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SiMul: An Algorithm-
Driven Approximate 
Multiplier Design for 
Machine Learning 

The need to support various machine learning (ML) 

algorithms on energy-constrained computing devices 

has steadily grown. In this article, we propose an 

approximate multiplier, which is a key hardware 

component in various ML accelerators. Dubbed 

SiMul, our approximate multiplier features user-

controlled precision that exploits the common 

characteristics of ML algorithms. SiMul supports a 

tradeoff between compute precision and energy 

consumption at runtime, reducing the energy 

consumption of the accelerator while satisfying a 

desired inference accuracy requirement. Compared 

with a precise multiplier, SiMul improves the energy efficiency of multiplication by 11.6x 

to 3.2x while achieving 81.7-percent to 98.5-percent precision for individual 

multiplication operations (96.0-, 97.8-, and 97.7-percent inference accuracy for three 

distinct applications, respectively, compared to the baseline inference accuracy of 98.3, 

99.0, and 97.7 percent using precise multipliers). A neural accelerator implemented with 

our multiplier can provide 1.7x (up to 2.1x) higher energy efficiency over one 

implemented with the precise multiplier with a negligible impact on the accuracy of the 

output for various applications.  
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As we enter the era of dark silicon,1 specialization and acceleration gain prevalence. Advances in 
machine learning (ML) are further fueling this resurgence of application-specific circuits, archi-
tecture, and even system design.2 One of the common characteristics of ML algorithms is their 
robustness to noise, imprecision, and even error in data.3 The timing combination of these two 
trends provides an unprecedented opportunity for rethinking many aspects of the computing 
stack. Although relaxing the long-held abstraction of “full accuracy” is attractive, it needs to be 
done while allowing the algorithms and application to decide to what extent the abstraction is 
relaxed. Precision flexibility is a must in many domains and, at the very least, provides an illu-
sion of control over the added stochasticity from approximation.  

In this article, we define such a “flexible” approximation at one of the lowest levels of the stack 
(circuits) by leveraging insights from one of the highest levels of the stack (algorithms). Such a 
cross-stack approach has the potential to offer a solution that significantly improves efficiency 
and performance of a rather larger domain of applications. Specifically, we exploit the following 
two insights related to ML inference algorithms: (1) Multiply-accumulate (MAC) is one of the 
most commonly used mathematical operations, and (2) one of the operands is often fixed after 
training. The first insight highlights that reducing the energy of MAC operations can have a sig-
nificant effect on the overall efficiency of ML accelerators. The second insight hints that the op-
portunity can be exploited more effectively if the constant nature of the operand is exploited. The 
challenge is providing a design that is not specific to one application or algorithm, as the ML do-
main is volatile and the pace of innovation is fast.  

To address this challenge and yet exploit the opportunity to apply approximation, we propose 
SiMul, an approximate multiplier with user-controlled precision and a modest area overhead. 
SiMul takes advantage of the fact that multiplication is iterative shift and add operations in 
which the shift amount depends on the position of “1s” in the binary encoding of one of the oper-
ands. Because one of the operands is fixed, it is possible to pre-process the operand and encode a 
limited number of shift amounts, which achieve the acceptable level of precision, instead of bi-
nary representation. Interestingly, with our technique, the value encoding becomes the knob that 
allows the higher-level application to tune up the level of approximation during execution. Such 
a circuitry can potentially further reduce energy of even the low-power accelerators that built on 
bit-flexibility in their architecture.3,4 The rest of this article elaborates on the details and benefits 
of this novel approximation technique for ML inference applications. 

