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Abstract. Fusing or aligning two or more networks is a fundamental
building block of many graph mining tasks (e.g., recommendation sys-
tems, link prediction, collective analysis of networks). Most past work
has focused on formulating pairwise graph alignment as an optimization
problem with varying constraints and relaxations. In this paper, we study
the problem of multiple graph alignment (collectively aligning multiple
graphs at once) and propose HASHALIGN, an efficient and intuitive hash-
based framework for network alignment that leverages structural prop-
erties and other node and edge attributes (if available) simultaneously.
We introduce a new construction of LSH families, as well as robust node
and graph features that are tailored for this task. Our method quickly
aligns multiple graphs while avoiding the all-pairwise-comparison prob-
lem by expressing all alignments in terms of a chosen ‘center’ graph.
Our extensive experiments on synthetic and real networks show that, on
average, HASHALIGN is 2x faster and 10 to 20% more accurate than the
baselines in pairwise alignment, and 2x faster while 50% more accurate
in multiple graph alignment.

1 Introduction

Much of the data that is generated daily naturally form graphs, such as inter-
actions between users in social media, communication via email or phone calls,
question answering in forums, interactions between proteins, and more. Addi-
tionally, graphs may be inferred from non-network data [17]. For joint analysis,
it is often desirable to fuse multiple graph data sources by finding the corre-
sponding nodes across them. This task, known as graph alignment or matching,
is the focus of our work. It is a core graph theoretical problem that has attracted
significant interest, both in academia and industry, due to its numerous appli-
cations: identifying users in social networks [19], matching similar documents
in lingual matching [4], brain graph alignment in neuroscience, protein-protein
alignment [4,5], chemical compound comparison, and more.

In many applications, the goal is to align multiple (more than two) networks
at once. Most existing methods get as input two networks, so they handle mul-
tiple network alignment by expensively computing all pairwise alignments. In
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Fig. 1. Overview of proposed approach: HASHALIGN with input [ undirected, weighted,
attributed graphs (node/edge attributes are denoted with different shades/lines). The
framework consists of four parts: (1) scalable, fast, robust, node-ID-invariant feature
extraction per graph; (2) ‘center’ graph discovery, which is Go¢ = G2 in this example;
(3) efficient, hash-based similarity computation, S;c, between each graph G; and G¢
(buckets with red crosses do not contribute any pairwise similarity computations, and
thus help with efficiency); and (4) node matching computation to find at most one
matching per node in M;;.

this paper, we seek to devise an efficient method that collectively aligns multi-
ple networks and can readily adapt to the existence or not of other node/edge
information in addition to the graph topology, without increasing its complexity.

Problem 1 (Multiple Graph Alignment with Side Information). Given [ graphs,
Gi(V1,&1),...,Gi(V1, &), where V; and &; are the node and edge sets of graph
G, respectively, with or without node/edge attributes, we seek to find the corre-
spondence between their nodes efficiently, so that the input graphs are as close
to each other as possible.

To solve this problem, we propose HASHALIGN, an unsupervised method that is
based on three key ideas: (i) inferring the similarity between nodes in different
graphs based on structural properties and node/edge attributes; (ii) leveraging
Locality Sensitive Hashing (LSH) [6] to minimize the number of pairwise node
comparisons; (iii) choosing a ‘center’ graph out of I input graphs to which to align
all the others, thereby avoiding solving (4) pairwise graph alignment problems
(instead solving [ — 1 alignments and quickly inferring the others by applying
simple transformations in the form of sparse matrix multiplications). Figure 1
contains a pictoral overview. Our main contributions are:

e Flexible Framework. We propose an efficient and accurate hashing-based
family of algorithms, HASHALIGN, which solves the multiple network align-
ment problem. Our method is general and can readily incorporate any avail-
able node and edge attributes. HASHALIGN can be used as a standalone
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alignment method or provide its solution to initialize optimization problems
for pairwise alignment (e.g., [4]).

e Methods. As part of our framework, we propose problem-specific choices of
node and graph features, and introduce a new, robust construction of hash
families.

o Experiments. We conduct extensive experiments on synthetic and real data,
which show that HASHALIGN is 2-10x faster than the baselines that tackle
either the multiple or pairwise alignment problem, while being equally or
up to 50% more accurate.

For reproducibility, the code is available at https://github.com/GemsLab/
HashAlign.git. Additional supplementary material is provided at https://
markheimann.github.io/papers/HashAlign-PAKDD18-full.pdf.

