
PROMISE: An End-to-End Design of a Programmable Mixed-Signal Accelerator for
Machine-Learning Algorithms

Prakalp Srivastava†∗ Mingu Kang§∗ Sujan K. Gonugondla† Sungmin Lim†

Jungwook Choi§ Vikram Adve† Nam Sung Kim† Naresh Shanbhag†

†University of Illinois at Urbana-Champaign §IBM Thomas J. Watson Research Center
(psrivas2 gonugon2 sungmin3 vadve nskim shanbhag)@illinois.edu

mingu.kang@ibm.com choij@us.ibm.com

Abstract—Analog/mixed-signal machine learning (ML) ac-
celerators exploit the unique computing capability of
analog/mixed-signal circuits and inherent error tolerance of
ML algorithms to obtain higher energy efficiencies than digital
ML accelerators. Unfortunately, these analog/mixed-signal ML
accelerators lack programmability, and even instruction set
interfaces, to support diverse ML algorithms or to enable
essential software control over the energy-vs-accuracy trade-
offs. We propose PROMISE, the first end-to-end design of
a PROgrammable MIxed-Signal accElerator from Instruction
Set Architecture (ISA) to high-level language compiler for ac-
celeration of diverse ML algorithms. We first identify prevalent
operations in widely-used ML algorithms and key constraints
in supporting these operations for a programmable mixed-
signal accelerator. Second, based on that analysis, we propose
an ISA with a PROMISE architecture built with silicon-
validated components for mixed-signal operations. Third, we
develop a compiler that can take a ML algorithm described
in a high-level programming language (Julia) and generate
PROMISE code, with an IR design that is both language-
neutral and abstracts away unnecessary hardware details.
Fourth, we show how the compiler can map an application-level
error tolerance specification for neural network applications
down to low-level hardware parameters (swing voltages for
each application Task) to minimize energy consumption. Our
experiments show that PROMISE can accelerate diverse ML
algorithms with energy efficiency competitive even with fixed-
function digital ASICs for specific ML algorithms, and the
compiler optimization achieves significant additional energy
savings even for only 1% extra errors.

Keywords-deep in-memory computing; analog ISA; pro-
grammable machine learning accelerator;

I. INTRODUCTION

Current and emerging applications are increasingly relying

on the ability to extract patterns from large data sets to support

inference and decision making with Machine Learning

(ML) algorithms. Such ML inference algorithms (or simply

ML algorithms in this paper) have begun to offer higher

performance than humans [1] in cognitive and decision-

making tasks [2], but they have demanded more computing

capability as they have gotten computationally more complex

and required to process larger amounts of data. This coincides

∗First two authors contributed equally to the paper

with the decline of Moore’s Law, and thus it becomes far

more challenging to meet such demands than ever. To close

the gap between the demand and the offering from traditional

general-purpose processors, researchers have begun to explore

specialized processors (or accelerators) for ML algorithms [3]–

[7]. These ML accelerators can offer orders of magnitude

higher energy efficiency than general-purpose processors, but

most of them are based on digital circuits and/or implement

a specific ML algorithm.

In order to further improve energy efficiency of digital

ML accelerators, researchers have proposed analog or mixed-

signal accelerators [8]–[17]. These analog and mixed-signal

accelerators rely on small-signal computation which is less

precise but more energy efficient than traditional large-

signal computation in the digital domain. Therefore, they are

suitable for acceleration of ML inference algorithms where

the application domain itself is tolerant to such imprecision.

However, these accelerators lack a programmable architecture,

instruction sets, or compiler support necessary for supporting

application software. These capabilities are essential to

support high-level programming languages like Python [18]

and Julia [19], which implement popular ML libraries such

as TensorFlow [20], and MXNet [21].

Moreover, the algorithmic error tolerance that allows

hardware-level small-signal computations creates energy

vs. accuracy tradeoffs that must be controlled from the

application level in order to ensure that application-domain

accuracy or precision goals are met. Translating these

application-level metrics down to suitable hardware-level

control knobs for energy and accuracy without requiring

application programmers to understand hardware design

concepts requires careful hardware, ISA and compiler design.

We propose PROMISE, the first end-to-end design of

a programmable mixed-signal accelerator for diverse ML

algorithms, which tackles all these challenges. PROMISE

can accomplish a high level of programmability without

noticeably losing the efficiency of mixed-signal accelerators

for specific ML algorithms. PROMISE exposes instruction

set mechanisms that allow software control over energy-vs-

accuracy tradeoffs, and supports compilation of high-level

languages down to the hardware. Specifically, we make

43

2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture

2575-713X/18/$31.00 ©2018 IEEE
DOI 10.1109/ISCA.2018.00015



following key contributions.

PROMISE Architecture and ISA: First, we identify preva-

lent operations in widely-used ML algorithms and key

constraints in supporting these operations for a programmable

mixed-signal accelerator. These include (C1) intrinsic se-

quentiality imposed on operations and (C2) high variations

in delay across different types of operations. (C1) limits

the number of possible programmable operations and (C2)

significantly affects performance and energy efficiency of

mixed-signal accelerators. Second, we explore PROMISE

Instruction Set Architecture (ISA), which can expose these

operations and constraints to a compiler, with a programmable

mixed-signal accelerator architecture built with silicon-proven

components for mixed-signal operations [9]. The hardware

design and ISA include mechanisms to control the accuracy-

vs-energy tradeoff by varying swing voltages, which can be

controlled by compiler-generated code.

Compiler for PROMISE: First, we discuss design goals

for a compiler when PROMISE aims to maximize energy

efficiency while delivering a desired accuracy for a given

ML algorithm. Particularly, the following two aspects of

PROMISE explode the solution space to explore when

generating code. (A1) PROMISE demands software to

determine the accuracy of each mixed-signal instruction in

given code, while a complex interplay among accuracy of

instructions strongly affects energy efficiency and overall

final accuracy of the code. (A2) PROMISE provides many

possible compositions of mixed-signal operations even under

the (C1) and (C2) constraints. Considering the large solution

space, we reason that it is inherently impractical for users to

manually generate code for a complex ML algorithm. Second,

we develop a code generator that translates machine learning

kernels down to sequences of mixed-signal operations. Third,

for neural network algorithms in particular, we show how to

automatically map programmer-specified end-to-end accuracy

error tolerances down to hardware-level swing voltage

parameter values for individual Tasks. A direct mapping is

difficult, but we show how to break down the problem into

two steps: (i) mapping error tolerance to computational bit

precision (using an existing analysis [22]), and (ii) mapping

bit precision to voltage swings (using simulation-based

profiling). Putting these together, we develop a compiler

which can take a broad range of ML algorithms described

in a high-level programming language (Julia) and compile

it to native PROMISE code. For neural network algorithms,

we can translate a specified end-to-end error tolerance and

compile it to PROMISE code that satisfies the error tolerance

while approximately minimizing voltage swings (within

available quantization levels).

Efficacy of PROMISE End-to-End Design: To demonstrate

the efficacy of PROMISE, we first build energy and through-

put models of PROMISE based on silicon-validated energy,

delay and behavioral models of mixed-signal blocks. Second,

Table I: Machine learning (ML) algorithms.

f (D(W,X))
Inner loop kernel f ( )

D(W,X)

= ∑N
i=1 d(w[i],x[i])

SVM ∑N
i=1 w[i]x[i] sign

Temp. Match. (L1) ∑N
i=1 |w[i]− x[i]| min

Temp. Match. (L2) ∑N
i=1(w[i]− x[i])2 min

DNN ∑N
i=1 w[i]x[i] sigmoid

Feature extraction (PCA) ∑N
i=1 w[i]x[i] −−

k-NN (L1) ∑N
i=1 |w[i]− x[i]| ma jorityvote

k-NN (L2) ∑N
i=1(w[i]− x[i])2 ma jorityvote

Matched filter ∑N
i=1 w[i]x[i] min

Linear Regression
∑N

i=1 w[i] accumulate
∑N

i=1 w[i]2 accumulate
∑N

i=1 w[i]x[i] accumulate

we take nine popular ML algorithms, describe them in Julia,

and generate the code with the PROMISE compiler. Our

evaluation shows that PROMISE can offer 3.4−5.5× lower

energy and 1.4− 3.4× higher throughput than algorithm-

specific digital accelerators at comparable inference accuracy.

Lastly, the swing voltage optimized code by the PROMISE

compiler further provides 4%−20% (geometric mean: 15%)

lower energy than the unoptimized code for complex ML

kernels.

II. BACKGROUND

In this section, we analyze various ML inference algo-

rithms to identify commonalities in their data flow, and

then we describe a circuit of a programmable mixed-signal

accelerator which is well suited for ML algorithms and we

build an ISA (Section III) and a compiler (Section IV) on.

A. ML Algorithms

The ML algorithms involve repeated Vector Distance (VD)

computations denoted by D(Wj,X) between N-dimensional

input vector X and weight vector W as depicted in [23].