CHARACTERISTICS OF ML ALGORITHMS 
In this section, we identify three algorithmic characteristics common across various ML algo-
rithms. First, some imprecision in each computation leads to a graceful degradation in inference 
accuracy of ML algorithms (such as in Reagen et al.5). Second, the key computations of these 
ML algorithms consist of multiplications of a given input vector and a pre-trained and fixed 
weight matrix. That is, one of the operands of each multiplication is constant. For example, an 
artificial neural network (ANN) consists of K inputs and L outputs. Let u = u(t) denote the K-
dimensional external input, y = y(t) the L-dimensional output, and W the connection weight ma-
trix of size L×K where wi,j is the weight between yj and xi. Then, y is given by y = f(Wx + b) 
where f is a nonlinear function and b is a constant bias. We exploit these characteristics to design 
a far more energy-efficient multiplier with less precision loss than one that does not exploit 
them. Lastly, we also observe that each ML algorithm requires a very different degree of com-
pute precision3 for acceptable inference accuracy, although some imprecision in each computa-
tion is generally tolerable.  

To evaluate the impact of multiplication imprecision on the final inference accuracy, we first 
take three ML applications: handwriting digit, isolated spoken digit, and face recognitions based 
on ANN, liquid state machine (LSM),6 and support vector machine (SVM), respectively. The 
ANN is based on a modern multi-layer perceptron7 trained with the Modified NIST (MNIST) 
dataset.8 The LSM and SVMs are trained with Texas Instruments (TI) 46-word speech database9 
and a dataset.10 Then, we reduce the accuracy of each multiplication by injecting a random value 
to the precise multiplication value such that the resulting value is up to 5, 10, 15, 20, and 25 per-
cent larger or smaller than the precise value. For a similar level of inference accuracy (about 90 
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percent), LSM and SVM demand a much higher accuracy for multiplication than ANN. For ex-
ample, to achieve 90-percent inference accuracy, LSM and SVM can only allow no more than 15 
and 5 percent errors, respectively, while ANN can tolerate more than 25 percent errors for each 
multiplication. This provides a strong motivation for a multiplier with tunable compute precision 
to allow us to minimize energy consumption while achieving an acceptable inference accuracy. 

APPROXIMATE MULTIPLIER SUPPORTING 
VARIABLE PRECISION AND ENERGY 
CONSUMPTION 

A MAC operation is the most fundamental and critical computation element for nearly all ML 
algorithms. Although weight values of most ML algorithms are initially trained with floating-
point arithmetic, they are converted to fixed-point numbers for inference due to the high delay, 
area, and power cost of supporting floating-point operations in hardware. We go a step further 
and present a significance-driven iterative approximate multiplier (SiMul), exploiting the three 
observations made previously. 

Generally, we multiply the multiplicand and the multiplier values by repeatedly performing shift 
and add operations on the multiplicand value where the shift amounts are determined by the bit 
positions of 1s in the multiplier value. Figure 1(a) shows the block diagram of our SiMul, con-
sisting of a K-bit shifter, adder, and shift register where K denotes the bit width of the multiplier. 
A and B denote given multiplier and multiplicand values, respectively. Si and Zi indicate a shift 
amount and output at ith iteration, respectively. Because the trained weight (multiplier) values are 
determined and known before inference runs, we propose pre-processing each given weight 
value to determine the bit positions of “1s” in advance and storing the pre-processed weight 
value instead of the actual binary values in on-chip memory denoted by PPA[k][n:1]. PPA[k][i] 
represents the shift amount for the kth weight value at ith iteration (or the bit position of the ith 
leading 1 for the kth weight value). 

 

Figure 1. SiMul exploiting preprocessed coefficients. 
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For a given weight value A (= 011111012 (12510)) and the pre-determined number of iterations n 
(= 4), we store the first, second, third, and fourth leading 1s in A (= 1102 (610), 1012 (510), 1002 
(410), and 0112 (310)) in PPK[k][1], PPK[k][2], PPK[k][3], and PPK[k][4], respectively. In the 
first iteration illustrated in “SiMul-LOD-PP” of Figure 1(b), we take the bit position of the first 
leading 1 (1102 (610)) from PPK[k][1], left-shift B by that amount (such as 010110102 (9010) << 
1102 (610)), and accumulate the shifted value to Z0 that is initialized to 0s before the first iteration 
begins; LOD-PP stands for leading 1 detection pre-processing. In this example, the result of the 
first iteration is Z1 = 00001011010000002 (576010). In the second iteration, we repeat the same 
procedure as the first iteration but for PPK[k][2] (= 010110102 (9010) << 1012 (510)) + Z1), ob-
taining 864010 (576010 + 288010) or accomplishing 77-percent accuracy (= 864010 / 
(12510×9010)). We may repeat the same procedure for the subsequent two leading 1s, providing 
98-percent and about 100-percent accuracy after the third and fourth iterations, respectively. 

