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ABSTRACT

From artificial intelligence to network security to hardware design,
it is well-known that computing research drives many important
technological and societal advancements. However, less is known
about the long-term career paths of the people behind these innova-
tions. What do their careers reveal about the evolution of computing
research? Which institutions were and are the most important in
this field, and for what reasons? Can insights into computing career
trajectories help predict employer retention?

In this paper we analyze several decades of post-PhD computing
careers using a large new dataset rich with professional information,
and propose a versatile career network model, R3, that captures
temporal career dynamics. With R® we track important organi-
zations in computing research history, analyze career movement
between industry, academia, and government, and build a powerful
predictive model for individual career transitions. Our study, the
first of its kind, is a starting point for understanding computing
research careers, and may inform employer recruitment and re-
tention mechanisms at a time when the demand for specialized
computational expertise far exceeds supply.
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1 INTRODUCTION

From the invention of the Unix operating system in the 1970s to
the ongoing artificial intelligence revolution, the importance and
impact of computing research can hardly be overstated. The world
has taken notice accordingly: the news media regularly covers ev-
erything from frontiers in computer design [7] to the earnings of Al
experts [24]. Naturally, questions regarding computing research ca-
reers are becoming relevant. What happens after a PhD in computer
science? Which organizations are, or were, central in computing
research? How do expertise and talent flow between organizations?

In this study, we answer these questions by analyzing a unique
career trajectory dataset of computer science PhD graduates from
the 1970s to the present. Our goal, broadly, is to understand the
evolution of computing research as a profession on the levels of
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individual career transitions (movement between distinct em-
ployers), organizations (employers), and three respective sectors
(industry, academia, and government). To do so we propose R,
a versatile career network model that captures resource flow, em-
ployer retention, and relative organizational growth. Combining
R3 with the HITS link analysis algorithm [18], which has not (to
the best of our knowledge) been used in career analysis before, we
demonstrate R*’s versatility with insights of varying granularity:

o System-wide evolution. We identify key organizations, from
startups to universities to industry leaders, in computing research
history. R? captures crucial factors beyond size and popularity
that contribute to organizational “importance”, demonstrating
that some organizations are important precisely for their small
sizes, low retention, or short existences.

e Cross-sector career movement. We examine post-PhD career
transitions across sectors. Beyond finding evidence that cross-
sector collaboration is increasing, we use R3 to reveal significant
asymmetry in the frequency, timing, and “prestige” of career moves
between academia and industry.

e Individual retention prediction. Finally, we predict career
transitions by combining R® network dynamics and individual
career trajectory information. We demonstrate R3’s immediate
utility in boosting prediction power with interpretable features
that can inform employer recruitment and retention mechanisms.

This work is a starting point for large-scale studies of computing
career trajectories. Such analyses are becoming crucial as demand
for computing expertise grows and our world increasingly depends
on research innovations in computer science.

Outline. This paper is organized as follows: we first discuss some
of our extensive data standardization pipeline and describe our
post-processed dataset (Sec. 2). We then motivate and detail our
R3 career network model (Sec. 3). With R? we analyze computing
research careers at several levels of granularity (Sec. 4). Finally, we
outline related areas of work and discuss future directions based
on our study’s results and limitations (Secs. 5 through 7).

2 DATA

Data collection. To obtain our data, we automatically crawled the
public online information of around 10 thousand PhD graduates
from the 1970s to 2015 in computer science and related subfields.
We matched these graduates from the Proquest Digital Library of
PhD dissertations to an online public professional (LinkedIn) profile.
To guide automatic data collection, we obtained data for those with
PhDs from the top 50 US computer science graduate programs as
specified in the 2014 US News & World Report (USNWR)!. We do
not use the actual USNWR rankings, which have been criticized [2],
anywhere in our study. Per person, we retained the PhD school,

!https://www.usnews.com/best-graduate-schools/top-science-schools/
computer-science-rankings
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Top CS PhD employers, 1970 to 2015
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Figure 1: Most CS PhDs concentrate at one of a few institutions:
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Figure 2: Fictitious but plausible samples from our dataset.

graduation year, and all available post-PhD employers, job start/end
dates, and job titles. Figure 2 gives two illustrative samples.

While it is not possible to fully verify whether online profes-
sional profiles are up-to-date or truthful, we manually validated
our data by inspecting individuals’ listed employers. We discarded
profiles with suspicious employers: for example, overly generic
names like “college” or companies with no online records of exis-
tence. Moreover, because we collected the profiles of people whose
dissertations were verified by ProQuest, it is unlikely that their
profiles were fake or set up by fake accounts. After validation, we
retained 17,358 unique employment records for 6,781 PhDs over five
decades. We make two anonymized versions of the data available
at https://github.com/tsafavi/career-transitions-data.

Name and sector standardization. Using several publicly avail-
able collections of organization names® 3, we created a central-
ized list of academia, industry, and government organizations. We
standardized each organization in our dataset against this list. For
instance, all variants of Microsoft—i.e., Microsoft Bing, Microsoft
Skype, and Microsoft Research—were grouped under one umbrella.
In the case of ambiguity, we automatically mapped names to their
most well-known instances in computing, like “CMU” as an ac-
cepted acronym for Carnegie Mellon University. Universities with-
out specified campuses mapped to their flagships. For example, the
University of Michigan listed without one of Ann Arbor, Flint, or
Dearborn became the University of Michigan Ann Arbor.