Commonly used VD computations include the dot product,

L1 distance (Manhattan distance), L2 distance (Euclidean

distance), and Hamming distance for the ML algorithms

including the Support Vector Machine (SVM), template

matching, Deep Neural Network (DNN), k-Nearest Neighbor

(k-NN), and matched filter as listed in Table I.

These ML algorithms have the following three data-flow

properties in common. (P1) A single VD is obtained by

first computing N element-wise Scalar Distances (SDs)

(d(w[ j][i],x[i])) followed by an aggregation step such as

a sum or average generating the final scalar VD D(W,X) =

∑N
i=1 d(w[ j][i],x[i]). (P2) The VD between a single query vec-

tor X and multiple (say No) weight vectors Wjs ( j = 1,2, ...No)

needs to be computed. (P3) The VD goes through a simple

decision function f () such as sigmoid or ReLU to generate

the decision y j. Especially, the VD computation tends to

44



���������	

��� ���

�� ��

� ���	�


�	���� ��	�� 	

�

Δ��� ∝ ��

�	
�
Δ���

�

∆���

���	��
��
�����

(a)

���������	

�� � �� � ��� ������

������
 !"�

��	


�	

∆���

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�� ��

�

Δ��� ∝ � 0.5���
���

���

�	
�

Δ���

� ���

�#���
�
�
������

	

(b)

Figure 1: Block diagrams and read operations with bit-
line swing (ΔVBL): (a) conventional system, (b) Compute
Memory, with bit precision of scalar weight w, Bw = 4

and column mux ratio L = 4, analog domain in red.

dominate the execution time and energy consumption of ML

algorithms for practical problems.

B. Mixed-Signal ML Accelerator

Recently proposed compute memory (CM) [8]–[11], [24]–

[26] deeply embeds energy-efficient analog computations into

the periphery of conventional bit-cell array. As an innovative

feature, CM can offer seamless interface between digital- and

anlog-domain computations. More specifically, CM stores

a Bw-bit word in a column-major format (i.e., a word is

stored in Bw bit-cells connected to the same Bit-Line (BL)

across Bw rows), as shown in the red box of Fig. 1(b))

whereas conventional memory does in a row-major format

(Fig. 1(a)). After BLs are pre-charged for a read cycle, CM

simultaneously asserts Bw Word-Lines (WLs). The durations

of these asserted WLs are proportional to the binary weight

values of the corresponding bit positions in a given Bw-bit

word with a binary Pulse-Width Modulated (PWM) Word-

Line (WL) signaling scheme (Fig. 1(b)). Subsequently, each

BL develops a voltage drop (ΔVBL) proportional to a binary

weighted sum of Bw bits in the corresponding column [8],

which constitutes the first processing stage of CM: (S1)
analog Read (aREAD). aREAD can not only seamlessly

convert digital values stored in memory into analog values

for subsequent analog computation stages, but also fetches

highly condensed Bw-bit information per BL, significantly

improving energy efficiency and throughput.

For ML algorithms, CM can store pre-trained Wj in its

bit-cells, then it can serve as a very energy-efficient mixed-

signal ML accelerator with the following three subsequent

analog processing stages: (S2) analog Scalar Distance (aSD)

implementing scalar distance computations right next to the

bit-cell array; (S3) analog Vector Distance (aVD) performing

the aggregation (∑N
i=1 in Table I) by simply charge-sharing

all the analog outputs from aSD blocks in one shot; and (S4)
Analog-to-Digital Conversion (ADC) and ThresHold (TH)

converting the analog output of aVD into a digital word and

subsequently generating a final decision from the digital word

based on a given decision function f () in Table I. Note that

the aSD stage can support scalar comparison, multiplication,

subtraction, addition, and absolute computation in bit-cell

pitch-matched analog circuitry [8], [25], while the ADC and

TH stages consume negligible portion of total energy as they

operate infrequently (once after ≥128 aSD operations).

It has been shown that the CM can offer significantly lower

energy consumption and delay than digital ML accelerators,

but it supports only limited reconfigurability [9]. Furthermore,

the absence of an instruction set limits the use for a short

sequence of operations with single computation kernel, single

memory bank, and fixed parameters such as a vector length.

III. INSTRUCTION SET ARCHITECTURE

FOR MIXED-SIGNAL ACCELERATORS

In this section, we present PROMISE architecture as

a substrate to explore ISA, discuss various challenges in

developing ISA, and then propose ISA for a programmable

mixed-signal accelerator.

A. PROMISE Architecture

Single Bank Architecture: PROMISE is built on CM

as shown in Fig. 2(a), where the standard SRAM read

and write functionalities are preserved (at the bottom) for

additional flexibility. Along with (S1) aREAD, (S2) aSD,

(S3) aVD, and (S4) ADC and TH described in Section II,

PROMISE comprises X-REG and CTRL to transform CM

into a programmable mixed-signal accelerator. The more

detailed architectural specification of PROMISE is as follows.

A PROMISE bank consists of 256 (= NCOL) columns. An

8-bit (= Bw) word is distributed across four consecutive rows

constituting a word row and two neighboring columns which

store 4-bit MSB and 4-bit LSB to enhances linearity through

a sub-ranged read technique [9]. That is, aREAD can read

out a 128-element vector of digital values and seamlessly

converts it to that of analog values. Furthermore, aREAD can

simultaneously perform element-wise addition or subtraction

with X , a 128-element vector representing the input operand

for inference in Table I. aSD and aVD are designed to

perform operations on 128 analog values. ADC consists of

eight 8-bit ADCs which operate in parallel and convert ≈ 57

million analog values to digital values per second. Note that

the aVD output of each bank is digitized by these ADCs to

45



���

���
��


��

��
��
��
��

���������
������

������������� 

��� ����

��������

����!������"��#

�

���

��
��

��
$%
�

��
$%
�

��
$%
&

��
$%
'

��� ����

��� ����

�(����)*+,-)./0+,-

����$�12

��
��
��	


�
��

���
��

�

��
��
��
�
�

��
��

�

���

��
��
���
�
�

��

�����������3455�� ��2�� ��2$�6

�4���2�
��

��

��

��
��
��
��

7��2
�#��$

$�871��
���4

7�2
7�9

���

�1
2�
�1
��$
�8
2�

�$ ��
��
���
�
�

��
�

�

(a)

��
��

��
��

	


W, X

����$

��

�������

�����


�
��
��

��
	


��
�

�����$


�
��
��

��
	


��
�

������


�
��
��

��
	


��
�

�

�����


�
��
��

��
	


��
�

�

�����

���������������

(b)

Figure 2: The PROMISE architecture: (a) a single-bank
architecture with NROW = 512, NCOL = 256, analog pro-
cessing marked in red, and (b) a multi-bank architecture.

prevent the noise from analog operations accumulating over

the iterations. This digitization also enables a multiple-bank

architecture, where reliable data transfers between banks

are required. TH implements non-linear operations such as

sigmoid via piece-wise linear approximation [27] not only

to compute the decision functions f () in Table I but also

to aggregate intermediate computed values when the vector

length N is larger than 128.

Lastly, X-REG is a digital block similar to a vector register

file in a SIMD processor, holding eight 128-element vectors

representing eight X values. CTRL is a controller to generate

enable signals for the aforementioned components based on a

given instruction and make CM function as a programmable

mixed-signal accelerator.

Multiple bank architecture: PROMISE can be extended to

a multi-bank structure (Fig. 2(b)), which has multiple (up

to eight in this work) PAGEs, each of which includes four

banks. Thus, long (> 128) vectors can be distributed across

multiple banks for parallel processing. PROMISE does not

have the scalability limitation by the analog operations as

the partial results from each bank are always converted to

digital values by the ADCs. Then, the partial sums can be

aggregated across different banks via cross-bank rail, similar

to H-Tree in [12]. The data transfer of 8-bit ADC output

from each bank to the other through the cross-bank rail

aREAD
aSD

& aVD
ADC THFF decisionW

X

TP TP TP TP

analog
flip-flop (FF)

Figure 3: Analog pipeline in PROMISE with operating
frequency = 1/TP, and red marked area is analog domain.

takes only 0.5 pJ with activity factor of 0.5 from post-layout

simulations. This is negligible (< 1%) as a aREAD consumes

up to 131 pJ/bank as listed in Table III. The control of multi-

bank by the instruction is discussed in Section III-C.

Analog pipeline architecture: To achieve higher throughput

than the original CM [9], PROMISE adopts analog pipelin-

ing as shown in Fig. 3. This requires analog Flip-Flops

(FFs) to hold the output of each stage. The first pipelined

stage (aREAD) needs NCOL analog FFs whereas the second

pipelined stage consisting of aSD and aVD needs only one

analog FF to store the aggregated scalar output. Thus, we

propose to reuse a pre-existing capacitor, which is a part of

the analog multiplier [9] in the aSD block, as an analog FF

for the aREAD stage to minimize the hardware overhead.

