alignment via
multiMAGNA++. [EEE/ACM TCBB (2017).

Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P Gummadi. 2009.
On the evolution of user interaction in facebook. In WOSN. ACM, 37-42.
Joshua T. Vogelstein, John M. Conroy, Louis J. Podrazik, Steven G. Kratzer, Don-
niell E. Fishkind, R. Jacob Vogelstein, and Carey E. Priebe. 2011. Fast Inexact Graph
Matching with Applications in Statistical Connectomics. CoRR abs/1112.5507.
Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embed-
ding. In KDD. ACM, 1225-1234.

Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Chang. 2015.
Network Representation Learning with Rich Text Information. In IJCAL
Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert. 2009. A Path Following
Algorithm for the Graph Matching Problem. TPAMI 31, 12 (Dec. 2009), 2227-2242.
Si Zhang and Hanghang Tong. 2016. FINAL: Fast Attributed Network Alignment..
In KDD. ACM, 1345-1354.

'w
&

A CONNECTIONS: xNetMF AND SGNS

Here we unpack the key components of the struc2vec framework [31],
a random walk-based structural representation learning approach,
and we find a matrix factorization interpretation at the heart of it.

Given a (single-layer) similarity graph S, for each node v, struc2vec
samples context nodes C with m random walks of length ¢ starting
from v. The probability of going from node u to node v is pro-
portional to the nodes’ (structural) similarity s;. This yields a
co-occurrence matrix D: dy, = #(u, v) is the number of times node
v was visited in context of node u. Afterward, struc2vec optimizes
a skip-gram objective function with negative sampling (SGNS):

max Z #(y,c)loga(y c)+ - E¢~pp log o(=y'c) (3)
Y,C
yeV,ceC

where y and c are the embeddings of a node y, and its context node
¢, resp;; Pplc) = Zyey #(y, ©)/ Lyev,cec #(y, ¢) is the empirical
probability that a node is sampled as some other node’s context;
and o(x) = (1 + e¥)7! is the sigmoid function. Analysis of SGNS
for word embeddings [25] showed under some assumptions on the
upper bound of the co-occurrence count between two words that
the objective of SGNS in Eq. (3) is equivalent to matrix factorization
of the co-occurrence matrix D, or MF(D, Y C). Here MF is the
objective of matrix factorization on D (formally defined in [25], but
in practice other matrix factorization techniques work well).

Now, under these assumptions, we show a connection between
optimizing Eq. (3) with context sampled from the similarity graph
(as in struc2vec), and factorizing the graph (as in xNetMF).

LeEmMA A.1. Equation (3), defined over a context sampled by per-
forming m length-1 random walks per node over S, is equivalent to
MF(S, YT C) in the limit as m goes to oo, up to scaling of S.

Proor. This follows from the Law of Large Numbers. As m — oo,
the co-occurrence matrix D converges to its expectation. This is
just m- S, since d;j is the # of times node v; is sampled in a random
walk of length 1 from v;, which is equal to the # of walks from node
v; times the probability that the walk goes to v; from v;, or m - s;;.
(Since MF is invariant to scaling, we normalize D w.l.o.g.) O

Note that in struc2vec, increasing m to sample more context
reduces variance in D, but increasing ¢ simply causes the random
walks to move further from the original node v and sample context
based on similarity to more structurally distant nodes. Lemma A.1
connects xNetMF to a version of struc2vec with maximal m and
minimal ¢, further justifying its success by comparison.