Note that the shift register stores n shift amounts PPK[k] and left-shifts the stored value by 
log2(K) bits (= 5 bits for a 32-bit multiplier) at every iteration to supply a necessary amount for 
shifting B at each iteration. That is, we need only 20 bits per PPA[k] for four iterations while we 
should provide 32 bits per entry for storing actual weight values in the on-chip memory. This 
also reduces on-chip data transfer energy, although it is not the key focus of this article. 

More intelligently pre-processing the weight values to obtain the shift amounts can considerably 
improve accuracy of SiMul when we allow only one or two iterations for a multiplication. For 
instance, assume that A and B are 011111012 and 010110102, respectively, while limiting the 
number of iterations (denoted by n) to one. The first iteration in the previous example (SiMul-
LOD-PP) gives 00010110100000002 (576010) or achieves 51-percent accuracy. This low accu-
racy after the first iteration is because we cannot consider the four consecutive 1s after the first 
leading 1 bit; these 1s represent a substantial percentage of the magnitude of the multiplier value 
(26 percent and 13 percent for the first and second consecutive 1s after the first leading 1, re-
spectively). To improve the accuracy of the proposed SiMul-LOD-PP for small n, we propose a 
SiMul with an enhanced LOD-based pre-processing technique (denoted by SiMul-ELOD-PP in 
Figure 1(b)); we pre-process each weight value such that the Si values minimize the absolute er-
ror (1 − |Zapprox / Zaccurate| where Zapprox and Zaccurate are the approximate and precise values, re-
spectively) considering the maximum number of intended iterations (n). For example, in Figure 
1(b), we can choose S1 = 1112 instead of 1102 when only one iteration is intended for SiMul. 
With the S1 determined by ELOD-PP, the result of the approximate multiplication is 
00101101000000002 (1152010), as shown in “SiMul-ELOD-PP” of Figure 1(d). This provides 
98-percent accuracy, reducing the error from 49 percent to 2 percent. Figure 1(c) describes the 
ELOD-PP algorithm. 

Prior work6 detects 1s in a given multiplicand (input) value “on the fly” (either bit by bit or using 
one or more hardware-based LODs). That is, serializing multiplication operation hurts the 
throughput or providing hardware-based leading 1 detectors significantly diminishes energy effi-
ciency; our study shows that the hardware-based leading 1 detectors for 32-bit operands is sub-
stantial. In contrast, SiMul-ELOD-PP “pre-processes” relatively unchanging multiplier (weight) 
values to determine the bit positions of leading 1s, eliminating the expensive hardware-based 
leading 1 detectors. 

COMPUTE AND INFERENCE ACCURACIES 

Multiplication Accuracy 
Figure 2(a) plots the minimum and average accuracy of the 32-bit SiMul-LOD-PP and SiMul-
ELOD-PP for varying n. As expected, the multiplication accuracy considerably increases with 
more iterations; the SiMul-LOD with one, two, three, and four iterations achieves 71-, 91-, 97-, 
and 99-percent average accuracy for 100,000 pairs of randomly generated operands. The accu-
racy improvement with the SiMul-ELOD-PP is notable for one and two iterations; the minimum 
and average accuracies of the SiMul-ELOD-PP are 67 and 86 percent. They are 33 and 10 per-
cent higher than those of the SiMul-ELOD-PP for one iteration, and 10 and 5 percent higher for 
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two iterations. This demonstrates the effectiveness of the proposed ELOD-PP technique when n 
is limited to one or two. Considering the preliminary inference accuracy versus multiplication 
accuracy of the LSM-, ANN-, and SVM-based ML applications, we expect that an n that is fewer 
than four should be sufficient for most inference applications to achieve high enough inference 
accuracy. 

