
GeoAlign: Interpolating Aggregates over Unaligned Partitions

Jie Song
University of Michigan

Ann Arbor, Michigan

jiesongk@umich.edu

Danai Koutra
University of Michigan

Ann Arbor, Michigan

dkoutra@umich.edu

Murali Mani
University of Michigan, Flint

Flint, Michigan

mmani@umflint.edu

H. V. Jagadish
University of Michigan

Ann Arbor, Michigan

jag@umich.edu

ABSTRACT

Answering crucial socioeconomic questions often requires com-

bining and comparing data across two or more independently

collected data sets. However, these data sets are often reported as

aggregates over data collection units, such as geographical units,

which may differ across data sets. Examples of geographical units

include county, zip code, school district, etc., and as such, they

can be incongruent. To be able to compare these data, it is neces-

sary to realign the aggregates from the source units to a set of

target spatially congruent geographical units. Existing intelligent

areal interpolation/realignment methods, however, make strong

assumptions about the spatial properties of the attribute of in-

terest based on domain knowledge of its distribution. A more

practical approach is to use available reference data sources to

aid in this alignment. The selection of the references is vital to

the quality of prediction.

In this paper, we devise GeoAlign, a novel multi-reference

crosswalk algorithm that estimates aggregates in desired target

units. GeoAlign is adaptive to new attributes with need for nei-

ther distribution-related domain knowledge of the attribute of

interest nor knowledge of its spatial properties in Geographic

Information System (GIS). We show that GeoAlign can easily be

extended to perform aggregate realignment in multi-dimensional

space for general use. Experiments on real, public government

datasets show that GeoAlign achieves equal or better accuracy in

root mean square error (RMSE) than the leading state-of-the-art

approach without sacrificing scalability and robustness.

1 INTRODUCTION

Data are often found in silos, created independently. For example,

administrative agencies and governments collect a great deal of

data about their domain, most of which are then published in

aggregate form. The primary purpose of the data collection is

administrative, and the choice of data representation and struc-

ture is made by each agency for its own purpose. These data

can be invaluable for understanding many social issues, partic-

ularly in conjunction with other data sources. However, most

administrative agencies are not concerned with interoperability

with other agencies, therefore standardization is unlikely. On the

other hand, agencies value the privacy of individual citizens, and

do not want any benefits from public data release to hurt their

primary administrative mission. Therefore, in many cases, they

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Join two tables for steam consumption (mg)

and per capita income ($) in New York State together by

county.

will release data only in aggregate form. Similar reasoning ap-

plies in many other contexts as well. For example, Google Trends

data is aggregated by geographical unit and time period, to avoid

disclosing information about individual queries.

Data integration [25, 34] has been extensively studied, since

there is often great benefit from joining multiple data sets. The

bulk of the work on this topic addresses structural discrepancies,

through schema mapping [2, 26, 42], and identification of indi-

viduals across data sets, through entity matching [21, 29]. One

challenge not addressed in data integration is the case of data

reported as aggregates over incompatible geographical/temporal

units. This is a practical problem faced by government data cen-

ter, NGOs, social scientists, and the general public when trying to

related socioeconomic data to drive decision making processes,

approximately 80% of which are related to a geographical loca-

tion [14]. Even if the intention of joining such aggregated data

based on their spatial or temporal properties seems to be the

reasonable action of practice, these aggregates cannot easily be

realigned accurately.

Motivating example. Let us consider two tables shown in Fig-

ure 1 – one table has the steam consumption amount aggregated

by zip code and the other has the per capita income reported by

county. A sociologist wants to study the correlation of energy con-

sumption with income in order to plan for future energy supply

arrangement. Valuable insight could be obtained by joining these

two tables. However, this is not straightforward since the data are

reported on incompatible aggregate units, since one zip code may
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intersect several counties and one county may contain or overlap

with multiple zip codes.

This challenge can be addressed by realigning one or both data

sets to a common geographic type (target type) before performing

the join. Let the intended target type be county, by which the per

capita income is already reported. However, we only know the steam

consumption amount by zip code, and have to estimate the number

for each county. This estimate is obtained as a form of interpolation.

Finding a good estimate of steam consumption per county is the

challenge we need to address.

This problem of estimating aggregate values for geographic

areas arises in many contexts, and has been extensively studied.

Areal Interpolation, in Geographical Information Systems (GIS),

is the process of aligning an attribute from one areal unit sys-

tem (the source type of a set of polygons) to another spatially

incongruent system (the target type of another set of polygons)

[12, 22, 23, 31, 33]. It is more commonly known as crosswalk, or

the modifiable areal unit problem in socioeconomic fields. If the

attribute is uniformly distributed in space, then the interpolation

can be performed in a straightforward way based on area. For

example, if 70% of the area of a zip code lies in county A and

30% in county B, then we could estimate that 70% of the crimes

reported in the zip code occurred in county A and the remaining

30% in B.

