Simulating PCI-Express Interconnect for Future
System Exploration

Mohammad Alian*, Krishna Parasuram Srinivasan®*, Nam Sung Kim
Electrical and Computer Engineering, University of Illinois, Urbana-Champaign
Email: {malian2, kprini2, nskim} @illinois.edu

Abstract—The PCI-Express interconnect is the dominant in-
terconnection technology within a single computer node that
is used for connecting off-chip devices such as network in-
terface cards (NICs) and GPUs to the processor chip. The
PCI-Express bandwidth and latency are often the bottleneck
in the processor, memory and device interactions and impacts
the overall performance of the connected devices. Architecture
simulators often focus on modeling the performance of processor
and memory and lack a performance model for the I/O devices
and interconnections. In this work, we implement a flexible and
detailed model for the PCI-Express interconnect in a widely
known architecture simulator. We also implement a PCI-Express
device model that is configured by a PCI-Express device driver.
We validate our PCI-Express interconnect performance against
a physical Gen 2 PCI-Express link. Our evaluation results show
that the PCI-Express model bandwidth is within 19.0% of the
physical setup. We use our model to evaluate different PCI-
Express link widths and latency and show its impact on the
overall I/O performance of an I/O intensive application.

I. INTRODUCTION

The failure of Dennard scaling and the increase in the dark
silicon area on a multi-core chip resulted in a shift from
the single node to distributed computing and the use of off-
chip accelerators such as GPUs and FPGAs [1], [2]. The I/O
performance plays an important role in the performance and
power efficiency of such modern systems [3], [4]. However,
in most of the computer architecture studies, the common
practice is to only model the performance of the processor and
memory subsystems while ignoring that of I/O subsystems.

gemb5 is the state of the art architecture simulator that is
widely used for the performance modeling of a wide range
of computer systems. Several efforts have been made to add
performance models for different I/O devices, such as NIC,
GPU, SSD, and NVM, to the mainstream gem5 [4]-[8].
Although these effort are valuable and help researchers to more
accurately model a full computer system, the current gem5
release lacks a device model for an off-chip interconnection
and all the devices are connected through a crossbar to the pro-
cessor chip. Having a detailed off-chip interconnection model
is necessary to accurately model the interactions between a
processor and off-chip devices.

PCI-Express is the dominant interconnection technology for
connecting off-chip devices such as NICs, accelerators (i.e.,
GPU), and storage devices (i.e., SSD) to a computer system.

* Both authors contributed equally to this work.

Unlike a PCI bus that is shared by several devices, PCI-
Express provides a virtual point-to-point connection between
a device and a processor, enabling the processor to simul-
taneously communicate with multiple devices. PCI-Express
significantly improves the bandwidth between the processor
and a device. Nevertheless, the PCI-Express bandwidth and
latency often limit the performance of the modern devices such
as 100Gbps NICs and GPUs. For example, a recent Intel®
Xeon™ processor [9] provides 6 DDR4 memory channels
with an aggregate bandwidth of 153.6GBps. In contrast, an
Intel® Xeon™ processor offers 48 PCI-Express Gen 3 lanes
with an aggregate bandwidth of 48GBps. Therefore, this is
critical to accurately model the PCI-Express bandwidth and
latency to capture the exact behaviour of modern off-chip
devices.

In this work, we provide a generic template for enabling
and implementing a PCI-Express device in gem5. Moreover,
we implement models for a set of PCI-Express components,
such as Root Complex, Switch, and Link, to enable accurate
modeling of a full computer system with off-chip devices.
We validate our model against a physical PCI-Express sys-
tem and show that the PCI-Express performance impacts the
I/O throughput and possibly the overall performance of an
application.

II. BACKGROUND

In this section we provide some background on PCI bus and
PCI-Express interconnect and explain their main differences.

A. PCI Bus

Figure 1 illustrates the PCI bus architecture. PCI is a parallel
bus interconnect where multiple I/O devices share a single
bus, clocked at 33 or 66 MHz [10]. Different PCI buses are
connected together via PCI Bridges to form a hierarchy. Each
device on a PCI Bus is capable of acting as a bus master [11],
and thus DMA transactions are possible without the need for
a dedicated DMA controller [10].

Each PCI Bus can support up to 32 devices. Each device is
identified by a bus, device and function number. A PCI device
maps its configuration registers into a configuration space,
that is an address space exposing the PCI specific registers
of the device to enumeration software and the corresponding
driver [12]. Enumeration software is a part of BIOS and
operating system kernel that attempts to detect the devices
installed on each PCI Bus (slot), by reading their Vendor

Host-PCI | «—
Processor and Memo
Bus 0 Bridge | —> u
1
| |)
T Primary bus number= 0x00
; PCI-PCI -
Endpoint Bridge Secondary bus number = 0x01
Subordinate bus number = 0x02
213 1 I
| PCIIPC[Primary bus number= 0x01
... |Endpoint B - Secondary bus number = 0x02
Bus 2 n‘ige Subordinate bus number = 0x02

Fig. 1. PCI bus architecture

and Device ID configuration registers [13]. The enumeration
software performs a depth-first search to discover devices on
all the PCI buses in the system [10]. This allows a device
driver to identify its corresponding device and communicate
with it through a memory mapped I/O.

PCI devices are grouped into bridges and endpoints. Bridges
are configured with 3 bus numbers [12]: (1) a primary bus
number denoting the upstream bus that the bridge is connected
to; (2) a secondary bus number denoting the immediate down-
stream bus of the bridge; and (3) a subordinate bus number
denoting the downstream bus with the largest number. A PCI
bridge transfers configuration transactions from its primary
interface to its secondary interface if the transactions are
destined for a device with a bus number which lies in between
the secondary and subordinate bus number of the bridge [14].
In addition to the bus numbers, each bridge is programmed
with memory regions that are used to transfer memory or
I/O transactions from the primary to a secondary interface.
Endpoints are devices that are connected to only one PCI bus,
and do not allow transactions to go through them (they either
send request or consume a request). A PCI bus enumeration
ends at an endpoint.

A PCI bus does not support split transactions. When a PCI
bus master communicates with a slave, a wait state is used
if the slave is not ready to supply or accept the data. After
spending a certain time at a wait state, the slave device (i.e. an
endpoint or a bridge) signals the master to stop the transaction,
to allow other masters to utilize the bus. Thus, PCI bus has
a low efficiency, where only approximately half of the bus
cycles are actually used to transfer data [10]. Furthermore,
although the operating system supports up to 32 PCI devices to
be enumerated, a single PCI bus can support only 12 electrical
loads. Therefore, PCI supports at most 12 devices per bus [10].
Lastly, a PCI bus has only 4 interrupts lines that is shared
between all the installed PCI devices.

B. PCIl-Express Interconnect

PCI-Express is a layered protocol that defines data exchange
between peripheral devices, CPU and memory. PCI-Express
interconnect, from bottom up, consists of the following layers:
physical, data link, and transaction layers [10]. A PCI-Express
interconnect consists of multiple point-to-point links between
a pair of devices [10]. Each link can be broken down into one
or more lanes. Each lane consists of two pairs of differential
signaling wires one pair for transmission in each direction. A

Processor |<—>
EY
Root Complex DRAM
device 0 device 1
[R] |R]
' PCleLink =%
&h }{‘ : -
| PCI Express Switch| [Endpoint| | RootPort [F]
D D R H
Host to PCI Bridge

Virtual PCI to PCI Bridge
Switch Downstream Port @
Switch Upstream Port

| Endpoint|| Endpoint |]

Fig. 2. PCI-Express interconnection architecture

PCI-Express Link can have up to 32 lanes. PCI-Express links
are capable of transmitting data at a rate of 2.5 Gbps, 5 Gbps,
and 8 Gbps in a single direction per lane in generation 1 (Gen
1), 2 (Gen 2), and 3 (Gen 3), respectively.