2 Related Work

We review work that is relevant to our problem space and choices of techniques:

Graph Alignment. Scalable methods for pairwise graph alignment include
a distributed, belief-propagation-based method for protein alignment [5], a
message-passing algorithm for aligning sparse networks when some [4] or all [18]
possible matchings are considered, alignment of bipartite networks [13,14], and
attributed graph alignment [20]. Multiple network alignment, however, poses
a further scalability challenge. For instance, the recent optimization-based for-
mulation of [16] solves a bipartite matching problem in O(n?) time using the
Hungarian algorithm. Zhang and Yu [19] introduce the notion of transitivity
between graphs to align social networks more scalably with some partial node
matchings (anchor links) known a priori. Our method HASHALIGN preserves
this notion of transitivity for any type of network and requires no anchor links.

Locality-Sensitive Hashing. This technique for efficient similarity search has
been used to accelerate the well-known k-nearest neighbor algorithm, often offer-
ing theoretical and practical improvements even over sophisticated data struc-
tures such as k-d trees [3]. It has also found use in matching problems in other
domains, such as ontology matching in information retrieval [8]. In our proposed
method, we leverage LSH to efficiently find nodes that are similar. For networks,
[12] uses MinHash to find sets of similar nodes in a single attributed graph by
relying on the adjacency matrix as features, but this is not applicable to the
graph alignment setting. Thus, we introduce node-ID invariant representations
and adapt LSH to find similarities across networks. Our contribution is orthog-
onal to prior works: a framework for network alignment, HASHALIGN, in which
we propose design choices geared toward our specific domain.

3 Proposed Formulation: Two-Graph Alignment

In this section, we first introduce the alignment problem for two graphs. We
then describe our proposed approach, and in the next section we extend it to


https://github.com/GemsLab/HashAlign.git
https://github.com/GemsLab/HashAlign.git
https://markheimann.github.io/papers/HashAlign-PAKDD18-full.pdf
https://markheimann.github.io/papers/HashAlign-PAKDD18-full.pdf

HashAlign: Hash-Based Alignment of Multiple Graphs 729

Table 1. Symbols and definitions. We use bold capital letters for matrices, bold low-
ercase letters for vectors and normal lowercase letters for scalars.

Symbols Definitions

Gp = (Vp,Ep) Graph p with vertex set V, and edge set &

|Vp| = np, |Ep| = myp | Number of nodes and edges in graph Gy, resp.

sap (v) 1 X ds vector of the structural invariants (e.g., PageRank) for node v € Gp
an G, (v),ae Gp (v) 1 X dqn vector of node/edge attributes for node v € Gy

A""Gp s A“Gp The stacked node/edge attr. matrices of size ny X da, and np X np X dg,
d=ds +dagn + dae Total number of (structural, node, and edge) features

pr(v), FGp 1 x d all-feature vec. for node v € G and the resp. stacked np X d mat.
SIGGP 1 X 5d graph ‘signature’ vector representing graph Gp

d(Gi, Gy) Distance between graphs G; and G

Sij Sparse n; X m; similarity matrix between graph G; and G

M, ; n; X n; alignment between graph G; and G

b; Bucket i (hashing)

zZ Number of bands (hashing)

the multiple graph alignment problem. Table 1 summarizes the main notations
used in our analysis.

3.1 Definition: Relaxed Two-Graph Alignment Problem

The typical graph alignment problem aims to find a one-to-one matching between
the nodes of two input graphs. This problem is important, but in many applica-
tions it suffices to solve a relaxed version of it: finding a small set of nodes that
are likely to correspond to a given node. Thus, we relax the original alignment
problem as follows:

Problem 2 (Relazed two-graph alignment). Given two graphs, G1(V1, &)
and G2 (Va, £2), which may be (un)directed, (un)weighted and attributed / plain,
we seek to efficiently find a sparse, weighted bipartite graph Gg = (V; U
Vs, Es) with edges representing potential matching pairs and being weighted by
the likelihood of the match:

V potential match (u,v),u € Vi,v € Va,3e € Eg : we = sim(u,v)

and |Eg| < a- max{ny,ne} where o € Z (a > 1) controls the density of Gg.