B. Challenges in Programmable Mixed-Signal Accelerator

The combination of algorithmic diversity and mixed-signal

operations in PROMISE creates many challenges that we

should consider when exploring ISA design choices. To

support a broad range of ML algorithms, each stage needs

to support diverse programmable operations. However, we

identify some challenges in supporting (too) many diverse

programmable operations which can significantly degrade

both throughput and accuracy.

Higher Impact of Delay Variation across Operations:
Analog operations often exhibit a wide range of delays

depending on operation types [9], while each stage must

accommodate the worst case delay out of all the operations for

the stage. Furthermore, as all the stages of a pipelined mixed-

signal accelerator need to operate at the same clock period TP,

TP needs to accommodate the worst case delay across all the

stages, i.e., TP = max(TS1 max,TS2 max,TS3 max,TS4 max), as

illustrated in Fig. 4). That is, supporting more programmable

operations causes longer idle time for some stages. As a

result, we observe up to 2× throughput degradation when

designing for the range of operations supported in this work.

Furthermore, such long idle time negatively affects accuracy

at the algorithm level because analog values are typically

stored on (area-constrained) capacitors and thus degrade over

time due to various leakage mechanisms. This problem is

especially bad for the S1 stage (aREAD) as each BL is

subject to the leakage contributions from all the bit-cells in

the column (up to 0.6%/ns).

More Limit in Sequence of Operations: We also recog-

nize some other challenges specific to analog processing,

46



������
����������	
��

����	
��

��
��

�	 �	 �	 �	 �	

�	 = max ���_���, ���_���,���_���, ���_���
Figure 4: 4-stage processing in PROMISE with opera-
tional diversity per stage.

which further limits the number of possible programmable

operations. Specifically, a chain of analog processing stages

imposes intrinsic sequentiality of operations where two

consecutive stages need to be physically closely placed.

This is done to avoid substantial degradation in analog

voltage from one stage to the next. Furthermore, a large

capacitor ratio between consecutive stages (input-output 20:1

to maintain the voltage drop < 5%) is required to transfer the

signal via charge-transfer mechanism without an additional

analog buffer.

C. PROMISE Instruction Set

We explore an ISA suitable for a programmable mixed-

signal accelerator, considering the above constraints.

Instruction Format: We propose a wide-word macro instruc-

tion format, which is referred to as Task. Akin to a Very-

Large Instruction Word (VLIW), a single Task consists of

multiple operations, except that the operations are sequential
and not parallel like VLIW architectures. As depicted in

Fig. 5(a), the four Class fields specify four operations for

four pipelined stages of PROMISE, while the three other

fields, OP_PARAM, RPT_NUM and MULTI_BANK configure

all or specific Class operations. More specific descriptions

of these seven fields are as follows.

Operating Parameter Field: OP_PARAM comprises 33 bits

and configures operating parameters of Class operations

in a given Task, facilitating flexible programmability. As

shown in Fig. 5(b), W_ADDR specifies a CM address for

a Class-1 operation. X_ADDR1 and X_ADDR2 designate

X-REG addresses for Class-1 and Class-2, respectively.

SWING controls BL swing ΔVBL, e.g., 111 allows 30

mV/LSB whereas 001 allows 5 mV/LSB. This parameter

is a key knob to control the trade-off between energy and

accuracy under software control; Section VI evaluates this

accuracy-energy trade-off for further energy savings. Refer

to Fig. 5(c) for descriptions of the remaining parameters and

their assignments of bit fields.

Class Fields: Class-1 is composed of 3-bit opcode and

defines six possible memory operations. READ, WRITE, or

aREAD makes CM perform a digital read, digital write, or

analog read operation to a compute-memory address specified

by OP_PARAM (W_ADDR). aADD or aSUB fuses an analog

read and an element-wise analog addition or subtraction

into a single operation where two vector operands come

����
��������
�	
�����

�������
�������

���������
�	�����

�������
�������

������	
�������

�������
�������

�������
�������

(a)

Contents Bits Description

SWING [27:25]
ΔVBL swing code –

000: min (5 mV/LSB), 111: max (30 mV/LSB)

ACC_NUM [24:23] # of operands to be accumulated for accumulate
opcode in Class-4

W_ADDR [22:14] Bit-cell array address of W in Class-1

X_ADDR1 [13:11] Bit-cell array address of X in Class-1

X_ADDR2 [10:8] X-REG array address of X in Class-2

X_PRD [7:6] X_ADDR1 & 2 circulate from 0 to “X_PRD - 1”

DES [5:4] Class-4 output destination - 00: ACC input, 01:
output buffer, 10: X-REG, 11:Write data buffer

THRES_VAL [3:0] Thresholding reference value for threshold opcode
in Class-4

(b)

����� ���	�
�������	��� ��
����
� ��
���� ��
��

�

����

	�
��
��������

���

�	
��	��	���� 
��
�����
������������	
�����

�������	����� ���
������	����� ���
�������	����� ���

�������	�������	������ ���
������	�������	����� ���

�

����

������
�������
������

��� ��� ���	
�	� � �!!��!���� 
�	��!!��!���� 

�	
��	��	����� 
��
�����
������������	
�����

������� ���
� !�"#�� ���
!$#��� ���

!�%�	�#"���	������ ���
#�!�%�	�#"���	������ ���

" ���� �����
��������

�
��& �

�

���#�#"�����

"�����
��������

��� ���#��&&	'�(
���� ��� ���

�)��!)�"� ��� ���#��*���	+�,
��- ��� ���
��� ��� ���

!�%���� ��� ���
��,# ��� ���

(c)

Figure 5: Instruction set of PROMISE: (a) instruction
format, (b) operation parameters (OP_PARAM), and (c)
operations in each Class.

from compute-memory addresses specified by OP_PARAM
(W_ADDR and X_ADDR1), respectively.

Class-2 consists of 4-bit opcode and specifies a com-

position of one of six possible aSD operations with one of

two possible aVD operations. Specifically, aSD operating

on a computed value from Class-1 supports three unary

operations: compare, absolute, and square and two

binary operations: sign_mult and unsign_mult where

the other operand comes from an X-REG address specified

by OP_PARAM (X_ADDR2). aVD specifies whether an ag-

gregation should be performed or not after an aSD operation.

Class-3 and Class-4 comprise 1- and 3-bit op-

code and control whether an ADC should be performed

or not and specify one of seven possible TH operations,

47



respectively. The seven possible TH operations are as fol-

lows: accumulation, mean, threshold, max, min,

sigmoid, and ReLu.
In summary, Class-1,2,3 define a distance compu-

tation, D(Wj,X) in Table I in the analog domain, while

Class-4 specifies f (D(Wj,X)) in the digital domain.

Loop Control Field: RPT_NUM comprises 7 bits and speci-

fies how many times the Task should be executed to process

multiple Wjs. The CM and X-REG addresses (W_ADDR,

X_ADDR1 and X_ADDR2) are incremented sequentially

every iteration. Although unconventional for modern RISC

architectures, this is a natural choice for typical ML inference

algorithms, which iterate sequentially through data Wjs in

memory for the computation D(Wj,X).

Multiple Bank Control Field: MULTI_BANK comprises 2

bits and specifies the number of banks used to distribute

long (> 128) vectors for parallel processing. The interme-

diate results from banks 1, 2,..., and 2MULT I BANK − 1 are

transferred to bank 0 through the cross-bank rail in Fig. 2(b)

to be aggregated by digital TH accumulation operation.

The long vector needs to be distributed to the same row of

each bank to support the parallel processing across multiple

banks. The instruction is shared by 2MULT I BANK banks as

those banks process the same operation. The output of a

Class-4 operation can be transferred to the X-REG of

a specific bank in any PAGE by defining DES ADD in

OP_PARAM.

Extension to Large Scale Applications: PROMISE is

well suited to process 128 dimensional vector processing.

Longer vectors (> 128) can be processed by repeating the

128 dimensional vector processing sequentially by setting

RPT_NUM = (W.size() / 128) and other parameters.

A word row of CM stores 128 words, and thus two word

rows are used to store 256 dimension vector. Two consecutive

iterations complete a vector processing. The address W_ADDR
and X_ADDR1 (or X_ADDR2) are incremented as the Task
iterates to process the next 128 words. However, the X is

re-used to compute the distances to many W s as explained

in Section II. Thus, the X_ADDR1 and X_ADDR2 circulates

from 0 to X_PRD-1. For example, X_PRD = 2 to process

256 element vector X .