In contrast to the PCI standard, where devices share a
single bus, a PCI-Express link has only 2 devices. As shown
in Figure 2, switches are used to connect multiple devices
together in the PCI-Express fabric. A PCI-Express switch has a
single upstream port and multiple downstream ports. A switch
is characterized by its latency, which is described as the time
between the first bit of a packet arriving at an ingress port and
the first bit of a packet leaving the egress port [15].

Similar to a PCI device, a PCI-Express device offers three
address spaces to the enumeration software and the device
driver as follows: Configuration space which is used by
the device to map its configuration registers into; memory
space which is used by a device to map the device-specific
registers to the memory space to facilitate Memory Mapped
/O (MMIO) accesses by the device driver; and I/O space
which is used for port-mapped I/O (PMIO) ' by the device
driver. The configuration space of a device is initially accessed
during the enumeration to discover the identity of the device
and its memory and I/O space requirements, and also assign
interrupt resources to the device. A PCI-Express device driver
is provided with the base address assigned to the device in
memory and I/O space, which is used to access device specific
registers at particular offsets from the provided base address.
Routing components (e.g. switches) along the path from the
CPU to the device are informed of the address ranges occupied
by the device (i.e. memory and I/O space) [10].

PCI-Express is a packet-based protocol, where packets are
exchanged between the devices. There are several different
types of packets in the protocol such as request, response,
message, and link-specific packets. Requests, responses, and
messages can carry data and are classified as transaction layer
packets (TLP). A TLP consist of a header and optionally a pay-
load. The header is used for routing and contains information

IPMIO or isolated I/O is a method for performing I/O which is the
complementary of the MMIO method [16]

Mem
Ctrl

M s
Response T iReque&t RequestT lResponse

packet Packet Packet packet

s M -~
s Membug
M

=
2
=]
@

10Cache
M s
< M

Fig. 3. gemS5 off-chip interconnection architecture. “S” and “M” represent
Slave and Master ports, respectively.

such as the destination address, payload size, and transaction
type (i.e. request or response). A request originates at a re-
questor, and are routed to a completor based on the address in
the packet header. A write request packet contains data while
a read request carries no data. A response packet originates
from the completor and is forwarded to the requestor. The
response is routed based on the requestor’s bus, device and
function number. In some instances, a response packet is not
needed for a request packet. These requests are called posted
requests [10]. A message is a posted request that is mainly
used for implementing message signaled interrupts (MSI). A
device uses MSI to write a programmed value to a specified
address location in order to raise an interrupt [17]. The use
of packets instead of bus cycles allows split transactions since
a link is occupied only for the transmission time of a packet
across the link.

A root complex connects the PCI-Express interconnect to
the processor and Memory. As show in Figure 2, it consists
of a host to PCI bridge (HPB) and a virtual PCI to PCI bridge
(VP2P) for each root port [18]. The internal root complex
bus is enumerated as bus 0, and each VP2P is enumerated
as a device on the bus 0. The root complex converts I/O and
memory requests from the processor into TLPs destined for a
particular PCI-Express device. The root complex also converts
DMA transaction requests from devices into memory requests.
In this way, the root complex acts both as a requester as well
as a completor [10].

III. GEMS5 OFF-CHIP INTERCONNECT

We use ARM ISA in gem5 with machine type® set to
“Vexpress_GEMS5_V1” to test our PCI-Express model. Fig-
ure 3 shows an overview of the overall architecture of the
Vexpress_ GEMS5_V1 platform. The connected devices in this
platform are either on-chip (e.g. generic interrupt controller
(GIC) and LCD controller (HDLCD)) or off-chip devices (e.g.
UART, IDE controller, etc.). On-chip and off-chip devices are
placed in distinct memory ranges.

Since gem5 does not differentiate between requests to
configuration, I/O, and memory space, different configuration,

2machine type represents different ARM evaluation board platforms

I/O, and memory ranges must be assigned to the PCI devices
in gemS.

In the ARM Vexpress_GEMS5_V1 platform, 256MB (ad-
dress range 0x30000000 - Ox3ffffffff), 16MB (address range
0x2f000000 - Ox2fffffff), and 1GB (address range 0x40000000
- 0x80000000), is assigned for the PCI configuration space, I/O
space, and Memory space, respectively. DRAM is mapped to
addresses from 2GB to 512GB. Because the address spaces
of the PCI devices is mapped to the physical addresses lower
than 2GB, all PCI devices can use 32 bit address registers
instead of 64 bit ones.

On-chip devices, caches and the memory controller re-
side on a coherent crossbar implementation in gem5, called
MemBus. Off-chip devices reside on a non coherent crossbar
called /OBus. A crossbar in gem5 has multiple master and
slave ports, each of which is used for sending/receiving
requests to/from a connected slave/master device, respectively.
These crossbars are loosely modelled based on the ARM
AXI interconnect, where transactions are routed to different
slave devices based on the address range each slave device
registers with the crossbar [19]. In gemb5, a crossbar has
latency associated with making forwarding decision as well
as for moving data from one port to another.

All gem5 memory transactions are represented in the form
of a packet, which is transported through the memory system
depending on its destination address. This packet based nature
of the gem5 memory and I/O systems makes modelling PCI-
Express packets easier. Every component in gem5 memory
and I/O subsystems needs a standard interface to send and
receive packets. This is implemented in the form of ports. A
slave port needs to be paired with a master port and vice versa.
Slave ports are used by gem5 components to accept a request
packet or send a response packet, while master ports are used
to accept a response packet or send a request packet. PCI
based peripheral devices implement two ports: a PIO slave
port to accept requests originated from the processor, and a
DMA master port to send DMA request packets to the memory
through the interconnect. In gem5, a PIO port of a PCI device
is connected to the master port of the IOBus while the DMA
port is connected to the slave port of the IOBus.

gem5’s PCI Host is used to functionally model a Host-
PCI bridge. The PCI Host claims the whole PCI configuration
space address range, so any requests from the processor to
PCI configuration space reaches the PCI host. All PCI based
peripherals in gem5 need to register themselves with the PCI
Host, which provides an interface to do so. Each device
registers itself using an address based on the bus, device, and
function numbers. The PCI Host maps 256 MB of config-
uration space to itself with a base address of 0x30000000,
where up to 4096 bytes of configuration registers can be
accessed per function of a device. This method is called
Enhanced Configuration Access Mechanism (ECAM) [10],
[20]. On receiving a configuration request from the processor,
the PCI Host parses the bus, device and function numbers from
the request and passes the request packet to a corresponding
device that has registered with it. If there is no registered

Byte 3 Byte 2 Byte 1 Byte 0 offset
4 Device ID Vendor ID 0x00
Status Register Command Register 0x04
Class Code Revision ID [0x08
BIST Header Type |Latency Timer | gline Size |0x08
R1 Base Address 0 0x10
Reserved | Cap. Ptr(0xC8)|0x34
Reserved 0x38
- Max_Lat | Min_gnt | Interrupt Pin | Interrupt Line [0x3C
A
0xA0
MSEX Capability Structure (next cap. pir = NULL) oxAB
0xCo
Power Management Capability Structure (next cap. ptr = 0xD0})
R2 0xC8
0xDo
MSI Capability Structure (next cap. pir = 0xE0) OXDF
0xEO0
PCI Express Capability Structure (next cap. pir = 0xA0Q) OxF3
I PCIEx Extended Capabilitie 0x100
R3 press Bxie apa s OxFFF
¥

Fig. 4. Configuration space of a (endpoint) device in gem5. R1, R2, and R3
show the PCI/PCI-Express endpoint configuration header (header type 0),
PCI/PCI-Express capabilities space, and PCI-Express extended capabilities
space.

device matching the configuration request’s target, the PCI
Host simply fills the data field of the request packet with 1’s
and sends back a response to the processor. In the PCI-Express
protocol, a configuration response packet with its data field
set to 1’s represents an attempted access to a non-existent
device [10].