To categorize employers into sectors (one of industry, academia,
or government), we used our centralized organization list, keywords
like “LLC” and “college”, and rule-based automatic classification.
For the 444 organization names that our system failed to categorize,

https://www.crunchbase.com
3http://www.nasdaq.com/screening/company-list.aspx
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Figure 3: First employment sector of PhDs per year.

we provided 6 expert assessors with those organizations and a set
of publicly available rules®. The inter-rater agreement on a subset
of those employer names was 73.6% using Fleiss’ kappa [12], which
quantifies the degree of inter-rater agreement over that expected by
chance. This “substantial” inter-rater agreement [22] demonstrates
the relative simplicity and interpretability of our rule-based system.

Description. (1) Education. The school with the largest graduate
representation in our dataset, at 6.7%, is the University of Illinois
Urbana-Champaign (UIUC). Carnegie Mellon, MIT, UC Berkeley,
and Stanford follow closely. As expected, PhD production volume
increased substantially in the last 15 years (Fig. 3), during which
interest in computing became widespread and compute resources
and data availability skyrocketed. The rate of computer science
PhD graduation between 2003 and 2008 grew on average 18.33%
per year until a peak volume in 2008, then dropped briefly around
the beginning of the Great Recession. Of these graduates, 11.7%
had postdoctoral experience, with an average of 1.13 postdocs per
person. The volume of PhD graduates beginning postdocs spiked
between 2009 and 2012, again with the onset of the recession.

While representation bias in our dataset is possible, as collecting
data on all graduating CS PhDs is difficult, our data are corrobo-
rated by the Computing Research Association’s Taulbee Survey”.
This survey collects, among other figures, data from US and Canada
higher education institutions on graduating PhDs in computer
science and related fields. The trend of our PhD production data
strongly correlates (Pearson r = 0.75) with the Taulbee PhD pro-
duction numbers publicly available from 2002 to 2015.

(2) Employment. The sector distribution of organizations in our
dataset is 83.5% industry, 14% academia, and 2.5% government.

*http://bit.ly/2ErexBh
Shttps://cra.org/resources/taulbee-survey/
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Google is by far the most popular employer (Fig. 1a), with nearly 15%
of the entire dataset having worked there at least once since its in-
ception in the late 1990s. The most popular destination in academia,
at around 1% of all PhDs in the dataset, is Carnegie Mellon. Like
many other well-documented phenomena [6, 10], computer science
PhD employment among organizations appears to follow a power-
law distribution (Fig. 1b), demonstrating that most computing PhD
talent has concentrated in a few companies and universities.

Although a PhD is often considered a gateway to academia, a ma-
jority of computer science PhDs in our dataset immediately work
in industry. On average, 57% go to industry, 39% go to academia,
and 4% go to government per year (Fig. 3). However, while industry
jobs are more popular, academic jobs have higher longevity. The
mean retention rate for industry employers in our dataset is 4.65
years; for academia, 5.84 years; for government, 4.91 years, with sig-
nificant differences between academia and the others (p < .00001
academia/industry, and p = 0.002 academia/government, two-sided
t-test). While this may be related in part to academic tenure poli-
cies, we do consider postdoctoral positions at academic institutions,
which are intended to be short, and positions beyond tenured pro-
fessorships as part of academia here.

3 R® TRANSITION NETWORK MODEL

To analyze the evolution of computing research with our unique
dataset, we need an employer “desirability” or “importance” mea-
sure for computing PhDs. Such a measure quantifies hierarchies
between organizations and helps us anchor our analysis around key
representative institutions of the profession. For this two compo-
nents are necessary: (1) a network representation that captures the
dynamics of career paths; and (2) an organizational ranking method
that captures both employee influx and outflux.

(1) Network representation. Among the various ways to model
trajectory or sequence data [3, 19, 27, 33], a natural first choice is the
transition network, which is a directed graph that here captures the
post-PhD career transitions between employers (states). This rep-
resentation is often called an aggregate flow network or “talent
flow graph” or “job transition/hop network” [17, 26, 32]. In this rep-
resentation G¢(V, &), each node v € V is an industry, academia,
or government organization. Each directed edge (u, v,t) € Eisaset
of employee transitions from organization u € V to organization
v € V in year t. The weight of edge (u,v,t), which we denote
as Wft (u — v), captures the total number of employees making a

career transition from u to v during year ¢.

The aggregate flow network Gy is simple and interpretable. How-
ever, it can obscure important insights, which we demonstrate in
Sec. 4, for several reasons. For one, our data show that most PhD-
trained talent in computing concentrates in very few organizations
(Fig. 1b). Ranking organizations by aggregate flow heavily favors
these organizations, which are mostly large companies, whereas
organizational size is but one determinant of importance in the real
world. Furthermore, capturing only aggregate transition volume
cannot answer important temporal questions encoded in career
sequence data. Which organizations have higher turnover than nor-
mal? Which are growing quickly relative to their size? Which are
desirable for fresh graduates versus senior engineers, distinguished
researchers, and program directors? To answer these questions, we
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Figure 4: A hypothetical transition network comprising a
stable company STABLE-LLC, a university UNI, a declin-
ing company DECLINE-LLC, and a fast-growing STARTUP.
Each node is labeled with the number of employed PhDs
before transitions. The edge weights denote the number of
PhDs moving to or from each node.

propose the R transition network model. Each R in R® trans-
forms G’s edge weights to capture a specific career dynamic, which
we define as resource transfer (Rsrc), employee retention (RTn),
and relative organizational growth (RGR).