 

Figure 2. Multiplication and inference accuracies for different n values. 

We can also compare the accuracy of the SiMul-ELOD-PP with that of two other approximate 
multipliers (in other words, an iterative approximate log multiplier (IALM)11 and a precise multi-
plier with the least significant bits (LSBs) of the operands are masked to 0s). For one iteration, it 
was reported that the theoretical minimum and average accuracies of the IALM are 75 and 91 
percent, respectively. Although the IALM is more accurate than the SiMul-ELOD-PP for one 
iteration, the energy consumption of IALM is much higher for two iterations due to its complex-
ity. For a precise multiplier, masking some LSBs of A and B to 0s can reduce the dynamic en-
ergy consumption because the logic associated with the LSBs will not switch. However, we 
observe that masking even a small number of LSBs significantly reduces the accuracy, and thus 
it may not be able to provide sufficient compute precision for some ML algorithms; masking 
four, eight, and 12 LSBs reduces the average compute precision to 78, 48, and 15 percent, re-
spectively. The reason is that for small fixed-point numbers where 1s are in the LSB side, simple 
truncation often leads to zero, incurring a huge “relative accuracy” loss when these values are 
multiplied. In contrast, our multiplier is very effective even for multiplications of small values 
because ours captures significant 1s whether they are in the MSB or LSB side. 

Inference Accuracy 
Figure 2(b) plots the inference accuracy when the SiMul-ELOD-PP and a precise multiplier (PM 
in Figure 2(b)) are employed for matrix vector multiplications. For the handwriting digit recogni-
tion using ANN, one iteration can provide 95-percent recognition accuracy; a fused add-multiply 
can offer only 3.6-percent higher accuracy than the SiMul-ELOD-PP with one iteration; more 
iterations marginally improve the recognition accuracy. In contrast, the isolated spoken digit 
recognition using LSM, which exhibits very low accuracy with one iteration, needs at least three 
iterations to achieve its recognition accuracy close to the inference accuracy using a precise mul-
tiplier. Face recognition using SVM requires four iterations to achieve inference accuracy com-
parable to the inference accuracy using the precise multiplier. Note that the inference accuracy of 
SVM becomes nearly zero when compute accuracy is below 10 percent. Because the average 
compute accuracy of the SiMul-ELOD-PP with one iteration is below 10 percent, the accuracy 
bar for SVM with one iteration is now shown in Figure 2(b). This analysis confirms our earlier 
discussion that each ML algorithm requires a different degree of compute precision to achieve 
sufficient inference accuracy. We can optimize n such that the SiMul minimizes the energy con-
sumption without notably impacting recognition accuracy. 
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ENERGY AND AREA EVALUATION 
For energy and area evaluations, we synthesize 32-bit SiMul-ELOD-PP and precise multiplier 
units using Synopsys Design Compiler (32-nm PDK offering standard cells with high and low 
threshold voltage choices) and Power Compiler. We use Synopsys DesignWare library for 32-bit 
adder and 32-bit fused add-multiply for fixed-point arithmetic. For the synthesis, we take the 
standard library cells characterized with a typical process corner and set the target cycle time of 
all the multiplier implementations to 1.2 ns determined by the minimum delay of a 32-bit precise 
multiplier. To accurately measure the energy consumption of the multipliers, we first collect 
10,000 pairs of operands, after running the isolated spoken digit recognition application imple-
mented with C. Second, to capture the switching activities of the nodes in these multipliers, we 
perform gate-level logic simulations with the collected operand traces. Finally, we apply the cap-
tured switching activities to Synopsys Power Compiler to measure the dynamic and leakage 
power consumption. 