This uniform distribution assumption or homogeneity assump-

tion rarely holds in practice. If we know something about the

distribution, that can be taken into account in the interpolation.

For example, if we know that more crimes occur in densely pop-

ulated urban areas than in sparsely populated rural areas, we can

take this into account. The mathematics can be tricky depending

on exactly what we know about the distribution of the attribute

of interest, so there has been a stream of research in the literature

towards solving the problem based on different assumptions. We

discuss this more in the related work.

In the data integration scenario, we often do not know much

about an attribute of interest. Therefore, we may be unable to de-

velop good rules for how it should be distributed. Even so, we can

do better than make an unrealistic uniformity assumption, if we

have access to additional data. In particular, if we can find a ref-

erence attribute, for which we know the detailed distribution, we

can use it to perform a crosswalk from source units to target units

of aggregation. For example, we may have detailed distribution

available for population, with fine granularity aggregates giving

us the population in every intersection of county and zip code. If

we believe the crimes are distributed similarly to population (or

at least more similarly to population than to area), then we can

exploit our knowledge of population distribution to estimate the

desired aggregates for number of crimes. In particular, consider

a zip code with a population of 25,000 people. Suppose this zip

code intersects two counties A and B, with the population in the

intersections being 10,000 and 15,000 respectively. Suppose that

we know there were 100 reported crimes in this zip code last year.

We can estimate that 40 of these crimes occurred in county A and

60 occurred in county B, following the same ratio as the popula-

tion. This approach makes no assumptions about the probability

distribution of the reference attribute or the attribute of interest.

It can work well if the attribute of interest is distributed similarly

to the reference attribute. To the extent the distributions differ,

the estimates will be off.

In this paper, our goal is to solve this data alignment problem

through the use of more data. We often may have access to

more than one candidate reference attribute, each with its own

distribution. We may not have domain knowledge enough to

understand which reference is most similar to our variable of

interest. Even if we found the best reference, its distribution may

still not be close enough. Is there some way we can combine the

information in the multiple reference attributes to do better? And

at the same time, more adaptively predicts the estimates to new

attributes of interest than using a single reference.

In this paper, we develop GeoAlign, a technique that does just

this. The idea is to weight their relative contributions to the final

estimate so that the most similar reference attributes have the

greatest impact on the estimate.

The intellectual contributions of the paper are as follows:

• We define the general aggregate interpolation problem

over unaligned partitions in one ormore dimensions, which

is an important problem in data integration (ğ2).

• We propose GeoAlign, an adaptive multi-reference cross-

walk algorithm that solves the areal interpolation problem

by realigning aggregates from source units to target units

by learning distribution similarities between the attribute

of interest and the reference attributes (ğ3). We show that

GeoAlign can be used not just in two-dimensional maps

but also for spaces with arbitrary numbers of dimensions.

• We evaluate the performance of GeoAlign against real

data from data.ny.gov and Esri data in 2-dimensional space.

These experiments show that GeoAlign outperforms the

state-of-the-art single reference crosswalk approach in

accuracy (ğ4). It is, at the same time, efficient, scalable and

robust to noisy references even when limited references

are available.

We then survey related work in areal interpolation (ğ5) before

we conclude with future work (ğ6).

2 PROBLEM STATEMENT

In this section, we first introduce the terms we use throughout

this paper before we formally define the aggregate interpolation

problem in multi-dimensional space. We then illustrate, with

examples, the aggregate interpolation problem in 2-D and in

other dimensions.

2.1 Preliminaries

In Geometry, an n-dimensional universe Ω ⊂ Rn can be par-

titioned into some unit system γy composed of a set of units

Uy
= {u

y
1 ,u

y
2 , ...}, where ∀uyi ∈U

yu
y
i ⊂ Rn . Units inUy satisfy

∀u
y
i ,u

y
j ∈U

y
,i,ju

y
i ∩ u

y
j = ∅, (1)

that is any pair of units inUy is disjoint with each other since they

have no spatial overlap inn dimensions. Suppose that an attribute

of interest αx exists, then we denote its aggregate vector as a
y
x =

[a
y
x [1],a

y
x [2], ...,a

y
x [|U

y |]] such that a
y
x [i] is the aggregate of αx

in the ith unit ofUy .

As an example in 2-D space, in the universe of New York State

Ω, county partitions compose a unit system γy . They share no

areal intersection such that they are spatially incongruent with

each other. Steam consumption, which is the attribute of interest

αx , has its data in Figure 1 collected from such a set of county

units Uy . Another possible unit system is zip code partitions.