To make sure that nodes are matched only to a few of their closest counter-
parts, the main requirement in Problem 2 is that G is sparse, i.e., |Eg| < n1 Xna.
Most graph alignment methods find 1-1 matchings between the vertex sets [4,7],
and a few approaches relax the requirements of the typical optimization prob-
lem to find probabilistic matchings [14], but each method targets a different
type of graph (e.g., unipartite, undirected) and most of them rely only on the
network structure. In this work we propose a different, intuitive similarity-based
approach that encompasses all these settings, leveraging a suitably rich node
representation to achieve superior accuracy.
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A naive similarity-based method is to: (i) compute all the pairwise similarities
between the nodes in G and Gs, and (ii) keep only the edges with similarities
greater than a user-specified threshold. Although this approach results in a sparse
graph Gg, it has several drawbacks. First, it is computationally expensive, since
it computes all ny x ny pairs of similarities and later applies the threshold for
edge filtering. Second, the threshold is arbitrary and affects the potential node
matchings significantly. Third, it is not clear how to choose the ‘right’ node
representation for similarity computations. Our proposed approach uses hashing
to overcome all these issues.

3.2 Node Representation: Handling Node and Edge Attributes

Our framework, HASHALIGN, requires a vector representation of each node.
We want these to be comparable across graphs and also leverage node/edge
attributes seamlessly (Fig. 2).

We propose to represent each node u

with a vector f(u) of structural features . ()KY I sV e

4(V) | |
and nOde/edge attribUteS (if available)' ‘ [St.ruc‘turla\eraIturres](eLTdeLrie‘l\\‘E'z:}~‘».{':!w£: Edge
The benefit of this representation is that it PageRank) (¢.g, lacation) Attibutes

can be adjusted to the type of graphs and
available information without any changes
in the problem formulation. Furthermore,
it is node-ID invariant and can thus be meaningfully compared across graphs.
This is not true of representation learning methods like DeepWalk and node2vec,
which sample context nodes by their IDs with random walks [9] and thus are
not applicable to our multi-network setting [10]. Specifically, in Step 1 of our
framework (Fig. 1), we concatenate ds structural features, d,, node attributes,
and d,. edge attributes:

Fig. 2. Proposed feature-based, node-
ID invariant representation of vertex v.

e Structural features s € R'*%., Examples include the so-called local fea-
tures (e.g., degree variants) and egonet features. The egonet of node u is
defined as the induced subgraph of u and its neighbors, and structural fea-
tures specific to the egonet include its number of edges, its degree, and more.
In addition to these features, we also consider features that combine locality
with globality, such as PageRank and various types of centrality. We choose
specific structural features that are most robust to noise (Sect. 5).

e Node attributes a,, € R'*%n, If a graph contains node attributes, the
node feature vectors f can be extended to include those. Numerical features
can be simply concatenated with the structural features, while categorical
attributes can be incorporated by using 1-hot encoding and concatenated to
the previously formed feature vector.

e Edge attributes a, € R'*%<, We propose converting numerical edge fea-
tures to node attributes by applying an aggregate function ¢ : £%9« — R
(where the domain is the set of edges incident to v € V and deg, is its
degree). Examples for £() include sum, average, standard deviation, etc. For
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categorical features, we propose to encode the distribution of values per fea-
ture. For example, if a feature has g possible values, then ¢ entries with their
frequencies will be concatenated with the previous features.

3.3 Proposed Hashing-Based Computation of Potential Matchings

Now we have, for each node u in graph G,, a real-valued vector fg, (u) € R? con-
structed as described in Sect. 3.2. We propose to use Locality Sensitive Hashing
(LSH) [6] to find a small number of potential matchings between nodes across
graphs (i.e., nodes with high similarity) scalably, without computing all pairs of
n1 X ng similarities. In a nutshell, given a similarity function, LSH reduces the
dimensionality of high-dimensional data while preserving their local similarities;
that is, it efficiently maps similar data points (in our case, nodes) to the same
buckets with high probability. Our proposed hashing approach for alignment
takes as input the Fg, € R"*9 feature matrix (with row-wise node representa-
tions) for Gy and Fg, € R"2*4 for Go, and hashes them row-wise using an LSH
family H.

Definition 1 (LSH-2G). Given Vi and Vs, the nodes in graph Gi and Gs
respectively, along with a similarity function ¢ : R? x R? — [0,1], H is an
LSH-2G family of hash functions such that the probability of two nodes u,v €
V1 hashing to the same bucket is equal to their similarity, and additionally the

probability of two nodes u € V1 and v € Vy hashing to the same bucket is equal
to their similarity: Pr{h(u) = h(v)] = ¢(fa, (v), e, (v)).