A bridge is used to connect the Membus to the IObus. It is a
slave device on the Membus and a master device on the IOBus.
The bridge is configured to accept packets that are destined
for an address in the off-chip address range from the Membus.
We use the gem5 bridge model and build a root complex
and a PCI-Express switch model upon that. In addition to the
bridge, gem5 employs an IOCache, a small cache which is
used to ensure the coherency of DMA accesses from the off-
chip devices as well as act as a bandwidth buffer between
connections of different widths.

IV. PCI-EXPRESS DEVICE MODEL AND DRIVER

In this subsection we explain how we enable a device driver
designed for a PCI-Express based device to successfully detect
and configure a corresponding device in gem5. Since all the
device models in gem5 are for PCI based devices, we choose
a PCI based device model, make certain changes, and get it
work with a driver designed for a PCI-Express device. As our
base device, we take the Intel 8254x NIC model in gem5 and
enable the Intel e1000e device driver to detect and configure
the NIC. We call the new NIC model 8254x-pcie. The e1000e
driver is used for the PCI-Express based Intel 825741 NIC.
Although we enable a specific PCI-Express device model, it
can serve as a template for the future PCI-Express device

Byte 3 Byte 2 Byte 1 Byte0 offset

PCle Capabilities Ragister| Next Cap Ptr |Capabi|ity ID| 0x00
Device Capabilities Register 0x04

¢ Device Status | Device Control 0x08
Link Capabilities 0xoC

Link Status | Link control 0x0F

c2 Slot Capabilities 0x14
* Slot Status Slot Control 0x18
Reserved Root Control 0x1C

cf Root Status 0Ox1F

Fig. 5. PCI-Express capability structure. C1, C2, and C3 show the registers
implemented by all the PCI-Express functions, only the ports connected to a
slot, and only the root port respectively.

model developments in gem5. We explain our changes in the
context of our 8254x-pcie model.

The configuration space of PCI and PCI-Express devices
contains the configuration registers that is needed by the
enumeration software [21] and the device driver to detect and
configure the device. Figure 4 shows the configuration space of
the devices in gem5. A PCI device has a configuration space
of 256B per function 3 (R1 + R2 in Figure 4), while a PCI-
Express device has configuration space of 4KB per function
(R1 + R2 + R3 in Figure 4) [10]. Both PCI and PCI-Express
devices expose a standard 64B “header” (R1 in Figure 4)
to the enumeration software. A PCI-Express device must
implement the PCI-Express capability structure in the first
256B of the configuration space. Unlike a PCI device, a PCI-
Express device can implement extended capability structures
starting from offset 0x100 of the configuration space (R3
in Figure 4). These extended capabilities are configured by
the device driver and include features such as advanced error
reporting and virtual channels [10].

A device driver exposes a Module Device Table to the
kernel [22], which lists the Vendor ID and device ID of all
the devices supported by that driver. We set the Device ID
register in the 8254x-pcie configuration header to 0x10D3 to
invoke the probe function of the e1000e driver.

The baseline gem5 implements the endpoint configuration
header (i.e. R1 in Figure 4), but it does not implement
PCI/PCI-Express capability and PCI-Express extended ca-
pability spaces (R2 and R3, respectively). There are four
capability structures defined by gem5 in the PCI/PCI-Express
capability space: MSI-X, power management, MSI, and PCI-
Express capability structures. As shown in Figure 5, each
capability structure consists of a set of registers, and is
identified by a Capability ID. The capability structures are
organized in a chain, where the next capability pointer (Next
Cap Ptr in Figure 5) points to the next capability structure
within a device’s configuration space.

Based on the datasheet [23], an Intel 825741 NIC imple-
ments power management (PM), MSI and MSI-X capability
structures in addition to the PCI-Express capability structure.

3We assume single function devices and use “device” and “function”
interchangeably.

”) M
<
MemBus

Root Complex

! Devo| vp2p

Root Port 1

Internal Bus 0

Dev 1 VPZP Dev 2 VPZP

Root Pnrtz Root Pnrt3

Switch

Endpoint

Endpoint

Fig. 6. Overview of our root complex model.

We set the capability pointer register (Cap Ptr in Figure 4) to
point to the address of the PM capability structure. The Next
Cap Ptr of the PM points to the MSI capability structure,
which in turn is followed by the PCI-Express and MSI-X
capability structures, respectively. Since there is no support for
PM, MSI and MSI-X in gem5, we disable these capabilities
by appropriately setting register values in each structure. As a
result, the device driver is forced to register a legacy interrupt
handler instead of MSI or MSI-X. The PCI Express capability
structure shown in Figure 5, is configured to trick the device
driver into believing that the device is installed on a PCI-
Express link, even though it can still be connected through a
gemb crossbar.

V. MODELING PCI-EXPRESS COMPONENTS

In the Sec. IV, we explained how to enable a device model in
gem5 to be detectable by the enumeration software and PCI-
Express driver in the Linux kernel, regardless of the physical
layer organization. In this subsection, we explain our event-
driven performance models for the PCI-Express root complex,
switch, and links to accurately model the behaviour of a
physical interconnect.

A. Root Complex

Figure 6(a) overviews the PCI-Express components that we
implement in gem5. We connect the root complex to the
Membus. To ensure coherent I/O accesses, we pass all the
memory requests generated by DMA transactions through an
IOCache and then send them to the Membus. We do not
include a host to PCI bridge (HPB) within our root complex.
Instead we use the gem5 host to PCI bridge (PCI Host). Our
root complex implements three root ports and one upstream
port. Each port consists of a gem5 master and slave port.
Also, there is one virtual PCI to PCI bridge (VP2P) associated
with each root port. The upstream slave port is used to accept
requests from the processor destined for a PCI-Express device,
while the upstream master port is used to send DMA requests
from the PCI-Express devices to the I0Cache. As memory
requests/responses in gem5 are in the form of packets, we
do not create a separate PCI-Express transaction packet in the

root complex and use gem5 packets to communicate with PCI-
Express devices. Each port associated with the root complex
has configurable buffers and models the congestion at the port.
Also, the there is a configurable latency for request/response
processing at the root complex. This latency accounts for the
switching latency within the root complex. The root complex
simulation object can work either with a conventional gem5
crossbar or with a PCI-Express link that is explained later in
this section.