We can view the steam consumption column in the table as its

aggregate vector a
y
x for the county unit system. Each entry of
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Figure 3: Realign population histogram in two sets of age

intervals by transforming aggregates from (a) narrow bins

to (c) wide bins. The dotted lines separate the age range

into a set of tentative intersection units as in (b).

3 AGGREGATE INTERPOLATION BY
GEOALIGN

In this section, we first introduce some additional definitions and

notations used throughout the rest of the paper and a general two-

step solution solving the aggregate interpolation algorithm. We

then lay the groundwork for the assumptions made by GeoAlign

before exploring the details of the algorithm.

3.1 GeoAlign preliminaries

Before introducing the general steps to solve the aggregate inter-

polation problem, we further define the set of intersection units for

the intersection unit system γ st as U st
= {ust1 ,u

st
2 , ...}, where

∀ust
k

∈U st ,ust
k

⊂ Rn . Each intersection unit is a subregion within

some source unit and some target unit, that is

∀ust
k

∈ U st
,∃usi ∈ U s ∧ utj ∈ U t

,ust
k

⊆ usi and u
st
k

⊆ utj . (4)

It can be thus deduced that |U st | ≥ max(|U s |, |U t |).

The aggregate vector of the intersection units for some at-

tribute αx is denoted as astx = [astx [1],astx [2], ...,astx [|U st |].

In the simplest case, the intersection units are then-dimensional

spatial intersections of source and target units. For instance, for

the areal interpolation problem in Figure 2, U st is the set of in-

tersection areas between zip codes and counties in (b); and for

the histogram realignment problem in Figure 3,U st is the set of

age intersection intervals between source and target bins. More

fine-grained partitions of intersection units may be introduced if

necessary when disparate spatial properties of the attribute in

these partitions are introduced by auxiliary data.

Assume that the probability density function of attribute αx
for γ st is a piecewise function, denoted as

f stx (z) =




f stx [1](z) , z ⊂ ust1
f stx [2](z) , z ⊂ ust2
...

f stx [|U st |](z) , z ⊂ ust
|U st |

(5)

is known, then its aggregate in the source units and target units

follows:

asi =
∑

∀ust
k

∈U st
,ust
k

⊆usi

ast
k

=

∑

∀ust
k

∈U st
,ust
k

⊆usi

∫

z⊂ust
k

f stx [k](z)dz, (6)

and similarly

atj =
∑

∀ust
k

∈U st
,ust
k

⊆utj

ast
k

=

∑

∀ust
k

∈U st
,ust
k

⊆utj

∫

z⊂ust
k

f stx [k](z)dz. (7)

Alternatively speaking, the aggregate in each source/target unit

is equivalent to the sum of aggregates of all intersection units

within it.

Two-step Approximation.We use a two-step solution to solve

the aggregate interpolation problem for objective attribute αo .

In our solution, we first compute the approximate asto (asto is the

aggregate vector for the intersection units). We then aggregate

these approximate intersection unit aggregates to determine the

approximate target unit aggregates. The two steps in our solution

are described below:

(1) Disaggregation: Split the aggregates in each source unit

to its intersection units. Mathematically speaking,

âsto [k] = B(aso [i], ...), s.t. u
st
k

⊆ usi , (8)

where the disaggregation function B(aso [i], ...) computes

the approximated âsto [k] of asto [k]. Note that ... denotes

the ancillary data that contribute to the approximation.

Some of the most commonly used ancillary data are shape

files of usi and ust
k
, etc. More advanced approximation

function may use external ancillary data. For instance,

the distribution of a reference attribute that is positively

related to the distribution of αo .

(2) Re-aggregation: Aggregate the approximated intersec-

tion unit aggregates for the target unit they reside in, or

equivalently

âto [j] =
∑

∀ust
k

∈U st
,ust
k

⊆utj

âsto [k]. (9)

General Solution Properties. Regardless of the types of ancil-

lary data available, some constraints are widely adopted in the

existing two-step approximation solutions. We name two of them

here.

One of these constraints is the volume preserving property

[31, 46]. This property ensures that every source aggregate is pre-

served by the total of approximated aggregates in its intersection

units, or

aso [i] =
∑

∀ust
k

∈U st
,ust
k

⊆usi

âsto [k]. (10)

The property is improving the estimation in that greater fi-

delity is given to the approximation in the intersection units,

which propogates to a more accurate estimation in target units. It

has been shown experimentally that methods following the vol-

ume preserving property make comparatively better predictions

[31].

Homogeneity is also often used to compensate for the absence

of information. Mathematically, for some attribute αx , its proba-

bility density function in a given unit is constant. In other words,
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its aggregate on any sub-unit of the given unit is proportional to

the area of the sub-unit. However, the assumption of homogene-

ity is rarely met in the real world [49].