D. Algorithm Mapping and Compiler Need
A ML algorithm sometimes requires several Tasks for

different distance metrics. We present an example of template

matching with L1 distance kernel to find the closest 512-

pixel image out of 127 candidate images (Wj) to input query

image (X) by processing across four banks in parallel. The

template matching is mathematically defined as:

jopt = argmin j

512

∑
i=1

|x[i]w[ j, i]| (1)

The corresponding Task instruction consists of: RPT_NUM
= 127 specifying the number of candidate images;

������
�		

������

�����

����
������������

������
�	���������

��������
����� �

�������
!
�"

��������!
�"
#��$�%�������

��������������

&�%'	��	 ��������%�

�������
!()*��"
!&�+�&,"


 � ����
����������������
&����

�

����	
�� ��
�����	�����	��� ����
��

Figure 6: Compiler Pipeline. LLVM(FP) implies that
data arrays are in floating point. 8-bit implies fixed point
data arrays

MULTI_BANK = 4 to distribute 512 pixels into four banks

(128 pixels per bank) for parallel processing; Class-1
aSUBT to perform element-wise subtraction of X with

Wj; Class-2 absolute with aggregation; and Class-3
ADC followed by a digital-domain Class-4 min to com-

pute f () = argmin j.

Although each Class offers a limited number of op-

erations (6, 12, 2 and 7, respectively), PROMISE can

perform more than 1000 compositions of operations for a

given X value. Furthermore, we observe that the order of

Task instructions in a complex ML inference algorithm

and the accuracy setting of each Task through the SWING
parameter significantly affect the accuracy at the algorithm

level, exploding the solution space for code generation. Hence,

it is not efficient and inherently sub-optimal to manually

generate code for a complex ML inference algorithm. This

in turn gives a compiler an opportunity to generate and

optimize code implementing a given ML inference algorithm,

which will be explored in the subsequent section.

IV. COMPILER

In this section, we discuss the goals of a compiler for

PROMISE, describe how PROMISE compiler design meets

these goals while translating a given ML algorithm described

in a high-level language into the PROMISE ISA, and

how the compiler addresses the programmability challenges

mentioned in Section III-B.

A. Goals

Hardware Abstraction: The compiler intermediate repre-

sentation (IR) should abstract away low-level details of the

hardware, so that front ends don’t have to be concerned

about hardware details like Class-1 vs. Class-2 vector

operations, or the specifics of the OP_PARAM parameters.

At the same time, the IR should enable compilers to perform

optimizations, and should capture essential information for

generating efficient code on PROMISE. This is similar to

how mid-level compiler IRs abstract away details like finite

register files and different register classes from front ends,

while enabling sophisticated register allocation algorithms to

manage these details [28].

Accuracy-Energy Tradeoff: Although the PROMISE ISA

allows the compiler to use the SWING parameter as a knob

48



to tune ΔVBL to exploit the tradeoff between energy and

accuracy, it is difficult to go from a high level description of

“accuracy” that an application programmer understands in the

context of the algorithm to hardware specific parameters such

as voltage swings. This is especially true for applications

which would have several smaller computations to offload

(for example, DNNs can offload each layer computation) to

a hardware accelerator. It is even more difficult to reason

about how the error in a single computation would affect

the overall accuracy of the application. Towards this end, the

PROMISE compiler must provide a compiler optimization

to determine the optimal SWING parameter for each Task,

starting with some application-level specification of accuracy.

Hardware Specific Optimizations: Furthermore, for appli-

cations where data does not fit into PROMISE memory, the

compiler needs to find an efficient dataflow pattern based on

the size of data arrays.

Easily Extensible to ML Domain Specific Languages:
Domain specific languages (DSLs) and libraries for ML

are evolving fast: there are already a wide range of popular

DSLs such as Torch, Theano, TensorFlow, MXNet, Keras,

and others [20], [21], [29]–[31], implemented on top of

dynamic programming languages such as Python, Julia, R,

Scala, Perl, etc. Thus, a desirable goal of the PROMISE

compiler is to be easily extendable to new DSLs. To achieve

this, we must provide a language-neutral IR as an interface

for the compiler/programmer.

B. AbstractTask and PROMISE Compiler IR

In this section, we first define an AbstractTask which

is an abstraction of a PROMISE Task described in Sec-

tion III-C. AbstractTask is based on our observation

that a vector operation can be either a Class-1 (addition/-

subtraction) or a Class-2 (signed/unsigned multiplication)

operation, but that distinction is only relevant for late stage

code generation, not front ends and other compiler optimiza-

tions. AbstractTask is also oblivious to hardware-specific

parameters such as the number of elements in a vector (i.e.,

the length of the bit-cell array), size of the bit-cell array, etc.

An AbstractTask has the following ten fields: (F1) W:

address of a 2D data array; (F2) X: address of a 1D data

array; (F3) output: address of the output 1D data array;

(F4) vecOp: element-wise vector operation between a row of

W and X; (F5) redOp: reduction operation on the output of

vecOp; (F6) digitalOp: unary operation on the output

of redOp; (F7) vectorLen: number of elements in X;

(F8) loopIterations: number of iterations of the loop

executed by the task; (F9) threshold: threshold value

for Class-4 threshold operation of Task; and (F10)
swing: voltage swing at which this should run on PROMISE.

The swing field is initialized to the value 0b111 (maximum

accuracy) by the frontend, and is fine-tuned later by the

energy optimization pass as described in Section IV-D.

The PROMISE compiler IR is a directed acyclic graph

(DAG) of such AbstractTasks, where each node rep-

resents an AbstractTask, and a directed edge between

two nodes P and C represents the dataflow from the output

of P to the input (W or X) of C. For example, for a DNN

inference algorithm of fully connected layers, the compiler IR

would be a sequential pipeline of AbstractTasks. Each

AbstractTask would represent the computation of the

corresponding fully connected layer of DNN.

The IR is acyclic even though a task is always an iterative

computation because the loop count is simply represented as

the RPT_NUM field of a task (Fig. 5(a)). Loops surrounding

a sequence of one or more tasks are always executed on the

host processor and not on the PROMISE accelerator.

C. Code Generation

Fig. 6 shows the PROMISE compiler pipeline for Julia.

There are three parts: (1) a front end to map Julia applications

to the IR, (2) energy optimizations on the IR, and (3) a back

end to translate the IR to the PROMISE ISA. The IR, energy

optimizations and back end are all designed to be independent

of the source-level language, to make it easily extendable to

other languages or DSLs.

Frontend (Julia program to PROMISE compiler IR):
We chose Julia as the source language because such a

high-level language enables us to easily identify patterns

of computations that can be offloaded to PROMISE. The ML

kernels are built using high-level library calls to matrix/vector

operations, and so we do not need to use sophisticated

compiler analysis to identify these operations. Julia also

supports several ML libraries such as MXNet [32], Flux [33],

and others and is already used to develop ML applications.

(Julia also has a working open-source LLVM front-end. Other

choices like TensorFlow didn’t have one available at the time

we started this work.)

The Julia frontend translates applications to LLVM IR.

The PROMISE pass runs over each LLVM function and uses

pattern matching to identify computations that can be of-

floaded to PROMISE, translates it into an AbstractTask,

and replaces the computations with a call to the PROMISE

runtime to pass the parameters of the AbstractTask.

The LLVM IR [34] representation is a collection of Single

Static Assignment (SSA) [35] dataflow graphs, one graph

per function in a program. Each node in an SSA graph

corresponds to an LLVM IR instruction. In each function,

the PROMISE pass looks for matrix-matrix operations with

a reduction component (e.g., matrix-matrix multiplication,

which uses the dot product). When it finds one, it also looks

for a single basic block “natural loop” [28] enclosing it,

using an existing, widely used analysis in LLVM. The loop

analysis also identifies the induction variable of the loop. If

such a loop is found, the PROMISE pass uses the loop and

induction variable information to check if the SSA graph of

the basic block matches with the SSA graph pattern shown

49



���������������	


�������

��������	

����

���


������������ �
 ��

����

��������	�����	������

�������������	


��������

����	���

�	������	�
����������
�


���	���	



Figure 7: SSA Pattern for single basic block loops. The
shaded nodes are calls to Julia library. The part enclosed
in square brackets is optional for pattern matching.

in Fig. 7, and explained below. If matched, the single-basic-

block loop can be offloaded to PROMISE. Since the pattern

matching can be fragile to minor variations in generated

LLVM IR, e.g., the loop index variable being incremented

instead of decremented in each loop iteration, the compiler

converts all single basic block loops into canonical loops

before pattern matching.

Starting near the bottom left of the SSA graph, library

call getindex is used to get the IVth vector of matrix

W . Vector X , which must be loop invariant (i.e., it must

have no definitions inside the loop), is used to perform an

element-wise vector operation with vector WIV . X being loop

invariant is essential for the computation to be efficient on

PROMISE: X gets stored in the buffer X_REG designed

to hold a vector with temporal locality and is constant

throughout the execution of a Task. The output of the

vector operation undergoes a reduction operation using

a Julia library function call. The right child of the store
SSA node uses the getelementptr instruction in LLVM

to compute the address where computed value needs to be

stored in the vector Out put.
This pattern captures many widely used ML inference

kernels, like template matching, support vector machines,

k-nearest neighbor, matched filtering, matrix-vector multipli-

cation, etc., and is used as a canonical form which can be

mapped to an AbstractTask.