(2) Ranking. PageRank and HITS are two of the most well-known
node centrality measures on directed graphs [13]. The former,
which has been used in career mining [17, 26] and many other
settings [14, 20, 21, 29], ranks nodes by the quantity and “impor-
tance” of their in-links, and outputs one set of scores. By contrast,
HITS [18] outputs two sets of scores, one for hubs and one for
authorities. Hubness measures each node’s “indexing power” by
the number and strength of its outgoing links to authority nodes.
Authority measures each node’s “relevance” by the number and
strength of its incoming links from hub nodes.

While the R3 model proposed in this section can work with
PageRank, HITS, and any other link analysis algorithm on directed
weighted graphs, we design it with HITS in mind. In career analy-
sis, both the in- and out-links of nodes, which respectively capture
organizational influx and outflux, characterize employer roles and
rankings in the flow graph. For this reason we posit that iden-
tifying both hubs and authorities best captures the natural
meaning of career transitions, and the full dynamics of tran-
sitions from an organizational perspective. Intuitively, authority
organizations attract talent and expertise from hub organizations.
For brevity, we do not cover the theory of HITS (see [18] for details).

In the remainder of this section we define R® and demonstrate its
effects on a simple but plausible example (Fig. 4). As job transition
frequencies have been shown to follow a yearly cyclic pattern [32],
from here on we assume yearly time units.

3.1 Rsgrc: Modeling resources

Our first feature, resources (Rsgrc), captures the level of cumu-
lative employee expertise in inter-organization transitions. The
intuition of Rggc is that a longer career leads to more advanced
individual expertise and organizational value. For example, one
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might rise from a software engineer to a directorate role, or else
from assistant to full professorship, with time. Our goal with Rsgrc
in terms of HITS is to capture organizational hubs and authorities
for experienced people, who are skilled resources.

To quantify each employee’s expertise level, we use a variant
of the logistic skill-gain model from economics and organizational
theory [35]. In more detail, as shown in Fig. 6, we model the ex-
pertise level of a PhD p making a career transition in year ¢ as a
sigmoid function of her career length up to that year, £(p, t):

— \-1
Rre(p.) =1+ exp[—M]) .
In the above formulation, & controls the curve’s steepness and m,
the sigmoid midpoint, is the system-wide average career length at
year ¢ (10 years in Fig. 6). Rsgc thus scores each transitioning PhD
based on her experience relative to her peers. The transitions of
those who entered the system earlier are deemed more valuable for
the source and target organizations, although in our examples and
analyses we set o = £(t)/2 (the least steep curve in Fig. 6, orange)
to avoid over-penalizing those with fewer years of experience.
We transform each directed edge of the aggregate flow network
Gy to concentrate flow in the graph around the movement of expe-

rienced people:

W}{3 (u— ) (1

W; (u = v) - Rspe(u, v, t)

Z Rsre(p.t),

PhD p: u—ol|t

where Rspc(u, v, t) is the average Rsrc score of employees p mov-
ing from the source node u to the target node v during year t,
each denoted as PhD p : u — o[t above. Note that our logistic
model does not account for skill loss over time. While “productiv-
ity decline” in academia has been studied for research publication
rates over time, among other phenomena, this narrative has been
recently questioned [31]. As such we do not include it in our model.

Example. Assume that the few people

STABLE-
transitioning to and from UNI (green,  srartup LLC
Figs. 4 and 5) are distinguished pro-
fessors and industry leaders with 20 &

. S
years of experience. Also, assume all é&
others among STABLE-LLC, DECLINE- Q.}‘.l
LLC, and STARTUP have 5 years of ex-

DECLINE-LLC

perience. Given a system-wide average
career length of 10 years, transforming
Gr with Rggc results in UNI’s author-
ity score increasing from 0.12 to 0.31, reflecting its centrality as an
employer of highly skilled people.

Figure 5: Rgpc effects.

3.2 Ryn:Modeling retention

Retention (Rt ) captures how well organizations retain talent,
which has been shown to be crucial in career transition graphs [17].
Indeed, inter-employer transitions alone are comparatively sparse,
with only 22% of our dataset transitioning on average per year.
Our motivation for Ry is that low retention may signify a variety
of real-world meanings in organizations, from undesirability to a
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Figure 6: Computing Rsgc for UND’s transitions (Fig. 4), as-
suming a system-wide average career length of 10 years.

short existence (i.e., startups that fail or get acquired quickly). In
the context of HITS, we use Rrn to identify low-retention hub
organizations that serve as “stepping stones” to other authorities.

