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ABSTRACT

From artificial intelligence to network security to hardware design,

it is well-known that computing research drives many important

technological and societal advancements. However, less is known

about the long-term career paths of the people behind these innova-

tions.What do their careers reveal about the evolution of computing

research? Which institutions were and are the most important in

this field, and for what reasons? Can insights into computing career

trajectories help predict employer retention?

In this paper we analyze several decades of post-PhD computing

careers using a large new dataset rich with professional information,

and propose a versatile career network model, R3, that captures

temporal career dynamics. With R3 we track important organi-

zations in computing research history, analyze career movement

between industry, academia, and government, and build a powerful

predictive model for individual career transitions. Our study, the

first of its kind, is a starting point for understanding computing

research careers, and may inform employer recruitment and re-

tention mechanisms at a time when the demand for specialized

computational expertise far exceeds supply.
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1 INTRODUCTION

From the invention of the Unix operating system in the 1970s to

the ongoing artificial intelligence revolution, the importance and

impact of computing research can hardly be overstated. The world

has taken notice accordingly: the news media regularly covers ev-

erything from frontiers in computer design [7] to the earnings of AI

experts [24]. Naturally, questions regarding computing research ca-

reers are becoming relevant. What happens after a PhD in computer

science? Which organizations are, or were, central in computing

research? How do expertise and talent flow between organizations?

In this study, we answer these questions by analyzing a unique

career trajectory dataset of computer science PhD graduates from

the 1970s to the present. Our goal, broadly, is to understand the

evolution of computing research as a profession on the levels of
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individual career transitions (movement between distinct em-

ployers), organizations (employers), and three respective sectors

(industry, academia, and government). To do so we propose R3,

a versatile career network model that captures resource flow, em-

ployer retention, and relative organizational growth. Combining

R3 with the HITS link analysis algorithm [18], which has not (to

the best of our knowledge) been used in career analysis before, we

demonstrate R3’s versatility with insights of varying granularity:

• System-wide evolution. We identify key organizations, from

startups to universities to industry leaders, in computing research

history. R3 captures crucial factors beyond size and popularity

that contribute to organizational łimportancež, demonstrating

that some organizations are important precisely for their small

sizes, low retention, or short existences.

• Cross-sector career movement. We examine post-PhD career

transitions across sectors. Beyond finding evidence that cross-

sector collaboration is increasing, we use R3 to reveal significant

asymmetry in the frequency, timing, and łprestigež of career moves

between academia and industry.

• Individual retention prediction. Finally, we predict career

transitions by combining R3 network dynamics and individual

career trajectory information. We demonstrate R3’s immediate

utility in boosting prediction power with interpretable features

that can inform employer recruitment and retention mechanisms.

This work is a starting point for large-scale studies of computing

career trajectories. Such analyses are becoming crucial as demand

for computing expertise grows and our world increasingly depends

on research innovations in computer science.

Outline. This paper is organized as follows: we first discuss some

of our extensive data standardization pipeline and describe our

post-processed dataset (Sec. 2). We then motivate and detail our

R3 career network model (Sec. 3). With R3 we analyze computing

research careers at several levels of granularity (Sec. 4). Finally, we

outline related areas of work and discuss future directions based

on our study’s results and limitations (Secs. 5 through 7).

2 DATA

Data collection. To obtain our data, we automatically crawled the

public online information of around 10 thousand PhD graduates

from the 1970s to 2015 in computer science and related subfields.

We matched these graduates from the Proquest Digital Library of

PhD dissertations to an online public professional (LinkedIn) profile.

To guide automatic data collection, we obtained data for those with

PhDs from the top 50 US computer science graduate programs as

specified in the 2014 US News & World Report (USNWR)1. We do

not use the actual USNWR rankings, which have been criticized [2],

anywhere in our study. Per person, we retained the PhD school,

1https://www.usnews.com/best-graduate-schools/top-science-schools/
computer-science-rankings
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Results. The results make it clear that system-wide network dy-

namics substantially boost prediction performance, justifying our

initial choice of using HITS on a career transition network. More-

over, R3 adds extra power to the model. The top feature groups

by performance are IND + R3 and ALL, which do about as well

each other. While AUC remains relatively stable, the higher class

imbalance makes the prediction tasks more difficult for smaller

values of n, highlighting R3’s strength in improving F1.

Using XGBoost’s built-in feature importance tools, we also found

that R3 features were consistently considered łimportantž for pre-

diction, and especially so for lower values of n compared to the

other feature groups. The top 10 most important features across

all feature groups for n = 1 and n = 5 years are given in Fig. 15.

We immediately observe that all of the most important features

beyond IND are related to an organization’s hub scores and ranks.

Most interestingly, we find that for smaller values of n, the R3 hub

ranks and scores of p’s employer at the time they started working

there are most important, which suggests that employer outflux

rate, retention, and volume are about as predictive of short-term

retention as individual-level information.

By contrast, for higher values of n the IND features become

more informative. The most important feature is how many years

individuals have worked at their current employers. This is intuitive

given the fast-paced nature of the computing profession and the

fact that those who have worked at an employer longer are more

likely preparing to transition. This is especially true in industry,

where the employment length mean and variance are shorter. In-

deed, sector-related features become important for higher values of

n (num_jobs_not_in_industry). Whether or not a person is cur-

rently in a visiting position also becomes important, since visiting

positions are often limited in duration.