Translation of the SSA graph to an AbstractTask is

straightforward. The SSA nodes Matrix W, Vector X
and Vector Output map to the W, X, and Output fields

of a AbstractTask, respectively. loopIterations
can be computed at run-time from the induction variable

IV and corresponding conditional branch at the end of the

basic block. VectorLen can be obtained from X. The

swing field is calculated as described in Section IV-D. After

mapping to an AbstractTask, we replace the loop from

the LLVM IR representation with a call to the PROMISE

runtime, passing it the fields of AbstractTask.

Backend (compiler IR to PROMISE ISA): The backend

of the compiler translates the compiler IR to the PROMISE

ISA by mapping each AbstractTask to an appropriate

Task. This involves two parts: (1) compile time code gener-

ation for Class 1-4, and (2) computing the OP_PARAM,
RPT_NUM, MULTI_BANK fields at runtime and passing

them to the PROMISE run-time, which runs on the host and

launches the Task.

Code generation for Class 1-4 is relatively straight-

forward: most fields have a one-to-one mapping to the

corresponding field of the ISA. For example, the digital

operation directly maps to the Class-4 field, and the

Class-3 operation is always ADC. Primarily, the backend

identifies where the vecOp of AbstractTask would exe-

cute - Class-1 or Class-2. If the vecOp is element-wise

addition or subtraction, Class-1 operation is set to aADD
or aSUB , respectively, and Class-2 performs just the

reduction of the resulting values according to redOp field of

AbstractTask. Otherwise, for (un)signed multiplication,

Class-1 performs the aREAD and Class-2 performs

the element-wise vector multiplication with X operand from

X_REG and performs the aggregation as well.

The OP_PARAM, RPT_NUM and MULTI_BANK fields

require runtime information and are computed on the host

before Task launch. For vector lengths > 128, X_PRD
is set to the number of rows required to fit one vector,

i.e., vectorLen/128. RPT_NUM is set to the product of

the number of loop iterations and the number of rows per

vector, i.e., X_PRD * loopIterations. Setting other

fields such as W_ADDR in OP_PARAM is straightforward and

we skip those for lack of space.

D. Energy Optimization

In the ML domain, classification accuracy of a model

is an important metric. For instance, neural networks for

a handwritten digit recognition can achieve classification

accuracy of pmodel = 98% on the MNIST [36] dataset running

on floating point architectures such as GPUs. Moreover,

the broader application context that uses the results of the

classifier can often tolerate lower accuracy, and that is

application-specific. In our work, we allow the source-level

programmer to express the additional error they can tolerate

when running their model, which we call the mismatch

probability (pm). As deterministic errors can be tolerated

easily by re-training the parameters in ML algorithms, we

focus on spatial random errors across bit-cells from process

variations in this section. Formally, pm is the upper bound on

difference between the classification accuracy of an algorithm

running on PROMISE (pPROMISE ) and the classification

accuracy of the ML model (pmodel), i.e.,

pmodel − pPROMISE ≤ pm (2)

The energy optimization in the compiler pipeline in Fig. 6

takes the mismatch probability pm from the program and

determines the swing field of each AbstractTask in

50



the application that would ensure that error tolerance is met.

Mapping a high-level parameter like pm directly to a suitable

swing voltage is difficult, and is even more challenging for

algorithms such as neural networks that have multiple Tasks.

We solve this problem by breaking it down into two parts,

taking advantage of prior work [22] for the first part: (a)

determining a minimum bit precision required to achieve the

given mismatch probability, using the results of [22] (note that

this is an algorithmic property and is hardware-independent);

and (b) mapping the required bit precision to the hardware

swing voltage, which is a property of PROMISE. These are

explained briefly below, second one first.

To achieve B-bit precision in the final output, the error

introduced must be less than 1/2B+1. The major source

of error in PROMISE due to lowering the swing voltage

is from aREAD operations (see Section III). The output of

aREAD follows a normal distribution Ŵ ∼N (W,σ 2
W ), where

σW = |W | · f (SWING) and f (SWING) is a function of the

SWING parameter and ranges from 0.08 ˜ 0.75. The SWING
parameter and f (SWING) are inversely proportional, and

hence, the σW is minimized with higher SWING parameter.

After the aggregation of N such vector elements through

charge-sharing, the standard deviation of the aggregated value

(σagg) of output is σW/
√

N. Since W is in range [-1, 1], we

assume |W | = 1 for all values to maximize σW and σagg.

In this paper, we choose a confidence level of 99%, which

corresponds to 2.6×σagg. To guarantee B-bit precision at

the output of aggregation, this yields:

2.6σagg = 2.6
f (SWING)√

N
<

1

2B+1
(3)

If we can estimate the required bit precision for a given

pm (part (a), above), we can use (2) to compute the minimum

swing voltage. To achieve (a), we leverage prior work [22]. In

that work, Sakr et al. analyze the quantization (floating-point

to fixed-point conversion) tolerance of neural networks and

give a relationship between the accuracy degradation and the

bit precisions used to store the activations and weights of a

neural network model. Mathematically, it says that given the

bit precision of weights and activations (BW and BA), they

can provide a bound on the mismatch probability p f l − p f p,

where p f l is the accuracy of the floating-point model, and

p f p is the accuracy of the same model quantized to fixed-

precision representation for weights and activations. The

analysis bounds the mismatch probability by

pm ≤ Δ2
AEA +Δ2

W EW , (4)

where EA and EW are statistics of the model obtained while

training the model, and ΔA = 2−(BA−1),ΔW = 2−(BW−1).

Since neural network inference is simply a series of

repeated vector distance computations described in Section II,

computation of activations in each layer can be described as

a PROMISE AbstractTask with W equal to a weight ma-

trix, and vector X equal to the activations of the previous layer.

����������

������%����		

�&���&�

����'(��
�������

��	�)

�����������*&�*&�
+���������,

����	��

����&�	������%���

�)�&������%�
�	������
���*&�

��
&	�
�&

����	��
����-����	

��
�

��
��
��	
�

��
��
��	
�

����������&�*�&���
.��


����*���*&
��&���&���

���������

����  ����)
��&���&���

��
�	
��
�&
��
�

	�
-�

	
��
��
�&�

�&
*�
�

	�
-�

	
��

�
��

��
�&

	�
-�

	

 ����)

 ����)

���/0	�-�	
���*���)
-�	�
�&���

����/0	�-�	
�*��&����	
-�	�
�&���

���		�
�&���&

�11�+.�&��
!���-�����"�,

����	��0�
+.�&���"��,

���� �
���*	�&���

����-���

����*�&
������&��
%�	�)�*&

��	����
-�	�
�&�



�&�

��������/����

Figure 8: PROMISE validation methodology.

The vector operation is element-wise multiplication and the

reduction operation is the sum of all the values in the result.

The activation function such as sigmoid/ReLU/tanh are

supported as Class-4 operations in PROMISE. Thus, a

neural network inference is a sequence of AbstractTasks.

In the context of PROMISE, we can use Sakr’s model to

calculate the bit precision BX for X in each AbstractTask
given the mismatch probability pm for the model (sequence

of AbstractTasks), weight precision BW = 7 since the

PROMISE bit-cell array uses 8-bits to store a value, including

one sign bit. Notice that Sakr’s model supports multiple layers

by assuming equal bit precision for all layers, effectively

distributing the error tolerance across the layers.

Putting it all together, we use the back propagation

statistics, EA and EW of the trained application model, along

with the desired pm, as input to analysis of [22] to estimate

BA and BW . We then use BX and vectorLength as input

to (2) to estimate the minimum swing voltage, which we

pass as the Class-0 SWING parameter to the PROMISE

run-time when launching the Task.

The analysis above has focused on neural networks because

the results of [22] used in step (a) is limited to neural

networks. (The other steps do not have this limitation.) For

other combinations of Class-1 and Class-2 operations,

we would have to extend Sakr’s analysis [37]. Doing so

is straightforward, but is outside the scope of this paper.

Moreover, we can still optimize kernels with only a single

AbstractTask by using a brute-force sweep through all

eight swing voltage levels to look for the optimal value.

V. VALIDATION METHODOLOGY

This section describes our methodology for validating

PROMISE’s energy, delay, and accuracy benefits as well

as the benefits of the compiler generated code. Fig. 8

summarizes our validation methodology. Specifically, we (a)

develop energy, delay, and behavioral models of PROMISE

components in TSMC 65nm GP process including analog

non-idealities; (b) incorporate these component-level analog

models (in Verilog-A) with Verilog model of the digital CTRL

51



to ensure correct functionality and estimate accuracy over

small data sets; and (c) develop a PROMISE C++ model with

component level behavioral models for verifying accuracy

over large data sets of compiler generated code.

Component-level Models: The entire mixed-signal chain

was post-layout simulated in SPICE to obtain the energy

and delay numbers listed in Table III. The total energy

and delay for the mixed-signal blocks were compared with

the measured results reported in [9] and the differences

were found to be within 10% and 9%, respectively. The

deterministic errors of the analog components are extracted

from measurement in the form of look-up tables (LUTs). On

the other hand, the spatial random error across bit-cells

due to the process variation was extracted from Monte-

Carlo SPICE simulations to obtain statistically sufficient

number of samples. Behavioral models incorporating these

non-ideal analog effects and delays were then incorporated

into component-level Verilog-A models for analog blocks.