Since employers with higher retention are better able to develop
their employees’ job-specific skills, we model retention by capturing
organizational “expertise” on a sigmoid curve. To first account for
significant differences in sector retention rates (Sec. 2), we stratify
organizations by sector. We then model the retention of an orga-
nization v at year t as a sigmoid function, comparing v’s average
PhD retention rate at year t, £(v, t), to its sector’s current average
PhD retention rate £(c(v), t), where o(v) is v’s sector:

aun—AdeH)l
)

The idea here is that employers with higher-than-average PhD
retention in their sector receive a higher Rt score, and vice versa,

Rrn(v,t) = (l + exp[—

although as before we smooth the curve by setting f = (o (v), t)/2.
Our goal with Rty is to capture hubs, so we transform outgoing
edges for each node v in G with 1 — Rrn (v, 1):

Wl’

(0= u) = Wi - u) - (1-Rrn (. 1)

@)

Taking the converse increases outflux from low-retention employ-
ers and decreases outflux from high-retention employers.

Example. Returning to Fig. 4, as-
sume that STABLE-LLC’s average re-
tention matches the industry average;
DECLINE-LLC’s is around one-half the
industry average due to its decline; and
UNT’s is twice the academia average due
to its prestige and tenure policies. By
transforming the flow network G with
1 — Rrn, DECLINE-LLC’s hub score
increases to 0.91 and UNI’s hub score
drops to 0.01, magnifying the respective retention abilities of these
institutions.

STABLE-

STARTUP LLC  yy

DECLINE-LLC
Low retention

Figure 7: RN effects.

3.3 Rggr: Modeling relative growth

Our last feature, relative growth (RgRr), quantifies growth rela-
tive to organization size. The goal of RgR is to boost the authority
of small, fast-growing organizations. Its HITS interpretation is that
employers with high RgRg, like buzzworthy startups or fast-growing
university computer science departments, should gain authority
even with relatively low influx.
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Figure 9: Relative growth of DECLINE-LLC and STARTUP.

Extending the literature in ecology and stock analysis on growth
rate modeling [16, 23], we model an organization v’s relative growth
at year t as the difference between the logarithms of ©v’s PhD influx
and outflux at year t. We normalize this difference by the number
of PhDs working at v during year ¢ before in- or out-transitions:

log (# PhDs joining v) — log (# PhDs leaving v)
log (# PhDs at v) + 1
log(>, Wft(u —v)+1) —log(X,, Wft(v - w)+1)
- log(Wi(v > ©)+ 1) +1

RGRr(v,t) =

il

where smoothing is used to address noise and correct for zeroes.
RGRr is oriented toward fast-growing authorities, so we apply this
value to incoming edges of nodes in Gy. Since we ultimately want
a value between 0 and 1 to retain the same edge-weighting scale as
Rsgrce and RT N, we transform edges with a normalized exponential
function of Rgg:

Wft(u — v) - exply - Rgr(v, 1)]

Wég(u —v) =

maxe (@ply Ror@.0) )
In the above formulation, y controls the steepness of the exponential
growth curve (Fig. 8). For our examples and analyses, we weight the
curve with y = 1.5, chosen by cross-validation to slightly boost in-
flux toward fast-growing organizations without over-valuing them.
The denominator in Eq. (3), which ensures that each transforma-
tion is between 0 and 1, normalizes by the maximum exponential
growth observed during year ¢.

Example. Returning to our example Fast
scenario, we transform Gy with the g:::T’H; STfLBéE_
normalized exponential growth func-

tion of Rgr. STARTUP’s incoming edge M
weights are magnified (Fig. 8) and its au-
thority increases from 0.22 to 0.53, over-
taking STABLE-LLC. The latter’s hub
score also increases from 0.13 to 0.43
as several of its employees transition to
fast-growing authority STARTUP.

UNI

DECLINE-LLC

Figure 8: RgR effects.

3.4 Unifying Rsrc, RTn, and RGgr

Thus far we have demonstrated each R’s separate effects. How-
ever, ultimately we apply all three R’s on the same graph in suc-
cession to obtain a single set of hubs and authorities rather than
different rankings per R. In our running example, the unified R3
scores, which reflect the different temporal career dynamics cap-
tured by R3, are shown in the table of Fig. 10. Under the unified
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Figure 10: HITS scores from Fig. 4 placed in the three sepa-
rate dimensions of R? (points), and unified (table). The hubs
and authorities reflect the nuances of the system’s dynamics
better than in Fig. 4.

model, the largest employer, STABLE-LLC, no longer dominates
the authorities. Instead, authority is distributed evenly among the
three organizations STABLE-LLC, UNI, and STARTUP, reflecting
the unique importance of each organization in the system. While
DECLINE-LLC still dominates the hubs, STABLE-LLC’s hub score
also increases because it is a “stepping stone” to the fast-growing au-
thority STARTUP. Overall, these changes allow for more meaning-
ful analysis of the system’s dynamics because they reflect different
kinds of real-world organizational importance.

4 R3-DRIVEN ANALYSIS

With R? defined, we analyze our unique career trajectory dataset
and demonstrate R%’s nuance and versatility. To do so we: (1) ex-
plore the diverse kinds of institutional “importance” that R> cap-
tures in computing research; (2) use R? to characterize significant
asymmetry in cross-sector career transitions; and (3) build a strong
predictive model with R3 to inform organizational retention.

4.1 System-wide evolution

How do the R’s in R3 affect organization rankings on the career
transition network Gy, and what insights can we gain? Here we
use our model to understand different ways organizations became
“important” throughout computing research history.