Virtual PCI to PCI Bridge (VP2P). To implement a VP2P
for a root port, we create a PCI to PCI bridge (P2P) configu-
ration header [10], and expose this header to the enumeration
software in the kernel. The enumeration software configures
the necessary fields of the P2P header and assigns distinct
memory and I/O space ranges to each P2P. As explained
in Sec Ill, PCI Host is a dummy device in gem5 that is
responsible for configuring all the PCI devices in the system.
Therefore, we need to register our VP2P model with the PCI
Host similar to a PCI endpoint. We configure each VP2P with
a bus, device and a function number. The bus number is 0
for the VP2P associated with a root port and is incremented
when enumeration software traverses down the device tree in
a depth-first search manner.

Figure 7 shows the 64B P2P configuration header that we
implement for each VP2P. Following is a description of some
important registers in the header:

— Vendor 1d, Device Id. These two registers are needed to
detect and identify a P2P. We set the Vendor Id of the three
VP2Ps to 0x8086 and their device ID to 0x9¢90, 0x9¢92, and
0x9c94, respectively. These values are corresponding to an
Intel Wildcat chipset root port configuration [24].

— Status Register. Indicates interrupt and error status among
other features. All the bits except the 4" bit are set to 0 which
indicates that we have implemented the PCI-Express capability
structure for this bridge.

— Command Register. Configures the P2P primary interface.
We set the Command register to indicate that transaction pack-

Byte 3
Device ID
Status Register
Class Code
| Header Type(0x01)
Base Address 0

Byte 1
Vendor ID

offset
0x00

0x04
0x08
0x0C
0x10
ox14
0x18
oxic
0x20
0x24

Byte 2 Byte 0

Command Register
Revision ID
Cache Line Size

Latency Timer

Base Address 1
Second Lat Timer | Sub bus num Sec Bus Num

Secondary Status 'O Limit

Pri Bus Num

'O Base
Memory Base

Memory Limit
Prefetchable Memory Limit

Prefetchable Memory Base

0x28
ox2c
0x30
0x34

Prefetchable Base Upper 32 bit
Prefetchable Limit Upper 32 bit

'O Limit Upper 16 bits | 'O Base Upper 16 bits
| capability pointer

Reserved

Expansion ROM Base Address
Bridge Control |

0x38
0x3C

Interrupt Line

Interrupt Pin |

Fig. 7. PCI brdige configuration header (header type 1).

ets received on the VP2P secondary interface are forwarded
to the primary interface. To enable DMA transactions from
the downstream port, we configure the Command Register to
indicate that the downstream devices can act as a requestor
for the I/O or memory space transactions.

— Header Type. Is set to 1 that indicates this is a P2P
configuration header not an endpoint header.

— Base Address Registers. Set to 0 to indicate that the VP2P
does not implement memory-mapped registers of its own and
requires no memory or I/O space.

— Primary, Secondary, Subordinate Bus Number Registers.
These registers indicate the immediate upstream, immediate
downstream and largest downstream bus numbers with respect
to the VP2P. These are configured by software and we initial-
ize them to Os.

— I/0 Base and Limit Registers. These registers define the I/O
address space downstream of a VP2P root port. Since the PCI
I/O space range in the ARM_Vexpress_ GEMS5_V1 platform is
between 0x2f000000 to Ox2fffffff, 32 bit addresses are needed
to access the I/O space range. To implement this I/O space
range, we utilize both I/O Base Upper and I/O Limit Upper
registers.

— Memory Base and Limit Registers. These registers define
a window that encompasses the memory space (MMIO) lo-
cations that are downstream of a VP2P corresponding root
port. They are configured by the enumeration software and
we initialize them to 0.

— Capability Pointer. Set to 0xDS8 to indicate the starting
address of the PCI Express capability structure in the con-
figuration space.

Routing of Requests and Responses. As mentioned in
Sec. II-B, PCI-Express transaction packets are routed based
on the addresses in their header. We attempt to do the same
in our root complex. If the packet address falls within the
range defined by the memory or I/O base and limit registers
of a particular VP2P, the packet is forwarded out to the
corresponding root port. Note that the response packet needs to
be routed back to the device that had issued the request. To do
this, we create a PCI bus number field in the packet class, and
initialize it to -1. Whenever a slave port of the Root Complex
receives a request packet, it checks the packet PCI bus number.
If the PCI bus number is -1, it sets it to its secondary
bus number, as configured by the enumeration software in
the corresponding VP2P. The upstream root complex slave
port sets the bus number to be 0. When a root complex
master port receives a response packet corresponding to a
particular request, it compares the packet’s bus number with
the secondary and subordinate bus numbers of each VP2P. If
the response packet’s bus number falls within the range defined
by a particular VP2P secondary and subordinate bus numbers,
the response packet is forwarded out to the corresponding slave
port. If no match is found, the response packet is forwarded
to the upstream slave port.

PCI Express Link

= i pcie-pkt !
Ly ; iDMA | =
£5 PR . St
9 % S |—M| | RX Logic — TX Logic | [s M| E &
o i - SE
2o : peie-pkt : Ea
= ! ipl0o |E 0
Eg ; . ceeep : 8&
= S mfs| | Logic RX Logic | [M|—s|E &
88 @ >
=] 1 T
'3 | :
TX Logic RX Logic ,
s} rev v +fscqent-» w
T [€-mnnmnnes ;
@ 2 S
o Seq. ACK Gen ACK Timer :;
- seq:l Y seql | &
1o | seqi0 — reTX — »{Replay Timer 0| &
LA I Seqf
i |Replay 'I'lmer" ACK Timer | Dequeue

Fig. 8. Overview of our PCI-Express link model.

B. PCI-Express Switch

In PCI-Express, switches serve to interconnect PCI-Express
links together. Similar to the Root Complex, switches perform
routing of both transaction requests and response packets.
PCI-Express switches can be either store and forward or cut
through [25]. A store and forward switch waits to receive
an entire packet, before processing it and sending it out the
egress port. Cut through switches on the other hand start to
forward a packet out the egress port before the whole packet is
received, based on the packet’s header alone [25]. Since gem5
deals with individual packets, instead of bits, our PCI-Express
switch is a store and forward model. A typical PCI-Express
switch present on the market has a latency of 150ns and uses
cut through switching [26]. A PCI-Express switch consists of
only one upstream and one or more downstream switch ports.
Each switch port is represented by a VP2P. This is in contrast
to the root complex, where only the downstream ports (root
ports) are represented by VP2P [18].

We built our gem5 switch model upon the root complex
model designed earlier. Each switch port is associated with a
VP2P, and is made up of a master and slave port. We configure
the PCI-Express capability structure of the switch VP2Ps to
show themselves to the enumeration software as either a switch
upstream or downstream port. In the root complex model, the
upstream slave port accepts an address range that is the union
of the address ranges programmed into the VP2Ps of each root
port. In contrast, in the switch model, the upstream slave port
accepts an address range based on the (I/O and memory) base
and limit register values stored in the upstream VP2P.

C. PCI Express Links

Figure 8 illustrates our gem5 model for a PCI-Express link. It
consists of two unidirectional links, one used for transmitting
packets upstream (toward the root complex), and one used for
transmitting packets downstream. Each link interface consists
of a master and slave port pair that can be connected to a
component slave and master port, respectively. For example,

the master port can be connected to a PIO port of a device
or a slave port of a switch/root port, and the slave port can
be connected to a DMA port of a device or a master port of
a switch/root port. Each unidirectional link transmits a packet
to the target interface after adding a configurable transmission
and propagation latency.