Verilog models of all the digital components including CTRL
and TH block were developed and synthesized with the same

library via Synopsys Design Compiler.

Architecture-level Validation: Verilog and Verilog-A mod-

els described in Section V were integrated to obtain a cycle

and functionally accurate PROMISE Verilog model. The

digital blocks were verified by generating the correct control

signals at the right time in the presence of post-layout

parasitics when presented with the appropriate PROMISE

instruction word for small data sets.

Application-level Validation: A functional PROMISE C++

model incorporating the LUT-based analog behavioral models

described in earlier in Section V was also developed. This

C++ model was run on large data sets to obtain PROMISE’s

application-level accuracy. The compiler generated code was

verified with the Verilog models of the digital components

along with the Verilog-A models to evaluate energy and

accuracy of PROMISE.

Benchmarks: The commonly employed ML algorithms

listed in Table II were mapped to PROMISE. As PROMISE

is programmable, it employs 8-bit data to cover diverse

applications and algorithms as shown in many other imple-

mentations [1], [7], [38], [39]. For application level energy

optimization analysis, we also choose three variants of DNN

of different complexity to demonstrate the architecture. These

benchmarks give us diversity in complexity and allows us to

explore the energy accuracy trade-offs.

Baseline Architectures: It is well known that ASICs are

order-of-magnitude more energy and delay-efficient compared

to general-purpose processors (CPU/GPU) [47]. Therefore,

we choose the following four ASICs as our comparison

baselines for the conservative evaluation of PROMISE: (a)

CM: The programmability overhead is estimated via the

comparison with CM. (b) State-of-arts: We also compare

PROMISE with the recent prior arts with silicon IC pro-

� � � �

���
�� �

�����

� !"�/#��3���
#$ #$ #$ #$

� 
"$ × !"���
	�����

������

��� ��� ��� ���

���
���
5
���5
�������

�����

 !"�/(#%&)
��� 3
�������

���

���
	���

��8���

���������

X ������

��� ��� ���

Figure 9: Single bank of CONV-8b with L = 4, NROW =
512, NCOL = 256, where an SRAM communicates with
an algorithm-specific synthesized digital processor over
a pipelined interface.

totypes [6], [7], which implement similar algorithms as

PROMISE. The DNN is compared with [6] and k-NN and

template matching with L1 and L2 distances are compared

with [7]. (c) CONV-8b: We build the baseline digital

architecture (Fig. 9) with the 8-b fixed point computational

logic synthesized for the specific algorithm + conventional

SRAM. (d) CONV-OPT: This is the same as CONV-8b but

with minimum bit precision required per benchmark.

Even though prior arts exist for some of benchmarks, many

of them do not have a relevant previous ASIC. Furthermore,

configurations such as process technology and on-chip

memory capacity are not perfectly identical to PROMISE.

In order to perform a conservative comparison, the CONV-

8b/CONV-OPT (CONV) is chosen to operate at maximum

speed while only restricting the number of SRAM banks

employed to be same as PROMISE. The SRAM fetches

NCOL/(LBw) words per single read access of bank.Therefore,

CONV operates with maximum achievable throughput of:

fCONV =

(
NCOL/L

Bw

)(
1

TSRAM

)
(5)

The CONV (Fig. 9) consists of computation logic synthesized

for each specific benchmark therefore it only incurs the

energy costs of that specific benchmark and additional routing,

dataflow and control energy are neglected. Additionally,

CONV-OPT has the minimum precision for each benchmark

thereby making it the most conservative baseline to compare

with PROMISE in terms of accuracy, energy and throughput.

VI. EVALUATION

In this section we present evaluation of PROMISE. We

estimate the energy and delay for each operation using the

methodology presented in Section V. We present the gains of

the compiler-based energy optimization, compared with the

52



Table II: Benchmarks for PROMISE Simulations [36], [40], [41].

������	
� ������	��� ��	������ ��	�
������N�

����������
��	�������

������������ �����
���	��	�����

���	��	���� ' * ������	� ��	��� ���
�+- 1 23�

���
�����	�
:��
���������;

�
�����	����
��
�
���� ������	�	��

����� �<��	�;
==�=>

?@
?@��
�����	����A@@@@�
��
	�	�� �
������

?@@@@�������
�����
B ��� �!�����	��	�
�	��

��� �!�����
"�	���� ����

�
�����

C��
:��������	���������
��
#������!

D<B�C?=�=CA�?=<�?@
>�=�>�>

�
�����
#	����	��

$��������������;
������	��

%��������
����
�����

�<��	�;
=CA
C?=
?@=B

= ?@@������������� ?
��� �!�����	��	�
�	��

��� �!�����
&	����
��	����

����
�
����� ?

�����
���
�
���	��
��'�(?�E�(=;

&
��
)�����	�	��

����*+*(

�<��	�;
?A�?A
==�=>
>=�>>

AB =CA
*
��	�
���

?
��� �!������
��	��
��� �!�(?�, 
�������

(=�, �-�
���

*
��	�
��
#
���

����
�
�����

��
������
��	�
��
�
��������	����
(?����(=��	��
���

=

(	��
���.� &
��
������	��

����*+*( �<��	�;
?A�?A

=
= �
�����	��� =@@@�
��
	�	����
������� <C<

������
�����
? ��� �!�����	��	�
�	��

��� �!�����
"�	���� ����

�
�����

&
�� �
�
�����������	����

���������	��
���.�

���	������	�

A

/���
��'�(?�E�(=;

�
�����	����
��
�
���� ������	�	��

�����

�<��	�;
?A�?A
==�=>
>=�>>

?@
?@��
�����	����CB=?@�
��
	�	�� �
������
=@@�������
�����

?
��� �!������
��	��
��� �!�(?�, 
�������

(=�, �-�
���

��
	�	���
�
�����

����
�
�����

����	���	�������	� �0����
��
����������
#����

�������	������) ���$
?

&�
�����
�0��
��	���
�*�;

&
��
������	��

����*+*(� �<��	�;
?A�?A

, =@@@��
����� ? ��� �!�����	��	�
�	��
��� �!�����

"�	���� �
����� &����#�
�����������#��
#
�� ������	����
�������*�

,

(	��
��
�������	��

�����	��
�	��
�

����	����

�:�����	�
�
�


�<��	�;
=��	�1

, <?F= �
����� B

��� �!�����
��� �!���?����=�, ��
�

��>�, �-�
���
��B�, �	��2����

��?!�4
��=!�6
��>!�4
��B!�4

��B!�6
=����	��
���������	���!�
789:; 1 <>?@<>A?B

�<>C@<>ACD�EFG;HI;:G 1 JK L 789:; � MB
,

�
��3
�

��3
�

��3
�

��3
�

��3
3

�
��
��

�
��
���

	�


��

�
��
��

���


	�


��

�
��
��

���
�

��
��

��
��

�

��
�
�
��

��
�
�
��� ��
�

��
��

��
��

��

��
��

��
�

	���������������
�������� �����!3"

	���������������
�������� �������	"

(a)

�

#
$

%

 

&

'

(

)
*

�
��
��
�

��
���

	�


��

�
��
��
���

#

	�


��

�
��
��
���

$

��
��

��
��

�

��
�
�
��#

��
�
�
��$ ��
�

��
��

��
��

��

��
��

��
��
��

��
���

�

������������
!�����)3��������+

������������
!�������	��������+

(b)

Figure 10: PROMISE (with SWING = 111) compared to CONV in terms of: (a) speed-up, and (b) energy savings.

maximum (unoptimized) swing voltages, and then compare

PROMISE against the baselines described in Section V.

PROMISE executes 128-element vector operation per bank

within TP, i.e., its throughput in terms of ”number of OPs per

bank per unit time” can be expressed by fPROMISE = 128/TP
per bank. The energy consumption can be divided as:

EPROMISE =
4

∑
i=1

EClass,i +ELEAK +ECT RL, (6)

where EClass,i is the energy consumed by Class,i instruc-

tion, ECT RL and ELEAK are the CTRL block and leakage

energies, respectively. Table III shows the energy consumed

for each operation at SWING = 111.

A. Effectiveness of Compiler

Code Generation: The benchmarks for evaluation are listed

in Table II. They use a wide variety of combination of

operations in different Classes. Encoding these diverse

algorithms by hand or using a library is not feasible. Coding

these algorithms in Julia, and using the compiler to generate

PROMISE ISA was both more efficient and error free.

Moreover, it is suboptimal to find the SWING parameter for

benchmarks which use more than one Tasks. For example,

for DNN benchmark with three hidden layers, the number

of SWING combinations is 84 = 4096. Inter Task compiler

analysis is required to find the optimal SWING parameter

for such algorithms as shown later. Lastly, the compiler also

handles different vector sizes for these benchmarks.