Methodology. In five-year intervals from 1980 to 2015, we obtain
HITS hub and authority rankings for all nodes on the Gy and R?
career transition networks. We regress the R3 rankings against the
Gy rankings and identify the nodes with the highest standard error.
These nodes adhere least to the hypothesis that R3 transformations
lead to identical HITS scores as Gy. They thus capture the most R3-
specific information, their updated rankings a result of the dynamics
captured by R3. Figure 11 displays several “important” historical
moments that only became visible after applying the R3 model.
In these moments, the shown organizations’ rankings changed
significantly with the R3 transformations. For brevity, here we only
cover a small selection of organizations, each of which was outside
the top-50 hubs or authorities using HITS on Gy. After applying
R3, each of these organizations moved up at least 10 ranks and
subsequently ranked as a top-50 hub or authority.
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Figure 11: R® hubs and authorities (bolded) with their respective historical context. The shown organizations’ important his-
torical moments were only revealed after using HITS on the R3 transition network as opposed to the aggregate flow network.
Each of these organizations became a top-50 hub or authority after applying R> to Gr.

Results. (1) Hubs. The R® network exposes a variety of organi-
zations, some well-known and some relatively obscure, that were
important hubs for different reasons. The hub timeline in Fig. 11
first shows the supercomputer company Kendall Square Research
(KSR). Founded in the late 1980s and bankrupt by 1994, KSR’s short
existence and subsequent low retention (Rx) contributes to its
increased hub ranking, moving from the 96th-ranked hub on G
to the 38th on R3. A few years later, R? designates a host of small
companies—Valence Research Inc, Softway Systems, VXtreme Inc,
and Vermeer Technologies—as top-20 hubs. The common theme
here is that they all existed for a short time (in consequence, low
Rt N) before acquisition by Microsoft, their employees thus transi-
tioning to one of the top authorities of the era.

In the mid to late 2000s, we observe an increased out-flow of
experienced researchers (Rsgc) from several government and in-
dustry organizations. Adobe, VMWare, Disney Research, and NASA
become top-20 hubs, which may be in part related to the global
economic crisis. According to Wikipedia, in 2008 Adobe laid of 8%
of its workforce and VMWare fired its CEO after disappointing
financial performance. NASA’s funding cuts in the 2000s are also
well-documented [11]. The most recent discovered hubs shown are,
like the startups acquired by Microsoft earlier, small short-lived
companies that were led by CS PhDs and bought by large compa-
nies. Figure 11 shows Katango and Timeful, two recent acquisitions
by Google that moved from rank 100+ to top-30 R® hubs. Table 1
highlights ITA Software, also acquired recently by Google.

(2) Authorities. The HITS authority rankings on R also lead to
interesting discoveries not captured by Gy. In the late 80s, R3 desig-
nates Johns Hopkins University as the first-ranked authority, which
is unusual because universities naturally have lower in-flow. We
found that computer science at Johns Hopkins officially became a
department in 1986, whereas before computing had been part of
statistics and operations research. This naturally led to an increased
growth rate (Rggr) and an influx of academics (Rsgrc) to a school
that, prior to 1987, had no representation in our dataset.

In the 90s, EMC (later bought by Dell) becomes a top-20 authority
around the time of its rapid growth to billions of dollars in revenue.
This is reflected by its sudden large representation in our dataset
in 1997 (RgR). R® next captures the Rspc flow to Avaya via its
spinoff from the telecommunications giant Lucent in 2000, as well
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as Google’s rise. Indeed, R? “discovers” Google before its mid-00s
representation increase in our dataset: its authority ranking moves
from 45th on Gy to 4th on R3 in the late 90s. In the following

decade, R? rankings differ even further from Gy as experienced
PhDs (Rsgc) moved from established large hubs like Microsoft,
Google, and IBM to small, fast-growing “unicorn” startups (RGR).
Twitter, Dropbox, Snapchat, Square, and Uber all move from rank
100+ to the top-50 in or after the late 00s. Others of the same
vein include Baidu, Netflix, Light, Magic Leap, Databricks, and the
nonprofit Allen Institute for Artificial Intelligence (AI2).

(3) Top-10 rankings. Beyond observing the organizations for which
rankings changed the most, we report the top hubs and authorities
for two 10-year segments in Table 1. The bolded names appear
only in the R3 top 10. We note the mix of organizations across
sectors and sizes—some that persisted or rose in rankings, some
that dropped or disappeared altogether, some that moved from top-
ranked authorities to top-ranked hubs—throughout the years. R3
is thus capable of capturing various meanings of organizational
“importance” despite differences in sector, size, and hiring volume.
That said, while R3 shows that different organizations can gain
importance in their own rights, these rankings are of course sub-
jective. This is especially true in an opportunity-rich field where
“importance” is highly dependent on individual goals and interests.

Table 1: Top employer hub and authority rankings for two
time windows. The names in bold are those that only appear
in their respective top 10s in the R? transition network.

1995-2005 2005—2015
Hub Auth. Hub Auth.

1 IBM IBM Microsoft Google

2 Microsoft Intel Yahoo Microsoft
3 Intel Google Intel IBM

4 BellLabs Microsoft Google Intel

5 Compaq Siemens Siemens Facebook
6 Sun EA ITA Software Yahoo

7 HP CMU Amazon Snapchat
8 NASA MIT Apple Qualcomm
9 Disney Ask.com IBM MIT
10 Docomo HP HP Amazon
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Change in R* institutional authority rank

To lower rank To higher rank

2000 1500 -1000 -500 0 500 1000

Transitions from industry

1500 2000 -2000 -1500 -1000 -500 O 500 1000 1500

Transitions to industry

2000

Figure 12: Transitions from industry are usually made to
higher-ranked organizations.