3.2 GeoAlign Assumptions

We often have access to multiple reference attributes, no one

of which perfectly matches the objective attribute we wish to

estimate. It would appear advantageous for us to use all of them

instead of using a single reference attribute as the current ex-

tensive approaches described above. To this end, we propose

GeoAlign, an aggregate interpolation algorithm that realigns

aggregated data by learning from a combination of reference

attributes to best predict the actual aggregates of the objective

attribute in target units. GeoAlign leverages the advantages of

extensive approaches and is, at the same time, robust to various

objective attributes.

An intuitive idea could be to model the objective attribute ag-

gregates as a function of multiple reference attributes aggregates

in source units, evaluate coefficients with estimation methods

and substitute reference attributes in target units for prediction.

However, this is not applicable for the aggregate interpolation al-

gorithm since training samples (objective attribute aggregates in

source units) and test samples (objective attribute aggregates in

target units) are not randomly drawn from the same population

and the test samples are constrained by the training samples.

To address the linkage between two sets of samples and to ac-

count for the scale variations of reference attributes, in GeoAlign,

the realignment of the objective attribute is related to that of the

reference attributes through a statistical model for re-aggregation.

In order to make the problem tractable, we assume that different

attributes are independent across source units, and that every at-

tribute is correlated in its distribution between source and target

units. We will loose the independence assumption of references

later as shown in experiments in ğ4.4.2.

3.3 Disaggregation Matrix

Since we study the partition of aggregates in intersection units,

in the disaggregation step, B(aso [i], ...) can be reformulated as

âsto [k] =
ωst
o [k]

ωs
o [i]

aso [i]

subject to
∑

∀ust
k

∈U st
,ust
k

⊆usi

ωst
o [k] = ωs

o [i], (11)

where
ωst
o [k ]

ωs
o [i]

is the share of aggregate in the k-th intersection

unit (ωst
o [k]) over that in the i-th source unit (ωs

o [i]) it resides in.

Intuitively, the re-aggregation step sums up the weighted share

of all intersection units in all source units that overlap with the

target unit. Alternatively speaking,

âto [j] =
∑

∀usi ,u
s
i ∩u

t
j ,∅

∑
∀ust

k
⊆usi ∩u

t
j
ωst
o [k]

ωs
o [i]

aso [i]. (12)

Rather than approximating asto in the disaggregation step,

we can instead infer
ωst
o [k ]

ωs
o [i]

, ωst
o [k] or

∑
∀ust

k
⊆usi ∩u

t
j
ωst
o [k]. This

choice often depends on the type of ancillary data available. The

most widely used ancillary data is the true disaggregation of a

reference attribute between source and target units. For instance,

for the population reference mentioned in the introduction, the

population aggregates in intersection units of counties and zip

codes. We denote the disaggregation matrix of some attribute

Table 1: Notations in §2 and 3

Notation Description

Ω
an n-dimensional universe of

interest

γy
a unit system in Ω, for example γ s

at source level

Uy
= {u

y
1 ,u

y
2 , ...} the set of units in γy

αo the objective attribute

Ar = {αr1 ,αr2 , ...} the set of reference attributes

αx ∈ αo ∪Ar an attribute of interest

a
y
x = [a

y
x [1],a

y
x [2],

...a
y
x [|U

y |]]

the aggregate vector of αx in units

ofUy

f
y
x

the probability density function of

αx for γy

B(aso [i], ...) the disaggregation function

ω
y
x the weighted share vector of αx for γy

a
′y
x the normalized a

y
x

DM
y1,y2
x

the dimension matrix of αx , where

DM
y1,y2
x [i, j] is the aggregate of αx

in the intersection of u
y1
i

and u
y2
j

β = [β1, β2, ...β |Ar |] weights computed from Equation (15)

αx between two unit systems γy1 and γy2 as DM
y1,y2
x , where

DM
y1,y2
x [i, j] is its aggregate in the intersection area of u

y1
i

and

u
y2
j
. For γ s and γ t ,

DM
s,t
x [i, j] =

∑

∀ust
k

⊆usi ∩u
t
j

astx [k] (13)

The disaggregation matrix of the reference attribute between

source and target units is often wrapped up in a crosswalk rela-

tionship file. When the disaggregation matrix of only one refer-

ence attributeαr is available, we can substitute
∑
∀ust

k
⊆usi ∩u

t
j
ωst
o [k]

for DMs,t
r to complete the approximation of the objective at-

tribute in target units. This type of method is named as the

dasymetric method [32, 33, 48]. A special case of it is the areal

weighting method [30], using the disaggregation matrix of area

as the reference. Dasymetric methods are widely employed in

socioeconomic data realignment by general users [10].