53



"

"��

"�$

"� 

"�!

,

,��

���-�!. ������� ���-�!. ������� ���-�!. �������

�-� 	#
����/�0#���, 	#
����/�0#����

�
��



/�
��
��

��
��
�8
��

�	�
 ���������� ����

Figure 11: Energy breakdown (normalized to SVM with
CONV-8b).

�

��

���

����

�����

�

���

���

���

���

�

$
"�1

����
��

��
	


��
��
���
�

��
	


���
��
���
�

���
���

���
�

���
���
�

���
���
�

��
��
�

��
��
�

��
��
�

��
�	

���
���

��
�

���	����������� !

��"���#���� $
��	���� ������%
��

Figure 12: Energy gains by compiler directed energy
optimization. DNN-(1, 2, 3) are trained on MNIST
dataset. Their structures are: DNN-1(784-128-10), DNN-
2(784-256-128-10), and DNN-3(784-512-256-128-10).

Energy Optimization: We evaluate the energy benefits on

PROMISE by choosing the optimal swing values obtained

via compiler directed energy optimization. Fig. 12 shows

the energy benefits for energy optimized code generated

for PROMISE. The figure contains the energy estimates

of PROMISE for the benchmarks under test for two cases:

(1) Full Precision - all Tasks use maximum SWING, and

(2) Optimized - Tasks use the optimized SWING set by

the energy optimization pass. We limit the degradation in

accuracy to 1% (pm = 1%). Feature Extraction and Linear

Regression are omitted from this evaluation as they are not

classification kernels, and mismatch probability is defined

for classification algorithms only.

The first six benchmarks (Match Filtering − k-NN L2)

in Fig. 12 compile down to a single AbstractTask in

PROMISE compiler IR, and the optimal swing is obtained

by doing a sweep over all the eight values of swing. The last

three benchmarks, DNN-1, DNN-2, and DNN-3 are variants

of the multilayer perceptron shown in Table II. The three

DNNs have 3, 4, and 5 layers respectively and translate

to 2, 3, and 4 AbstractTasks. The search space for

optimal swing increases exponentially with increase of

each layer. We use the energy optimization analysis to obtain

Table III: Energy & delay per operation (1 cycle = 1 ns).

Class Operation Delay
(# of cycles)

Energy/
Bank (pJ)

1

write 2 73

read 2 33

aREAD 5 61

aSUBT 7 103

aADD 7 103

2

compare 6 5

absolute 6 12

square 8 38

sign_mult 14 16

unsign_mult 14 16

3 ADC 138 6

4

accumulation 4 ≈ 0

mean 3 ≈ 0

threshold 2 ≈ 0

max 4 ≈ 0

min 4 ≈ 0

sigmoid 3 ≈ 0

ReLu 3 ≈ 0

Leakage energy per cycle (1 ns) 0.6

CTRL energy per cycle (1 ns) 5.4

the swing values for these DNNs. The optimal swing for

the AbstractTasks in DNN-1 is (3, 6), for DNN-2 is (5,

7, 7), and for DNN-3 is (3, 3, 4, 6). The maximum energy

savings come from the lower layers of each DNN, which

are wider and also more tolerant to imprecision. Overall the

benefits of the optimization range from 4% (Linear SVM)

to about 20% (two k-NN versions) with geometric mean of

15%.

B. Performance and Energy

Comparison with State-of-Arts: The k-NN accelerator [7]

with L1 and L2-distances is implemented in a 14 nm FinFET

process, where 8-bit 128-dimension X is processed with

128 Wjs. The k-NN accelerator demonstrates 3.37 (3.84)

nJ/decision (processing single input X) with 21.5M (20.3M)

decisions/s with L1 (L2) distance. PROMISE achieves 18

(22.9) nJ/decision with 1.12M (0.98M) decisions/s with L1

(L2) distance for the same benchmark with single bank.

Though PROMISE achieves lower energy efficiency and

throughput, PROMISE is implemented in a 65 nm process

(vs. 14 nm FinFET in [7]). If the energy and delay numbers

in [7] are scaled to a 65 nm process based on ITRS roadmap

[48], PROMISE achieves 4.1× (3.7×) smaller energy and

3.1× (3.4×) lower throughput, achieving 1.3× (1.1×) energy-

delay product (EDP) reduction with L1 (L2) distance.

The DNN accelerator [6] was implemented in a 28 nm

process for 8-bit 5-layer DNN with a network size of 784-256-

256-256-10. The accelerator employs total 1 MB SRAM (to

test up to 16-bit case), zero-skipping, and RAZOR technique

[49], demonstrating 0.57 μJ/decision and 28K decisions/s. On

the other hand, PROMISE enables 8-bit 5-layer DNN with

a size of 784-512-256-128-10 in 36 banks (= 576 KB). The

network size is not identical, but comparable (PROMISE’s

network is slightly larger, requiring 69% higher number of

54



coefficients Wjs and MAC operations). PROMISE achieves

0.49 μJ/decision and 558K decisions/s, achieving 1.15×
energy saving and 19.9× throughput improvement with 22×
EDP reduction though PROMISE was implemented in a 65

nm process (vs. 28 nm in [6]).

Comparison with CONV: Fig. 10(a) shows that PROMISE

provides a speed-up of 1.4−3.4× compared to CONV-OPT

across the benchmarks. PROMISE’s speed-up is the least

for linear regression because it needs to re-access the same

SRAM data every Task because analog data cannot be

stored due to leakage whereas CONV stores the data in a

local register (pipeline FF in Fig. 9) and reuse it. Fig. 10(b)

shows that PROMISE achieves a 3.4−5.5× energy savings

compared to CONV-OPT leading to an EDP improvements

of 4.7− 12.6× compared to CONV-OPT. The key reason

for PROMISE’s energy efficiency is due to its aREAD

(Class-1) and aSD/aVD (Class-2) executed with low-

voltage swing mixed signal computation block (See Fig. 11).

The programmability overhead of PROMISE is minimal,

rather our estimates show the concepts introduced in this

paper actually can improve over CM. Our results show that

PROMISE achieves up to 1.9× speed-up over CM due to

the analog pipeline in spite of its operational diversity. In

spite of the increased complexity of CTRL to support the

programmability, PROMISE was found to achieve 5.5%

energy savings over CM due to reduced leakage as PROMISE

can go to sleep mode quicker after completing the given

Tasks due to the throughput gain.

VII. RELATED WORK

ML accelerators: The bandwidth of processor-memory

interfaces is a longstanding problem in high-performance

computing. Machine learning applications have greatly ag-

gravated the problem, where memory access has begun to

dominate the overall energy consumption. There have been

proposals for ML accelerators [4], [5], [23] primarily to

reduce memory access energy and latency by exploiting the

unique data flow of ML algorithms. The Dian-Nao family

of deep learning processors was the first to exploit these

features and demonstrate approximately 100× improvement

in both energy and speed-up compared to a GPU.

Many analog accelerators for ML have also been proposed.

RedEye [15] performs the initial convolution layer compu-

tations in analog domain before going to digital domain.

[50], [51] employed Adaptive Boosting algorithm for image

recognition processing raw analog signals from sensors.

[52] suggested mixed-signal matrix multiplier via switched-

capacitor. Such papers exploit the efficient analog calculation

for large data processing at slightly compromised accuracy.

However, they do not cover diverse ML algorithms in general.

There have also been efforts to integrate computation

near memory with emerging technologies such as resistive

RAM (RRAM) [53], and a Memristor crossbar based CNN

accelerator [14]. Compute cache [12] also demonstrates the

potential benefit of near-memory computing in digital domain

for memory-intensive applications. PROMISE proposes an

alternative line of integration via the use of compute memory

(CM), where the memory and processor integrated in mixed-

signal domain by eliminating the standard interface. Prior to

PROMISE, CM was used for fixed function architectures [8],

[9], [25], [54] to achieve aggressive energy savings.

Accuracy-Energy Tradeoff: There has been a lot of

work [55]–[58] in the Approximate Computing field to use

high level accuracy specifications by programmer to generate

code for unreliable hardware. However, these are built for

digital hardware and do not map well to PROMISE which

is a novel mixed-signal accelerator targeting applications in

a very specific domain (ML).

VIII. CONCLUSION

This paper presented PROMISE, the first end-to-end design

of a programmable mixed-signal accelerator for diverse

ML algorithms. PROMISE accomplishes a high level of

programmability without losing the efficiency of mixed-signal

accelerators for specific ML algorithms. We designed the

PROMISE ISA to allow software control over energy-vs-

accuracy tradeoffs, and supports compilation of high-level

languages like Julia down to the hardware. Our evaluation

shows better energy efficiency than digital ASICs, despite

much greater programmability, and significant energy savings

from small programmer-specified error tolerances.

ACKNOWLEDGEMENTS

This work was supported by C-FAR and SONIC, two of

the six SRC STARnet Centers, sponsored by MARCO and

DARPA. It was also supported by NSF (CCF-1302641 and

CNS-1705047).