4.2 Cross-sector career movement

We next study career movement across sectors. In investigating
what R3 reveals about the “prestige” associated with cross-sector
transitions, we discover insights into how people transition between
employment sectors and when they make these transitions.

Methodology. Given a year t and an organization v, we obtain
v’s R3 HITS rankings for the five-year interval preceding t. We
do this to obtain v’s most relevant rankings. As we showed in the
previous section, institutional importance in computing changes
quickly, and rankings from more than a few years ago may not
be relevant. Moreover, due to relatively few transitions per year, a
yearly granularity is not appropriate for our analysis.

Note in this section that we consider several thousand orga-
nizations in ranking, unlike most well-known ranking systems
(i.e., university rankings) that only consider a few hundred institu-
tions. In accordance with the size and complexity of the computing
research professional system, R3 ranking differences between or-
ganizations naturally vary more than ranking differences between
organizations in smaller-scale studies.

Results. A common narrative in computing research careers is that
it is easier to transition to industry from other sectors—in particular,
from academia—than vice-versa due to differences in factors like
salary and work-life balance. Without making any claims about the
causes of this phenomenon, we do find that our data uphold the
narrative. Out of all cross-sector career transitions in our dataset
(16.3% of all transitions), nearly two-thirds are to industry.

That said, PhDs transitioning from industry appear to gravitate
toward more “prestigious” institutions than their current industry
employers. Without transforming G with R3, a PhD transitioning
from industry to academia or government moves up on average 34
ranks in HITS authority rankings, whereas a PhD transitioning to
industry from academia or government moves down on average 47
ranks (we exclude postdocs from these analyses). Indeed, around
15% of all PhDs leaving industry in our dataset go to the highly-
ranked Stanford, UC Berkeley, MIT, and Carnegie Mellon. Moreover,
PhDs transitioning to industry often transition from top-ranked
schools to startups, which are naturally ranked lower. Even those
moving up in rankings do not usually move up significantly because
of their school’s already-high rankings.

The R? transformations magnify these differences. A career
transition from industry in the R3 network results in an average
authority ranking gain of 127 places. This is partially because the
resource factor (Rsrc) captures the imbalance of experience level in
these transitions. The average career lengths of PhDs who transition
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Soft transition
University of Michigan

2010 Startup Present

Hard transition

I 2010 Microsoft Present

Figure 13: Hard/soft transition examples.

Present

Soft transitions as % of all transitions, 1995-2015

25

15

m=0.180,p=0.037
2010

2000

Figure 14: Side projects are becoming more common: per-
centage of yearly transitions that were “soft”, 1995 to 2015
(fit line slope m=0.180; p-value=0.037).

to and from industry—2.6 years versus 8.23 years respectively—are
significantly different (p < .00001, two-sided ¢-test). This suggests
that PhDs in industry tend to establish themselves first before
leaving it, whereas those in academia and government more often
move to industry at earlier stages in their careers.

Notably, about 1 in 10 PhDs making a career transition from
industry go to consulting or advising, positions often taken up in
parallel with other engagements. Indeed, inter-organization move-
ment is fluid, made complex by the diverse and myriad opportu-
nities in computing for collaboration. To capture this, we further
categorize career transitions into hard transitions, made when an
employee leaves one organization before joining another, and soft
transitions, made when an employee joins an organization with-
out leaving her previous employer (Fig. 13). Soft transitions make
up around 21% of all transitions in our dataset. Such transitions
have been increasing slowly, with some evidence of a linear upward
trend since the mid-90s (Fig. 14). This suggests that multiple venues
of professional engagement via side projects, collaborations, and
startups are becoming more common.

With these definitions, we revisit cross-sector career transitions
in more detail. Soft transitions from industry are quite common.
Over one-third of all transitions made from industry are soft, mov-
ing up on average 64 authority ranks on Gy and 174 ranks on R3.
This suggests that PhDs tend to cross over to prestigious academia
and government institutions without fully leaving industry. By con-
trast, fewer than 1 in 10 transitions to industry are soft, moving
down on average 133 authority ranks on Gy and 248 ranks on R3.
Nearly half of these rare soft transitions to industry are startup-
related, involving a professor taking on a chief role in a budding
company. Two real-world examples are the professor-led startups
Timeful and Katango (Fig. 11), which became top hubs in the 2010s.
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Table 2: Prediction performance metric averages and standard deviations per value of n, highest two per category bolded.