Since we only consider the disaggregation matrix between

source and target units, from now on, we use DMx for DMs,t
x .

3.4 GeoAlign Algorithm

In the real world, the disaggregation matrix of more than one

references attributes is often available. GeoAlign is a volume-

preseving method that leverages the distribution similarity of the

objective attribute with reference attributes at the source level

and predicts the dimension matrix of the objective as a weighted

combination of the dimension matrices of the references. We will

first extend some of the notations in Section 2, and then describe

our proposed algorithm in detail.

Notation. Let Ar = {αr1 ,αr2 , ...} be the set of reference at-

tributes available. The aggregate vectors of these reference at-

tributes in source units are represented as asr1 ,a
s
r2
, . . . ,asr |Ar |

,

where asrk = [asrk [1],a
s
rk
[2], ...,asrk [|U

s |]] for the kth reference

attribute. Similarly, the aggregate vectors of these reference at-

tributes in target units are represented as atr1 ,a
t
r2
, ...,atr |Ar |

, where

atrk = [atrk [1],a
t
rk
[2], ...,atrk [|U

t |]].
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Algorithm 1: GeoAlign

Input: aggregate vectors of reference attributes in source

units asr1 ,a
s
r2
, ...,a

s
r |Ar |

; corresponding

disaggregation matrices DMr1 ,DMr2 , ..., DMr |Ar |
;

and the aggregate vector of the objective attribute in

source units aso .

Output: estimated aggregates of the objective attribute in

target units âto

1 Step 1. Weight Learning: Compute weights, β , by solving

the least squares problem in Equation (15)

2 Step 2. Disaggregation: Compute the estimated weighted

disaggregation matrix of the objective attribute, �DMo ,

using Equation (14)

3 Step 3. Re-aggregation: Re-aggregate to estimate the

aggregates of the objective attribute in target units, âto ,

using Equation (17)

to derive an approximate of the objective at the target county

level (âto ).

It can be easily shown that GeoAlign is applicable to any di-

mension since the algorithm involves no dimension dependent

information or computation. Rather, the only information needed

is the true partition of reference attributes in source and target

intersection units regardless of dimension or dimension-related

information, such as spatial correlation for geospatial data. Al-

ternatively, if true partition of references in finer granularity is

available, the data can be aggregated to the level of source and

target intersection as a reference attribute.

4 EXPERIMENTAL EVALUATION

We evaluated the feasibility of the GeoAlign algorithm from two

crucial aspects: whether the algorithm can correctly complete the

realignment task (effectiveness), and whether the runtime of the

algorithm is fast enough (efficiency). Additionally, we consider

runtime scalability when larger datasets are involved and the

robustness of the algorithmwhen low quality or limited reference

attributes present.

We compare the performance of GeoAlign with that of areal

weighting method [31] and dasymetric method [32, 33, 48] that

utilizes three reference attributes separately.

4.1 Experimental Setup

We developed the GeoAlign algorithm in Python. All experi-

ments were performed on a 2.3 GHz Intel Core i7 with 8 GB

memory and a 7200 rpm SATA disk.

We evaluated GeoAlign for 2-D areal interpolation. We used

county and zip code as the two geographic types of interest, and

focused on data from two different universes, New York State and

the United States. Most of the New York State data ere collected

from data.ny.gov, populated in tabular form. Three population

level demographic datasets have been used as reference data for

the single crosswalk algorithm, namely the population data from

United States Census Bureau [4], the aggregated USPS residential

address data and the aggregated USPS business address data [41].

In addition, we also selected five large individual level datasets

(The New York State Restaurants dataset is generated by selecting

unique restaurants in the Food Service Inspections dataset) with

geographic information and aggregated their number of records

for the intersection area of the two geographic types to form

their disaggregation matrices [5ś8]. Thus we obtained a total of

eight reference datasets with accurate distributions by zip code

and by county, and their disaggregation matrices from zip codes

to counties.

Besides the three population level Census data, which cover

the entire nation including New York State, other data for the

United States were collected from Esri, where the Maps and

Data group provides publicly available geocoded GIS data. Six

individual level GIS data [15ś20] were aggregated based on their

geospatial information for zip code and county levels and their

intersections using ArcGIS Pro [27]. We also computed the area

of units at these three levels, which is later used as the reference

attribute by the areal weighting method, yielding 10 datasets in

total for the universe of the United States.