Figure 3(a) plots the energy consumption per operation (or simply energy/op) of two iterative 
approximate multipliers (SiMul-ELOD-PP and IALM), normalized to that of the 32-bit precise 
multiplier. For each iteration, the SiMul-PP consumes about 10 percent of the energy of the pre-
cise multiplier, which consumes 5.82 pJ/op. Thus, the SiMul-PP consumes only 42 percent of the 
conventional multiplier even for four iterations (a more than 2x reduction in energy/op). The 
IALM consumes as much energy/op as the fused add-multiply for two iterations. Finally, the 
precise multiplier masking four, eight, and 12 LSBs to 0s consumes 4.7, 4.3, and 3.2 pJ/op, re-
spectively. 

 

Figure 3. Normalized energy per multiplication and inference accuracy versus energy per 
multiplication for different n values. 

Figure 3(b) plots the energy/op of the SiMul-ELOD-PP versus inference accuracy of ANN, 
LSM, and SVM algorithms. Increasing n linearly increases energy/op while ANN’s recognition 
accuracy is sufficiently high (94.7 percent) even with one iteration, where we can achieve nearly 
12x improvement in energy efficiency at the cost of 3.6-percent degradation in recognition accu-
racy compared to the precise multiplier. In contrast, LSM’s recognition accuracy is not sufficient 
with one iteration (79 percent). However, when n is increased from one to two, we observe a 
considerable increase in inference accuracy (92 percent), and, practically, the inference accuracy 
does not increase with n larger than 3. When we choose three iterations for LSM, SiMul-ELOD-
PP can improve the energy efficiency by 3.2x at the cost of 2-percent degradation in inference 
accuracy, compared to the precise multiplier. Finally, SiMul-ELOD-PP requires two iterations 
for SVM to achieve the inference accuracy comparable to the accuracy that can be achieved by 
the precise multiplier, improving the energy efficiency by 4.7x. 

Note that the energy/op increases dramatically for marginal improvement in inference accuracy, 
as shown in Figure 3(b), and thus it is critical to tune compute precision before the improvement 
in inference accuracy quickly diminishes to achieve the maximum energy efficiency. The synthe-
sis results show that the area of the SiMul-ELOD-PP (1,622 µm2) and IALM (4,657 µm2) is 26 
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and 75 percent that of the precise multiplier unit (6,234 µm2), respectively. Compared to a 32-bit 
floating-point multiplier, SiMul-ELOD-PP requires only 15 and 3 to 12 percent of the floating-
point multiplier area and energy per multiplication. Finally, implementing hardware-based LOD 
similar to prior work4 almost doubles the area of SiMul-ELOD-PP and loses the energy reduc-
tion benefit when n is increased from three to four, as shown in “SiMul w/ HW LOD” of Figure 
3(b); prior work evaluated a 16-bit multiplier, while this work considered a 32-bit multiplier 
where the hardware-based leading 1 detector overhead is more significant. 

Lastly, we implemented general-purpose neural accelerators12 with SiMul-ELOD-PP multipliers, 
fixed-point precise multiplier (FxP PM), and floating-point precise multiplier (FP PM) running 
the AxBench suite13 and its dataset for general-purpose approximate computing. This is an ex-
ample of an ANN application that needs 32-bit multiplications to provide high compute accura-
cies.12 Figure 4(a) plots the whole application energy consumption of the neural accelerators, 
normalized to that of the neural accelerator implemented with floating-point precise multipliers. 
We fixed the number of iterations of shift-and-add in SiMul-ELOD-PP to three/four to keep the 
output quality loss to an acceptable level. On average, SiMul-ELOD-PP in neural accelerators 
yields 1.7x lower energy than floating-point precise multiplier across the evaluated applications. 
Figure 4(b) shows the output quality loss of the evaluated applications using a neural accelerator 
with different multipliers. The quality loss is compared with that of the original precise execu-
tion of the application on a baseline CPU with no acceleration. Using a fixed-point precise multi-
plier has virtually no impact on the output quality loss compared to using a floating-point precise 
multiplier. These results are commensurate with previous work,6 which uses lower precision for 
the implementation of the neural accelerators. On average, using SiMul increases the output 
quality by only about 2 percent compared to using a floating-point precise multiplier and fixed-
point precise multiplier. 