Features n=1 n=2 n=3 n=4 n=>5
IND 0.625+0.00 0.637+0.00 0.654+0.01 0.644+0.01 0.656 +0.02
AUC IND + Qf 0.639 £0.01 0.660 +£0.02 0.666+0.02 0.658 £0.03 0.663 +0.03
IND + R® 0.656 +0.01 0.675+0.02 0.677 £0.02 0.665+0.02 0.670 = 0.03
ALL 0.649 +£0.01 0.668 +£0.02 0.674+£0.02 0.664 +£0.02 0.669 +0.03
IND 0.357£0.05 0.459+0.01 0.536+0.01 0.574+0.01 0.601 % 0.04
F1 IND + Qf 0.396 +£0.00 0.473+0.01 0.542+0.00 0.577 £0.01 0.601+0.04
IND + R® 0.404+0.01 0.488+0.01 0.549 +0.01 0.576 +£0.01  0.595 + 0.03
ALL 0.398 £0.01 0.488 £0.01 0.550+0.00 0.578 +£0.01 0.610 +0.03
n=1 n=>5
starting r3 hub rank num_years_at_current_org . G,
starting_r3_hub_score years_since_graduation mm R
num_years_at_current_org avg_num_years_at_org
avg_num_years_at_org starting_r3_hub_rank Il IND
years_since graduation num_jobs not_in industry
current_r3_hub_score current_r3_hub_score
starting_hits_hub_score starting_r3_hub_score
years_experience is visiting
relative_growth years_experience
current_r3_hub_rank current_hits_hub_score
0.0 0.04 0.08 0.12 0.16 0.0 0.04 0.08 0.12 0.16
Feature importance Feature importance

Figure 15: Feature importances across all features (ALL) for employee transition prediction withn = 1 and n = 5.

Overall we observe not-insignificant cross-sector movement, done; and whether p’s most current job is senior-level, founder
including increasingly popular soft transitions, which highlights or CEOQ, professor, researcher, engineer, and/or visiting.
the field’s various opportunities for collaborations and suggests an o Gy: features from the aggregate flow career transition network.
increasing connectedness between sectors. We also observe signifi- These include: the HITS rankings and scores of p’s current em-
cant asymmetry in the frequency, timing, and rankings of moves ployer v, taken from transitions in the 5-year interval up to and
to and from industry, magnified by R*’s emphasis on experience. including t; and the HITS rankings and scores of v, taken from
While our data alone cannot point to the cause of this asymmetry, transitions in the 5-year interval up to and including the year
a possible explanation is that because soft transitions are less risky that p started working at v.
or permanent, they allow for bigger leaps, both for those entering o R3: features from our proposed career transition model. These
highly-ranked academic institutions and those leaving academia include: the resources (Rsgc) score of p at year ¢; the retention
for high-risk, high-reward ventures like startups. (RTN) score of p’s current employer v at year t; v’s relative

growth (RgR) score during year t; and the HITS rankings and

. . . .. scores as with the features, but computed on the R3 network.
4.3 Individual retention prediction or P

Finally, we use individual career trajectories, which appear as or- For those who currently hold more than one job (i.e., soft transi-
dered sequences of organizations (v, ..., v}) in the transition net- tioned to a second job while holding a first), we consider the job
work, along with the R® network dynamics previously discussed, to started earlier as the “most current”, since usually soft transitions
predict future employee transitions. Here we show that R boosts and side projects occur after full-time employment has already
the performance of a model with strong predictive power, adding begun. As we are interested in predicting immediate career tran-
important and interpretable features that can inform organizations sitions in the modern-day professional system, we vary n € [1, 5],
seeking to recruit or retain computing PhDs. predicting whether each person will transition between 1 and 5

years “in the future”, and predict for years ¢ € (2000, 2010).

For our prediction tasks, the average ratio of positive labels
per value of n is 23.5%, 32%, 38%, 43%, and 46.5% for n € [1,5]
respectively. For all tasks, we train a gradient boosting tree classifier

Methodology. Given a year t, can we predict which PhDs p will
make a career transition within the next n years? We group our
prediction features (40 total) into 3 categories:

e IND: individual features about p’s career trajectory. These in- from the open-source XGBoost library, performing a grid search
clude: number of years since graduation; career length in years; over the learning rate (eta), training data subsampling (subsample),
number of employers total; average number of years spent with and label balance (scale_pos_weight) parameters to handle the
an employer; total years at current employer; number of jobs label imbalance for smaller values of n. We report performance
held in/outside of industry; number of inter-sector transitions; metrics averaged over 10-fold cross-validation in Table 2 for the
the sectors of p’s first and most current employers; number of IND features alone, the IND and Gy features together, the IND
hard transitions; number of soft transitions; number of postdocs and R features together, and all groups of features (ALL).
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Results. The results make it clear that system-wide network dy-
namics substantially boost prediction performance, justifying our
initial choice of using HITS on a career transition network. More-
over, R® adds extra power to the model. The top feature groups
by performance are IND + R3 and ALL, which do about as well
each other. While AUC remains relatively stable, the higher class
imbalance makes the prediction tasks more difficult for smaller
values of n, highlighting R%’s strength in improving F1.

Using XGBoost’s built-in feature importance tools, we also found
that R3 features were consistently considered “important” for pre-
diction, and especially so for lower values of n compared to the
other feature groups. The top 10 most important features across
all feature groups for n = 1 and n = 5 years are given in Fig. 15.
We immediately observe that all of the most important features
beyond IND are related to an organization’s hub scores and ranks.
Most interestingly, we find that for smaller values of n, the R3 hub
ranks and scores of p’s employer at the time they started working
there are most important, which suggests that employer outflux
rate, retention, and volume are about as predictive of short-term
retention as individual-level information.