There are more datasets with attributes for which the aggre-

gate vectors are available for both zip code and county for New

York State or for the United States. However, we did not use them

as reference attributes due to two reasons. First, it was not clear

whether these aggregates are accurate or approximate. In ğ4.4.1,

we further discuss the impact of the reference approximates on

the prediction. The other reason is that several attributes do not

have their disaggregation matrices publicly accessible and such

attributes cannot be used as reference attributes. In case of lim-

ited reference attributes, we show in ğ4.4.2 that GeoAlign makes

reasonable predictions even when the references are poorly se-

lected.

Since the number of datasets with accurate disaggregation

matrix is limited, we adopted the cross-validation evaluation

method that deals with the problem well. We conducted two

series of experiments, one for each universe. More specifically,

for each universe, we picked one of the datasets as the test dataset,

in turn, and used the remaining datasets to develop crosswalks

in GeoAlign whose combined weighted performance is then

evaluated for the test dataset. The performance of GeoAlign is

compared with the base-line single reference crosswalk method

that redistributes by a disaggregation matrix of some known

attribute. More specifically, GeoAlign is compared with the areal

weighting method and the dasymetric algorithm referencing

the three population level datasets. Note that when one of the

population reference datasets or the area dataset is used as the

test dataset, the performance of both methods referencing this

dataset is not evaluated.

4.2 GeoAlign Effectiveness

To evaluate the effectiveness of GeoAlign, we adopted root mean

square error (RMSE) as the evaluation criterion that computes

the deviation of estimated aggregates from true aggregates of the

attribute in counties. To ease the comparison across datasets of

heterogeneous scales, in Figure 5, we show the RMSE normalized

by the mean of the measured data (NRMSE).

The NRMSE of GeoAlign is compared with that of the dasy-

metric method using three population level datasets and the areal

weighting methods for both New York States (Figure 5a) and the

United States (Figure 5b), using eight and ten datasets respec-

tively. The performance of areal weighting method is not shown

in the figure since it makes poor predictions for all test datasets:

over 15 times of the NRMSE of GeoAlign for New York State

experiments and over 50 times of the NRMSE of GeoAlign for

the United States experiments.

The NRMSE of GeoAlign is less then 0.13 for New York State

experiments and less than 0.26 for the United States experiments.
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Figure 5: GeoAlign prediction performance (NRMSE) compared with dasymetric methods. Since a better prediction yields

a lower NRMSE, GeoAlign is making comparable or better predictions than the dasymetric methods for tests in New York

State and the Unite States.

Though three dasymetric methods have comparable error on

most datasets, for these datasets, GeoAlign is making equal or

better predictions. It should also be noted that no one of these

three methods is predicting uniformly well for all datasets as

GeoAlign does, in whichever universe. For instance, the dasy-

metric method referencing the population data presents much

higher error than the other methods when predicting for attorney

registration and USPS Business Address counts for counties in

New York State; all three dasymetric methods fail in accuracy

for both area and USA uninhabited places datasets in the United

States.

Except the USPS business address dataset, the rest three are

individual level datasets with limited number of observational

units that are sparsely distributed in the universe. Also, they do

not align well with demographic attributes as those in the areal

weighting and dasymetric methods. We observe that GeoAlign

accounts for sparsity and heterogeneous distributions with flexi-

bility.

4.3 GeoAlign Efficiency and Scalability

We evaluated the efficiency of GeoAlign in terms of algorithm

runtime. Apart from the horizontal efficiency comparison across

cross-validated tests for a given universe, we also considered the

scalability of GeoAlign runtime. This is realized by comparing

GeoAlign efficiency vertically across the universes of different

scales.

In addition to New York State and the United States, new

universes were selected as a set of states whose boundaries are

congruent with any other state in the universe. The selection is

a greedy process that ensures the states in a universe are tightly

connected from a geospatial perspective. These four new uni-

verses includeMid-Atlantic division andNortheast region defined

by Census Bureau, states contained entirely in the Eastern Time

Zone and all states excluding the ones in the Census West Region

(non-West). They form a spatial coverage hierarchy preventing

the inter-state influence of randomly selected universes.

Moreover, for factor control purpose, instead of collecting

more datasets for new universes, for each universe, we subset

the ten datasets covering the United States, keeping the entries

collected from units within the universe as inputs.

To avoid random error, we averaged the runtime across ten

trials for the cross-validated experiments in each universe.

Experimental results show that GeoAlign runtime is stable

across experiments for the same universe. This is consistent with

our claim that the complexity of GeoAlign is not related to the

magnitude of the count data. The majority of the runtime, over

90%, is spent on computing the disaggregation matrix after the

weights are estimated. Note that the aggregate vectors of the ob-

jective attribute in source geographic units has the same size for

all the different datasets (the size is |U s |). Similarly the aggregate

vectors of the reference attributes in source geographic units

are all of the same size (all of size |U s |), the aggregate vectors

of the reference attributes in target geographic units are all of

the same size (all of size |U t |). Further, all the disaggregation

matrices are all of the same size as well. The reason for the minor

difference in GeoAlign runtime for different datasets is because

of the difference in the number of non-zero entries in the disag-

gregation matrix, which is stored as sparse matrix, of reference

attributes. For the disaggregation matrix, sparse datasets, such as

cemeteries, have less non-zero entries, while dense datasets, such

as population, have more non-zero entries. Matrix operations

involving sparse matrices are influenced by this factor in SciPy

package.