We propose an LSH-2G family based on the standard measure of cosine
similarity (with Euclidean distance in the supplementary material.) We intro-
duce SimHash-2G, a modified version of SimHash [3] that is based on LSH-
2G described above. SimHash-2G chooses K randomly generated column vec-
tors {ry,...,rx} € R? that follow the standard Gaussian distribution (i.e.,
K random hyperplanes). The LSH-2G family consists of K hash functions:
hi(u) = sign(fg,(u) - ry). Each of these projects node u on either side of the
random hyperplane ry (positive or negative sign). For random hyperplane k,
the probability of two nodes uw € V; and v € Vs being mapped to the same

. _ fa, (w)fag, (v
bucket is fr[hk(u) = hi(v)] = 1— %2 where 6, = cos 1%. The

angle 1 — =4+ captures the proximity of v and v. SimHash-2G computes only the
similarity for pairs of nodes according to our proposed SKD-construction (see
below).

If a hash function h; € H maps two nodes to the same bucket, that indicates
that they could be similar, but there is some probability of error. The technique
of amplification creates a new LSH family G with hash function g defined over the

functions in H = {hq, ha,...,hi}, in order to reduce that probability of error.
A standard technique is AND-construction where g(u) = g(v) = Vi h;(u) =
hi (U)

However, the AND-construction is too strict and may lead to many false
negatives when finding node matchings. To ameliorate that we use the banding



732 M. Heimann et al.

technique: (i) we split each feature vector into Z equal bands, and (ii) per band
z, we apply a corresponding LSH-2G family H, using AND-construction. In each
band, a node can fall into only one bucket, and thus collides with nodes in that
same bucket (potential matchings). To handle the observed skewed distribution
of nodes to buckets and guarantee that each node will have some potential
matchings, we introduce the notion of ‘importance’ of a node collision within a
band and propose the SKD-construction.

Definition 2 (Importance o, of node collision). Given two nodes u € V;
and v € Vy, and an LSH-2G family H = {h1,...,hix} s.t. Vj h;(u) = h;(v) (i.e.,
both nodes are mapped to bucket by ), we define the importance of their collision
based on H as the inverse of the size of the corresponding bucket: op(u,v) =
ﬁ. The total importance score of a node pair collision over all bands and
their corresponding LSH families H' = {H1,... Hz} is defined as: oior(u,v) =
Y rere OH (W V) - Ly (w)=h; (v),Vh; €H-

Intuitively, the importance of a collision is higher if a few nodes are mapped
to a bucket, as the bucket has higher discriminative power. The notion of impor-
tance tackles the skewness that we observe in the mapped nodes in the graph
alignment setting. Based on this definition, we propose the SKD-construction
(where SKD stands for SKeweD).

Definition 3 (SKD-construction). Given v € V; and v € Vs, and LSH-2G
families H' = {H1,...,Hz}, a new family G with hash function g is based on
SKD-construction:

g(u) = g(v) = otot(u,v) € TOP,(u),

where TOP 4 (u) is the set of top-a total importance scores oo (u,v') forv' € Va,
and « is the small factor that controls the density of Gg in Problem 2.

Intuitively, SKD-construction computes the pairwise similarities of nodes
that collide often (but not always, like AND-construction) and have important
collisions that manage to distinguish the nodes (i.e., it penalizes functions that
lead to skewed results).

3.4 From Similarities to Matchings

As shown in Step 3 of Fig. 1, the hashing approach that we introduced returns a
small number of high similarities between the nodes of graphs G; and Ga, giving
us an nj X ny sparse matrix S with node similarities. Here we provide ways to use
the similarity information in S to find the node matchings or correspondences
M e 7" >

e Greedy matching: Assuming that the higher the similarity score, the more
likely two nodes are to match [14,20], we can greedily make independent
decisions for the best match of each node in G; through a function x : V1 — Vs
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s.t. x(u) = argmax,{Sy,}. Since nodes are matched independently, this is
very efficient and parallelizable, but may match more than one node in graph
(1 to the same node in Gs. It is a preferred method for very large networks
or networks of different sizes, and also when multiple potential matchings
are desired. In the latter case, it can be trivially extended by updating the
function () to return more top potential matchings (instead of only the best
one).

e Collective matching: An alternative is to leverage existing approaches that
find 1-to-1 matchings collectively, given a similarity matrix S. In Sect. 5 we
consider scalable options for doing so and study their trade-offs.