PCI-Express Layered Protocol. Every PCI-Express based
device needs to implement a PCI-Express interface consisting
of three layers. We review these layers again in the context of
our PCI-Express link model implementation:

—Transaction Layer. This layer accepts a request from the
device core, and creates a TLP [10]. As explained in Sec. II-B
only TLPs carry data through the PCI-Express interconnect. A
request TLP originates at the transaction layer of the requestor
and is consumed in the transaction layer of the completer (and
the opposite for a response TLP). In our PCI-Express link
model, we use gem5 request and response packets as TLPs
and do not introduce another packet type.

—Data Link Layer. This layer sits below the transaction layer
and is responsible for reliable delivery of TLPs across a single
PCI-Express link. Data link layer packets (DLLPs) are used
for flow control, acknowledging the transmission of TLPs, and
link power management. In a physical PCI-Express protocol,
a DLLP originates at the data link layer of a source device
and is consumed by the data link layer of the device on the
other end of the link. The data link layer also appends a Cyclic
Redundancy Check (CRC) and sequence number to the TLPs
before they are transmitted across the link [10]. In our PCI-
Express link model, we implement a simplified data link layer.
That is, each link sends ACK/NAK DLLPs to ensure reliable
transmission of TLPs across a link.

—Physical Layer. The physical layer is involved in framing,
encoding and serializing TLPs and DLLPs before transmitting
them on the link [10]. A TLP or DLLP is first appended with
STP and END control symbols [27], indicating the start and
end of a packet, respectively. The individual bytes of a TLP
or DLLP are divided among the available lanes. Each byte is
encoded using a 8b/10b (Genl and Gen2) or 128b/130b (in
Gen3) encoding, and is serialized and transmitted to the wire.
In our PCI-Express link model, although we do not implement
the physical layer, we take the encoding and physical layer
framing overhead into account.

Overheads accounted for in gem5. We use gem5 memory
packet as TLPs. The maximum TLP payload size is O for
a read request or a write response and is cache line size
for a write request or read response. Table I summarizes the
overheads that we take into account for TLPs and DLLPs.
ACK/NAK protocol. We first explain the ACK/NAK protocol
implementation in a real PCI-Express data link layer, and then
explain our model in gem5.

Sender Side: When the data link layer receives a TLP from the
transaction layer, it appends a sequence number and a CRC
to the TLP. A copy of the TLP is stored in a replay buffer,
before the TLP is sent to the physical layer. The sequence
number assigned is incremented for every TLP, and TLPs
are stored in the replay buffer based on the order in which

TABLE I
TRANSACTION, DATA LINK, AND PHYSICAL LAYER OVERHEADS IN OUR
PCI-EXPRESS LINK MODEL.

Overhead Type of Overhead Packet Type

12B TLP header TLP
2B sequence number appended by data link layer TLP
4B Link CRC appended by data link layer TLP
2B Framing symbols appended by Physical Layer TLP and DLLP

8/10-128/130 Overhead caused by 8b/10b or 128b/130b encoding TLP and DLLP

they arrived from the transport layer. Replay buffer holds a
TLP until it is confirmed to be received without any errors
by the data link layer of the device on the other end of
the link. This confirmation comes in the form of an ACK
DLLP. On the contrary, if the receiver on the other end of
the link (it is not necessarily the completer) receives a TLP
with an error, it sends back a NAK DLLP across the link to
the TLP sender [10]. In this scenario, the sender first removes
the TLPs from the replay buffer that are acknowledged by the
NAK, and then retransmits (i.e. replays) the remaining TLPs in
the Replay Buffer in increasing sequence number order. Both
the ACK and NAK DLLPs identify a TLP via its sequence
number. When the TLP sender receives a ACK DLLP, all
TLPs with a lower sequence number are removed from the
replay buffer. A full replay buffer halts TLP transmission.

The data link layer of a PCI-Express device maintains a

replay timer to retransmit TLPs from the replay buffer on
timeouts. The timer is reset to 0 when an ACK DLLP is
received. On a timeout, all TLPs from the replay buffer are
retransmitted and the data link layer stops accepting packets
from the transaction layer during this retransmission. The
timeout mechanism is necessary when a NAK is lost or when
a receiver experiences temporary errors that prevents it from
sending ACKs to the sender [10].
Receiver side: On the receiver side, a TLP arriving from the
physical layer is buffered in the data link layer and undergoes
the CRC and sequence number checks. The receiver needs to
keep track of the sequence number of the next expected TLP.If
a TLP is error free, it is passed on to the transaction layer and
the next expected sequence number is updated. If the TLP has
an error, it is discarded and the the next expected sequence
number remains the same.

Once a TLP is processed in the data link layer of the
receiver, the receiver has the option to send an ACK/NAK back
to the sender immediately. However, to reduce the link traffic,
the receiver sends back a single ACK/NAK to the sender
for several processed TLPs. To do so, the receiver maintains
an ACK timer to schedule sending Ack/NAKs back to the
sender [10]. When the timer expires, an ACK/NAK has to be
sent back to the sender.

The data link layer of all PCI-Express devices has the sender
and receiver logic for the ACK/NAK protocol described above
(TX logic and RX logic in Figure 8). The expiration period of
the replay and ACK timers are set by the PCI-Express standard
which is describe in the next subsection.

Our PCI-Express link model in gem5.

Figure 8 overview our PCI-Express link model. As mentioned
earlier, we use the gem5 memory packets as our PCI-Express
TLPs. A gem5 memory packet has the necessary information
presented in a TLP header such as requestor ID, packet type
(request or response), completor address, and the payload
size. Each link interface receives a gem5 packet from the
attached slave or master port and sends it on the assigned
unidirectional link. Since we transmit both DLLPs and TLPs
across the same link, we create a new wrapper class, called
pcie-pkt, to encapsulate both DLLPs and TLPs. A sequence
number is assigned to a pcie-pkt encapsulating a TLP prior
to transmission. Each pcie-pkt returns a size depending on
whether it encapsulates a TLP or a DLLP. The overheads such
as headers, encoding schemes, and sequence number are taken
into account, based on the values in Table 1. The size of the
pcie-pkt is used to determine the delay of each unidirectional
link when transmitting a packet.

Each link interface receives a pcie-pkt from the correspond-
ing unidirectional link. If the pcie-pkt encapsulates a TLP,
then its sequence number is examined before sending it to the
master or slave ports attached to the interface. If the packet
is a DLLP, we perform an action based on our ACK/NAK
protocol implementation.

The goal of implementing the ACK/NAK protocol is to
ensure a reliable and in order transmission of packets even
when the buffers of the components attached to the PCI-
Express link are full. In our PCI-Express link model, the
interfaces transmit TLPs as long as their replay buffer has
space. Once the replay buffer is filled up due to not receiving
ACKs, the packet transmission is throttled. A timeout and re-
transmition mechanism guarantees that TLPs eventually reach
their destination when the buffers are freed up.

Each link interface maintains a replay buffer to hold trans-
mitted pcie-pkts that encapsulate a TLP. The replay buffer is
designed as a queue, and new TLPs are added to the back
of the buffer. The replay buffer can hold a limited number
of TLPs, hence, it can filled up quickly if a large number of
small sized TLPs are transmitted in a short time period.

Each link interface maintains a “sending” and a “receiving”
sequence number. The sending sequence number is assigned
to each TLP transmitted by the interface and is incremented
after each transmission. The receiving sequence number is
used to decide whether to accept or discard a TLP that the
interface receives from a link. The receiving sequence number
is incremented for every successful TLP reception.