As for cross-universe comparison, we ploted GeoAlign run-

time versus the number of zip codes (source units) and the number

of counties (target units) in Figure 6. These two plots show that

GeoAlign is fast: it runs for less than 0.15 second even for cross-

walk between 30238 zip codes and 3142 counties in the United

States universe. They also prove the linear relationship between

GeoAlign runtime with the number of units in source and target

levels since the dominating disaggregation matrix construction

operation is linearly related to these two factors.
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Figure 8: GeoAlign is robust to the choice of reference attributes. Though extra reference attributes do not create any loss,

reference attributes with higher correlation with the objective are preferred.

of noise resulted in higher prediction error, the mean prediction

deviation for these levels is still small (less than 1.1).

4.4.2 Limited Reference Attributes. In general, we cannot pre-

dict how many reference attributes will be available. We may

have very few, or we may have very many. In the process of

reference attribute selection, there are two questions to consider:

whether GeoAlign can make reasonable predictions with limited

number of reference attributes, and how to select the reference

attributes when more than one is available.

To answer these two questions, we chose multiple subsets of

reference attributes among all reference attributes and repeated

the cross-validated experiments for datasets in the United States.

The subset of reference attributes were chosen based on their

relationship with the target attribute of each test dataset. We

adopted the leave-n-out metric such that n = 1, 2 for reference

attributes with the highest (or lowest) correlation with the target

attribute at the source level. The NRMSEs of these four series of

experiments are compared with experiments using all reference

attributes in Figure 8.

For 7 out of 10 tests, GeoAlign is making robust predictions

regardless of the subset of reference attributes used. As for the

series of experiments leaving 1 or 2 least target-attribute-related

reference(s) out, the performance of GeoAlign is almost identi-

cal to using all reference attributes. This is in accordance with

GeoAlign’s ability of assigning little weights to reference at-

tributes loosely related to the target attribute.

Leaving out the most target-related attributes out can have

an impact on accuracy. This does impact three of our attributes:

area, USA uninhabited places and USPS business address datasets.

None of the references are closely related to the area and the USA

uninhabited places datasets at the source level (correlations less

than 0.25). Apart from the two references left out, the rest of the

references have even lower correlation with the target attribute

(less than 0.2 and 0.05 respectively). According to the assumption

basis of GeoAlign, the distribution of the target attributes is thus

poorly related to the distribution of these attributes, leading to

increased prediction error. We also found that leaving out the ref-

erence most related to the target attribute has almost no impact

on the prediction for the USPS business address dataset; while

leaving out top two such references dramatically worsens the

situation. Further analysis reveals that these two references are

highly correlated with each other at the source level (≈ 96%), the

weight assigned to the reference most related to the target at-

tribute is reassigned to the other when the former is left out. This

verifies that similar attributes at the source level are also similarly

distributed in the intersection units, as the predicted disaggrega-

tion matrix of the target attribute is almost the same regardless

of using the reference most related to the target attribute or not.

These experiments give us more insight into GeoAlign refer-

ence attribute selection. GeoAlign prefers reference attributes

highly related to the target attribute at the source level. For refer-

ence attributes poorly related to the target variable, it is able to

weigh their contributions accordingly. The reference attributes

are not necessarily independent of each other and the reference

attributes are not necessarily accurate at the source level. From

the user’s perspective, GeoAlign is able to make reasonable pre-

dictions by simply given all available reference attributes.

5 RELATED WORK

In the GIS community, spatial interpolation has advanced from

isoline mapping in cartography to data realignment in different

units or grids for multivariate analysis in geographic research

[3, 31, 38]. Realignment, crosswalk, or regridding, is commonly

used today as a preprocessing step before further data analysis

in physics and socioeconomics to interpolate spatial or temporal

data distribution from one grid to another [28]. Since these data

are either point or areal based, two categories of methods are

proposed for these two types respectively.

Areal interpolation is a subset of the spatial interpolation

problem that realigns aggregates. Early methods built upon point-

based interpolation, such as point-in-polygon method, do not

follow the volume-preserving property such that reconstruction

of exactly the original aggregates of each source unit with the

transformed value of each target unit is not possible [31, 44].