By contrast, for higher values of n the IND features become
more informative. The most important feature is how many years
individuals have worked at their current employers. This is intuitive
given the fast-paced nature of the computing profession and the
fact that those who have worked at an employer longer are more
likely preparing to transition. This is especially true in industry,
where the employment length mean and variance are shorter. In-
deed, sector-related features become important for higher values of
n (num_jobs_not_in_industry). Whether or not a person is cur-
rently in a visiting position also becomes important, since visiting
positions are often limited in duration.

We conclude by noting that while G features rarely appear in
the top 10 most important features, R? features are consistently
important, and RgR is one of the top features for n = 1. These
results show the immediate utility of R? for retention prediction,
which becomes important from an organizational perspective as
the demand for computational expertise increases.

5 RELATED WORK

Career path mining. Mining professional career paths has at-
tracted recent interest. One of the first studies to mine career trajec-
tories proposes a similarity measure between professional profiles
using temporal sequence alignment on user career paths [34]. More
recently, Xu et al. [32] detect “talent circles” in job transition net-
works to find qualified candidates for jobs, and Kapur et al. [17]
apply PageRank on career transition networks as an intermedi-
ary step for ranking and recommending universities. Unlike [32]
and [17], our goals are not recommendation-oriented. Moreover,
while we are not the first to design a weighted HITS scheme [8, 30],
we are the first, to the best of our knowledge, to propose one for
career trajectory mining.

Academic career trajectories. Most work in academic career tra-
jectory analysis concerns career movement within academia. For
example, Clauset et al. [5] find that academic prestige correlates
with higher productivity and better faculty placement, and Deville
et al. [9] find that transitions between academic institutions are
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influenced by career stage and geographical proximity. That said, a
few studies on the distribution of PhD graduates between academia
and industry exist. For example, Sauermann and Roach [28] find in
a survey that most students’ career preferences shift from academia
toward industry over the course of a PhD, and Balsmeier and Pellens
[1] consider how and why scientists leave academia. By contrast,
we are interested in all directions of cross-sector career movement
(Sec. 4), not just transitions from academia. Moreover, our study is
long-term, following individuals beyond their PhDs, and observa-
tional, as we do not use individually-reported preferences to explain
the causes of the phenomena we observe.

Publication trajectories in computing. Several recent works
study computing career “trajectories” in terms of publishing pro-
ductivity or citation counts. For example, Way et al. [31] study
faculty “productivity trajectories” in computer science, provid-
ing evidence that publishing trends in the field do not follow the
conventional “early peak and gradual decline” narrative. Most re-
cently, Chakraborty and Nandi [4] study scientific “success trajec-
tories” in computer science and physics by analyzing paper citation
counts. Similar to [31], they question established notions of sci-
entific success, finding multiple distinct trajectories of successful
scientific papers beyond the “early rise” trajectories of immediately
impactful papers. These works come from the larger body of re-
search devoted to study of bibliographic data [15, 25], which we do
not consider here (see discussion).

6 DISCUSSION

Our data-driven study of long-term computer science PhD employ-
ment dynamics is the first of its kind. Naturally, many directions
for future work remain. One such direction is increasing the scope
of our study in terms of data. Many important people in comput-
ing research obtained PhDs outside the US. Some did not obtain
a PhD at all. Although we only considered PhD graduates from
a subset of schools to ensure the accuracy of our data, an ideal
dataset would include those who made contributions to computing
research regardless of degree or background.

A related direction is that of merging bibliographic data with
existing career trajectory data. This task is challenging for large
datasets due to the difficulty of entity resolution across databases,
which in our case amounts to matching online professional profiles
with Google Scholar or DBLP profiles. However, such data would
address questions never before answered: How do publishing rates
compare across sectors? Do “impactful” authors concentrate in
“important” institutions? Is a person’s publishing history predictive
of their future career transitions?

Future studies could also perform further data validation. One
inherent limitation of our study is that little standardized data
on post-PhD careers exist, and the data that do exist are hard to
verify. These concerns are not unique to our study, but they are
important. A future larger-scale study could consider multiple levels
of automatic and manual data validation using online CVs, resumes,
surveys, and/or news articles as available.

A final interesting direction is comparison of different sub-groups
in computing research, for example of continents or countries, those
with or without a postdoc, and historically underrepresented groups
in computing. Examining such group-specific differences could lead
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to actionable organization- and individual-level insights, although
such analyses would require self-reporting of gender, race, country
of origin, etc. Again, this direction reduces to the problem of gath-
ering reliable large-scale data. We hope this will become easier in
the future as the topic we study gains traction.

7 CONCLUSION

In this work we examine the career transitions and trajectories
of computer science PhDs on the individual, organizational, and
sector levels. We propose R3, a versatile model for temporal ca-
reer network dynamics. Using the HITS link analysis algorithm in
conjunction with our R3 model, we:

e Provide new insights into the meaning of institutional “impor-
tance” in computing research careers;

o Reveal a significant asymmetry, from several perspectives, be-
tween post-PhD career moves to and from industry; and

o Demonstrate R3’s immediate utility in supporting prediction of
individual career transitions.

While our study is the first of its kind, we conclude by emphasiz-
ing that these analyses may be repeated in the future when more
data, made possible by increasing PhD graduation rates, are avail-
able. As computing research continues to grow in importance and
worldwide presence, this is certain to happen.
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