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the game of go with deep neural networks
and tree search,” Nature, 2016.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012.

[3] Y. Chen, T. Chen, Z. Xu, N. Sun, and O. Temam, “DianNao Family:
Energy-efficient accelerators for machine-learning,” Communications
of the ACM, 2016.

[4] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture
for Energy-Efficient Dataflow for Convolutional Neural Networks,” in
ISCA, 2016.

[5] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen,
“Cambricon: An Instruction Set Architecture for Neural Networks,” in
ISCA, 2016.

[6] P. N. Whatmough, S. K. Lee, H. Lee, S. Rama, D. Brooks, and
G.-Y. Wei, “A 28nm SoC with a 1.2 GHz 568nJ/prediction sparse
deep-neural-network engine with > 0.1 timing error rate tolerance
for IoT applications,” in ISSCC, 2017.

[7] H. Kaul, M. A. Anders, S. K. Mathew, G. Chen, S. K. Satpathy, S. K.
Hsu, A. Agarwal, and R. K. Krishnamurthy, “14.4 A 21.5 M-query-
vectors/s 3.37 nJ/vector reconfigurable k-nearest-neighbor accelerator
with adaptive precision in 14nm tri-gate CMOS,” in ISSCC, 2016.

55



[8] M. Kang, M.-S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz,
“An energy-efficient VLSI architecture for pattern recognition via deep
embedding of computation in SRAM,” in ICASSP, 2014.

[9] M. Kang, S. K. Gonugondla, A. Patil, and N. R. Shanbhag, “A
Multi-Functional In-Memory Inference Processor Using a Standard
6T SRAM Array,” JSSC, 2018.

[10] M. Kang, S. K. Gonugondla, S. Lim, and N. R. Shanbhag, “A 19.4
nJ/decision, 364K decisions/s, In-memory Random Forest Multi-class
Inference Accelerator,” JSSC, 2018.

[11] J. Zhang, Z. Wang, and N. Verma, “In-Memory Computation of a
Machine-Learning Classifier in a Standard 6T SRAM Array,” JSSC,
2017.

[12] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw,
and R. Das, “Compute caches,” in HPCA, 2017.

[13] Y. Huang, N. Guo, M. Seok, Y. Tsividis, K. Mandli, and S. Sethumad-
havan, “Hybrid analog-digital solution of nonlinear partial differential
equations,” in MICRO, 2017.

[14] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A
Convolutional Neural Network Accelerator with In-Situ Analog
Arithmetic in Crossbars,” in ISCA, 2016.

[15] R. LiKamWa, Y. Hou, J. Gao, M. Polansky, and L. Zhong, “Redeye:
analog convnet image sensor architecture for continuous mobile vision,”
in ISCA, 2016.

[16] F. N. Buhler, P. Brown, J. Li, T. Chen, Z. Zhang, and M. P. Flynn, “A
3.43 TOPS/W 48.9 pJ/pixel 50.1 nJ/classification 512 analog neuron
sparse coding neural network with on-chip learning and classification
in 40nm CMOS,” in Symposium on VLSI Circuits, 2017.

[17] R. Genov and G. Cauwenberghs, “Kerneltron: support vector ”ma-
chine” in silicon,” IEEE Transactions on Neural Networks, 2003.

[18] Python Core Team, Python: A dynamic, open source programming
language, Python Software Foundation, 2015. [Online]. Available:
https://www.python.org

[19] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A
fresh approach to numerical computing,” SIAM Review, 2017.

[20] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system
for large-scale machine learning,” in OSDI, 2016.

[21] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “MXNet: A Flexible and Efficient Machine
Learning Library for Heterogeneous Distributed Systems,” CoRR, vol.
abs/1512.01274, 2015.

[22] C. Sakr, Y. Kim, and N. Shanbhag, “Analytical guarantees on
numerical precision of deep neural networks,” in ICML, 2017.

[23] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng,
Z. Xuehai, and Y. Chen, “PuDianNao : A Polyvalent Machine Learning
Accelerator,” ASPLOS, 2015.

[24] N. Shanbhag, M. Kang, and M.-S. Keel, Compute Memory. US
Patent 9,697,877 B2, July 04, 2017.

[25] M. Kang, S. K. Gonugondla, M.-S. Keel, and N. R. Shanbhag, “An
energy-efficient memory-based high-throughput VLSI architecture for
Convolutional Networks,” in ICASSP, 2015.

[26] S. K. Gonugondla, M. Kang, and N. Shanbhag, “A 42 pJ/decision
3.12TOPS/W robust in-memory machine learning classifier with on-
chip training,” in ISSCC, 2018.

[27] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “CNP: An FPGA-based
processor for convolutional networks,” in FPL, 2009.

[28] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison-Wesley
Longman Publishing Co., Inc., 2006.

[29] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-
like environment for machine learning,” in BigLearn, NIPS Workshop,
2011.

[30] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermüller, D. Bahdanau,
N. Ballas et al., “Theano: A python framework for fast computation
of mathematical expressions,” CoRR, vol. abs/1605.02688, 2016.

[31] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
[32] The Apache Software Foundation (ASF), “MXNet.jl,” http://dmlc.ml/

MXNet.jl/latest, 2015.

[33] M. J. Innes, “Flux: The Julia Machine Learning Library,” https://
github.com/FluxML/Flux.jl, 2015.

[34] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation,” in CGO, 2004.

[35] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,” TOPLAS, 1991.

[36] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database of
handwritten digits,” http://yann.lecun.com/exdb/mnist, 1998.

[37] C. Sakr and N. Shanbhag, “An Analytical Method to Determine
Minimum Per-layer Precision of Deep Neural Networks,” ICASSP,
2018.

[38] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” CoRR, abs/1502.02551,
2015.

[39] B. Murmann, D. Bankman, E. Chai, D. Miyashita, and L. Yang,
“Mixed-signal circuits for embedded machine-learning applications,”
in Asilomar Conference on Signals, Systems and Computers, 015.

[40] Production Crate, “Gun Shot Sounds.” [Online]. Available:
http://soundscrate.com/gun-related/

[41] Center for Biological and Computational Learning, MIT, “CBCL
Face Database No. 1,” 2001. [Online]. Available: http://cbcl.mit.edu/
software-datasets/index.html

[42] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, 2015.
[43] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,

1995.
[44] K. I. Kim, K. Jung, and H. J. Kim, “Face recognition using kernel

principal component analysis,” IEEE signal processing letters, 2002.
[45] R. Brunelli and T. Poggio, “Face recognition: Features versus

templates,” IEEE transactions on pattern analysis and machine
intelligence, 1993.

[46] D. K. Mellinger, S. W. Martin, R. P. Morrissey, L. Thomas, and J. J.
Yosco, “A method for detecting whistles, moans, and other frequency
contour sounds,” The Journal of the Acoustical Society of America,
2011.

[47] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding
sources of inefficiency in general-purpose chips,” in ACM SIGARCH
Computer Architecture News, 2010.

[48] ITRS, “ITRS Roadmap.” [Online]. Available: http://www.itrs2.net/
[49] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,

D. Blaauw, T. Austin, K. Flautner et al., “RAZOR: A low-power
pipeline based on circuit-level timing speculation,” in MICRO, 2003.

[50] W. Rieutort-Louis, T. Moy, Z. Wang, S. Wagner, J. C. Sturm, and
N. Verma, “16.2 A large-area image sensing and detection system
based on embedded thin-film classifiers,” in ISSCC, 2015.

[51] S. Joshi, C. Kim, S. Ha, Y. M. Chi, and G. Cauwenberghs, “21.7
2pJ/MAC 14b 8×8 linear transform mixed-signal spatial filter in 65nm
CMOS with 84dB interference suppression,” in ISSCC, 2017.

[52] E. H. Lee and S. S. Wong, “24.2 A 2.5 GHz 7.7 TOPS/W switched-
capacitor matrix multiplier with co-designed local memory in 40nm,”
in ISSCC, 2016.

[53] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“PRIME: A Novel Processing-in-Memory Architecture for Neural
Network Computation in ReRAM-Based Main Memory,” in ISCA,
2016.

[54] M. Kang and N. R. Shanbhag, “In-memory computing architectures
for sparse distributed memory,” IEEE Transactions on Biomedical
Circuits and Systems, 2016.

[55] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard,
“Chisel: Reliability-and accuracy-aware optimization of approximate
computational kernels,” in OOPSLA, 2014.

[56] A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip, L. Ceze,
and M. Oskin, “ACCEPT: A programmer-guided compiler framework
for practical approximate computing,” in U. Washington, Tech. Rep.
UW-CSE- 15-01-01, 2015.

[57] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general
low-power computation,” in PLDI, 2011.

[58] J. Bornholt, T. Mytkowicz, and K. S. McKinley, “Uncertain<T>: A
First-order Type for Uncertain Data,” in ASPLOS, 2014.

56