4 HasaAvrieN: Multiple Graph Alignment

In this section, we extend our HASHALIGN framework to multiple graph align-
ment, extending the formal definition of the relaxed 2-graph alignment problem.

Problem 3 (Relaxzed multiple graph alignment). Given a set of graphs,
G ={Gi1(V1,&),....,Gi(Vi, &)}, which may be (un)directed, (un)weighted and
attributed / plain, we seek to efficiently find a sparse, weighted bipartite graph
Gsi; = (ViUV}, Egs5) for each pair of graphs <G, G;>, s.t. £g;; has the poten-
tial matching pairs between their vertex sets and the weights describe how likely
the nodes are to match.

Efficient Computation. The key insight to
reduce computation is to use one of the [ graphs
as the ‘baseline’ graph G¢ and align the remain-
ing [ —1 graphs with it in parallel. This approach
avoids computing O(I?) pairwise graph align-
ments, instead leading to [ —1 matching matrices
Mye, ..., M;c (w.lo.g. we choose graph G¢o =
G in our notation, but we will explain next the Fig.3. Node matching consis-
choice of G¢). Inspired by the idea of transitiv- tency: Ifu=wvandv=uw, the?
ity [19], which requires node matching consis- “ should match to w (by transi-
tency between pairs of graphs (Fig.3), we effi- tivity).

ciently infer the remaining matching matrices M;; (where 4,5 # C) via sparse
matrix multiplications (Step 4 in Fig.1): M;; = M - MJTC.

:Gz

Choice of G¢. To reduce the induced alignment errors and their propagation to
the inferred matchings, we propose the ‘center’ graph (i.e., the graph in G with
the minimum total distance from the remaining graphs) as the baseline graph
G¢ (Step 2 in Fig. 1):

argming > d(Geo, Gj) = 32 |[SIGa. — SIGg; |2,

where d(G¢,Gj) is the distance between G¢ and G, and SIG is a graph ‘sig-
nature’, which we create by applying an aggregate feature function £() over a
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Algorithm 1. HASHALIGN

Input: (1) G={G1,G2,---,Gi}; (2) [OPT] Per graph i, node/edge attr.
AnXdan /A"X”Xdae

ng; G,

Output: A set of matching matrices {M;;} for ¢,5 € {1,...,1}

1: /* STEPS 1&2: NODE REPRESENTATION AND CENTER DISCOVERY */

2: For G € G do

3: Fo = extractFeatures(G, A %en ALK e > Sec. 3.2

4: G¢ = findCenter({(Fa1),{(Fa2), - ,§(Far)) > Eq. (4) & aggregate function
£()=SIG

5: /* STEP 3: HASH-BASED SIMILARITY (assuming g buckets in total) */

6: {b1,...,bq} = SimHash-2G(F¢1,...,Fg) > Sec. 3.3 (or EDHash-2G in Appendix
B)

7: {Sic,S2¢, -+, Sic} = computeSparseSimilarities(b,...,bq) > SKD-construction

8: /* STEP 4: NODE MATCHING */

9: {Mic,Mac, -+ ,M;c} = GREEDY or COLLECTIVE(S1¢, S2c, -+ ,Sic) > Sec. 3.4

10: For i, € {1,...,1} do

11: M;; = Mic % M?c > Sec. 4

graph’s nodes. In our work, we use the mean, median, standard deviation, skew-
ness, and kurtosis of each of the d features, giving us a 5d-dimensional vector
(shown in Step 1 of Fig.1). Intuitively and empirically, the center graph being
as close as possible the other graphs can make the center-based alignments more
precise.

Hash-Based Similarity. After hashing all the feature-based node vectors of
all the graphs in G as described in Sect. 3.3, we compute the similarity scores for
possibly matching pairs of nodes according to the SKD-construction. We only
compute the similarity between nodes in the center graph (right hand-side in the
buckets in step 2 of Fig.1) and nodes in the peripheral, or non-center, graphs
(left hand-side).