Each link interface maintains a replay timer to retransmit
packets from the replay buffer on a timeout. The replay timer
is started for every packet transmitted on the unidirectional
link. The replay timer is reset whenever an interface receives
an ACK DLLP. The replay timer is also restarted on a timeout.
We set the timeout interval based on the PCI-Express specifi-
cation [10] which defines the timeout interval as follows:
(((MaxPayloadSize + TLPOverhead) / Width) * AckFactor +
InternalDelay) * 3 + RxLOsAdjustment

This time is in symbol times which is the time to transmit
a single byte of data over a unidirectional link. We set the
MaxPayloadSize in our calculation to be equal to the cacheline
size, the Width as the number of lanes configured in the PCI-
Express link, and the InternalDelay and RxLOsAdjustment as
0, since we do not take internal delay in to account and do not
implement different power states, respectively. The AckFactor
is determined based on the maximum payload size and the
Width. The ACK timer period is set to 1/3 of the the replay
timer timeout value.

After a link interface transmits a TLP on a unidirectional
link, it stores the packet in the replay buffer. When the inter-
face on the other end of the link receives the TLP, it checks to
see if the sequence number is equal to the receiving sequence
number. If the check passes, and the TLP is successfully sent
to the connected master or slave port of the interface, the
receiving sequence number is incremented and an ACK for
the corresponding sequence number is sent to the sending
interface, either immediately or after the ACK timer expires.
If the connected master or slave ports refuse to accept the
TLP, the receiving interface does not increment the receiving
sequence number and the sender retransmits the packets in its
replay buffer after a timeout.

When a link interface receives an ACK DLLP, it removes all
the TLPs with a sequence number smaller or equal to the ACK
sequence number from the replay buffer. The replay timer is
restarted if any TLP remains in the replay buffer once the
ACK is processed. We give priority to the pcie-pkts in the
following order: (1) ACK DLLP; (2) Retransmitted pcie-pkts;
(3) pcie-pkts containing TLPs received from a connected port.

VI. EVALUATION
A. Methodology

Measuring the performance of a real PCI-Express link in isola-
tion is not simple. Also, validating the full-system performance
of gem5 against a corresponding real system is not feasible
due to the inaccuracies in modeling the various parts of a
system. Moreover, the focus of this work is only to validate the
PCI-Express subsystem. To minimize the effects of inaccurate
processor, memory and device modeling in gem5 on our PCI-
Express subsystem performance measurements, we choose dd,
which is a simple I/O intensive application that measures
the performance of a storage device [28]. dd simply floods
the storage device with read/write accesses. If the internal
bandwidth of the storage device is higher than the PCI-Express
bandwidth, then the PCI-Express becomes the bottleneck and
we can estimate the performance of different PCI-Express
configurations with simply running dd. dd transfers data in
the units of “blocks” that is a configurable parameter. For our
measurements, we only transfer a single block of data at a
time, with a block size varied between 64MB and 512MB.
We run dd with direct IO [29] to avoid the page cache lookup
overhead.

To benchmark the performance of the PCI-Express in a
real system, we use an Intel server with Xeon V4 E5 2660
processor and an Intel p3700 Solid State Drive as the storage

O phys OL150ns & L100ns @ L75ns @ L50ns Ox1 Ox2 Ox4 Ox8

Replay Bufsize= 040302 D1 Root Buf size= 016 020 024 @28

3.5 4 6.0 + 5.2 ~ 5.2 7
@ 3.0 - w5 A i @
& 2 850 - 250 -
825 9 © 40 -] cl
= 2.0 4 5 5-4.8- .511.8-
2, | a 3.0 1 a 2
TR f“zo- 5 4.6 5 4.6 1
3 5 2 Ej Ei
3 1.0 A] 441 4 2 4.4
= 0.5 A = 1.0 ™ £ 4
0.0 0.0 4.2 t T 4.2 T T
64 128 256 512 64 128 256 512 64 128 256 512 64 128 256 512
Block Size (MB) Block Size (MB) Block Size (MB) Block Size (MB)
(a) (b) (c) (d)
Fig. 9. Throughput of dd (a) when running on a physical machine and gem5 with different switch latency; (b) when running on gem5 with different number

of PCI-Express lanes; (¢) when running on gem5 with various replay buffer sizes; (d) running on gem5 with various root and switch port buffer sizes

device. The p3700 provides a sequential read bandwidth of
2800 MBps and is designed for PCI-Express Gen3 x4 [30].
The Xeon processor is connected to a X99 Platform Controller
Hub (PCH) through a DMI 2.0 x4 link [31]. The DMI link
provides a bandwidth similar to a PCI-Express Gen 2 X4
link, that is 20 Gbps [31]. We attach the p3700 to a PCH
x1 PCI-Express slot to make the PCI-Express the bottleneck
in our physical system measurements. This limits the offered
PCI-Express bandwidth to 5 Gbps in each direction. Taking
the 8b/10b encoding overhead into account, the p3700 read
bandwidth is effectively limited to a maximum of 4 Gbps.
Thus, when running dd, the reported bandwidth should be
similar to a PCI-Express Gen 2 x1 link bandwidth.

We run gem5 with the detailed out of order processor
type and tune it to model the Xeon processor as close as
possible. We use the conventional gem5 IDE disk as the
storage device in our evaluations. Note that the gem5 IDE
disk model does not impose any bandwidth bottleneck for
the data transfer (its access latency is a constant lus value).
Therefore, when we read a block from the IDE disk with dd,
the transfer time is determined by the performance of our PCI-
Express interconnect model. For validation against the physical
system, we instantiate a PCI-Express switch, connect it to a
root complex root port with a Gen 2 x4 link and attach the
IDE disk to one of the switch downstream ports using a Gen
2 x1 link. That is to model the same PCI-Express topology as
our physical setup. Unless stated otherwise, we configure our
PCI-Express to model a Gen 2 interconnect. We configure the
replay buffer size to 4 packets to hold enough TLP pcie-pkts
until the next ACK arrives based on the ack factor [32].

B. Experimental Results

Comparing the performance of gem5 against physical
setup. In this experiment, we read a single block of data with
different size from the storage device into /dev/zero using dd.
Along with varying the block size, we also sweep the switch
latency in gem5 from 50 to 150ns. The root complex latency
is kept fixed at 150ns. Both the root complex and switch use
buffers that can store a maximum of 16 packets per master or
slave port.

Figure 9(a) compares the reported throughput of dd when
running on physical system and gem5 (phys and L#switch
latency configurations in Figure 9(a), respectively). As shown
in the figure, the performance of our IDE disk is within
80%~90% of the Intel p3700 SSD attached to the PCH root
port, and more importantly, it follows the same trend as phys.
Our PCI-Express interconnect shows lower dd throughput than
the phys configuration. We suspect that the main culprits for
such throughput mismatch are the OS overheads in gem5 for
setting up the transfer and also the inaccuracies in the gem5
processor modeling. If we remove the OS overheads and make
our measurements at the gem5 device level, each sector (4KB)
of the IDE disk is transferred with a throughput of 3.072 Gbps
over our PCI-Express link that is close to the throughput of
phys configuration.

Another factor that reduces the bandwidth offered by the
gem5 PCI-Express model is the fact that we do not support
posted write requests. Therefore, once a sector is transmitted
by the IDE disk over the link, responses for all gem5 write
packets need to be obtained before the next sector can be
transmitted. This is unlike the physical PCI-Express protocol
where write TLPs do not need a response.