We conclude by noting that while Gf features rarely appear in

the top 10 most important features, R3 features are consistently

important, and RGR is one of the top features for n = 1. These

results show the immediate utility of R3 for retention prediction,

which becomes important from an organizational perspective as

the demand for computational expertise increases.

5 RELATEDWORK

Career path mining. Mining professional career paths has at-

tracted recent interest. One of the first studies to mine career trajec-

tories proposes a similarity measure between professional profiles

using temporal sequence alignment on user career paths [34]. More

recently, Xu et al. [32] detect łtalent circlesž in job transition net-

works to find qualified candidates for jobs, and Kapur et al. [17]

apply PageRank on career transition networks as an intermedi-

ary step for ranking and recommending universities. Unlike [32]

and [17], our goals are not recommendation-oriented. Moreover,

while we are not the first to design a weighted HITS scheme [8, 30],

we are the first, to the best of our knowledge, to propose one for

career trajectory mining.

Academic career trajectories.Most work in academic career tra-

jectory analysis concerns career movement within academia. For

example, Clauset et al. [5] find that academic prestige correlates

with higher productivity and better faculty placement, and Deville

et al. [9] find that transitions between academic institutions are

influenced by career stage and geographical proximity. That said, a

few studies on the distribution of PhD graduates between academia

and industry exist. For example, Sauermann and Roach [28] find in

a survey that most students’ career preferences shift from academia

toward industry over the course of a PhD, and Balsmeier and Pellens

[1] consider how and why scientists leave academia. By contrast,

we are interested in all directions of cross-sector career movement

(Sec. 4), not just transitions from academia. Moreover, our study is

long-term, following individuals beyond their PhDs, and observa-

tional, as we do not use individually-reported preferences to explain

the causes of the phenomena we observe.

Publication trajectories in computing. Several recent works

study computing career łtrajectoriesž in terms of publishing pro-

ductivity or citation counts. For example, Way et al. [31] study

faculty łproductivity trajectoriesž in computer science, provid-

ing evidence that publishing trends in the field do not follow the

conventional łearly peak and gradual declinež narrative. Most re-

cently, Chakraborty and Nandi [4] study scientific łsuccess trajec-

toriesž in computer science and physics by analyzing paper citation

counts. Similar to [31], they question established notions of sci-

entific success, finding multiple distinct trajectories of successful

scientific papers beyond the łearly risež trajectories of immediately

impactful papers. These works come from the larger body of re-

search devoted to study of bibliographic data [15, 25], which we do

not consider here (see discussion).

6 DISCUSSION

Our data-driven study of long-term computer science PhD employ-

ment dynamics is the first of its kind. Naturally, many directions

for future work remain. One such direction is increasing the scope

of our study in terms of data. Many important people in comput-

ing research obtained PhDs outside the US. Some did not obtain

a PhD at all. Although we only considered PhD graduates from

a subset of schools to ensure the accuracy of our data, an ideal

dataset would include those who made contributions to computing

research regardless of degree or background.

A related direction is that of merging bibliographic data with

existing career trajectory data. This task is challenging for large

datasets due to the difficulty of entity resolution across databases,

which in our case amounts to matching online professional profiles

with Google Scholar or DBLP profiles. However, such data would

address questions never before answered: How do publishing rates

compare across sectors? Do łimpactfulž authors concentrate in

łimportantž institutions? Is a person’s publishing history predictive

of their future career transitions?

Future studies could also perform further data validation. One

inherent limitation of our study is that little standardized data

on post-PhD careers exist, and the data that do exist are hard to

verify. These concerns are not unique to our study, but they are

important. A future larger-scale study could consider multiple levels

of automatic and manual data validation using online CVs, resumes,

surveys, and/or news articles as available.

A final interesting direction is comparison of different sub-groups

in computing research, for example of continents or countries, those

with or without a postdoc, and historically underrepresented groups

in computing. Examining such group-specific differences could lead
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to actionable organization- and individual-level insights, although

such analyses would require self-reporting of gender, race, country

of origin, etc. Again, this direction reduces to the problem of gath-

ering reliable large-scale data. We hope this will become easier in

the future as the topic we study gains traction.

7 CONCLUSION

In this work we examine the career transitions and trajectories

of computer science PhDs on the individual, organizational, and

sector levels. We propose R3, a versatile model for temporal ca-

reer network dynamics. Using the HITS link analysis algorithm in

conjunction with our R3 model, we:

• Provide new insights into the meaning of institutional łimpor-

tancež in computing research careers;

• Reveal a significant asymmetry, from several perspectives, be-

tween post-PhD career moves to and from industry; and

• Demonstrate R3’s immediate utility in supporting prediction of

individual career transitions.

While our study is the first of its kind, we conclude by emphasiz-

ing that these analyses may be repeated in the future when more

data, made possible by increasing PhD graduation rates, are avail-

able. As computing research continues to grow in importance and

worldwide presence, this is certain to happen.
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