Putting Everything Together. We propose HASHALIGN, a fast, hash-based,
multiple graph alignment approach, which is described at a high level in Algo-
rithm 1 (and pictorially in Fig. 1, where Z =1 for simplicity.) It consists of four
main steps: (i) node representation, (ii) ‘center’ graph identification, (iii) hash-
based similarity, and (iv) node matching. In line 7 of Algorithm 1, SimHash-2G
is applied to [ graphs in parallel.

Computational Complexity of HASHALIGN. Our framework makes two main
substitutions for computational savings. First, it replaces full pairwise similarity
computations that are quadratic in the number of nodes with hashing in only
O(K - nyp - d) time for graph G, with n, nodes, if we use K hash functions
on d-dimensional feature vectors. Second, it replaces all (é) pairwise network
alignments with only  —1 pairwise network alignments to a center graph (chosen
in O(I% - d) time), inferring the remainder with sparse matrix multiplications.
More details are given in the supplementary material.
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5 Experimental Analysis

In this section, we seek to answer the following questions: (1) How robust is
our framework compared to baselines for different levels of noise in the graphs
(both in the structure and node/edge attributes)? (2) How could HASHALIGN
help existing alignment methods perform better and how could these help our
method? (3) How do our methods scale when aligning multiple graphs collec-
tively? We answer these questions on three datasets, described in Table2. We
also include additional experiments, such as a sensitivity analysis of HASHALIGN
to different parameters, in the supplementary material.

Baselines. We consider 3 baseline methods commonly used in the literature:
NetAlign [4], Final [20], and IsoRank [18]. We compare their performance
against our method, HASHALIGN, where we infer alignments greedily from the
hashing-based node similarities. The baselines accept a matrix L representing
prior alignment information between the nodes of the original graphs. By default,
we provide a thresholded similarity matrix based on the node attributes to assure
good performance based on the attribute information, even for the baselines that
are not formulated for it (NetAlign and IsoRank). We also consider two variants
of HASHALIGN, namely HASHALIGN-NA and HASHALIGN-FN, which respec-
tively use NetAlign and Final to infer alignments from the node similarities as
the final step of HASHALIGN (Sect. 3.4).

Data. We evaluate our proposed algorithms on three datasets along with the
synthetic data that we generated from them (via permutations and added noise,
as in [14,20]). Formally, given a graph G; with adjacency matrix A, we create
a noisy graph G5 with matrix B = PAPT (i.e., a permutation of itself), where
P is a randomly generated permutation matrix (i.e., with one nonzero entry
per row/column). Synthetic noise is applied to both graph structure and labels
throughout our experiments to simulate real-world scenarios where the graphs
are matchable but different. The noise level p indicates that with probability p,
Gaussian noise with std = 1 is added to an edge weight; a binary edge label is
flipped; or a categorical node/edge label value is changed.

Table 2. Description of real datasets.

Datasets # Nodes | # Edges | Graph type | Labels | Description
Connectome [1] | 941 9,622 Undirected |- fMRI-inferred graphs
E-mail [2] 1,133 5,451 Undirected |5 Email communications
DBLP [20] 42,252 210,320 | Undirected |1 Coauthorship network

Evaluation Metric. Following the literature, we compute the alignment accu-
racy as %, where the total number of matchings between G,
and G; is equal to the minimum number of nodes between the two graphs,

min{n;,n;}.
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(a) E-mail data with 1 node attribute (b) E-mail data with 5 node attributes

Fig.4. E-mail dataset (experimental results on other datasets are similar): Effec-
tiveness w.r.t. noise on both attributes and the graph structure. Methods based on
the HASHALIGN framework achieve highest accuracy, particularly with limited node
attribute information.
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(a) Runtime vs. accuracy for multiple graph alignment on four unattributed (b) Scalability of HASHALIGN.

(on the left) and five attributed (on the right) graphs.

Fig. 5. (a) HASHALIGN has stable efficiency across different kinds of networks. Final
is fast, but its accuracy is subject to whether node/edge labels exist. (b) HASHALIGN
scales linearly in terms of alignment with the center graph.

Experimental Setup. We used the following structural attributes: degree,
betweenness centrality, PageRank, egonet degree, average neighbor degree, and
egonet connectivity. We chose attributes that are robust to noise (graphs to be
aligned are often seen as noisy permutations of each other). More details are
given in the supplementary material.