 

Figure 4. Comparison of general-purpose neural accelerators with a 32-bit SiMul-ELOD-PP 
multiplier, FxP PM, and FP PM. 
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RELATED WORK 
Our work lies at the intersection of approximate computing and ML research. We are fundamen-
tally different from the prior work in two major ways: (1) Instead of using fixed-precision for 
multiplication, we devise a novel multiplier of which we can dynamically trade off between 
compute precision and energy consumption, and (2) we leverage the insight that ML applications 
have generally a set of pre-learned parameters, which enables us to significantly simplify the de-
sign of the proposed approximate multiplier.  

There are a handful of articles on architecture for neural acceleration.4,12,14-16 These proposals 
either use precise fixed-point multipliers or perform the multiplication in serial with costly 
online hardware-based checking mechanisms to decide the termination point. Using a serial mul-
tiplier hurts throughput, and online hardware-checking diminished the energy reduction benefit 
from performing serial multiplication. However, SiMul leverages the availability of the pre-
trained parameters in many ML applications to simplify the design of the multiplier. Kulkarni et 
al.17 and Gupta et al.18 proposed under-designed multiplier and adder designs in which the mini-
mum/maximum precision is fixed at design time. In contrast, our design varies precision (and 
energy consumption) through iterations. Babića et al.11 proposed an ILAM that can support vari-
able precision through iterations, but our SiMul-ELOD-PP is far more energy-efficient with a 
smaller area than the ILAM. This is because we exploit fixed coefficient values in one of the 
multiplier’s operands and pre-process them to maximize compute precision for n. This allows us 
to support a finer-grain tradeoff between precision and energy consumption than the ILAM. Var-
ious fixed-coefficient multipliers were proposed in the DSP domain.19 Such multipliers require 
look-up tables per unique coefficient (such as 16 12-bit entries per coefficient for an 8×8 multi-
plier19), while our design only requires one 20-bit entry per coefficient. Finally, our work is or-
thogonal to circuit-level scaling techniques,14 and it can be incorporated with their algorithm- 
and architecture-level scaling techniques. 

CONCLUSION 
In this article, we first identified three common characteristics of various ML algorithms: (1) tol-
erance to compute imprecision, (2) weight values fixed after a training phase, and (3) a different 
multiplication precision requirement per application for acceptable inference accuracy. Second, 
exploiting these characteristics, we proposed SiMul, an approximate multiplier with controlled 
precision, which is used to implement a neural accelerator for ML applications. SiMul supports a 
runtime tradeoff between multiplication precision and energy consumption, achieving 82- to 99-
percent multiplication accuracy with 11.6x to about 3.2x less energy per multiplication than an 
optimized precise multiplier. Third, SiMul enables neural accelerators to minimize energy con-
sumption while satisfying a minimum inference accuracy requirement, achieving 96.0-, 97.8-, 
and 97.7-percent inference accuracy compared to the inference accuracy of 98.3, 99.0, and 97.7 
percent using precise multiplier for running ANN, LSM, and SVM-based applications, with 2.9x 
to about 7.8x higher energy efficiency than the one with the precise multiplier. Finally, we evalu-
ated SiMul in a neural accelerator setting. Compared to an accelerator with fixed-point and float-
ing-point multipliers, the proposed approximate multiplier reduces the energy consumption by 
1.3x and 1.7x, respectively, with marginal variation in the output quality across a wide range of 
applications in AxBench. 
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