As expected, we get higher throughput across all the block
size when we decrease the gem5 switch latency. dd throughput
increases by 80 Mbps when changing the switch latency
from 150ns to 50ns, across all the block size used. This
throughput improvement is very minimal and accounts for
~3% of the total throughput. This shows that the latency is
not the only factor in determining the performance of a PCI-
Express interconnect.

Comparing the I/O performance when using different
PCI-Express link widths. In this experiment, we configure
gem5 to model a Gen 2 PCI-Express links and vary the link
widths to x2, x4, and x8. Figure 9(b) shows the results. In
this experiment, we change the width of all links in the PCI-
Express interconnect, including the links from the root port to
the switch upstream port. We measure the throughput reported
by dd for different block size while vary the link width.

We observe a 1.67x increase in the throughput when
increasing the link width from x1 to x2. The throughput does

not exactly double across all the block sizes since the OS
overhead does not scale with the increase in the link width. We
have a smaller increase in the throughput when doubling the
link width from x2 to x4 as shown in Figure 9(b). Surprisingly,
we see a drop in the dd throughput when doubling the link
width from x4 to x8. This happens because the x8 link
transmits packets too fast for the switch port to handle, causing
the buffers in the switch ports to fill up. We notice that
27% of the transmitted packets experience replay when using
x8 configuration, while the replay percentage for x2 and x4
configuration is almost zero. This high replay rate explains the
throughput drop observed in the x8 configuration.
Comparing the performance of dd on a x8 link, using
different replay buffer size. In this experiment, we keep the
link width constant and vary the replay buffer size in each
link interface. We configure the maximum number of packets
a replay buffer can hold to be 1, 2, 3, and 4 and measure the
reported dd throughput.

As shown in Figure 9(c), the dd throughput is considerably
lower when replay buffer size is set to 3 or 4 compared with
1 or 2. We measure the number of timeouts that occur on
the upstream unidirectional link that connects the IDE disk
to the switch port, and calculate this number as a percentage
of the total number of packets transmitted on the link. We
observe that when the replay buffer has 3 or 4 entries, ~27% of
total transmitted packets experience timeout. When the replay
buffer size is set to 2 and 1, 6% and 0% of the transmitted
packets experience timeout, respectively.

A larger Replay Buffer ensures that more packets can be

transmitted across the unidirectional link without waiting for
an ACK for the previously transmitted packets. However, when
the link speed is high, along with a long root complex/switch
latency, the root and switch port buffers get filled up very fast
and we experience timeouts and retranmissions of packets.
In this scenario, source throttling the packet transmission by
reducing the replay buffer considerably reduces the timeouts.
This experiment shows the a complex and non intuitive
behaviour of the PCI-Express interconnect while running a
simple application.
Comparing the dd throughput when using different switch
and root port buffer sizes. In this experiment, we use a x8
PCI-Express configuration, while varying the switch and root
port buffer size. The replay buffer size is restored to 4, and we
aim to see whether increasing the switch and root port buffers
increases the dd throughput. Figure 9(d) shows the results.

We observe that for a particular block size, there is a large
increase in the dd throughput when we increase the switch/root
port buffer size from 16 to 20. This holds true for all the
different block sizes. When the port buffer size is increased to
24 and 28, we see a minor increase in the dd throughput. The
dd throughput seems to be saturated at ~5.08 Gbps. This is
close to the value obtained with the x8 links in the previous
experiment when we set the replay buffer size to 2.

Interestingly, increasing the switch and port buffer sizes to
20 reduces the timeout rate from 27% to 20%. However, we
still see a huge increase in the throughput. This observation

10

TABLE II
ROOT COMPLEX LATENCY VS. MMIO READ ACCESS TIME.

50
318

75
358

100 125
398 438

150
517

root complex latency(ns)

MMIO read access latency(ns)

suggests that the throughput increase mainly comes from the
increased space in the root complex and switch port buffers
as opposed to a reduction in the timeouts. Increasing the port
buffer size to 24 and 28 removes all the packet timeouts.
Comparing register access latency when varying root
complex latency. In this experiment, we connect a gem5 NIC
model to a root port and sweep the root complex latency from
50ns to 150ns. We measure the time taken to perform a 4 Byte
MMIO read from a NIC register. We create a kernel module
and measure the time taken to access a location in the NIC
memory space.

Table II shows the measured latency values. As expected, we
observe a decrease in the time to perform the MMIO read as
the root complex latency is reduced. For every 25ns decrease
in the root complex latency, we see around a 40ns decrease
in the MMIO access latency. This is to be expected, since an
MMIO read generates a gem5 read request packet, along with
a read response packet containing the data. Both the request
and response packet latency are affected by the root complex,
so the latency reduction is more than 25ns for an MMIO read.

VII. CONCLUSION AND FUTURE WORK

In this work, we provide a PCI-Express inteconnect model
that can be utilized for the future system exploration with
PCI-Express based devices. Firstly, we enabled a gem5 Linux
kernel to enumerate and configure PCI-Express devices, re-
gardless of the hardware models, for a PCI-Express inter-
connect. Then we created hardware models for PCI-Express
components such as root complex, switches, and links to allow
gem5 to precisely model the PCI-Express subsystem. Even
though we provide a generic template and performance model
for future PCI-Express device developments in gem5, our
work can be further improved in several aspects to add more
detailed implementation of different PCI-Express protocol
layers. We believe that our work is a strong base for more
detailed PCI-Express modeling in gem5.

VIII. ACKNOWLEDGEMENT

This work is supported by grants from NSF (CNS-1557244
and CNS-1705047).

[1]

[2]

[3

=

[4]

[5

=

[6

=

[8

=

[9

—

[10]
(11]
[12]
[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20

[21]

[22]

[23
[24]

[25]

[26]

[27]

REFERENCES

H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Computer
Architecture (ISCA), 2011 38th Annual International Symposium on.
IEEE, 2011.

A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim et al., “A
cloud-scale acceleration architecture,” in Microarchitecture (MICRO),
2016 49th Annual IEEE/ACM International Symposium on. 1EEE, 2016.
R. Azimi, T. Fox, and S. Reda, “Understanding the Role of GPGPU-
Accelerated SoC-Based ARM Clusters,” in Cluster Computing (CLUS-
TER), 2017 IEEE International Conference on. 1EEE, 2017.

A. Mohammad, U. Darbaz, G. Dozsa, S. Diestelhorst, D. Kim, and
N. S. Kim, “dist-gem5: Distributed simulation of computer clusters,” in
Performance Analysis of Systems and Software (ISPASS), 2017 IEEE
International Symposium on. 1EEE, 2017.

M. Alian, D. Kim, and N. S. Kim, “pd-gem5: Simulation infrastructure
for parallel/distributed computer systems,” IEEE Computer Architecture
Letters, vol. 15, 2016.

J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood, “gem5-
gpu: A heterogeneous cpu-gpu simulator,” /[EEE Computer Architecture
Letters, vol. 14, 2015.

D. Gouk, J. Zhang, and M. Jung, “Enabling realistic logical device
interface and driver for nvm express enabled full system simulations,”
International Journal of Parallel Programming, 2017.

M. Jung, J. Zhang, A. Abulila, M. Kwon, N. Shahidi, J. Shalf, N. S. Kim,
and M. Kandemir, “Simplessd: modeling solid state drives for holistic
system simulation,” IEEE Computer Architecture Letters, vol. 17, 2018.
Intel®, “Xeon™ platinum 8180m processor,” https://ark.intel.
com/products/120498/Intel- Xeon- Platinum- 8 180M-Processor-38_
5M-Cache-2_50-GHz.