To test the ability of HASHALIGN to incorporate different kinds of features,
we also generate synthetic node/edge attributes, if none are available in the real
data. For each noise level p, we generate 3 pairs of graphs and report the average
accuracy (along with a 95% confidence interval). HASHALIGN is implemented in
Python2.7, and the structural feature extraction is based on SNAP [15]. We ran
the experiments on Intel(R) Xeon(R) CPU E5 @ 3.50 GHz and 256 GB RAM.

Two-Graph Alignment. We aligned pairs of graphs on all the datasets (with
G the real graph and Gs its noisy permutation at noise level p, generated as
described above) and got consistent results. Only the result from the E-mail
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network is shown for brevity. With only 1 binary attribute (Fig.4a), NetAlign
and IsoRank perform poorly because the similarity matrix L built using just 1
attribute is not informative enough. However, these methods work significantly
better in our framework, and the gap between HASHALIGN variants and oth-
ers grows as noise levels increase. In Fig. 4b, HASHALIGN-NA achieves perfect
results in the presence of 5 node attributes, though all methods perform essen-
tially perfectly with abundant node attribute information.

Multiple Graph Alignment. We evaluate HASHALIGN against other meth-
ods for multiple graph matching on two datasets: five connectome networks [1]
without any labels, and four DBLP co-author networks extracted from the whole
DBLP dataset following the settings in [20] with one categorical label (the most
frequent conference that an author attends.) Both experiments are conducted
with p = 2% noise.

Figure 5a shows how different methods perform in terms of efficiency and
accuracy. When there is no label information to help guide the alignment pro-
cess (i.e., in the case of connectomes), HASHALIGN achieves best accuracy with
short running time for peripheral-center graph pairs alignment, followed by
HasHALIGN-FN and HASHALIGN-NA. As for the DBLP networks, since the
label with 29 distinct values is very discriminative, Final can achieve very good
efficiency, while HASHALIGN and its variants also have comparable performance.
However without node labels, Final matches less than 10% of all node pairs,
which can be boosted to over 60% if we feed it the hash-based similarity matrices
of HASHALIGN. Pairwise graph alignment is the most computationally expen-
sive for large numbers of graphs (see Fig.5b), but for fewer graphs of the sizes
in Fig. 5a, computing all pairwise alignments yields the highest accuracy, and is
thus our recommendation if computational resources are not an issue. However,
center graph alignment (the ‘derived’ versions of HASHALIGN variants) often
still outperforms the baselines, and in some cases matches the accuracy of the
full pairwise comparisons (e.g., HASHALIGN-NA on the connectome data.)

These results clearly show that HASHALIGN leads to significant improvement
over existing methods with regard to both accuracy and runtime. In summary, we
see that on average, HASHALIGN (including its variants) are 2x faster and 10 to
20% more accurate than the baselines in pairwise alignment, and 2x faster while
up to 50% more accurate in multiple graph alignment. However, these existing
methods may have their place within our framework (see Step 4 of Fig. 1), where
they may be used to accurately infer alignments from the hashing-based node
similarities.

We also verify that the proposed method scales as the number of graphs grows
by generating up to 64 synthetic graphs from the aforementioned connectome
network with p=0.02 noise, Z =2 and K =40. As shown in Fig. 5b, HASHALIGN’s
runtime scales linearly in terms of alignment with the center graph. The runtime
for peripheral graph alignments (i.e., w/o the center graph) using sparse matrix
multiplication scales subquadratically, as the slope indicates. We omitted the
runtime for feature extraction as it is linear on the number of graphs, and does
not contribute much to the runtime.
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6 Conclusions

We study the problem of multiple graph alignment and propose HASHALIGN, an
intuitive, fast and effective similarity-based approach that readily handles any
type of input graph. Our method adapts LSH to graph alignment, with a new
construction technique and an appropriate node-ID-invariant node representa-
tion for this task. Leveraging the rule of matching transitivity, it scales up to
many graphs while avoiding solving the expensive alignment task for each pair
of graphs separately. Our experiments on real data (incl. sensitivity analysis in
the supplementary material) show that HASHALIGN can stand alone as a multi-
network alignment tool or be combined with existing methods that require a
small set of possible matchings as input. In most cases, it is more accurate, more
robust to noise, and/or faster than the baselines. Our work suggests that hash-
ing is a promising direction for scaling up network alignment. Future work could
include extending HASHALIGN to use learned node representations specifically
designed for multi-network problems, as in the very recent work of [11]. Here
one challenge would be devising suitable graph signatures for efficient multiple
graph alignment.
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