It has been shown that these methods are not comparable in

approximation efficiency with those that do have the property

[31, 47]. Later methods thus introduce the property and turn

over to the area-based areal interpolation instead [12]. These

approaches depend highly on the spatial properties of the data

collection area and thus different forms of ancillary data are

introduced ever since.
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Areal weighting method, one of the early area-based areal

interpolation method, makes use of the area ancillary data avail-

able in the form of disaggregation partitions between source

and target units [13, 36]. This method is widely available in GIS

software for general users nowadays. However, it assumes even

distribution within units (homogeneity) whereas this assumption

hardly stands in reality. Areal weighting has been extended by

referring to other single known reference attributes, called dasy-

metric weighting [1, 24, 37, 43]. These methods are restricted by

the assumption of proportionality of the objective attribute to the

single reference attribute. Hence the selection of the reference

attribute is vital to the prediction accuracy and the methods are

not adaptive to different objective attributes.

The regression methods are later introduced as extensions to

the dasymetric methods allowing for multiple auxiliary variables.

In general, the regression methods involve a regression of the

source level data of the objective attribute on the values of the

references in target units. For this track of methods, more ad-

vanced techniques such as EM algorithm,Monte Carlo simulation,

smoothing techniques[9, 11, 31, 45, 46, 48], etc., are introduced

later in the literature. However, they make different assumptions

of density distribution within units, some of the mostly used ones

are Poisson distribution and binomial distribution, and their per-

formances are rather assumption dependent [30] and auxiliary

variable dependent. Recently, more complicated regression mod-

els [35, 39, 40] are developed based on domain knowledge such

as spatial correlation. However, they lack general applicability to

heterogeneous target attributes and are hard to implement for

practitioners.

These approaches can also be categorized as extensive or inten-

sive approaches based on their approximation target. Extensive

approaches approximate asto while intensive ones approximate

f sto . Most approaches for solving the areal interpolation problem

are intensive approaches that build spatial statistical models for

f sto in the disaggregation step. These approaches, mostly devel-

oped in 2-D space, can be extended to higher dimensions, though

these extensions are typically non-trivial. Other major limitations

of intensive approaches include narrow scope of application and

low robustness to heterogeneous objective attributes.

Current intensive approaches for areal interpolation are not

generally applicable for aggregate interpolation due to three

main reasons. First, integration of f sto is computable in 2-D, how-

ever, it is computationally intensive in high dimensions with

complex f sto . Second, shape files are indispensable for intensive

approaches, and the probability density function for each inter-

section unit, f sto [k], is associated with the shape files of source

and/or intersection units. Further, attributes in plain tables with-

out handy shape files of target units typically fail re-aggregation.

Even if shape files are available, some of them constantly change

over time, resulting in approximation inaccuracies. Last but not

least, these approaches are not easily approachable for general

users, especially those with little technical proficiency in mathe-

matics, statistics and GIS. The f̂ sto model is built upon the spatial

knowledge of the objective attribute; however, this knowledge is

not available for all users. Further, implementations of intensive

approaches are not publicly available, making them even harder

to use.

Another limitation of intensive approaches is that they are not

adaptive to new attributes. f̂ sto models are attribute dependent

since the true f sto models for two attributes can be very differ-

ent. Another point to note is that these approaches make many

assumptions of f̂ sto . For instance, the distribution model of each

intersection unit, the choice of parameters for these distributions

and so on. Any change in these assumptions may dramatically in-

fluence the accuracy of approximation in some target unit. What

is worse, there is no efficient verification of whether they are

appropriate or not.

Extensive approaches are more generally applicable than the

intensive ones: they can be easily extended to high dimensions,

need no unit shape files, and are easy to implement. However,

existing extensive approaches make use of a single reference

attribute and are still limited in robustness. When the objective

attribute and the reference attribute does not share similar spatial

distribution, the approximated result can differ substantially from

the true aggregates in target units. Further, since they use the

same reference attribute irrespective of the objective attribute,

they are not adaptive to different objective attributes with het-

erogeneous spatial distributions.

6 CONCLUSIONS AND FUTUREWORK

In this paper, we formally define the problem of aggregate in-

terpolation in multi-dimensional space and propose GeoAlign,

an adaptive multi-reference algorithm that realigns aggregates

better than state-of-the-art approaches for real socioeconomic

datasets. Unlike existing areal interpolation algorithms, GeoAlign

requires no knowledge of spatial properties or dasymetric maps

of source and target units and is thus generally applicable for

plain aggregate tables. Our experiments show that GeoAlign is

making better predictions in a reasonably short time. Its runtime

scales linearly with the number of units in source and target lev-

els, and is robust to noisy references evenwhen limited references

are available.

A potential future direction is to extend this work into an

automatic aggregate data integration system that joins multiple

aggregate tables without user intervention.
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