R. Budruk, D. Anderson, and T. Shanley, PCI express system architec-
ture. Addison-Wesley Professional, 2004.

“Bus mastering — Wikipedia, the free encyclopedia,” [Online; accessed
18-May-2018]. [Online]. Available: https://en.wikipedia.org/wiki/Bus
mastering

“pci.” [Online]. Available: https://www.tldp.org/LDP/tlk/tlk.html

“Pci configuration space.” [Online]. Available: https://en.wikipedia.org/
wiki/PCI_configuration_space#Bus_enumeration

“Pci local bus.”” [Online]. Available: https://docs.oracle.com/cd/
E19455-01/805-7378/hwovr-22/index.html

“Pci express packet latency matters,” 2007, [Online; accessed 18-May-
2018]. [Online]. Available: https://www.mindshare.com/files/resources/
PLX_PCle_Packet_Latency_Matters.pdf

“Memory-mapped i/o — Wikipedia, the free encyclopedia,” [Online;
accessed 18-May-2018]. [Online]. Available: https://en.wikipedia.org/
wiki/Memory-mapped_I/O

“Message signaled interrupts — Wikipedia, the free encyclopedia,”
[Online; accessed 18-May-2018]. [Online]. Available: https://en.
wikipedia.org/wiki/Message_Signaled_Interrupts

“Pci local bus.” [Online]. Available: https://webcourse.cs.technion.ac.il/
236376/Spring2016/ho/W CFiles/chipset_microarch.pdf

M. Sadri. Zynq training - session 02 - what is an axi interconnect?
Youtube. [Online]. Available: https://www.youtube.com/watch?v=
BASCRxR2L-c&list=PLfYnEbg9Uqu5q6- XcfJkMN700P0dwJCn7
“Pci configuration space — Wikipedia, the free encyclopedia,” [Online;
accessed 18-May-2018]. [Online]. Available: https://en.wikipedia.org/
wiki/PCI_configuration_space

“Pci express switch enumeration using vmm-based designware
verification ip,” [Online; accessed 18-May-2018]. [Online]. Available:
https://www.synopsys.com/dw/dwtb.php?a=pcie_switch_enumeration
A. Rubini and J. Corbet, Linux device drivers. ” O’Reilly Media, Inc.”,
2001.

Intel 82574 GbE Controller Family, Intel, 6 2014, rev. 3.4.

“The pci id repository.” [Online]. Available: https://pci-ids.ucw.cz/read/
PC/8086

M. Rodriguez, “Addressing latency issues in pcie.”
[Online]. Available: https://www.eetindia.co.in/STATIC/PDF/200909/

EEIOL_2009SEP21_INTD_TA_O1.pdf

P. technology, “Pex8796 product brief”” [Online]. Available: https:
//docs.broadcom.com/docs/12351860

J. Ajanovic, “Pci express 3.0 overview.”

11

(28]

[29]

(30]

(31]
[32]

“Dd (unix) — Wikipedia, the free encyclopedia,” [Online; accessed
24-May-2018]. [Online]. Available: https://en.wikipedia.org/wiki/Dd_
(Unix)

“dd: Convert and copy a file.” [Online]. Available: https://www.gnu.
org/software/coreutils/manual/html_node/dd-invocation.html

“Intel solid-state drive dc p3700 series.” [Online]. Available: https:
/Iwww.intel.com/content/dam/support/us/en/documents/ssdc/hpssd/sb/
Intel_SSD_DC_P3700_Series_PCle_Product_Specification-005.pdf
“Intel x99.” [Online]. Available: https://en.wikipedia.org/wiki/Intel_X99
J. Wrinkles, “Sizing of the replay buffer in pci express devices,” 2003.

https://ark.intel.com/products/120498/Intel-Xeon-Platinum-8180M-Processor-38_5M-Cache-2_50-GHz
https://ark.intel.com/products/120498/Intel-Xeon-Platinum-8180M-Processor-38_5M-Cache-2_50-GHz
https://ark.intel.com/products/120498/Intel-Xeon-Platinum-8180M-Processor-38_5M-Cache-2_50-GHz
https://en.wikipedia.org/wiki/Bus_mastering
https://en.wikipedia.org/wiki/Bus_mastering
https://www.tldp.org/LDP/tlk/tlk.html
https://en.wikipedia.org/wiki/PCI_configuration_space#Bus_enumeration
https://en.wikipedia.org/wiki/PCI_configuration_space#Bus_enumeration
https://docs.oracle.com/cd/E19455-01/805-7378/hwovr-22/index.html
https://docs.oracle.com/cd/E19455-01/805-7378/hwovr-22/index.html
https://www.mindshare.com/files/resources/PLX_PCIe_Packet_Latency_Matters.pdf
https://www.mindshare.com/files/resources/PLX_PCIe_Packet_Latency_Matters.pdf
https://en.wikipedia.org/wiki/Memory-mapped_I/O
https://en.wikipedia.org/wiki/Memory-mapped_I/O
https://en.wikipedia.org/wiki/Message_Signaled_Interrupts
https://en.wikipedia.org/wiki/Message_Signaled_Interrupts
https://webcourse.cs.technion.ac.il/236376/Spring2016/ho/WCFiles/chipset_microarch.pdf
https://webcourse.cs.technion.ac.il/236376/Spring2016/ho/WCFiles/chipset_microarch.pdf
https://www.youtube.com/watch?v=BASCRxR2L-c&list=PLfYnEbg9Uqu5q6-XcfJkMN7O0P0dwJCn7
https://www.youtube.com/watch?v=BASCRxR2L-c&list=PLfYnEbg9Uqu5q6-XcfJkMN7O0P0dwJCn7
https://en.wikipedia.org/wiki/PCI_configuration_space
https://en.wikipedia.org/wiki/PCI_configuration_space
https://www.synopsys.com/dw/dwtb.php?a=pcie_switch_enumeration
https://pci-ids.ucw.cz/read/PC/8086
https://pci-ids.ucw.cz/read/PC/8086
https://www.eetindia.co.in/STATIC/PDF/200909/EEIOL_2009SEP21_INTD_TA_01.pdf
https://www.eetindia.co.in/STATIC/PDF/200909/EEIOL_2009SEP21_INTD_TA_01.pdf
https://docs.broadcom.com/docs/12351860
https://docs.broadcom.com/docs/12351860
https://en.wikipedia.org/wiki/Dd_(Unix)
https://en.wikipedia.org/wiki/Dd_(Unix)
https://www.gnu.org/software/coreutils/manual/html_node/dd-invocation.html
https://www.gnu.org/software/coreutils/manual/html_node/dd-invocation.html
https://www.intel.com/content/dam/support/us/en/documents/ssdc/hpssd/sb/Intel_SSD_DC_P3700_Series_PCIe_Product_Specification-005.pdf
https://www.intel.com/content/dam/support/us/en/documents/ssdc/hpssd/sb/Intel_SSD_DC_P3700_Series_PCIe_Product_Specification-005.pdf
https://www.intel.com/content/dam/support/us/en/documents/ssdc/hpssd/sb/Intel_SSD_DC_P3700_Series_PCIe_Product_Specification-005.pdf
https://en.wikipedia.org/wiki/Intel_X99

